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Abstract—An information theoretic approach to security and
privacy for cloud data storage systems is introduced. The ap-
proach called Secure And Private Information Retrieval (SAPIR)
is a random combinations of all contents that are stored across the
network by using Random Linear Fountain (RLF) codes. SAPIR
achieves asymptotic perfect secrecy. To retrieve a content, a group
of servers collaborate with each other to form a Repair Group
(RG). Further, an information theoretic Private Information
Retrieval (PIR) scheme based on random queries is proposed that
ensures a user privately downloads its desired content without
the servers knowing the requested content index. The proposed
scheme is adaptive and can provide privacy against a significant
number of colluding servers.

Index Terms—Cloud Storage, Security, PIR

I. INTRODUCTION

Cloud networks have become a popular platform for data
storage during the past decade. Security of the stored data has
always been a major concern for many cloud service providers.
Many cloud service providers use encryption algorithms to
encrypt the data on their servers. Dropbox, for instance,
is using Advanced Encryption Standard (AES) to store the
contents on its servers1. Since the encryption algorithms are
computationally secure, an adversary may be able to break
them with time. For instance, Data Encryption Standard (DES)
which was once the official Federal Information Processing
Standard (FIPS) in US is not considered secure anymore. An
interesting problem in highly sensitive cloud services would
then be to look for information theoretic security solutions.

To achieve perfect information theoretic secrecy using Shan-
non cipher [1], the number of keys should be equal to the
number of messages. Therefore, to utilize Shannon cipher
approach, each user needs to store a huge number of keys
which is not practical. In this paper, we propose a technique
in which the storage capability of the trusted servers are
efficiently used to generate the keys by using Random Linear
Fountain (RLF) codes [2]. RLF codes have been shown [3]–
[7] to be very useful in distributed storage systems. Our goal
is to show that RLF codes can provide perfect secrecy and
privacy in distributed cloud storage systems.

On the other hand, in many applications like Peer-to-
Peer (P2P) distributed storage systems or distributed storage
systems in which some of the servers are under the control
of an oppressive government, a user wants to download a
content from a pool of distributed servers in a way that the
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servers cannot determine which content is requested by the
user. This is widely known as Private Information Retrieval
(PIR) problem.

We propose a novel technique to address the PIR problem in
distributed storage systems. In our solution, users use random
queries to request data from the servers. These random queries
are designed in a way that they can be used to retrieve any
desired content while preventing any malicious agent with
the knowledge of up to half of the random queries to gain
information about the requested content. This is an important
feature of the proposed technique that provides privacy in the
presence of many colluding servers. Such a feature has not
been presented in prior information theoretic PIR approaches
like [8] for coded storage systems.

SAPIR has strong capabilities such as a) asymptotic perfect
secrecy using RLF codes, b) PIR capability using randomly
generated queries, and c) PIR resilience against collusion of a
large number of agents.

Our proposed solution can be used in future vehicular
wireless network systems. One instance of such application is
the case that each vehicle stores some portion of the encoded
sensitive data and can only recover this data by requesting the
rest from the cloud. The legitimate vehicle can retrieve the
content while the malicious neighboring vehicles will not be
able to obtain any information even if there is a very large
number of such vehicles trying to obtain information.

The rest of the paper is organized as follows. Section II is
dedicated to the related work on PIR and security in distributed
storage systems. The assumptions and problem formulation are
described in section III. We study the security and PIR aspects
of SAPIR in sections IV and V, respectively. The simulation
results are provided in section VI and the paper is concluded
in section VII.

II. RELATED WORKS

In this paper, we use Random Linear Fountain (RLF) codes
[2] to encode the contents within the servers in the network.
Significant throughput capacity gains [3]–[7] can be achieved
using RLF codes in wireless ad hoc and cellular networks. The
application of fountain codes in distributed storage systems
was also studied in [9]. The capacity of wireless ad hoc
networks with caching was computed in [4] and it was
shown that RLF codes can achieve asymptotic perfect secrecy.
However, the problem of PIR was not studied.

Erasure codes have been extensively used in storage sys-
tems. MDS codes are widely used in storage systems due to
their repair capabilities [10], [11]. However, certain require-
ments are needed to secure the applications that use these
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codes. Authors in [12] also studied the security of distributed
storage systems with MDS codes. Pawar et al. [13] studied
the secrecy capacity of MDS codes. The authors in [14] and
[15] also proposed security measures for MDS coded storage
systems. Shah et al. [16] proposed information-theoretic secure
regenerating codes for distributed storage systems. Rawat et
al. [17] used Gabidulin codes together with MDS codes to
propose optimal locally repairable and secure codes. Unlike
all of the references [10]–[17], this paper studies the use of
RLF codes to attain asymptotic perfect secrecy for distributed
storage systems. We have shown in [18] that another group of
sparse codes can also achieve asymptotic perfect secrecy.

Kumar et al. [19] have proposed a construction for re-
pairable and secure fountain codes. Reference [19] achieves
security by concatenating Gabidulin codes with Repairable
Fountain Codes (RFC). Their specific design allows to use
Locally Repairable Fountain Codes for secure repair of the
lost data. Unlike [19] which has focused on the security of
the repair links using concatenated codes, the current paper
presents simultaneous security and privacy of the data by only
using RLF codes without any additional code usage.

The idea of PIR was originally introduced in [20] for
uncoded databases and it has been studied extensively ever
since. Yang et al. [21] proposed a PIR algorithm which
is information-theoretically robust against many colluding
servers. However, in [21], the client reconstruction algorithm
is computationally expensive and does not run in polynomial
time. Goldberg [22] improved the scheme in [21] and pro-
posed a hybrid PIR scheme based on secret sharing which
provides information-theoretic privacy up to a certain number
of colluding servers and provides computational privacy if
the number of colluding servers increases. The PIR scheme
proposed in this paper is different from [21] and [22] as it is
able to asymptotically achieve information-theoretic PIR for
up to half of the colluding servers with a polynomial time
client reconstruction algorithm.

Recently, there has been a renewed interest in studying PIR
for storage systems utilizing different coding techniques. Ref-
erence [23] proved that with only one extra bit of download,
PIR can be achieved with minimum communication cost. The
authors in [24] tried to minimized the storage overhead instead
of communication cost. They showed that PIR can be achieved
with a storage cost that is arbitrarily close to the optimal
value of 1. However, the solutions in [23] and [24] require
that the number of servers grows with the data record size.
Reference [25] assumed that the number of servers is fixed and
established the trade-off between storage and retrieval costs
and demonstrated the fundamental limits on the cost of PIR for
coded storage systems. The authors in [8] introduced a scheme
to achieve PIR in MDS coded databases but the security aspect
was not addressed in that paper. They have also assumed that
the databases are able to store all the contents which may not
be a realistic assumption.

The capacity of PIR for a replication coding based storage
system without collusion was studied in [26] and later was
extended [27] to the case of colluding servers. For coded
storage systems, the non-colluding capacity is found in [28].
The capacity of PIR in coded databases with collusion and

fixed number of servers was studied in [29].
Reference [30] proposes and evaluates an information-

theoretic PIR scheme for MDS coded distributed storage
systems where data is stored using a linear systematic code of
rate R > 0.5. Their proposed scheme is a generalization of the
scheme proposed in [8] for the scenario of a single spy node.
They proposed an algorithm to minimize the communication
price of privacy using the structure of the underlying linear
code.

Unlike all of the prior work in [8], [23], [25], [28]–[30]
which have only been focused on PIR, we are interested in
achieving simultaneous security and PIR. Further, as far as
we know, our work is the first work to study the problem
of PIR for a fountain coded-based distributed storage system.
Reference [31] has studied the problem of join security and
privacy in the presence of one eavesdropper but our proposed
PIR scheme is easily scalable to the cases when up to half
of the servers are colluding to obtain information about the
content or content index which makes this technique very
robust against large number of colluding servers.

On the other hand, using coding schemes has been shown
to be very efficient from a security point of view. Cai and
Young [32] showed that network coding can be used to
achieve perfect secrecy. Bhattad et al. [33] studied the problem
of “weakly secure” network coding schemes in which even
without perfect secrecy, no meaningful information can be
extracted from the network. Subsequent to [33] Kadhe et al.
studied the problem of weakly secure storage systems in [34],
[35]. Yan et al. also proposed algorithms to achieve weak
security and also studied weakly secure data exchange with
generalized Reed Solomon codes in [36].

The proposed privacy technique in this paper is closely
related to the searchable encryption scheme. Searchable en-
cryption is a technique which allows to search on encrypted
data without performing decryption and allows a client to
store documents on a server in encrypted form. Stored doc-
uments can be retrieved selectively while revealing as little
information as possible to the server [37]. This is in spirit
similar to the concept of private information retrieval but they
are indeed different techniques for two different problems.
Reference [38] studies a searchable encryption scheme with
a deterministic algorithm. In [39], the authors implemented
dynamic symmetric searchable encryption schemes that effi-
ciently and privately search server-held encrypted databases
with very large quantities of record-keyword pairs. In [40], the
authors proposed a searchable encryption scheme that achieves
both small leakage and efficiency. Note that our proposed
method is an information retrieval problem and is different
to searchable encryption. Further, our method is based on
information theoretic principles.

When using RLF codes in storage systems, the messages
are XORed with each other to create the ciphertext. Hence,
the ciphertext will not be independent of the message and
the Shannon criteria may not be valid. Therefore it may be
intuitive to think that these codes can only achieve weak
security as opposed to perfect security. In this paper, we will
prove that if the number of messages tends to infinity, the
intrinsic weak security of these codes can asymptotically result
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in perfect security.

III. PROBLEM FORMULATION

The network is composed of n servers each capable of stor-
ing h contents. These servers are denoted by N1,N2, . . . ,Nn.
A total number of m contents exist within the network and
each content has M bits, i.e., f1, f2, . . . , fm. The servers in
the network are divided into Repair Groups (RG). Each RG
is able to independently respond to the user file requests and
perform the task of repairing.

A. RLF Coding-Based Storage

The contents are randomly encoded and stored on the
servers during the data preloading phase. The encoded file in
the jth storage location of the ith server for any i = 1, 2, . . . , n
and j = 1, 2, . . . , h will have the form

cij =

m∑
k=1

vi,jk fk = fvij , (1)

where2 f = [f1 f2 . . . fm] denotes the 1 × m vector of all
contents and vij denotes the m×1 random encoding vector of
0s and 1s. Each content fi belongs to the Galois Field F2M ,
i.e. f ∈ Fm2M . Throughout the paper, unless otherwise stated
we assume that all the vector and matrix operations are in F2.
The encoded files stored in server Ni are ci = [ci1 c

i
2 . . . cih]

where ci ∈ Fh2M . Note that ci = fVi where Vi is the m× h
random encoding matrix for server Ni.

In RLF all random vectors vij are chosen independently and
uniformly from Fm2 which results in a random uniform choice
of the encoding matrix Vi where each element can be either 0
or 1 with equal probability. Such an encoding matrix may not
necessarily be full rank and may contain linearly dependent
rows. This will result in redundant use of storage and may
jeopardize the security by revealing more information. Hence,
we propose a full rank encoding scheme based on RLF codes
in which randomly created encoding vectors vij are discarded
if they already exist in the span of the previously selected
random vectors. In other words, for each server we select h
linearly independent vectors to construct a full rank matrix Vi

of size m× h for i = 1, 2, . . . , n.

B. Repair Groups (RG)

After the data preloading phase, users can reconstruct their
desired contents during content delivery phase. We assume that
servers are divided into different Repair Groups (RGs). Each
RG is able to independently respond to individual file requests
and contains m linearly independent encoded files within all of
its servers. Servers within each RG collaborate with each other
to retrieve any requested content. The RGs are represented
by J1,J2, . . . ,Ju and the number of servers within their
corresponding RGs by J1, J2, . . . , Ju where,

∑u
i=1 Ji = n.

A desired file fr can be written as fr = fer, where er is an
all zero m × 1 vector except in the rth location. To retrieve
fr, the user needs to access enough encoded files on the

2Throughout the paper, the vectors are denoted in bold characters.

network servers in order to construct er via vij’s. Since codes
are constructed in Fm2 , users need m linearly independent
encoding vectors to retrieve any of the m contents.

As shown in [5], the average minimum number of RLF
codes required to retrieve all the contents is only slightly
larger than m. Therefore, for each RG Ji where 1 ≤ i ≤ u,
the minimum value of Ji is only slightly larger than m

h .
Notice that if Ji is smaller than m

h , then the servers will
not be able to form a full rank matrix to retrieve all desired
contents. Note that with exactly m caches, we are able to store
m uncoded files which is very close to the proposed RLF
technique and demonstrates that RLF-coding based approach
efficiently utilizes storage space. For large values of h, i.e.
h ≥ m, each server can become an RG by itself.

C. Content Retrieval

When a user requests to download a file fr, its request is
processed by one of the RGs. This could potentially be the
closest RG or the RG that has the minimum load on its servers.
The user then sends its request to one of the servers in that
RG. We call this server the coordinating server and we denote
it by Ns.

The goal is to achieve security without encryption. There-
fore, we assume that none of the servers uses encryption to
store contents. We will show that even with that setting the
last hop communication between the coordinating server and
the user can be done with asymptotic perfect secrecy.

To achieve secrecy we assume that prior to any communica-
tions the coordinating server creates a vector of encoded files
cu = fVu and send it through a secure channel to the user.
This data is then stored on the user and operates similar to the
key in Shannon cipher system and it is only sent once. The user
will use it over and over to securely download its requested
contents. We assume that this part of the data is transmitted to
the user using a secure low bandwidth channel. It is assumed
that no eavesdropper has this data and it is unique to the user.

Assume that the user requests file fr from the coordi-
nating server Ns in RG Jk. RG Jk has stored Jkh ≥
m − hu randomly encoded files. The matrices Vi of the
Jk servers in the RG form a full rank matrix V =
[V1 V2 . . . VJk Vu]m×(Jkh+hu). Therefore, any content
with index r can be retrieved from these servers by solving
the linear equation Vyr = er in F2. Since this matrix is full
rank, one possible solution can be given as

yr = VT
(
VVT

)−1
er. (2)

To solve Vyr = er, servers within the RG send their
corresponding encoding matrices Vi to server Ns through
low bandwidth secure channels. Server Ns then creates
V and computes yr from the above equation3. If yr =
[y1
r y2

r . . . yJkr yur ]
T is such a solution, where yir is a h× 1

local decoding vector for server Ni and yur is the hu× 1 user
decoding vector, then server Ns sends yir to server Ni and
sends yur down to the user as shown in Figure 1. Server Ni
then sequentially creates fViy

i
r and adds it to the previous

3Notice that the servers of an RG only need to send this information to
Ns once. This could be done even right after the data preloading phase.
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Fig. 1: Diagram of the communications inside RG Jk when
a user requests file fr. All servers send their data to the
coordinating server Ns using a sequential protocol. The server
Ns then relays all of this data to the user. Dotted lines represent
transmissions over secure channel.

encoded file that it has received from previous servers. All of
the server responses are then aggregated by the coordinating
server Ns and Ns will send

∑Jk
i=1 fViy

i
r to the user. The

user then adds this to a linear combination of its own data to
reconstruct fr as

fr = fer = fVyr =

Jk∑
i=1

fViy
i
r + fVuy

u
r . (3)

We will show that with the above sequential tranmission
protocol between the servers, asymptotic perfect secrecy is
achievable. This solution reveals the index of the downloaded
content to the servers of the RG. This simple solution cannot
be used for PIR but we will show in section IV that perfect
secrecy can be achieved. A solution to preserve the privacy of
the users is presented in section V.

IV. SECURITY

This section is dedicated to the study of security of our
approach. We assume that the low bandwidth communication
between the users and the RGs is done over secure channels.
Therefore, the adversary will not be able to wiretap the
information sent over the secure link between the user and
the coordinating server. On the other hand, we assume that
the servers are not using any sort of encryption algorithm and

yet perfect secrecy can be achieved over the high bandwidth
communication links within a specific RG.

Perfect secrecy was originally introduced by Shannon in [1].
Assume that a transmitter wants to secretly send a message
M ∈M to the receiver. The transmitter chooses a key K ∈ K
which is independent of message and encodes the message
with an encoding function e : M × K → C and sends the
codeword C = e(M,K) ∈ C over the channel. The legitimate
receiver then uses a decoding function d : C × K → M to
decode the message as M = d(C,K).

Definition 1. An encoding scheme is said to achieve perfect
secrecy if H(M|C) = H(M), or equivalently I(M;C) = 0.

We will prove that asymptotic perfect secrecy can be
achieved between the coordinating server and the user. We
define the idea of asymptotic perfect secrecy as follows.

Definition 2. An encoding scheme is said to achieve asymp-
totic perfect secrecy if it can achieve perfect secrecy for the
communication link between the coordinating server and the
user when the number of files tends to infinity.

Notice that if the number of the messages is finite, we can-
not achieve perfect secrecy with our approach. That scenario
will result in a weakly secure scheme [33]. Our contribution
is that the weakly secure scheme will result in perfect security
when the number of messages goes to infinity.

Assume that the user sends the request er to the coordinat-
ing server Ns in RG Jk to download fr. Under this scenario,
the adversary knows the requested content index but we will
prove that it is still unable to reduce its equivocation about the
requested content. We assume that an adversary can wiretap
any of the high bandwidth links between servers.

When the query er is received by the coordinating server
Ns, it uses the matrix V to solve the linear equation Vyr = er
to find the decoding vector yr and then breaks yr into local
decoding gains yir and send them to other servers4. Then,
based on the proposed sequential protocol depicted in Figure 1,
starting from server N1 each server Ni multiplies the decoding
gain yir that it has received from the coordinating server to its
locally stored information fVi to get fViy

i
r and then it XORs

it to the information that it has received from the previous
server and relays it to the next server until it reaches the
coordinating server Ns which then transmits it to the user.

In this paper, we only study the security of the last commu-
nication link between the coordinating server Ns and the user.
Notice that this is the most vulnerable communication link
since it includes all the aggregated data from all the servers.
A similar approach can be used for all other links and prove
that perfect secrecy can be achieved in any of other links. We
assume that the eavesdropper wiretaps the link between Ns
and the user. Therefore, using equation (3), the first part of
this equation is known to the eavesdropper while the second

4Note that the information in matrix V has previously been communicated
to the coordinating server. Also, notice that the size of the decoding informa-
tion yi

r and the encoding matrix V is much smaller than the size of the file
chunks.
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part is a secret. Let’s define

Sr ,
Jk∑
i=1

fViy
i
r, (4)

Tr , fVuy
u
r . (5)

Then the requested content can be written as fr = Sr + Tr
and since all operations are in F2, we have

Sr = fr + Tr. (6)

This is similar to the Shannon cipher system [1] in which fr,
Tr, and Sr can be regarded as the message, key, and codeword
respectively. The eavesdropper knows the encoded file Sr but it
cannot obtain any information about the message fr if a unique
key Tr with uniform distribution is used for each message.

Theorem 1 provides the necessary and sufficient condition
to obtain perfect secrecy and the proof can be found in [41].

Theorem 1. If |M| = |K| = |C|, a coding scheme achieves
perfect secrecy if and only if for each pair (M,C) ∈ (M×C),
there exists a unique key K ∈ K such that C = e(M,K) and
the key K is uniformly distributed in K.

To use this theorem, first we prove that for large enough
values of m, the key Tr is uniformly distributed.

Lemma 1. The asymptotic distribution of bits of coded files
stored on the user tends to uniform.
Proof. All files have M bits and they may have a distribution
different from uniform. We will prove that each randomly
encoded file will be uniformly distributed for large values
of m. Let us denote the kth bit of file fl by fkl where
1 ≤ k ≤M and 1 ≤ l ≤ m. Assume that P(fkl = 1) = pkl =
1− P(fkl = 0). Further, we assume that the bits of files (fkl )
are independent. The kth bit of the coded file in the jth coded
file of the user can be represented as cku,j =

∑m
l=1 v

u,j
l fkl . vi,jl

is a binary value with uniform distribution and independent
of all other bits. Using regular summation (not over F2)
and denoting τ j,kl , vu,jl fkl , we define Hj,k ,

∑m
l=1 τ

j,k
l .

Therefore, P[cku,j = 0] = P[Hj,k 2≡ 0]. Therefore, the kth bit
of the coded file is equal to 0 if an even number of terms
in Hj,k is equal to 1. The probability distribution of Hj,k

can be computed using probability generating functions. Since
τ j,kl is a Bernoulli random variable with probability 1

2p
k
l , its

probability generating function is equal to

Gj,kl (z) =

(
1− 1

2
pkl

)
+

1

2
pkl z. (7)

Since vu,jl and fkl are independent random variables, τ j,kl
will become independent random variables. Therefore, the
probability generating function of Hj,k denoted by Gj,kH (z)
is the product of all probability generating functions.

Gj,kH (z) =

m∏
l=1

((
1− 1

2
pkl

)
+

1

2
pkl z

)
(8)

Denoting the probability distribution of Hj,k as h(.), the

probability of Hj,k being even is

P[Hj,k 2≡ 0] =

bm2 c∑
u=0

h(2u) =

bm2 c∑
u=0

h(2u)z2u
∣∣∣∣
z=1

=
1

2

[
m∑
u=0

h(u)zu +

m∑
u=0

h(u)(−z)u
]
z=1

=
1

2
Gj,kH (1) +

1

2
Gj,kH (−1) = 1

2

m∏
l=1

((
1− 1

2
pkl

)
+

1

2
pkl

)

+
1

2

m∏
l=1

((
1− 1

2
pkl

)
− 1

2
pkl

)
=

1

2

(
1 +

m∏
l=1

(
1− pkl

))
Therefore,

lim
m→∞

P[cku,j = 0] = lim
m→∞

1

2

(
1 +

m∏
l=1

(
1− pkl

))
=

1

2
+

1

2
lim
m→∞

m∏
l=1

(
1− pkl

)
=

1

2
+

1

2
lim
m→∞

(
1− inf{pkl }

)m
=

1

2
.

This proves the lemma.

This lemma paves the way to prove the following theorem.

Theorem 2. For the proposed full rank encoding scheme if
m is large but m < 2hu , then the proposed encoded strategy
provides asymptotic perfect secrecy against any eavesdropper
wiretapping the last hop communication link between the
coordinating server Ns and the user.
Proof. We formulated this problem as a Shannon cipher
system assuming that M = fr, K = Tr, and C = Sr. The
condition m < 2hu ensures that a unique vector yur exists for
each requested message. Therefore, since full rank encoding
scheme is used, then Vu will be full rank and Tr guarantees
that a unique key exists for each requested message fr. Notice
that if the size of the RG is large enough, then the unique
choice of the key does not affect the solvability of the linear
equation Vyr = er. Therefore, for any pair (m,C) ∈ (M,C),
a unique key K ∈ K exists such that C = m+ K. Further, we
are guaranteed to have |M| = |K| = |C|.

Notice that the key K = Tr belongs to the set of all possible
bit strings with M bits. Lemma 1 proves that each encoded
file is uniformly distributed among all M -bit strings. Hence
each key which is a unique summation of such encoded files
is uniformly distributed among the set of all M -bit strings. In
other words, regardless of the distribution of the bits in files,
Tr can be any bit string with equal probability for large values
of m. Therefore, the conditions in Theorem 1 are met.

Remark 1. Note that the key cu = fVu is stored on the
user during the data preloading phase securely. Therefore, the
eavesdropper does not have any knowledge about the key Tr.

V. PRIVATE INFORMATION RETRIEVAL

In PIR, the goal is to provide conditions that when a user
downloads the content fr with index r ∈ {1, 2, . . . ,m}, the
content index remains a secret to all of the servers. To achieve
PIR, users send queries to the servers and servers respond
to users based on those queries. These queries should be
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designed in a way that reveal no information to the servers
about the requested content index. To formally define the
information theoretic PIR, let R be a random variable denoting
the requested content index and let Ql be a subset of at most
l queries. We have the following definition.

Definition 3. A PIR scheme is capable of achieving perfect
information theoretic PIR against i colluding servers if for the
set Ql of all queries available to all of these servers and any
number of contents we have I(R;Ql) = 0, where I(.) is the
mutual information function.

A. Random Query Generation

To achieve PIR, the user chooses a fixed ε > 0 and sets
Aε , m + dlog2( 1ε )e. Then it picks Aε query vectors from
Fm2 uniformly at random and statistically independent of each
other. These will be the set of random queries. Therefore, we
will have a set Qε = {q1,q2, . . . ,qAε} of i.i.d. random query
vectors. In the following, we will prove that with a probability
of at least 1 − ε, these random vectors span the whole m-
dimensional space of Fm2 .

Theorem 3. Let Q be a matrix of size m× l whose elements
are independent random variables taking the values 0 and 1
with equal probability and let ρm(l) be the rank of the matrix
Q in F2. Let s ≥ 0 and c be fixed integers, c + s ≥ 0. If
m→∞ and l = m+ c, then

P[ρm(l) = m− s]

→ 2−s(s+c)
∞∏

i=s+1

(
1− 1

2i

) s+c∏
j=1

(
1− 1

2j

)−1
, (9)

where the last product equals 1 for c+ s = 0.
Proof. This is Theorem 3.2.1 in page 126 of [42].

Corollary 1. For l = m+ c where c ≥ 0, if m→∞ we have

P[ρm(l) = m]→
∞∏

i=c+1

(
1− 1

2i

)
(10)

Proof. The proof follows for s = 0 in Theorem 3.

In the following, we will use these results for our proofs.

Definition 4. We define the random variable A as the mini-
mum number of random query vectors q1,q2, . . . ,qi to span
the whole space of Fm2 .

Lemma 2. The probability of the event that A < m is zero
and for any c ≥ 0 we have

P[A ≤ m+ c]→
∞∏

i=c+1

(
1− 1

2i

)
(11)

Proof. This is a direct result of Corollary 1.

Lemma 3. The probability of the event that A = m + c is
less than 2−c for any c ≥ 0.

Proof. Let F (c) , P[A ≤ m + c]. It is easy to verify from
equation (11) that for m→∞ we have

F (c)→ F (c− 1)

1− 1
2c

. (12)

Since F (c) ≤ 1, from equation (12) we arrive at

F (c− 1) ≤ 1− 2−c. (13)

Hence,

P[A = m+ c] = F (c)− F (c− 1) (14)

→ F (c− 1)

(
1

1− 1
2c

− 1

)
= F (c− 1)

(
1

1− 1
2c

− 1

)
=
F (c− 1)

2c − 1
≤ 1− 2−c

2c − 1
= 2−c

Lemma 4. The probability of the event that A ≤ m+ c is at
least 1− 2−c and at most 1− 2−(c+1) for any c ≥ 0. i.e.

1− 2−c ≤ F (c) ≤ 1− 2−(c+1) (15)

Proof. The upper bound is already proved in equation (13).
From Lemma 3 we have,

F (c) = P[A ≤ m+ c] = 1− P [A > m+ c]

= 1−
∞∑

i=c+1

P [A = m+ i] ≥ 1−
∞∑

i=c+1

2−i = 1− 2−c

Theorem 4. With a probability of at least 1 − ε, the set of
random queries Qε = {q1,q2, . . . ,qAε} where Aε = m +
dlog2( 1ε )e spans the whole m-dimensional space of Fm2 .
Proof. From Lemma 4, we have

P
[
A ≤ Aε = m+ dlog2(

1

ε
)e
]
≥ 1− 2−dlog2(

1
ε )e ≥ 1− ε

This proves the theorem.

Theorem 4 states that the probability of spanning the m-
dimensional space can arbitrarily go to 1 provided that the
number of random vectors increases logarithmically with
1
ε . For example, to span the m-dimensional space with a
probability of at least 0.99, it is enough to only have m + 7
random vectors. Using these random query vectors, we can
now show that even with a large number of colluding servers
no information about the requested content index can be
obtained. To prove this result, we need to prove some lemmas.

Let Qε , [q1 q2 . . . qAε ] be the matrix of size m × Aε
whose columns are random query vectors. Matrix Qε contains
Aε statistically independent random vectors. Let Brx be the
event that for a specific vector x ∈ FAε2 and a specific base
vector er, we have Qεx = er.

Lemma 5. For any specific non-zero vector x ∈ FAε2 we have

P [Brx] = P [Qεx = er] = 2−m. (16)
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Proof. Lets assume vector x has k ones. If Qεx = er,
then k vectors from the set of all vectors q1,q2, . . . ,qAε

are added together to create er. Let’s denote these vectors by
qe1 ,qe2 , . . . ,qek . Let qejr denotes the rth element of vector
qej . Since the vectors qe1 ,qe2 , . . . ,qek are independent and
their elements are also mutually independent, using binary
summations in F2 we have

P [Brx] = P

 k∑
j=1

qejr = 1

 m∏
l′=1
l′ 6=r

P

 k∑
j=1

q
ej
l′ = 0

 . (17)

We can easily prove that P[
∑k
j=1 q

ej
r = 1] = 1

2 . To prove this,
we can use induction on k. This equation is valid for the base
case k = 1. Assume that it is valid for k − 1. We have

P

 k∑
j=1

qejr = 1

 = P [qekr = 1]P

k−1∑
j=1

qejr = 0


+ P [qekr = 0]P

k−1∑
j=1

qejr = 1

 =
1

2
.

Similarly, it is easy to prove that P[
∑k
j=1 q

ej
l′ = 0] = 1

2 .
Hence, equation (17) can be simplified to P[Brx] = P[Qεx =
er] = 2−m.

Lemma 6. The following inequalities hold for 1 ≤ j ≤ i,
1

i+ 1
2iH( ji ) ≤

(
i

j

)
≤ 2iH( ji ) (18)

where H(α) denotes the binary entropy function, i.e. H(α) =
−α log2(α)− (1− α) log2(1− α).
Proof. The proof can be found in the appendix of [43].

We are now ready to prove the following theorem which
shows that accessing a significant number of random queries
in Qε cannot help in reconstructing any of the base vectors
for large m.

Theorem 5. Consider the set Qε = {q1,q2, . . . ,qAε} of
Aε = m+dlog2( 1ε )e statistically independent random uniform
query vectors. For large enough values of m with probability
arbitrarily close to 1, none of the base vectors exist in the span
of any subset Ql ⊂ Qε with cardinality of at most l = bδmc
where δ < 0.5.
Proof. Consider any base vector er and a non-zero vector
x ∈ FAε2 . For this vector, computing Qεx in F2 is equivalent
to adding a subset of columns of Qε whose set of indices is
equal to the set of indices of non-zero elements in x. If for
some x ∈ FAε2 we have Qεx = er, then any subset Ql ⊂ Qε
of random vectors which contains all of those column vectors
of Qε whose set of indices is equal to the set of indices of non-
zero elements in x, also spans er. In fact, the number of non-
zero elements of x or Hamming weight of x (i.e., Ham(x))
is equal to the number of vectors that should be added to
reconstruct er.

Consider all vectors x ∈ FAε2 with Hamming weight less
than or equal to l = bδmc where δ < 0.5. Lemma 5 shows that
for any x, we have P[Brx] = 2−m. Therefore, the asymptotic

probability of existence of a subset Ql ⊂ Qε with a cardinality
of at most l = bδmc which spans er for large values of m
can be found as

lim
m→∞

P

[
∃Ql ⊆ Qε|card{Ql} ≤ l = bδmc, er ∈ span{Ql}

]
=

lim
m→∞

P

 ⋃
x∈FA

ε

2 , Ham(x)≤l

Brx

 (a)

≤ lim
m→∞

∑
x∈FA

ε

2 , Ham(x)≤l

P[Brx]

(b)
= lim
m→∞

l∑
i=1

(
Aε

i

)
2−m

(c)

≤ lim
m→∞

l

(
Aε

l

)
2−m,

(d)

≤ lim
m→∞

l

(
m

l

)
2−m = lim

m→∞
bδmc

(
m

bδmc

)
2−m,

(e)

≤ lim
m→∞

δm2mH(
bδmc
m )2−m

(f)

≤ lim
m→∞

δm2−m(1−H(δ)),

(g)
= 0,

where inequality (a) comes from the union bound, (b) holds by
using Lemma 5 and counting all the vectors x with Hamming
weight less than l = bδmc, and inequality (e) comes from
Lemma 6. Notice that (c), (d), (e) and (f) are only valid for
δ < 0.5. Therefore, the probability of existence of any desired
base in the span of any subset of vectors with cardinality less
than bδmc goes to zero as m grows if δ < 0.5.

The proof of Theorem 5 is critically dependent on the
assumption that δ < 0.5. Using a similar approach, one can
show that if δ > 0.5, then the probability of existence of at
least one base in the span of the random vectors goes to 1 as
m → ∞. Further, it is also possible to prove that if δ > 1,
then all of the base vectors exist in the span of the random
vectors with probability 1 as m→∞.

In the following theorem we will use the result of Theorem
5 to prove that accessing a large number of queries cannot
reveal any information about the requested content index.

Theorem 6. For every subset Ql ⊂ Qε with cardinality at
most l = bδmc where δ < 0.5 we have

lim
m→∞

I(R ; Ql) = 0. (19)

Proof. Let Dl be the event that none of the base vectors
exist in the span of any subset Ql ⊂ Qε with cardinality at
most l. Let eR be the equivalent random base vector which
is uniquely defined by the requested content index R. If Dl

happens, then for every subset Ql ⊂ Qε there should exist
kl ≥ 1 random vectors qo1 ,qo2 , . . . ,qokl ∈ Q

ε−Ql such that
eR /∈ span{Ql} but eR ∈ span{Ql ∪ {qoi ,qo2 , . . . ,qokl }}.
Hence, for any Ql ⊂ Qε, any representation of eR in terms
of random queries should have a form of

eR =
∑

qj∈Ql

θjqj +

kl∑
i=1

qoi (20)

where θi’s are equal to zero or one. Hence, for every Ql ⊂ Qε
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we should have

I(R;Ql|Dl) = H(R|Dl)−H(R|Ql, Dl)

(a)
= H(R|Dl)−H(R|Dl) = 0 (21)

where (a) comes from the independence of the content index
(or its equivalent base vector eR) and the random queries.
Using the chain rule for mutual information, we arrive at

I(R;Ql, Dl) = I(R;Dl) + I(R;Ql|Dl)

= I(R;Ql) + I(R;Dl|Ql). (22)

Combining equations (21) and (22) results in

I(R;Ql) = I(R;Dl)− I(R;Dl|Ql)
= H(Dl)−H(Dl|R)−H(Dl|Ql) +H(Dl|R,Ql)
≤ H(Dl) +H(Dl|R,Ql) ≤ 2H(Dl). (23)

Theorem 5 shows that when m → ∞ with probability
approaching 1, none of the base vectors exist in the span of any
subset Ql ⊂ Qε of cardinality less than or equal to l = bδmc
for δ < 0.5. Hence, the event Dl will happen with probability
1 when m → ∞. Therefore, limm→∞H(Dl) = 0 and thus
for any subset Ql ⊂ Qε of cardinality less than or equal to
l = bδmc for δ < 0.5 we have

lim
m→∞

I(R;Ql) ≤ 2 lim
m→∞

H(Dl) = 0 (24)

This proves the theorem.

Remark 2. In practice the user generates enough number of
random vectors Q = {q1,q2, . . . ,qA} of A ≥ m to span
the whole m-dimensional space. Then it chooses a subset
Qfull = {qt1 ,qt2 , . . . ,qtm} ⊆ Q of m linearly independent
vectors from them and use this subset as its set of useful query
vectors. This way it is guaranteed that the m chosen queries
will span the whole space of Fm2 and any base vector er can
be represented in terms of these independent query vectors.
Let the decoding gain dk be equal to 1 if query qtk is added
to other queries in the representation of er and let it be zero
otherwise. Then, er can be represented as

er =

m∑
k=1

dkqtk . (25)

The following lemma shows that the average number of
random vectors to span Fm2 is very close to m. Therefore,
the required number of random queries to span Fm2 is slightly
more than m.

Lemma 7. If qj is a random vector belonging to Fm2 with
elements having uniform distribution, the average minimum
number of vectors qj to span the whole space of Fm2 equals

Eq = m+

m∑
i=1

1

2i − 1
= m+ γ, (26)

where γ asymptotically approaches the Erdős–Borwein con-
stant (≈ 1.6067).
Proof. The proof can be found in [5].

Remark 3. Since Qfull is a subset of Q, if any vector er does

not exist in the span of any subset of cardinality l of Q, then
this vector will not also exist in the span of any subset of
cardinality l of Qfull too. Therefore, Theorems 5 and 6 remain
valid for this choice of random queries too. This means that in
practice, every base vector is guaranteed to exist in the span
of the m query vectors but none of the base vectors exist in
the span of any subset Ql ⊂ Q with probability close to one
if l < bδmc for δ < 0.5.

Remark 4. Throughout lemmas and theorems in this section,
we were able to prove Theorem 6 which shows that if
the ratio of the number of compromised random queries to
the total number of random queries that we utilize as our
expansion vectors is less than 0.5, then no information about
the requested content can be obtained from the compromised
set of queries. This means that the collusion of up to half of all
the servers would asymptotically reveal no information about
the requested content index.

B. Responding to Queries
In this section, we assume that the user has chosen m

linearly independent random query vectors in Qfull and wants
to download the rth content. Since Qfull is a set of vectors
which spans the whole space of Fm2 , the user can expand
the base vector er in terms of the query vectors in Qfull

as mentioned in (25). Hence, the requested content can be
expanded in terms of query vectors as

fr = fer = f

(
m∑
k=1

dkqtk

)
=

m∑
k=1

dkfqtk , (27)

where dk ∈ F2 is either 0 or 1. Based on equation (27) the
user requests some parts of the desired content from each RG
so that none of the RGs can understand any information about
the requested content.

To accomplish PIR, the user partitions the set of random
queries qtk whose corresponding decoding gains dk are non-
zero into a disjoint subsets Q1,Q2, . . . ,Qa. The choice of the
number of subsets (i.e. a) depends on the number of colluding
servers. Each subset of queries is then sent to a different RG
as depicted in Figure 2. Therefore, the requested content can
be retrieved as

fr =
∑

qtk∈Q
full

dk 6=0

fqtk =

a∑
i=1

∑
qtk∈Qi

fqtk (28)

The ultimate goal in PIR is to prevent any colluding group
of servers to gain information about the requested content
index. Assume that the number of colluding servers is b. If
any two colluding servers lie within the same RG, they receive
the same subset of queries from the user. Therefore, without
loss of generality we consider the worst scenario in which all
the colluding servers lie within different RGs and all these
b colluding servers are able to collaboratively obtain all the
queries Q1,Q2, . . . ,Qb. Based on Theorems 5 and 6, if the
number of all query vectors in Ql = ∪bi=1Qi is less than
bδmc for some δ < 0.5, then no information can be achieved
about the requested content index. This provides significant
PIR capability for this technique.
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RG1 RG2
...

user

RGa

∑
qtk∈Q1

fqtk

∑
qtk∈Q2

fqtk

∑
qtk∈Qa

fqtk

Q1 Q2 Qa

Fig. 2: Multiple RGs respond to queries sent from the user.
This allows the user to privately download its desired content
while a significant number of colluding servers can achieve
no information about the downloaded content.

Notice that since RGs have full rank encoding matrices, they
can respond to any query that they receive. Assume that RG
Ji with the full rank encoding matrix V = [V1 V2 . . . VJi ]
receives the set of queries Qi. This RG needs to send∑

qtk∈Qi
fqtk to the user. It can solve the linear equation

Vpi =
∑

qtk∈Qi

qtk (29)

in Galois Field F2 for pi as

pi = VT
(
VVT

)−1 ∑
qtk∈Qi

qtk

 . (30)

Similar to before the serverNs in the RG Ji which has already
acquired all the information in matrix V, computes the overall
query decoding solution pi which is a vector of size Jih× 1.
If this vector is divided into Ji equal size pieces as pi =
[p1
i p2

i . . . pJii ]T , then the server Ns sends the jth portion
of pi to server Nj in the RG Ji. More precisely, server Nj
receives a query response vector pji of size h × 1 from Ns
for each j = 1, 2, . . . , Ji. Then the server Nj sends fVjp

j
i

back to the coordinating server Ns. The coordinating server
Ns then aggregates all the data received from multiple servers
in the RG to construct

∑
qtk∈Qi

fqtk as

∑
qtk∈Qi

fqtk = fVpi =

Ji∑
j=1

fVjp
j
i . (31)

The coordinating server Ns in the RG Ji then transmits∑
qtk∈Qi

fqtk to the user.
Each RG only transmits one encoded file to the user.

However all the servers within an RG need to collaborate with
each other prior to responding to the queries sent from the user.
Notice that communication between the servers are carried
using high bandwidth fiber optic links while transmissions
from the servers to the user are performed over low bandwidth
links. In our computation of communication cost for achieving
PIR, the cost of sending queries are ignored because it is
assumed that the size of contents are significantly higher than
the size of the queries.

Remark 5. It is worth mentioning that in our paper, the
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Fig. 3: The average communication Price of Privacy (cPoP)
increases as the maximum number of colluding RGs increases.

coordinations between servers in an RG is necessary because
the servers do not have full storage capacity to store all the
contents. In fact if we also assume each server has high storage
capacity similar to [8], then each server can act as an RG and
there will be no communications between servers.

C. Trade-off Between Communication Cost and Privacy Level

In order to achieve PIR, each user needs to download more
information. This additional bandwidth utilization is referred
to as communication Price of Privacy (cPoP) [8] which is
defined as follows.

Definition 5. The communication Price of Privacy (cPoP) is
the ratio of the total number of bits downloaded by the user
from the servers to the size of the requested file.

To explain the trade-off between communication cost and
level of privacy, assume that the user divides the queries into
a equal size groups of queries and sends each group of queries
to a different RG. Each RG should respond to at most dma e
queries. If b RGs collude to gain some information about the
requested content index, then they will have access to a total of
at most bdma e queries. We proved in Theorem 6 that knowing
bδmc queries gives no information about the requested content
index if δ < 0.5. Hence, if b < a

2 , then the colluding RGs
will get no information about the requested content index.
Therefore, if less than half of the RGs collude to gain some
information about the requested content index, they cannot
gain any information. We can increase a to get the maximum
possible level of privacy. However, the downside of increasing
a is the increase in communication Price of Privacy (cPoP).

As discussed earlier, if the queries are sent to a RGs then
a responses from these RGs are required to retrieve a content.
Since each RG transmits an encoded file of size M bits to the
user the total number of bits downloaded by the user will be
equal to aM and therefore the cPoP will be equal to aM/M =
a. Figure 3 shows that as a increases, both the PIR strength
and the cPoP increase linearly.
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Fig. 4: Probability of the event that at least one base exists in
the span of any subset of l = bδmc random vectors.

D. Full Size Servers

Assume that the servers have large storage capability such
that each RG is only composed of 1 server. Our assumption of
full rank encoding scheme guarantees that servers with storage
ability of h ≥ m encoded files can be used to retrieve any
desired content. In [8], the authors studied the use of MDS
codes for PIR. They considered full size storage systems with
MDS codes and they considered the case when only one of
the databases is compromised. They proposed a PIR technique
in which a cPoP of 1

1−R can be achieved in full size databases
where R is the MDS code rate. To compare our results with
[8], notice that if we assume that there is only one malicious
server in the cloud, then we can choose any two servers and
send half of the queries to each one of them. This way we
have a cPoP of 2 which is better than the results in [8] for
R > 1/2.

VI. SIMULATION

To numerically verify the results proved in section V, we
created m linearly independent random query vectors which
are used to expand the bases. Figure 4 demonstrates the
probability of the event that at least one of the base vectors
exists in the span of l = bδmc vectors for δ = 0.1, 0.2, 0.3 and
0.4. Consistent with our results in section V, the probability of
the event that a base exists in the span of any set of l = bδmc
vectors goes quickly to zero.

It is proved [44] that the problem of finding the minimum
spanning set of vectors is NP-Complete. It is even proved [45]
that this problem is NP-Hard to approximate. Therefore, in
general it is NP-Hard to find out if a given base exists in the
span of at most l = bδmc vectors out of the m vectors. For
our simulations we have used a brute force approach to check
if a given base exists in the span of at most l = bδmc vectors
out of the m existing random query vectors where m ≤ 20.

VII. CONCLUSIONS

In this paper, we have studied the problems of security
and private information retrieval in distributed storage sys-
tems which are using a full rank encoding scheme based on
Random Linear Fountain (RLF) codes. We have proposed

an approach based on uniform random queries to achieve
information theoretic PIR property. We have proved that our
proposed technique can asymptotically achieve perfect secrecy
for a distributed storage system. Our proposed solution is
robust against a significant number of colluding servers in
the network. We have also shown that our technique can
outperform MDS codes for storage systems in terms of PIR
cost for certain regimes.

REFERENCES

[1] Claude E Shannon. Communication theory of secrecy systems*. Bell
system technical journal, 28(4):656–715, 1949.

[2] David JC MacKay. Fountain codes. IEE Proceedings-Communications,
152(6):1062–1068, 2005.

[3] Mohsen Karimzadeh Kiskani and Hamid R Sadjadpour. Capacity
of cellular networks with femtocache. In Computer Communications
Workshops (INFOCOM WKSHPS), 2016 IEEE Conference on, pages
9–14. IEEE, 2016.

[4] Mohsen Karimzadeh Kiskani and Hamid R. Sadjadpour. Secure coded
caching in wireless ad-hoc networks. In International Conference on
Computing, Networking and Communications (ICNC), January 2017.

[5] Mohsen Karimzadeh Kiskani and Hamid R Sadjadpour. Throughput
analysis of decentralized coded content caching in cellular networks.
IEEE Transactions on Wireless Communications, 16(1):663–672, 2017.

[6] Mohsen Karimzadeh Kiskani and Hamid R Sadjadpour. A secure
approach for caching contents in wireless ad hoc networks. IEEE
Transactions on Vehicular Technology, 66(11):10249–10258, 2017.

[7] Mohsen Karimzadeh Kiskani and Hamid R. Sadjadpour. Secure and pri-
vate cloud storage systems with random linear fountain codes. In IEEE
SmartWorld, Ubiquitous Intelligence and Computing, Advanced and
Trusted Computed, Scalable Computing and Communications, Cloud
and Big Data Computing, Internet of People and Smart City Innova-
tion (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI). IEEE, Aug
2017.

[8] Razan Tajeddine and Salim El Rouayheb. Private information retrieval
from MDS coded data in distributed storage systems. arXiv preprint
arXiv:1602.01458, 2016.

[9] Alexandros G Dimakis, Vinod Prabhakaran, and Kannan Ramchandran.
Distributed fountain codes for networked storage. In Acoustics, Speech
and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE
International Conference on, volume 5, pages V–V. IEEE, 2006.

[10] Alexandros G Dimakis, P Brighten Godfrey, Yunnan Wu, Martin J
Wainwright, and Kannan Ramchandran. Network coding for distributed
storage systems. IEEE Transactions on Information Theory, 56(9):4539–
4551, 2010.

[11] Alexandros G Dimakis, Kannan Ramchandran, Yunnan Wu, and
Changho Suh. A survey on network codes for distributed storage.
Proceedings of the IEEE, 99(3):476–489, 2011.

[12] Theodoros K Dikaliotis, Alexandros G Dimakis, and Tracey Ho. Se-
curity in distributed storage systems by communicating a logarithmic
number of bits. In Information Theory Proceedings (ISIT), 2010 IEEE
International Symposium on, pages 1948–1952. IEEE, 2010.

[13] Sameer Pawar, Salim El Rouayheb, and Kannan Ramchandran. On
secure distributed data storage under repair dynamics. In Information
Theory Proceedings (ISIT), 2010 IEEE International Symposium on,
pages 2543–2547. IEEE, 2010.

[14] Sameer Pawar, Salim El Rouayheb, and Kannan Ramchandran. Securing
dynamic distributed storage systems against eavesdropping and adver-
sarial attacks. IEEE Transactions on Information Theory, 57(10):6734–
6753, 2011.

[15] Sameer Pawar, Salim El Rouayheb, and Kannan Ramchandran. Securing
dynamic distributed storage systems from malicious nodes. In Informa-
tion Theory Proceedings (ISIT), 2011 IEEE International Symposium
on, pages 1452–1456. IEEE, 2011.

[16] Nihar B Shah, KV Rashmi, and P Vijay Kumar. Information-
theoretically secure regenerating codes for distributed storage. In Global
Telecommunications Conference (GLOBECOM 2011), 2011 IEEE, pages
1–5. IEEE, 2011.

[17] Ankit Singh Rawat, Onur Ozan Koyluoglu, Natalia Silberstein, and
Sriram Vishwanath. Optimal locally repairable and secure codes for
distributed storage systems. IEEE Transactions on Information Theory,
60(1):212–236, 2014.



11

[18] Mohsen Karimzadeh Kiskani, Hamid R. Sadjadpour, Mohammad Reza
Rahimi, and Fred Etemadieh. Low Complexity Secure Code (LCSC)
design for big data in cloud storage systems. In IEEE International
Conference on Communications (ICC). IEEE, May 2018.

[19] Siddhartha Kumar, Eirik Rosnes, and Alexandre Graell i Amat. Secure
repairable fountain codes. IEEE Communications Letters, 20(8):1491–
1494, 2016.

[20] Benny Chor, Oded Goldreich, Eyal Kushilevitz, and Madhu Sudan.
Private information retrieval. In Foundations of Computer Science, 1995.
Proceedings., 36th Annual Symposium on, pages 41–50. IEEE, 1995.

[21] Erica Y Yang, Jie Xu, and Keith H Bennett. Private information
retrieval in the presence of malicious failures. In Computer Software
and Applications Conference, 2002. COMPSAC 2002. Proceedings. 26th
Annual International, pages 805–810. IEEE, 2002.

[22] Ian Goldberg. Improving the robustness of private information retrieval.
In Security and Privacy, 2007. SP’07. IEEE Symposium on, pages 131–
148. IEEE, 2007.

[23] Nihar B Shah, KV Rashmi, and Kannan Ramchandran. One extra bit of
download ensures perfectly private information retrieval. In Information
Theory (ISIT), 2014 IEEE International Symposium on, pages 856–860.
IEEE, 2014.

[24] Arman Fazeli, Alexander Vardy, and Eitan Yaakobi. PIR with
low storage overhead: coding instead of replication. arXiv preprint
arXiv:1505.06241, 2015.

[25] Terence H Chan, Siu-Wai Ho, and Hirosuke Yamamoto. Private
information retrieval for coded storage. In Information Theory (ISIT),
2015 IEEE International Symposium on, pages 2842–2846. IEEE, 2015.

[26] Hua Sun and Syed A Jafar. The capacity of private information retrieval.
IEEE Transactions on Information Theory, 2017.

[27] Hua Sun and Syed A Jafar. The capacity of robust private information
retrieval with colluding databases. arXiv preprint arXiv:1605.00635,
2016.

[28] Karim Banawan and Sennur Ulukus. The capacity of private information
retrieval from coded databases. arXiv preprint arXiv:1609.08138, 2016.

[29] Ragnar Freij-Hollanti, Oliver Gnilke, Camilla Hollanti, and David
Karpuk. Private information retrieval from coded databases with
colluding servers. arXiv preprint arXiv:1611.02062, 2016.

[30] Siddhartha Kumar, Eirik Rosnes, et al. Private information retrieval in
distributed storage systems using an arbitrary linear code. arXiv preprint
arXiv:1612.07084, 2016.

[31] Heecheol Yang, Wonjae Shin, and Jungwoo Lee. Private information
retrieval for secure distributed storage systems. IEEE Transactions on
Information Forensics and Security, 13(12):2953–2964, 2018.

[32] Ning Cai and Raymond W Yeung. Secure network coding. In Infor-
mation Theory, 2002. Proceedings. 2002 IEEE International Symposium
on, page 323. IEEE, 2002.

[33] Kapil Bhattad, Krishna R Narayanan, et al. Weakly secure network
coding. NetCod, Apr, 104, 2005.

[34] Swanand Kadhe and Alex Sprintson. On a weakly secure regenerating
code construction for minimum storage regime. In Communication, Con-
trol, and Computing (Allerton), 2014 52nd Annual Allerton Conference
on, pages 445–452. IEEE, 2014.

[35] Swanand Kadhe and Alex Sprintson. Weakly secure regenerating codes
for distributed storage. In Network Coding (NetCod), 2014 International
Symposium on, pages 1–6. IEEE, 2014.

[36] Muxi Yan, Alex Sprintson, and Igor Zelenko. Weakly secure data
exchange with generalized reed solomon codes. In Information Theory
(ISIT), 2014 IEEE International Symposium on, pages 1366–1370. IEEE,
2014.

[37] Peter Van Liesdonk, Saeed Sedghi, Jeroen Doumen, Pieter Hartel,
and Willem Jonker. Computationally efficient searchable symmetric
encryption. In Workshop on Secure Data Management, pages 87–100.
Springer, 2010.

[38] Mihir Bellare, Alexandra Boldyreva, and Adam O’Neill. Deterministic
and efficiently searchable encryption. In Annual International Cryptol-
ogy Conference, pages 535–552. Springer, 2007.

[39] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S Jutla, Hugo
Krawczyk, Marcel-Catalin Rosu, and Michael Steiner. Dynamic search-
able encryption in very-large databases: Data structures and implemen-
tation. In NDSS, volume 14, pages 23–26. Citeseer, 2014.

[40] Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. Practical
dynamic searchable encryption with small leakage. In NDSS, volume 71,
pages 72–75, 2014.

[41] Matthieu Bloch and Joao Barros. Physical-layer security: from informa-
tion theory to security engineering. Cambridge University Press, 2011.

[42] Valentin Fedorovich Kolchin. Random graphs. Number 53. Cambridge
University Press, 1999.

[43] David JC MacKay. Good error-correcting codes based on very sparse
matrices. IEEE transactions on Information Theory, 45(2):399–431,
1999.

[44] Alexander Vardy. The intractability of computing the minimum distance
of a code. IEEE Transactions on Information Theory, 43(6):1757–1766,
1997.

[45] Ilya Dumer, Daniele Micciancio, and Madhu Sudan. Hardness of ap-
proximating the minimum distance of a linear code. IEEE Transactions
on Information Theory, 49(1):22–37, 2003.

Mohsen Karimzadeh Kiskani received his bache-
lors degree in mechanical engineering from Sharif
University of Technology in 2008. He got his Mas-
ters degree in electrical engineering from Sharif
University of Technology in 2010. He got his PhD in
electrical engineering from University of California
Santa Cruz in September 2017. He has been a
postdoctoral researcher at University of California
Santa Cruz since December 2017. He has done
research and published 15 papers in areas related to
wireless communications, security, machine learning

and information theory. He also obtained a masters degree in computer science
from University of California Santa Cruz in 2016. His main areas of interest
in computer science include machine learning and deep learning.

Hamid Sadjadpour (S’94–M’95–SM’00) received
the B.S. and M.S. degrees from the Sharif Univer-
sity of Technology, and the Ph.D. degree from the
University of Southern California at Los Angeles,
Los Angeles, CA. In 1995, he joined the AT&T
Research Laboratory, Florham Park, NJ, USA, as
a Technical Staff Member and later as a Principal
Member of Technical Staff. In 2001, he joined the
University of California at Santa Cruz, Santa Cruz,
where he is currently a Professor. He has authored
over 170 publications. He holds 17 patents. His

research interests are in the general areas of wireless communications and
networks. He has served as a Technical Program Committee Member and the
Chair in numerous conferences. He is a co-recipient of the best paper awards
at the 2007 International Symposium on Performance Evaluation of Computer
and Telecommunication Systems and the 2008 Military Communications
conference, and the 2010 European Wireless Conference Best Student Paper
Award. He has been a Guest Editor of EURASIP in 2003 and 2006. He
was a member of the Editorial Board of Wireless Communications and
Mobile Computing Journal (Wiley), and the Journal Of Communications and
Networks.


