
Capacity of Scale Free Wireless Networks
Bita Azimdoost

Department of Electrical Engineering
University of California

Santa Cruz 95064
Email: bazimdoost@soe.ucsc.edu

Hamid R. Sadjadpour
Department of Electrical Engineering

University of California
Santa Cruz 95064

Email: hamid@soe.ucsc.edu

Abstract—We study the impact of social connectivity on the
capacity of wireless networks by considering different values of
concentration factor and degree dispersion in scale-free networks.
The result shows that a capacity similar to Gupta and Kumar
[1] is achieved. Further investigation reveals that traditional
transport capacity definition provides misleading conclusions
for such network models. We show that nodes with different
social status impact the capacity differently. By separating nodes
with different social status in frequency and allocating separate
bandwidth to them, it is shown that majority of nodes scale in
this network. The results imply that in a network with social and
communication characteristics, social behavior of the nodes has
significant influence on the performance of such networks.

I. INTRODUCTION

Wireless networks and their performance have been widely
studied during the past decade. Gupta and Kumar’s work [1]
showed that the capacity order of wireless communication
networks with n nodes, each participating in unicast transmis-
sions, is Θ( 1√

n logn
). They assume that each source selects a

destination with no priority, so any node in the network can
be selected as destination with uniform probability.

On the other hand, an early work by Milgram on the small-
world phenomenon [2] has evoked a considerable attention
to the modeling of social networks which include a large
family of networks. Studies have shown that the Web [3],
[4], scientific collaboration on research papers [5], and gen-
eral social networks [6] have small-world properties. Several
models have been proposed and analyzed in this category.
Watts and Strogatz [7] divided the edges of a network into
local and long-range contacts and assumed that there is always
an edge between a node and any of its local or long-range
social contacts. Dietzfelbinger et al. [8] studied a ring-based
network where each node is connected to its left and right
neighbors and possibly to some further nodes, and the long-
range contacts may be selected through any distribution.

Liben-Nowell et al. [9] found a strong correlation between
friendship and geographic location in social networks by using
data from Live Journal, and Backstrom et. al. [10] observed
that in practical networks like Facebook the geography and
social relationships are inseparable; the nodes that interact with
each other are more likely to be geographically close.

Kleinberg [11] proposed a model to explain the small-
world phenomenon. His model consists of a two-dimensional
extended grid with point-to-point links in which each node
has four local contacts and one long-range contact. The

source node s selects any other node v as its long-range
contact with a probability proportional to d−α(s, v), where
d(s, v) is the lattice distance between s and v, and α shows
the density of the social network. Li et al. [12] computed
upper bounds on the capacity of a wireless network in which
source-destination pairs followed a power-law distribution as
in Kleinberg’s model. Azimdoost et al. [13] also studied the
interaction between communication and social networks by
considering one single long-range contact per node, selected
through a power-law distribution and found out that the
maximum capacity, λmax, in dense social networks is much
larger than in Gupta and Kumar’s result. More recently, the
same authors extended their earlier work [14] by considering
nodes having any number of long-range social contacts and for
all possible number of long-range contacts. Their results show
that for highly concentrated networks (α > 3), the maximum
possible throughput of Θ( 1

logn ) in a point-to-point wireless
communication can be achieved if each node has limited
number of contacts, while for the networks where the social
connections of each node increases with the network growth,
the maximum capacity of order Θ( 1√

n logn
) is achieved which

is similar to that of Gupta and Kumar [1].
Earlier studies [13], [14] focused on the homogeneous social

networks where all nodes have the same number of social
group members. However, study of social networks reveals that
the number of social group members for each node is different.
More specifically, a small portion of the nodes have a very
large social group size while majority of nodes have social
contact with a few other nodes in the network. Therefore,
different nodes in the network have different social status, i.e.,
few nodes are highly popular while most of the nodes are less
popular in the network. Such networks have been named scale-
free networks [15], [16]. The present paper thus addresses the
following questions:

1) In a scale-free wireless network, what is the order of the
maximum achievable information rate?

2) How can this information rate be improved?
3) Is traditional transport capacity definition [1] appropriate

for such networks? Is there any better approach to
demonstrate the performance of such networks in terms
of throughput capacity?

Theorem 1 is proved in section II and implies that these
networks are not scalable and similar throughput capacity



order of Gupta and Kumar [1] is achieved.

Theorem 1. Consider a social wireless network consisting of
n nodes with the following properties.
• Each node has q = 1, 2, .., or n − 1 social contacts

and the number of nodes with q social contacts is
inversely proportional to qγ , where γ is the social degree
distribution exponent.

• The probability that two nodes in Euclidean distance d
away from each other are socially connected is inversely
proportional to dα, where α is the social group concen-
tration factor.

• Each source communicates with one of its social contacts
randomly with no preference.

Under these conditions and assuming the minimum wire-
less transmission range of r(n) = Θ(

√
logn
n ) to guarantee

connectivity ( [17]), the throughput capacity will be λmax =
Θ( 1√

n logn
) for sufficiently large n.

Theorem 1 shows that these networks are not scalable.
However, Theorem 2 demonstrates that by separating few
popular nodes (nodes with large number of social contacts)
from the rest of nodes that have few social contacts using
different sections of available bandwidth, the majority of nodes
can scale.

Theorem 2. Consider the social network characterized in
theorem 1 and assume that social connectivity between nodes
is highly concentrated (α > 2) with large social degree
distribution exponent (2 < γ). Let’s divide the total bandwidth
(W ) into two distinct parts, W/2 each; one part to be used to
transfer the information generated from the highly connected
source nodes (G>q0 ) and the other part to be used for
communication by the source nodes with small social group
size (G≤q0 ) where q0 is a constant value independent of n.

The maximum data rate for the first group (G>q0 ) is

λmax = Θ(
1√

n log n
), for 2 < α. (1)

The maximum data rate for the second group (G≤q0 ) is

λmax =

{
Θ( 1√

n3−α logα−1 n
) for 2 < α < 3

Θ( 1
logn ) for 3 < α

(2)

Section IV will discuss the results.

II. THROUGHPUT OF SCALE FREE NETWORKS

Studies show that a large number of networks like WWW
[3] can be characterized as scale-free networks. According to
[18], the number of nodes with q contacts in these networks is
inversely proportional to qγ , where the exponent γ illustrates
the clustering property of the network. It has been shown
[18] that for each social network, this exponent is a constant
number which does not change over time. Thus, the number
of social contacts of a node, or its degree, is a random variable
(Q) which can take the values q = 1, .., n − 1 with the
probability distribution

Pr(Q = q) =
q−γ

Nq,γ,n
, (3)

where the normalization factor for this probability (Nq,γ,n) is

Nq,γ,n =

n−1∑
q=1

q−γ . (4)

Let’s assume that each node selects its destination in random
from its social contacts, so that the average number of hops
(X) passed by the information from source vi to its destination
is

E[X|Source = vi] =

n−1∑
q=1

Pr(Q = q)E[X|Source = vi, Q = q].

Replacing the value of Pr(Q = q) from (3) and
E[X|Source = vi, Q = q] from [14] in the above equation
results in

E[X|Source = vi]

=

1
r(n)∑
1

x

4x∑
l=1

∑
vk in sl

n−1∑
q=1

q−γ∑n−1
b=1 b

−γ

d−αk σkq−1,n−1(v)

qσq,n(v)
,

(5)

where dk is the distance between source and any other node
vk in the network. sl represents a square cell at distance
of x hops from the source node vi. σq,n(v) is the polyno-
mial symmetric function described in [19] and is equal to∑

1≤i1<..<iq≤n
∏q
j=1 d

−α
ij

. σkq−1,n−1(v) is defined in [14] as∑
1≤i1<..<iq−1≤n,ih 6=k

∏q−1
j=1 d

−α
ij

. Expanding the elementary
symmetric polynomials, we have

d−αk σkq−1,n−1(v)

σq,n(v)
=

∑
1≤i1<..<iq≤n,∃h:ih=k

∏q
j=1 d

−α
ij∑

1≤i1<..<iq≤n
∏q
j=1 d

−α
ij

. (6)

Since each dij is an independent sample of a random
variable (distance between the source and any other random
node), we can define i.i.d. random variables Yij = d−αij for
1 ≤ ij ≤ n and the random variable sequence Zij = log Yij
for all values of ij , which will obviously be i.i.d. as well.

d−αk σkq−1,n−1(v)

σq,n(v)
=

∑
1≤i1<..<iq≤n,∃h:ih=k

∏q
j=1 Yij∑

1≤i1<..<iq≤n
∏q
j=1 Yij

,

=

∑
1≤i1<..<iq≤n,∃h:ih=k exp(

∑q
j=1 Zij )∑

1≤i1<..<iq≤n
exp(

∑q
j=1 Zij )

,

For sufficiently large value of q0 that is independent of n,
we can apply the Law of Large Numbers (LLN) for q > q0 and
q random variables of type Zi. Thus for q > q0, for any small
ε > 0 we can find small δ(ε) such that limLarge q

1
q

∑q
i=1 Zi

= Z + ε, with probability 1 − δ(ε) → 1, where Z is the
expected value of random variable Zi. Therefore the order of
the above equation equals to1

1We use the notation ≡ to show the order equality.



∑
1≤i1<..<iq≤n,∃h:ih=k exp(q(Z+ε))∑

1≤i1<..<iq≤n
exp(q(Z+ε))

,

=
(n−1
q−1 )

(nq )
= q

n . (7)

Let’s define E1 as

E1 =
1

r(n)∑
x=1

x

4x∑
l=1

∑
vk in sl

n−1∑
q=q0+1

q−γ−1∑n−1
b=1 b

−γ

d−αk σkq−1,n−1(v)

σq,n(v)
,

(8)

which is equal to

E1 ≡

1
r(n)∑
x=1

x

4x∑
l=1

∑
vk in sl

n−1∑
q=q0+1

q−γ−1∑n−1
b=1 b

−γ

q

n
(9)

The term
∑n−1
q=q0+1

q−γ−1∑n−1
b=1 b

−γ
q
n is not a function of k or l,

so it can be taken out of the summation, and the number of
terms of the two summations over k and l is in the order of
x(nr2(n)). Thus,

E1 ≡ r2(n)∑n−1
b=1 b

−γ

1
r(n)∑
x=1

x2
n−1∑

q=q0+1

q−γ

≡ 1

r(n)
∑n−1
b=1 b

−γ

n−1∑
q=q0+1

q−γ . (10)

The last equality is computed by approximating the sum as

integral, i.e.,
∑ 1

r(n)

1 x2 ≡ 1
r3(n) .

Now define

E2 =
1

r(n)∑
x=1

x
4x∑
l=1

∑
vk in sl

q0∑
q=1

q−γ−1∑n−1
b=1 b

−γ

d−αk σkq−1,n−1(v)

σq,n(v)
.

(11)

Note that E[X] = E1 + E2. We will compute E1 and E2

for different values of α and γ and investigate which one of
them will be the dominant factor in computation of E[X].

Lemma 1. E1 has higher order value than E2 for all values
of α and γ.

Proof: We observe that E1 is not a function of α.

E1 ≡
1

r(n)
∑n−1
q=1 q

−γ

n−1∑
q=q0+1

q−γ

If 0 ≤ γ ≤ 1, it can be easily shown that the order
of
∑n−1
q=q0+1 q

−γ and
∑n−1
q=1 q

−γ are both equal to n1−γ

1−γ .
Therefore, E1 ≡ 1

r(n) , and as this is the maximum number

of hops that E[X] can have in a unit square area, therefore
E2 does not have any effect on the order of E[X].

If 1 ≤ γ,
∑n−1
q=1 q

−γ ≡
∑n−1
q=q0+1 q

−γ ≡ 1. Therefore E1 ≡
1

r(n) and again E1 will be the dominant factor in computation
of E[X].

Lemma 1 implies that regardless of the density and cluster-
ing degree of the social network, each piece of information
needs to travel Θ(

√
n

logn ) hops on average to reach the
destination. Finally combining this result and by utilizing the
minimum transmission range to assure connectivity in the
network, the maximum data rate is equal to λ ≤ λmax =
Θ( 1

E[X] logn ). Then, Theorem 1 is readily proved.

λmax = Θ(
W

E[X] log n
) (12)

= Θ(
1√

n log n
) (13)

W is the available bandwidth in the network.

III. IMPROVING THE CAPACITY OF SCALE FREE
NETWORKS

We observe from [14] and computation of E1 and E2

that when nodes have large social contact size, they require
significant network resources to transport unicast data to
destinations. On the other hand, when nodes have small
social contact size, they require much less network resources
in order to transport packets from sources to destinations.
Such significant disparity in capacity behavior among nodes
suggests that the conventional definition of transport capacity
for wireless communication networks is not appropriate for
scale free wireless social networks. In these networks, a more
accurate analysis should be based on the fact that nodes with
different social status in terms of popularity (i.e., number of
social contacts) should be grouped separately. For this reason,
we divide the bandwidth W into two equal parts and allow
communication for each group of nodes within its allocated
bandwidth. Note that as we are talking about the order of the
throughput capacity, any bandwidth allocation which does not
depend on the number of nodes will not change the order of
throughput capacity result. Clearly, in order to preserve the
connectivity in the network, we still allow nodes in different
social status to relay messages for the other group of nodes.
However, this condition requires that each node is equipped
with two radios, each one operating in different frequency.
Further discussion on the details of this approach is beyond
the scope of this paper.

Lemma 2. Let q0 be a large constant number. For small social
degree distribution exponent (0 < γ < 1), the number of
nodes with more than q0 social contacts (N>q0 ) is Θ(n) and
the number of nodes with less than q0 social contacts (N≤q0 )
is Θ(nγ). Further, for large social degree distribution exponent
(2 < γ), the ratio of the number of nodes with more than q0
social contacts to the number of nodes with less than q0 social
contacts (N>q0N≤q0

) is Θ(q1−γ0 ) which is a very small number for
sufficiently large q0.



Proof: According to [18], the number of nodes with q
connections is proportional to q−γ and based on (3), the
number of nodes with q connections is on average equal to
n q−γ∑n−1

q=1 q
−γ . Therefore the number of nodes with more than

q0 social connections (N>q0 )is

N>q0 = n

∑n−1
q=q0+1 q

−γ∑n−1
q=1 q

−γ
, (14)

and the number of nodes with less than q0 + 1 social connec-
tions (N≤q0 )is

N≤q0 = n

∑q0
q=1 q

−γ∑n−1
q=1 q

−γ
. (15)

These summations can be approximated by integrals.

1 +

∫ n

2

dq

qγ
≤
n−1∑
q=1

q−γ ≤ 1 +

∫ n

2

dq

(q − 1)γ

1 +

∫ q0+1

2

dq

qγ
≤

q0∑
q=1

q−γ ≤ 1 +

∫ q0+1

2

dq

(q − 1)γ∫ n

q0+1

dq

qγ
≤

n−1∑
q=q0+1

q−γ ≤
∫ n

q0+1

dq

(q − 1)γ

Therefore the upper and lower bounds for N>q0 and N≤q0
are

n

1
1−γ (n1−γ − (q0 + 1)1−γ)

1 + 1
1−γ ((n− 1)1−γ − 1)

≤ N>q0

≤ n
1

1−γ ((n− 1)1−γ − q1−γ0 )

1 + 1
1−γ ((n1−γ − 21−γ)

, (16)

and

n
1 + 1

1−γ ((q0 + 1)1−γ − 21−γ)

1 + 1
1−γ ((n− 1)1−γ − 1)

≤ N≤q0

≤ n
1 + 1

1−γ (q1−γ0 − 1)

1 + 1
1−γ ((n1−γ − 21−γ)

. (17)

Based on these inequalities, it can be easily seen that for
small γ (less than 1), the number of nodes with large number
of social connections is a tight bound, i.e., N>q0 = Θ(n).
For larger γ, the number of such nodes decreases significantly
and will be negligible compared to the number of nodes with
very small number of social contacts. When γ is larger than
2, both N>q0 and N≤q0 are Θ(n) but their ratio is inversely
proportional to qγ−10 . Figure 1(a) shows the ratio of the number
of nodes with more than q0 social contacts to the number of
nodes with less social connections for γ = 2.3 and n = 107,
and Figure 1(b) illustrates the same ratio for similar γ and
q0 = 1000. It can be seen that the network size (n) does not
considerably affect this ratio as long as it is much more than
q0, and the value of q0 changes the ratio exponentially.

In other words, for large γ, the number of nodes involving in
E1 is much less than the nodes which generate the E2 part of

the total average number of hops. E2 is calculated in appendix
and it is shown that for large values of γ and α this term is
much smaller than E1. The following Lemma describes the
size of E1 and E2 for large values of α and γ.
Lemma 3. In highly concentrated social networks (large α)
with large social degree distribution exponent (large γ) , a
very small group of nodes (N>q0 ) use the majority of the
resources (due to the large average number of hops traveled
by each packet to reach the destination), while a large group
of nodes (N≤q0 ) use a small portion of the resources.

This Lemma implies that conventional definition of trans-
port capacity may not be appropriate for scale-free networks.
In these networks, transportation of a single packet requires
different amount of network resources in terms of relaying and
average number of hops to reach destination. Based on this
observation, it makes sense that we divide the nodes into two
categories. One group of nodes are less popular and their social
group size is small, i.e., N≤q0 and the other group of nodes
are those nodes that are more popular with higher social status
with many social contacts, i.e., N>q0 . We divide the available
bandwidth W into two equal parts and allow communication
for each group inside their own bandwidth. By doing so, there
is more fairness in each group in terms of utilizing the network
resources for transmission of packets to destinations which
will ultimately allow us to better understand the performance
of the network.

For example if q0 = 100 and γ = 2.5, then it is easy to
show that 99.9% of nodes can scale while only 0.1% of nodes
with larger than 100 social contacts will not scale.

We have computed E1 before and by utilizing (12), the
maximum data rate for sources with N>q0 is given by

λmax>q0 = Θ(
W/2

E1 log n
) = Θ(

1√
n log n

). (18)

We use the results of appendix and particularly equation
(31) for sources in the second category, i.e., N≤q0 , to compute
the throughput capacity.

λmax≤q0 = Θ(
W/2

E2 log n
) (19)

=


Θ( 1√

n logn
) for 0 < α < 2

Θ( 1√
n3−α logα−1 n

) for 2 < α < 3

Θ( 1
logn ) for 3 < α

(20)

These two capacity results prove Theorem 2.

IV. DISCUSSION AND FUTURE WORK

This work utilizes the basic framework introduced in [14]
for wireless social networks and incorporates the power-law
degree distribution which is an important feature observed in
social networks. The model characterizes a wireless network
of n nodes each having social contact with a random number
of nodes. The probability that a source has q social contacts
is proportional to q−γ . Selection of the social group members
is also a random selection and the probability of a node being
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Fig. 1. The ratio between the number of very popular nodes and less popular
ones (

N>q0
N≤q0

) for large degree distribution exponent (γ = 2.3) and (a) diffrent
values of social group size threshold q0 for a fixed number of nodes (n =
107), (b) different network sizes and a fixed value for q0 (103).

a social contact of a source is inversely proportional to their
Euclidean distance with power factor α. The multiple access
interference model is considered according to the protocol
model.

The order of the throughput capacity in such networks is
derived and proved to be Θ( 1√

n logn
). Further investigation

reveals that nodes with different social status, i.e., different
number of social contacts, have different effect on through-
put capacity. Therefore, traditional transport capacity concept
for wireless networks is not appropriate for these types of
networks. However, if we divide the nodes into two groups
based on their social status and assign to each group half
of the available bandwidth, then nodes with small number of
social group members can easily scale. On the other hand,
the limiting factor in scaling the capacity is the existence of
few nodes with high social status that consume majority of
the network resources in terms of relaying requirements. More
specifically, it was shown that the nodes that limit the capacity
consist of a small portion of the network under the condition
that the social groups are geographically highly concentrated
(α > 2) and the degree distribution exponent is large (γ > 2).
Figures 2(a) and (b) demonstrate data rates for these two
groups of nodes, when γ > 2.

There exist many other features of social groups that we
can add in our future work and study the throughput capacity
performance of such networks. However, these preliminary
results show that the results of Gupta and Kumar and many
other papers followed that work are overly pessimistic and
social connection among nodes may actually help in scaling
wireless networks.

APPENDIX

Here we calculate the upper bound for E2. In (11), we can
write d−αk σkq−1,n−1(v) as
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Fig. 2. Maximum achievable data rate order for (a) highly connected source
nodes (Group G>q0 ), (b) nodes with small social group (Group G≤q0 ), with
large degree distribution exponent (γ > 2).

d−αk σkq−1,n−1(v),

= d−αk (σq−1,n(v) − d−αk σkq−2,n−1(v)),

= d−αk (σq−1,n(v) − d−αk (σq−2,n(v)− d−αk σkq−3,n−1(v))).

(21)

Since d−αk and σq−2,n−1 are positive values, d−αk σq−1,n(v)

provides an upper bound for d−αk σkq−1,n−1(v).

Lemma 4. Let Ψ = {ψ1, ..., ψn} be a set of n ≥ 2 non-
negative real numbers. Then for a finite p that is not a function
of n, we have

σ1,n(Ψ)σp,n(Ψ)

(p+ 1)σp+1,n(Ψ)
= Θ

(
n

n− p

)
. (22)

Lemma 4 was proved in [14] and according to this Lemma,
p requires to be very small such that n

p is sufficiently large
and we use Law of Large Numbers. Therefore, we select q0
such that when n goes to infinity and for q ≤ q0, we have

σq−1,n(v)

σq,n(v)
≡

nqd−αk
(n− q + 1)σ1,n(v)

. (23)

By incorporating the upper bound of (21) into (11), we
arrive at

E2 <
1

r(n)∑
x=1

x

4x∑
l=1

∑
vk in sl

q0∑
q=1

q−γ−1∑n−1
b=1 b

−γ

nqd−αk
(n− q + 1)σ1,n(v)

.

(24)

It can be easily seen that the order of the distances between
the source and all the nodes inside sl for all l = 1, .., 4x equals
to xr(n) and the number of nodes with a distance of x equals
to Θ(xnr2(n)), thus



E2 <

n2r2−α(n)

σ1,n(v)
∑n−1
b=1 b

−γ

1
r(n)∑
x=1

x2−α
q0∑
q=1

q−γ

n− q + 1
.

(25)

Since q0 is not growing with n, then n− q+ 1 = Θ(n) for
q ≤ q0. Therefore,

E2 <
nr2−α(n)

σ1,n(v)
∑n−1
b=1 b

−γ

1
r(n)∑
x=1

x2−α
q0∑
q=1

q−γ .

(26)

By approximating the summations in the above equation
with integration for sufficiently large networks, these summa-
tions are given by

1
r(n)∑
x=1

x2−α ≡

{
1

(3−α)r3−α(n) for 0 ≤ α ≤ 3
1

α−3 for 3 ≤ α
, (27)

and

σ1,n ≡

 Θ(n) for 0 ≤ α ≤ 2

Θ(n(
√

n
logn )α−2) for 2 ≤ α . (28)

Therefore the order of E2, the average number of hops for
sources with low number of social connections is

E2 <
1∑n−1

b=1 b
−γ

q0∑
q=1

q−γ


1

r(n) for 0 ≤ α ≤ 2
1

r3−α(n) for 2 ≤ α ≤ 3

1 for 3 ≤ α
.

(29)

By utilizing (21) and the results from [14], we arrive at

σq−2,n(v)

qσq,n(v)
= Θ(

n2

σ2
1,n(v)

q − 1

(n− q + 1)(n− q + 2)
). (30)

We can use similar calculations to prove that this upper
bound is actually a tight bound. Therefore for γ > 1.

E2 =


Θ( 1

r(n) ) for 0 ≤ α ≤ 2

Θ( 1
r3−α(n) ) for 2 ≤ α ≤ 3

Θ(1) for 3 ≤ α
(31)

It is obvious that for α > 2, the value of E2 is much less
than E1. Under this condition, a small number of nodes (N>q0 )
are using a large portion of the resources and are limiting the
total throughput of the network.
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