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Abstract—We study the scaling laws for wireless ad hoc
networks in which the distribution of n nodes in the network is
homogeneous but the traffic they carry is heterogeneous. More
specifically, we consider the case in which a given node is the
data-gathering sink for k sources sending different information
to it, while the rest of the s = n− k nodes participate in unicast
sessions with random destinations chosen uniformly. We present
a separation theorem for heterogeneous traffic showing thatthe
optimum order throughput capacity can be attained in a wireless
network in which traffic classes are distributed uniformly by
endowing each node with multiple radios, each operating in a
separate orthogonal channel, and by allocating a radio per node
to each traffic class. Based on this theorem, we show how this
order capacity can be attained for the unicast and data-gathering
traffic classes by extending cooperative communication schemes
that have been proposed previously.

I. I NTRODUCTION

The scaling laws of wireless networks with homogeneous
traffic and uniform node distribution have been extensively
studied in the literature. Gupta and Kumar [1] evaluated
the capacity of wireless networks with uniform traffic and
showed that the capacity scales asΘ

(
√

n
log n

)

according to

the protocol model1. This result was achieved by considering
no cooperation among nodes with simple point-to-point com-
munication. Xie and Kumar [2], [3] subsequently investigated
the information-theoretic capacity of wireless networks with
cooperation among different nodes in the extended network.
The achievable capacity with cooperation for dense networks
was studied bÿOzgür et al. in [4].

Only a handful of prior works investigate heterogeneous
traffic in the network. Keshavarz-Haddad et al. [5] introduced
the concept of transmission arena. Based on that definition,
they presented a method to compute the upper bound of the
capacity for different traffic patterns and different topologies
of the network. However, they did not provide closed-form
scaling laws for the network capacity. Toumpis [6] investigated
the throughput capacity when there ares sources andsε

destinations in the network, where0 < ε < 1. Liu et al. [7]

1Given two functionsf andg, we say that:1) f(n) = O (g(n)) if there
exists a constantc and integerN such thatf(n) ≤ cg(n) for n > N . 2)

f(n) = o (g(n)) if limn→∞

f(n)
g(n)

= 0. 3) f(n) = Ω (g(n)) if g(n) =

O (f(n)). 4) f(n) = ω (g(n)) if g(n) = o (f(n)). 5) f(n) = Θ (g(n))
if f(n) = O (g(n)) andg(n) = O (f(n)).

extended this result by relaxing the constraint on the number of
sources and destinations. While these results [6], [7] address
asymmetric traffic, the results apply to the case of a single
type of traffic pattern in the network.

We consider heterogeneous traffic in the network supporting
different types of traffic patterns. In particular, we consider
two types of traffic classes, namely, data-gathering trafficin
which one of the nodes in the network acts as a sink with many
sources transmitting different packets to that node, and the rest
of the nodes in the network participate in unicast traffic flows.
The distribution of nodes in the network is still uniform. Tothe
best of our knowledge, this heterogeneous traffic model has
not been studied in the literature, except our own preliminary
work [8], which assumes that the bandwidth assignment is
proportional to the traffic for each cell, does not consider
cooperation among nodes, and the capacity analysis is based
on the protocol model [1]. There is some prior work addressing
data gathering [9], [10], [11] as the only type of traffic in
a network. Rodoplu et al. [12], [13] computed the network
capacity for data gathering and unicast flows separately by
utilizing game theory and defining a new capacity concept
named core capacity.

This paper introduces a new approach to support hetero-
geneous traffic efficiently in a wireless network by dividing
the available bandwidth into multiple channels separated in
frequency and allocated dynamically to specifictraffic classes
consisting of the aggregation of one or more flows. We
present aseparation theoremshowing that, in a multiple-
channel multiple-radio wireless network, the optimum order
throughput capacity can be attained in a wireless network in
which traffic classes are distributed uniformly by allocating a
radio per node to each traffic class. Based on this theorem, we
extend theThree-Phaseapproach first introduced bÿOzgür et.
al. [4] to accomodate different traffic classes. We demonstrate
that the maximum per-node throughput capacity ofΘ (log(n))
for unicast traffic can be attained. This capacity was provided
as an upper bound originally bÿOzgür et al [4] without
providing any specific communication scheme.

The rest of the paper is organized as follows. Section II
presents important assumptions and definitions used in our
analysis. Section III presents an upper bound on the throughput
capacity of a wireless network. Section IV presents theThree-
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Phasescheme for different operating regions of the network.
The achievable aggregate throughput for the heterogeneous
traffic is also presented. Section V discusses the implications
of our work and future research directions.

II. W IRELESSNETWORK MODEL

We consider a network with nodes uniformly distributed in
a dense network with constant areaA. For the data-gathering
traffic, a single node, called the access point, is the destination
for k sources in the network. For the rest of thes = n −
k nodes in the network, source-destination pairs are selected
randomly and uniformly. For each source nodesi, wherei =
1, · · · , n, the data rate is denoted byRsi

(n). Similarly, for
each destination nodedj , wherej = 1, · · · , s + 1, the rate is
denoted byRdj

(n). The capacity of the network is defined as

C(n) = max
Rsi

andRdj
;i=1,·,n;j=1,·,s+1

 

min

 

n
X

i=1

Rsi(n),

s+1
X

j=1

Rdj
(n)

!!

(1)

The total bandwidth in the network isW hertz. Furthermore,
the total power for transmission in the network is assumed to
beP . The complex channel gain between nodesi andk at time
m is given byHik[m] =

(√
G exp(jθik[m])

)

/
(

d
α
2

ik

)

, where

dik is the distance between nodesi andk, θik[m] is the random
phase at timem which is uniformly distributed between
[0, 2π]. For all pairs of i and k, θik[m]s are independent
and identically distributed (i.i.d.) random variables. Note that
θik[m] anddik are assumed to be independent. The parameters
G andα > 2 are constants. The channel parameter is always
known to the receiver during transmission and the phase is
a fast fading2. The received signal by nodei at time m is
given by Yi =

∑n
k=1 Hik[m]Xk[m] + Zi[m], whereXk[m]

is the transmitted signal by nodek at time m and Zi[m] is
white circularly symmetric Gaussian noise of varianceN0.
The notationsKi andCi for any integeri represent constant
values.

III. A N UPPERBOUND ON THE NETWORK CAPACITY

The information-theoretic upper bound of the aggregate
throughput in wireless networks is derived. This upper bound
is compared subsequently with the achievable lower bound to
demonstrate the effectiveness of the routing strategies utilized
in this paper.

Theorem 3.1:In a wireless network withk sources for the
access node ands source-destination pairs wheres + k = n,
the capacity is upper bounded by

C(n) ≤ K1(s + 1) log n (2)

whereK1 is a constant.

2Our channel assumption is identical to the one used byÖzgür et al. [4]
and the reader can read the detailed justification for this channel model in
[4].

Proof: It is clear from Eq. (1) that

C(n) ≤ max
Rdj

;j=1,·,s+1





s+1
∑

j=1

Rdj
(n)



 . (3)

For any arbitrary destinationj, the network is equivalent of a
multiple-input single-output channel with upper bound given
by ( [14], Eq. (5.31))

Rdj
(n) ≤ log



1 +
P

N0

k=n
∑

k=1,k 6=j

G

dα
kj



 . (4)

Özgür et al. [4] showed that

Pr

(

dmin <
1

n1+δ

)

≤ n

(

1 −
(

1 − π

n2+2δ

)n−1
)

. (5)

This probability goes to zero asn tends to infinity, which
means that the distance between any two nodes is at least

1
n1+δ . Accordingly, Eq. (3) becomes

C(n) ≤ (s + 1) log

(

1 +
PG

N0
nα(1+δ)+1

)

= K1(s + 1) log n (6)

From Theorem3.1, we observe that the upper bound of the
capacity scales asΘ((s + 1) logn).

IV. M AIN RESULTS

We first provide a separation theorem for heterogeneous
traffic in wireless networks. Then, the achievable rate for this
network model is presented.

Theorem 4.1: Separation Theorem for Heterogeneous Traf-
fic in Wireless Networks:Consider a network with total avail-
able bandwidthW in which k1 traffic classes of equal priority
are distributed uniformly in the network with each traffic
class utilizingW

k1
bandwidth. Separating the traffic classes and

using a separate frequency and radio per node for each traffic
class provides the optimum aggregate order capacity for the
network.

Proof: Let n be the total number of nodes in the network
and for each traffic classTi, i = 1, . . . , k1 let there beni nodes
as sources or destinations for this traffic class, whereni ≤ n.
Assume that the optimum routing communication scheme is
used for this traffic class. If only theni source and destination
nodes were used in the network for this traffic class, one
can design the optimum technique to achieve the maximum
throughput capacity for this traffic class. It is well known
that adding relays in a network facilitates the transmission
of information and can increase its capacity [9], [10]. Now,
by utilizing the remainingn − ni nodes in the network as
relays for the traffic classTi, at least the same capacity can
be attained for the traffic class as when there were no relays
in the network for the traffic class. However, one can design a
new optimum technique to achieve the maximum throughput
capacity considering the relays which is at least equal to or
greater than the previous case. Therefore, for any traffic class
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utilizing a multiple-channel multiple-radio (MC-MR) system
provides an upper bound on the capacity of that traffic class.

In addition, given that the total bandwidth of the network
W and the number of traffic classesk1 are constants, dividing
the bandwidth into smaller portions does not change the
order throughput capacity and the optimality of the results.
Hence, MC-MR systems provide the optimal order capacity
for heterogeneous traffic networks.

This simple theorem provides a significant result for hetero-
geneous traffic networks. The theorem states that, by utilizing
MC-MR systems, the nodes in the network that are not sources
or destinations of a particular traffic class can be used as relays
to improve the capacity of the network. We will show some
examples of this intuitive result in this paper.

Another important implication of the above theorem is the
fact that all analysis for homogeneous traffic can be used
for heterogeneous traffic, as long as we allow some nodes
in the network to participate as relays. Then the capacity of
the network can be computed for that particular traffic pattern
by changing the number of relays.

The following theorem establishes the main contribution of
this paper, and the rest of the paper is dedicated to proving
this theorem.

Theorem 4.2:Consider a network with one access node
receiving information fromk sources ands different nodes
that select random destinations uniformly from all other nodes
in the network. By using the MC-MR scheme, the achievable
aggregate throughput is given by

R(n) =

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
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
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





Ω((s + 1) log n), s = O

(

(

n

log n

)
1

2+ε2+ε3

)

,

Ω
( n

s1+ε2+ε3
+ log n

)

, Ω

(

(

n

log n

)
1

2+ε2+ε3

)

= s

= O

(

(

n log n

log log n

)
1

2+ε2+ε3

)

,

Ω

(

s log log s

log s
+ log n

)

, Ω

(

(

n log n

log log n

)
1

2+ε2+ε3

)

= s

= O

(

(

n log n

log log n

)
1
2

)

,

Ω
(n

s
+ log n

)

, Ω

(

(

n log n

log log n

)
1
2

)

= s

= O
(

n
1

2−ε1+ε4

)

,

Ω
(

s1−ε1+ε4 + log n
)

, Ω
(

n
1

2−ε1+ε4

)

= s

= O(n)
(7)

whereε1, ε2, ε3, andε4 are positive small numbers between
0 and1 andε4 < ε1.

Note that there are two terms corresponding to unicast and
data gathering communications for each capacity region. For

example, in the first capacity region of Eq. (7), the terms
s log n and log n are related to unicast and data-gathering
communication, respectively. It can be easily shown that the
per-node throughput capacity of the unicast communication
for our technique is always greater than that of [4], while the
total unicast capacity is smaller than that of [4], because there
are onlys < n unicast pairs in our scheme. The reason for this
capacity improvement is the use of relays in our scheme. We
also note that in [4] all nodes were participating in unicast
communication, while in [9], there are few unicast sessions
and the rest of the nodes are relays. One of the results in
this paper is the computation of the throughput capacity using
MIMO cooperation when the number of relays in the network
changes as a function ofn. We also observe that, for the first
capacity region, the throughput capacity is equal to the upper
bound capacity that was derived in Section III. This is the
first paper to report per node throughput oflog n for unicast
communications.

A. Capacity Analysis for Unicast Traffic

Based on the separation theorem, it is sufficient to derive
the throughput capacity for each traffic class independently
without being concerned about the optimality of our result.
Our main approach for the computation of unicast traffic
capacity is based on the hierarchical MIMO cooperation
approach introduced bÿOzgür et al. [4]. However, given that
we take advantage of relays in this paper, we modify theThree-
Phasescheme in [4] based on the number of relays available
in the network in order to maximize the achievable capacity.
The details of these schemes are described in the rest of this
section.

1) The Case of:s = O

(

(

n
log n

)
1

2+ε2+ε3

)

First, we introduce a useful lemma from [7].
Lemma 4.3:Let B(m, n) be the random variable that

counts the maximum number of balls in any bin when we
throw m balls independently and uniformly at random inton
bins. Then

B(m, n) =























































Θ

(

log n

log n
m

)

, if m <
n

log n
,

Θ

(

log n

log n log n
m

)

, if
n

poly log n
≤ m ≪ n logn,

Θ (log n) , if m = c · n log n

for some constantc,

Θ
(m

n

)

, if m ≫ n logn.
(8)

By dividing the network intos1+ε2 clusters and using
Lemma4.3, the following theorem can be proved.

Theorem 4.4:Consider a network withn nodes ands
source nodes distributed uniformly in the network such that
s = nα1 and 0 ≤ α1 < 1

1+ε2+ε3
. If the network is divided

into s1+ε2 clusters, there are at mostΘ(1) source nodes and
Θ
(

n
s1+ε2

)

nodes w.h.p. in each cluster. In any circle with
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radius
√

A

2s
1+ε2+ε3

2

or
√

A

2n
(1+ε2)β1

2

, where 0 < β1 < 1, there

areΘ
(

n
s1+ε2+ε3

)

or Θ
(

n
n(1+ε2)β1

)

nodes, respectively w.h.p.
The proof of this theorem is given in Appendix A. To sim-

plify the analysis, we assume that there are exactlyK2
n

s1+ε2+ε3

nodes in each circle with radius
√

A

2s
1+ε2+ε3

2

, K2
n

n(1+ε2)β1

nodes in each circle with radius
√

A

2n
(1+ε2)β1

2

, and K3 source

nodes in each cluster. We now introduce ourThree-Phase
communication scheme for each capacity region. Without loss
of generality, the source nodes are considered at the centerof
each cluster to simplify the analysis. The total transmit power
required to transmit all unicast traffic isP1 Watts and for each
phase isP ′

1 = 1
3P1.

Phase 1. Distribution of packets from source to relays
in the same cluster: As in previous work [4], we divide the
entire network into smaller cells or clusters of square shape.
If the network area is divided intos1+ε2 clusters, then each
cluster has an area of A

s1+ε2
. In order to avoid interference,

the cells are grouped intoK6 non-interfering groups using
a TDMA scheme. We divide this region into two regions of

s = O
(

nβ1
)

andΩ
(

nβ1
)

= s = O

(

(

n
log n

)
1

2+ε2+ε3

)

where

β1 is an arbitrarily small constant number. Note that there are
at mostK3 sources in each cluster. WhenΩ

(

nβ1
)

= s =

O

(

(

n
log n

)
1

2+ε2+ε3

)

, then we letK2
n

s1+ε2+ε3
nodes in the

circle of radius
√

A

2s
1+ε2+ε3

2

help each source in the cluster to

transmit information. Fors = O
(

nβ1
)

, it is easy to show that
K2

n
s1+ε2

> K2
n

n(1+ε2)β1
. Therefore, onlyK2

n
n(1+ε2)β1

relay

nodes in the circle of radius
√

A

2n
(1+ε2)β1

2

help each source in

the cluster to transmit information. These nodes operate as
relaysin the network. Each source node transmitsK2

n
s1+ε2+ε3

(or K2
n

n(1+ε2)β1
)blocks of information based on the size ofs

to the relays in its cluster. Each block has a length ofL. At
the end of phase 1, each relay in the circle has received a
different block of information. The next Theorem describes
the total aggregate throughput in the network.

Theorem 4.5:Consider a network organized intos1+ε2

clusters. Then by implementing the TDMA scheme described

above whens = O

(

(

n
log n

)
1

2+ε2+ε3

)

, the aggregate through-

put for the network iss(K4 log n+K5)
K6

.
The proof of this theorem is given in Appendix B.

When Ω
(

nβ1
)

= s = O

(

(

n
log n

)
1

2+ε2+ε3

)

, then the

transmission time required to complete this phase is

tPhase 1=
sK2L

n
s1+ε2+ε3

s(K4 log n+K5)
K6

=
K6K2L

n
s1+ε2+ε3

K4 log n + K5
. (9)

Whens = O
(

nβ1
)

, then the transmission time required to
complete this phase is

tPhase 1=
sK2L

n
n(1+ε2)β1

s(K4 log n+K5)
K6

=
K6K2L

n
n(1+ε2)β1

K4 log n + K5
. (10)

Phase 2. MIMO Cooperation Transmission: At the begin-
ning of the second phase, all nodes in the cluster containing
the source nodes decode the information into a finite number
of bits. This information is mapped intoC1

n
s1+ε2+ε3

(or
C1

n
n(1+ε2)β1

when s = O
(

nβ1
)

) symbols, whereC1 is a
constant. Then the source nodes along with the relays form
a distributed MIMO system to transmit their information to
the destinations and the relays surrounding the destinations
in that cluster (see Fig. 1). Given that there ares sources in
the network, there ares MIMO transmissions to complete this
phase.

s

d

Fig. 1. MIMO Cooperation Transmission. The black nodes represent sources
or destinations. The gray nodes are the relays.

The aggregate throughput for this phase is given by the
following lemma.

Lemma 4.6:The aggregate throughput for the MIMO co-
operation transmission scheme is at leastK7

n
s1+ǫ2+ǫ3

when

Ω
(

nβ1
)

= s = O

(

(

n
log n

)
1

2+ε2+ε3

)

and K7
n

n(1+ε2)β1
when

s = O
(

nβ1
)

for the MIMO quantized channel.
This lemma is proved in [4]. It is easy to show that the total

required time for Phase 2 istPhase 2= Θ(s) = C1

K7
s.

Phase 3. Transmission from Relays to Destination: Phase
3 is the reverse of phase 1 with relays in the destination cluster
quantizing the observed information and transmitting them
sequentially to the destination. UsingLemma4.6 it can be
proved [4] thatK7

n
s1+ε2+ε3

(or K7
n

n(1+ε2)β1
for s = O

(

nβ1
)

)
throughput can be achieved. Note that the TDMA scheme for
parallel transmissions in clusters is implemented for Phase 3.

From the above discussion, the time requirement for Phase
3, the total time and the aggregate throughput as the result of
three phases can be given as follows.

WhenΩ
(

nβ1
)

= s = O

(

(

n
log n

)
1

2+ε2+ε3

)

, then

tPhase 3=
sC2C3

n
s1+ε2+ε3

s(K5+K4 log n)
K6

=
K6C2C3

n
s1+ε2+ε3

K5 + K4 log n
, (11)

ttotal = tPhase 1+ tPhase 2+ tPhase 3

=
K6K2L

n
s1+ε2+ε3

K4 log n + K5
+

C1s

K7
+

K6C2C3
n

s1+ε2+ε3

K5 + K4 log n
, (12)
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and

R1(n) =
K2Ls n

s1+ε2+ε3

K6K2L n

s1+ε2+ε3

K4 log n+K5
+ C1s

K7
+

K6C2C3
n

s1+ε2+ε3

K5+K4 log n

≥ K8s log n. (13)

The lower bound in (13) is correct whens =

O

(

(

n
log n

)
1

2+ε2+ε3

)

.

Whens = O
(

nβ1
)

, then

tPhase 3=
sC2C3

n
n(1+ε2)β1

s(K5+K4 log n)
K6

=
K6C2C3

n
n(1+ε2)β1

K5 + K4 log n
, (14)

ttotal = tPhase 1+ tPhase 2+ tPhase 3

=
K6K2L

n
n(1+ε2)β1

K4 log n + K5
+

C1s

K7
+

K6C2C3
n

n(1+ε2)β1

K5 + K4 log n
, (15)

and

R1(n) =
K2Ls n

n(1+ε2)β1

K6K2L n

n(1+ε2)β1

K4 log n+K5
+ C1s

K7
+

K6C2C3
n

n(1+ε2)β1

K5+K4 log n

≥ K8s log n. (16)

The lower bound in (16) is correct whens = O
(

n1−(1+ε2)β1

log n

)

.
For the rest of this section, we use theThree-Phasecom-

munication with slight modifications based on the value ofs.
Therefore, we only mention the differences between the cases
and theThree-Phasescheme that we described above.

2) The Case of: Ω

(

(

n
log n

)
1

2+ε2+ε3

)

= s =

O

(

(

n log n
log log n

)
1
2

)

Phase 1: The only differences in this region is the fact
that we divide the network intos clusters which results in
Θ
(

log s
log log s

)

sources for each cluster. Similar toTheorem4.4,

it can be proved that there areΘ
(

n
s

)

nodes in each cluster and
all these nodes will be used as relays unlike previous section
that we only used nodes inside a circle. The following theorem
can be proved for this phase.

Theorem 4.7:The link capacity between any two nodes in
a cluster underPhase Oneand Phase Threeof this capacity
region is at leastΘ(1).
The proof of this theorem is omitted due to page limitations.
The aggregate throughput in this phase isΘ(s) = K11s.
Therefore, the time needed in this phase is given by

t′Phase 1≤
sK9

log s
log log s

K10L
(

n
s

)

K11s
=

K9K10Ln log s
log log s

K11s
. (17)

Phase 2: This phase is also identical to previous one except
that the aggregate throughput isK12

(

n
s

)

for transmittingC4
n
s

symbols. Therefore, the required time for this phase is

t′Phase 2=
sC4

(

n
s

)

K12

(

n
s

) =
C4s

K12
. (18)

Phase 3: This phase is similar to previous one except that
the aggregate throughput isK11s and the total required time
for this phase can be easily derived as

t′Phase 3≤
sK9

log s
log log s

C5C3

(

n
s

)

K11s
=

K9C5C3n
log s

log log s

K11s
. (19)

Therefore, the aggregate throughput in this region ofs is

R2(n) ≥ sK10L
(

n
s

)

K9K10Ln
log s

log log s

K11s
+ C4s

K12
+

K9C5C3n
log s

log log s

K11s

.

(20)

Whens = O

(

(

n log n
log log n

)
1
2

)

, then the first and third terms

in the denominator are the dominant factors. Hence, the rate
can be written as

R2(n) ≥ sK10L
(

n
s

)

2

(

K9K10L
log s

log log s

K11
+

K9C5C3
log s

log log s

K11

)

n
s

,

= K13
s log log s

log s
. (21)

The Three-Phaseapproach that was described in Sec-
tion IV-A1 is optimum for that region. However if we use
this approach for the second capacity region, it will reduce
the capacity from the peak of first capacity region. Now
the question is that if we use Section IV-A1 scheme in
this region, at what point the throughput capacity for the
two schemes are equal, i.e.Θ(R1(n)) = Θ(R2(n))? It

turns out that whenΩ

(

(

n
log n

)
1

2+ǫ2+ǫ3

)

= s, then R1(n)

can be approximated asR1(n) = Θ
(

n
s1+ε2+ε3

)

. For the
same capacity region, it is easy to show thatR2(n) =

Θ
(

s log log n
log n

)

3. By making the two ratesR1(n) and R2(n)

equal, we arrive ats = Θ

(

(

n log n
log log n

)
1

2+ε2+ε3

)

. Therefore

when Ω

(

(

n
log n

)
1

2+ε2+ε3

)

= s = O

(

(

n log n
log log n

)
1

2+ε2+ε3

)

,

we use the transmission scheme shown in Section IV-A1, and
for the rest of second capacity region, we utilize the second
Three-Phaseapproach that we explained here. By doing this,
the maximum throughput capacity is achieved in the second
capacity region.

3) The Case of:Ω

(

(

n log n
log log n

)
1
2

)

= s = O(n)

For this region, given that the number of source-destination
pairs is large, the original Hierarchical MIMO cooperation
scheme of [4] provides the highest throughput capacity. The
main feature of theHierarchical Cooperationscheme is the
fact that each cluster is further divided into smaller clusters
and the distributed MIMO system is utilized in a hierarchical
fashion.

Let As denote an area of a cluster. FromTheorem4.4, it
can be shown that the number of sources in each cluster is

3we used the fact that in this region,s = nγ for some constant value of
γ.
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Ms = Θ(Ass) = K14Ass and the total number of nodes in
each cluster isNs = Θ

(

Msn
s

)

= K15

(

Msn
s

)

as long as the
following condition is satisfied.

As = ω

(

A

s

)

(22)

Note that the communication scheme for each hierarchy is
very similar to that of the previous section. Due to page lim-
itations, we only state the differences in each communication
phase.

Phase 1: This phase is identical to Phase 1 in the previous
section, except that there areK14Ass source nodes and
K15

(

Msn
s

)

nodes in each cluster. Besides, each node transmits
K15

(

Msn
s

)

blocks of bits to relays and the link throughput is
K16M

b
s whereb is a constant between zero and one related to

the number of hierarchies. The time required for this phase is

t′′Phase 1=
Ms · K6K15L

(

Msn
s

)

K16M b
s

. (23)

Phase 2: This phase is also similar to that in the previous
section, except that the total number of transmitted bits inone
cluster for each source isC6

(

Msn
s

)

and the aggregate through-
put for the network isK17

(

Msn
s

)

symbols. The required time
to finish this phase is

t′′Phase 2=
sC6

(

Msn
s

)

K17

(

Msn
s

) =
C6

K17
s. (24)

Phase 3: This phase is similar to Phase 3 in the previous
section with link throughput in the network asK16M

b
s . The

required time to complete this phase is

t′′Phase 3=
Ms · K6C7C3

(

Msn
s

)

K16M b
s

. (25)

Thus, the total required time is

t′′total =
Ms · K6K15L

(

Msn
s

)

K16M b
s

+
C6

K17
s +

Ms · K6C7C3

(

Msn
s

)

K16M b
s

.

(26)

Then, the aggregate throughput for the network is

R3(n) =
s · K15L

(

Msn
s

)

t′′total
=

K18Msns

K19M
2−b
s n + K20s2

, (27)

whereK18 = K15L, K19 = K6K15L
K16

+ K6C7C3

K16
and K20 =

C6

K17
.

By computing the derivative ofR3(n) with respect toMs

and equating it to zero, we have

Ms =

(

K20

K19(1 − b)

)
1

2−b
(

s2

n

)
1

2−b

= K21

(

s2

n

)
1

2−b

,

(28)

whereK21 =
(

K20

K19(1−b)

)
1

2−b

.
It can be shown from Eq. (28) that the number of sources

in each cluster is at least a constant value whens = ω(
√

n),
which guarantees that the number of clusters is less than

the number of sources and fulfills the condition in Eq. (22).
Therefore, the aggregate throughput is given by

R3(n) =

K18

(

K21

(

s2

n

)
1

2−b

)

ns

K19

(

K21

(

s2

n

)
1

2−b

)2−b

n + K20s2

,

=
K18K21

K19K
2−b
21 + K20

n
1−b
2−b s

b
2−b

(a)
= K22s

1
2−b

(n

s

)
1−b
2−b

,

= K22s
1

2−b
+logs(n

s )
1−b
2−b

= K22s
( 1

2−b
+ 1−b

2−b
logs(n

s )),
(b)
= K22s

1−ε1+ε4 . (29)

Equality (a) in the above equation is derived by defining
K22 = K18K21

K19K
2−b
21 +K20

and equality (b) is obtained by letting

ε1 = 1−b
2−b

and ε4 = 1−b
2−b

logs

(

n
s

)

. It is easy to show that
ε4 ≤ ε1 in all cases. Note that the result from this scheme is
similar to that of [4] whens = n. As in [4], if the capacity in
the current hierarchy isK22s

b, then the capacity in the next
hierarchy isK22s

( 1
2−b

+ 1−b
2−b

logs( n
s )), which can be shown to

increase monotonically. Now we investigate the case when the
maximum capacity is achieved or equivalently,

1

2 − b
+

1 − b

2 − b
logs

(n

s

)

= 1. (30)

This equality is satisfied whens =
√

n or b = 1. Howevers =√
n is not acceptable, because it violates the condition in Eq.

(22). In addition,b is always smaller than one and, therefore,
the capacity of phase three cannot reach its maximum ofΘ(s).

Now the question is for what value ofs we have
Θ(R2(n)) = Θ(R3(n)) in this capacity region. Following
a similar procedure as in the previous section, it can be
proved thats = Θ

(

n
1

2−ε1+ε4

)

. Similarly, this capacity region

can be divided into two regions. WhenΩ

(

(

n log n
log log n

)
1
2

)

=

s = O
(

n
1

2−ε1+ε4

)

, thenR2(n) provides a higher throughput

capacity ofK ′
13

n
s

and for
(

n
1

2−ε1+ε4

)

= s = O(n), R3(n)

givesK22s
1−ε1+ε4 throughput capacity.

B. Capacity Analysis for Data-Gathering Traffic

This section is dedicated to computation of achievable
capacity forMany-to-One Traffic. We assume that a bandwidth
of W2 = W − W1 is allocated to this traffic. Our analysis is
similar to the method used in [10], with the exception that
nodes are uniformly distributed in a square plane in this paper
as opposed to sphere in [10]. It can be proved that the upper
bound is alsoΘ (log n), which is similar to the lower bound.

We adopt aTwo-Phasescheme that utilizesη4P2 and
(1 − η4)P2 Watts for power consumption in Phases 1 and
2, respectively.

Phase 1. Broadcasting Transmission: In the first phase,
only one of the source nodes broadcast its information to the
nodes of radiusr around it. Ifr is small enough, all the nodes
in the circle with radiusr can decode the information. The
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aggregate throughput we can achieve is given by the following
theorem.

Theorem 4.8:Let r = n−ε5 , whereε5 for 0 ≤ ε5 ≤ 1.
Then with bandwidthW2 and total transmit powerη4P2,
an aggregate throughput of at leastK23 log n + K24 can be
achieved.
This theorem is proved in Appendix C.

Phase 2. Cooperative Many-to-One Transmission: In the
second phase, all the relays within a radius ofr transmit the
data along with the source node, thus creating a distributed
MISO system. The aggregate throughput that can be achieved
is given by the following theorem.

Theorem 4.9:The aggregate throughput of the cooperative
Many-to-Onetransmission scheme is at leastK25 log n+K26.
This theorem is proved in Appendix D. Therefore, the
total throughput capacity for the data gathering scheme
is RMany-to-One(n) = K27 log n + K28 where K27 =
min(K23, K25) andK28 = min(K24, K26).

The total throughput capacity in the network as a result of
these two types of traffics is the summation of their individual
rates, i.e.,R(n) = R1(n) + RMany-to-One(n). The result is
provided inTheorem4.2.

V. D ISCUSSION ANDFUTURE WORK

The first major contribution of this paper is the separation
theorem for heterogeneous traffic. This simple theorem states
that when there are multiple classes of traffic in the network, a
simple way to achieve the maximum order throughput capacity
is to allow all nodes in the network to operate on a single
traffic class for an assigned bandwidth. This result impliesthat
multiple-radio multiple-channel systems are order-optimum
for heterogeneous traffic. The main reason for this result is
the fact that nodes that are not part of a specific traffic can be
utilized as relays [9], which clearly improve the throughput
capacity of the network.

The second major contribution of this paper is the computa-
tion of the achievable throughput capacity when the number of
relays and source-destination pairs are changing as a function
of n. Gastpar and Vetterli [9] have solved this problem when
there is only one source-destination pair in the network and
the rest of the nodes are relays. We have shown different for-
warding strategies when the ratio between relays and unicast
sessions changes by utilizing an extended version of the three-
phase approach introduced in [4]. Our results also corroborate
previous results obtained in [4] when the number of source-
destination pairs isn and in [9] when there areΘ(1) source-
destination pairs in the network.

Note that, in the last capacity region, the achievable capacity
is n1−ε1+ε4 instead of capacity ofn1−ε1 as reported in [4].
The gain of nε4 for ε4 = 1−b

2−b
logs

(

n
s

)

is achieved by
employing relays to improve the throughput. This gain reduces
ass tends ton, becauseε4 → 0.

The unicast capacity forΩ

(

S2 =
(

n log n
log log n

)
1

2+ε2+ε3

)

=

s = O

(

S3 =
(

n log n
log log n

)
1
2

)

is Θ
(

s log log s
log s

)

. However, if the

number of sources in each cluster is a constant value instead
of a random variable, then it is easy to show that a capacity
of Θ(s) can be achieved.

Fig. 2 plots the capacity region that was derived in (7). From
this figure, we see that, when the number of unicast sessions is

from 1 to Θ

(

S1 =
(

n
log n

)
1

2+ε2+ε3

)

, the majority of nodes

are part ofMany-to-One Trafficand we call this region as
Many-to-One Traffic. The achieved capacity in this region is
the optimum value. WhenΩ (S1) = s = O

(

S4 = n
1

2−ε1+ε4

)

,
then the number of nodes for both traffic patterns are compa-
rable. Hence, we call itHeterogeneous Trafficregion. It is not
clear whether our achievable capacity region is optimum for
this region. Finally whens = Ω (S4), then majority of nodes
are involved in unicast communication and we call this region
Unicast traffic.

s

( )R n

4S3S2S1S n

4R

3R

2R

1R

1 logs n

1

1 2 3

log
n

n

s

2

log log
1 log

log

s s
n

s

log
n

n
s

1 41
logs n

11
n

0

Fig. 2. The achievable aggregate throughput.

It is worthy of note that the capacity actually decreases in
two regions ass increases. These two regions particularly re-
quire more investigation to find better communication schemes
which is the subject of future study.
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APPENDIX A
PROOF OFTHEOREM 4.4

For the number of source nodes in each cluster, we can
consider the problem as bins and balls problem. Here the
number of balls iss and the number of bins iss1+ε2 . By
using Lemma 4.3, the maximum number of source nodes in
each cluster is given by

B(s, s1+ε2) = Θ

(

log s1+ε2

log s1+ε2

s

)

,

= Θ

(

(1 + ε2) log s

ε2 log s

)

= Θ(1). (31)

For the number of the nodes in each cluster, we can use
Chebychev’s inequality [15]. The Chebychev’s inequality is
given below.

Lemma A.1:Let X be a random variable with mean and
standard deviation ofµx andσx respectively. Then

Pr(|X − µx| ≥ αx) ≤ σ2
x

α2
x

(32)

for any anyαx > 0.
Assumeα2

x =
√

α × n
s1+ε2

whereα is defined as a sequence
such thatlim n

s1+ε2
→∞

α
n

s1+ε2

= γ1 for any positive value of

γ1. Define the random variableVn as the number of nodes
in each cluster. Because the nodes uniformly distributed in

the network, then the mean and variance ofVn is given by
µ = n

s1+ε2
andσ2 = n

s1+ε2

(

1 − 1
s1+ε2

)

respectively. By using
Chebychev’s inequality, we arrive at

Pr

(

|Vn − n

s1+ε2
| ≥

√

α × n

s1+ε2

)

≤
n

s1+ε2

(

1 − 1
s1+ε2

)

α × n
s1+ε2

≤ 1

α

(

1 − 1

s1+ε2

)

(33)

The second term on the right hand side of (33) goes to
zero as n

s1+ε2
→ ∞. Thus with probability close to one

|Vn − n
s1+ε2

| ≤
√

α × n
s1+ε2

or equivalently,Vn = Θ
(

n
s1+ε2

)

.
Similarly, it can be proved that in a circle with radius of√

A

2s
1+ε2+ε3

2

or
√

A

2n
(1+ε2)β1

2

, the number of nodes isΘ
(

n
s1+ε2+ε3

)

or Θ

(

n

n
(1+ε2)β1

2

)

respectively.

APPENDIX B
PROOF OFTHEOREM 4.5

To prove Theorem4.5, we consider two cases. First, we
calculate the aggregate throughput whenΩ

(

nβ1
)

= s =

O

(

(

n
log n

)
1

2+ε2+ε3

)

. Then, we consider the case whens =

O
(

nβ1
)

.

A. WhenΩ
(

nβ1
)

= s = O

(

(

n
log n

)
1

2+ε2+ε3

)

The capacity between a source nodek and the relayi is

CCase 1
ki = W1 log

(

1 +
P ′

1

s
|Hki|2

W1N0 +
∑

j∈T,j 6=k

P ′
1

s
|Hji|2

)

= W1 log











1 +

P ′
1

s

(√
G

d
α
2

ki

)2

W1N0 +
∑

j∈T,j 6=k

P ′
1

s

(√
G

d
α
2

ji

)2











≥ W1 log
























1 +

P ′
1

s







√
G

 

√
A

s

1+ε2+ε3
2

!α
2







2

W1N0 +
∑∞

l=1 8l
P ′

1

s







√
G

 

(l
√

K6−1)
√

A

s

(1+ε2)
2

!α
2







2

























= W1 log


1 +

P ′
1G

A
α
2

s
(1+ε2+ε3)α

2 −1

W1N0 +
(

P ′
1G

A
α
2

∑∞
l=1

8l
(l
√

K6−1)α

)

s
(1+ε2)α

2 −1





> W1 log





P ′
1G

A
α
2

s
(1+ε2+ε3)α

2 −1

2
(

P ′
1G

A
α
2

∑∞
l=1

8l

(l
√

K6−1)α

)

s
(1+ε2)α

2 −1




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= W1 log

(

1

2
∑∞

l=1
8l

(l
√

K6−1)α

)

+ W1 log
(

s
ε3α

2

)

(a)

≥ K5 + W1 log
(

(

nβ1
)

ε3α

2

)

= K5 + M1 log n, (34)

where inequality(a) is derived because whenα > 2, then
∑∞

l=1
8l

(l
√

K6−1)α converges to a constant value andM1 is a
positive constant value.

B. Whens = O
(

nβ1
)

Under the condition it is easy to show that
√

A

s
1+ε2

2

>
√

A

n
(1+ε2)β2

2

>
√

A

n
(1+ε2)β1

2

for appropriate value ofβ2 such that

β2 < [(1+ε2)α−2]
(1+ε2)α β1.

If the source node transmits information within a circle of
radius

√
A

2n
(1+ε2)β1

2

, then the achievable rate between nodesk

and i is given below.

CCase 2
ki

= W1 log











1 +

P ′
1

s

(√
G

d
α
2

ki

)2

W1N0 +
∑

j∈T,j 6=k

P ′
1

s

(√
G

d
α
2

ji

)2











≥ W1 log
























1 +

P ′
1

s







√
G

 

√
A

n

(1+ε2)β1
2

!α
2







2

W1N0 +
∑∞

l=1 8l
P ′

1

s







√
G

 

(l
√

K6−1)
√

A

s

(1+ε2)
2

!α
2







2

























(a)

≥ W1 log
























1 +

P ′
1

nβ1







√
G

 

√
A

n

(1+ε2)β1
2

!α
2







2

W1N0 +
∑∞

l=1 8l
P ′

1

1







√
G

 

(l
√

K6−1)
√

A

n

(1+ε2)β2
2

!α
2






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+ W1 log
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(1+ε2)α(β1−β2)

2 −β1
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= K5 + M2 log n (35)

(a) is derived by replacing distance for interference with
smaller distance and replacings in numerator by its maximum
value and replace it with 1 in the denominator. Note that
M2 = W1

(

(1+ε2)α(β1−β2)
2 − β1

)

is a positive value given
the condition above forβ2.

Thus, the achievable rate between nodesk and i is given
by

Rki(n) = min
(

CCase 1
ki , CCase 2

ki

)

,

= min (M1 log n + K5, M2 log n + K5) ,

= min(M1, M2) log n + K5,

= K4 log n + K5 (36)

whereK4 = min(M1, M2).
Given the TDMA parameterK6, there are on average

s
K6

nodes sending their information. Thus, the aggregate
throughput is given by

RPhase1(n) ≥ s(K4 log n + K5)

K6
. (37)

APPENDIX C
PROOF OFTHEOREM 4.8

Under theMany-to-Onetransmission model, the capacity
between source nodek and the relay nodei in the circle with
radiusr = n−ε5 is given by

Cki = W2 log

(

1 +
η4P2|Hki|2

W2N0

)

≥ W2 log


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
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)

≥ W2 log
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η4P2G

W2N0
nε5α

)

= W2 log

(

η4P2G

W2N0

)

+ W2ε5α log (n) = K24 + K23 log n

(38)

whereK23 = W2ε5α andK24 = W2 log
(

η4P2G
W2N0

)

.

APPENDIX D
PROOF OFTHEOREM 4.9

Similar to Theorem4.4, we can prove that the number of
nodes in the circle with radius ofn−ε5 is Θ

(

n1−2ε5
)

=
M4n

1−2ε5 . Then the capacity is computed as

CMany-to-One= W2 log
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2
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= K25 log n + K26 (39)

whereK25 = 1 − 2ε5 andK26 = W2 log
(

(1−η4)P2M4

W2N0A
α
2

)

.


