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Abstract—We study the scaling laws for wireless ad hoc extended this result by relaxing the constraint on the nurabe
networks in which the distribution of n nodes in the network is sources and destinations. While these results [6], [7] eskdr

homogeneous but the traffic they carry is heterogeneous. Mer 4oy mmetric traffic, the results apply to the case of a single
specifically, we consider the case in which a given node is the . T
type of traffic pattern in the network.

data-gathering sink for & sources sending different information ) A .
to it, while the rest of the s = n — k nodes participate in unicast We consider heterogeneous traffic in the network supporting

sessions with random destinations chosen uniformly. We peent  different types of traffic patterns. In particular, we catesi

a separation theorem for heterogeneous traffic showing thathe two types of traffic classes, namely, data-gathering trarffic

optimum order throughput capacity can be attained in a wireless |\ hich one of the nodes in the network acts as a sink with many

network in which traffic classes are distributed uniformly by t itting diff ¢ kets to that nod deht

endowing each node with multiple radios, each operating in a sources ran§m| Ing aifieren pa_c_es 9 a_no e ae.

Separate orthogona| ChanneL and by a||ocating a radio per ode Of the nOdeS n the network partICIpate In unicast tl‘affIC ﬁOW

to each traffic class. Based on this theorem, we show how this The distribution of nodes in the network is still uniform. e

order capacity can be attained for the unicast and data-gathring  pest of our knowledge, this heterogeneous traffic model has

tLaﬁ'% cIasEes by extendollng co_opelratlve communication semes 4t heen studied in the literature, except our own prelimyina

that have been proposed previously. work [8], which assumes that the bandwidth assignment is
|. INTRODUCTION proportional to the traffic for each cell, does not consider

cooperation among nodes, and the capacity analysis is based

traffic and uniform node distribution have been extensive(;1 the protocol model [1]. There is some prior work addregsin

studied in the literature. Gupta and Kumar [1] evaluatedata gathering [9], [10], [11] as the only type of traffic in

. . : . . network. Rodoplu et al. [12], [13] computed the network
the capacity of wireless networks with uniform traffic an(ilapacity for data gathering and unicast flows separately by

showed that the capacity scales@s< &) according 10 tjlizing game theory and defining a new capacity concept
the protocol modél This result was achieved by consideringnamed core capacity.
no cooperation among nodes with simple point-to-point com- This paper introduces a new approach to support hetero-
munication. Xie and Kumar [2], [3] subsequently investeght geneous traffic efficiently in a wireless network by dividing
the information-theoretic capacity of wireless networkihw the available bandwidth into multiple channels separated i
cooperation among different nodes in the extended netwoftequency and allocated dynamically to specifaffic classes
The achievable capacity with cooperation for dense netsvorkonsisting of the aggregation of one or more flows. We
was studied byOzgiir et al. in [4]. present aseparation theorenshowing that, in a multiple-
Only a handful of prior works investigate heterogeneowshannel multiple-radio wireless network, the optimum orde
traffic in the network. Keshavarz-Haddad et al. [5] introgldic throughput capacity can be attained in a wireless network in
the concept of transmission arena. Based on that definitiovhich traffic classes are distributed uniformly by alloogtia
they presented a method to compute the upper bound of theio per node to each traffic class. Based on this theorem, we
capacity for different traffic patterns and different topgies extend theThree-Phasapproach first introduced b®zgur et.
of the network. However, they did not provide closed-formal. [4] to accomodate different traffic classes. We demaistr
scaling laws for the network capacity. Toumpis [6] inveatgd that the maximum per-node throughput capacit¥diog(n))
the throughput capacity when there asesources ands® for unicast traffic can be attained. This capacity was predid
destinations in the network, whefe< ¢ < 1. Liu et al. [7] as an upper bound originally b@pzgur et al [4] without
providing any specific communication scheme.
'Given two functionsf and g, we say that:1) f(n) = O (g(n)) if there * The rest of the paper is organized as follows. Section II
exists a constant and integerN such thatf(n) < cg(n) for n > N. 2) . . . .
- . ) - ) ~ presents important assumptions and definitions used in our
f(n) = o(g(n)) if limp—oo 75 = 0. 3) f(n) = Q(g(n)) if g(n) = . X
5) f(n) = © (g(n)) analysis. Section Il presents an upper bound on the thiouigh

O (f(n)). 4) f(n) =w(g(n)) if g(n) = o(f(n)). ' . )
if f(n) =0 (g(n)) andg(n) = O (f(n)). capacity of a wireless network. Section IV presentsThese-



Phasescheme for different operating regions of the network.  Proof: It is clear from Eq. (1) that
The achievable aggregate throughput for the heterogeneous

.. . . . ) . +1
traffic is also presented. Section V discusses the imptinati \
L C(n) < Ry, 3
of our work and future research directions. (n) < Ra, T s ; 4; () )
1. WIRELESSNETWORK MODEL For any arbitrary destinatiop, the network is equivalent of a

fnultiple-input single-output channel with upper boundegiv

We consider a network with nodes uniformly distributed i
by ( [14], Eq. (5.31))

a dense network with constant arda For the data-gathering

traffic, a single node, called the access point, is the detstim p =
for k sources in the network. For the rest of the= n — Ry, (n) <log |1+ — — . 4)
k nodes in the network, source-destination pairs are selecte No k=1,k#j di;j

randomly and uniformly. For each source nogdewherei = ..
1,---,n, the data rate is denoted by, (n). Similarly, for ©Zgur et al. [4] showed that

3

each destination nod¢;, wherej =1,--- ,s + 1, the rate is 1 T \n-1
denoted byR4; (n). The capacity of the network is defined as Pr | dmin < nlt+o sn{l- (1 - n2+25) )

This probability goes to zero as tends to infinity, which
C(n) = R, andRy, e im1,at means that the distance between any two nodes is at least
' ! —L. Accordingly, Eq. (3) becomes

n s+1
<min (Z Rs,(n), Z Rq, (n)) > (1)

The total bandwidth in the network 1§ hertz. Furthermore, = Ki(s+1)logn (6)
the total power for transmission in the network is assumed to -

be P. The complex channel gain between nodaagdk at time From Theorem3.1, we observe that the upper bound of the
m is given by Hiy[m] = (\/aexp(ﬁik[m])? / (d{i) where  capacity scales a®((s + 1) logn).

d;1, is the distance between nodeandk, 6, [m] is the random

phase at timem which is uniformly distributed between
[0,27]. For all pairs ofi and k, 6,,[m]s are independent We first provide a separation theorem for heterogeneous
and identically distributed (i.i.d.) random variables.tBldhat traffic in wireless networks. Then, the achievable rate his t
0;1m] andd;; are assumed to be independent. The parametg8gwork model is presented.

G anda > 2 are constants. The channel parameter is alwaysTheorem 4.1: Separation Theorem for Heterogeneous Traf-
known to the receiver during transmission and the phaseﬁig in Wireless NetworksConsider a network with total avail-

a fast fading. The received signal by nodeat time m is able bandwidti¥" in which &, traffic classes of equal priority
given byY; = S0, Hix[m]Xi[m] + Z;[m], where X;[m] are distributed uniformly in the network with each traffic
is the transmitted signal by node at time m and Z;[m] is class utilizingk—"'f bandwidth. Separating the traffic classes and
white circularly symmetric Gaussian noise of variantg. USing a separate frequency and radio per node for each traffic
The notationsk; and C; for any integeri represent constant class provides the optimum aggregate order capacity for the

On) < (s + 1) log <1 ; %Gnawm)
0

IV. MAIN RESULTS

values. network.
Proof: Let n be the total number of nodes in the network
[1l. AN UPPERBOUND ON THE NETWORK CAPACITY and for each traffic clasg;, i = 1,. .., k1 let there beu; nodes

The information-theoretic upper bound of the aggregafl$ SOUces or destinations for this traffic class, where n.
throughput in wireless networks is derived. This upper burf\SSUMe that the optimum routing communication scheme is
is compared subsequently with the achievable lower bound4§d for this traffic class. If only the; source and destination

demonstrate the effectiveness of the routing strategitgest "°des were used in the network for this traffic class, one
in this paper. can design the optimum technigue to achieve the maximum

Theorem 3.1:In a wireless network with: sources for the throughput capacity for this traffic class. It is well known

access node and source-destination pairs wheset k = n that adding relays in a network facilitates the transmissio
the capacity is upper bounded by " of information and can increase its capacity [9], [10]. Now,

by utilizing the remainingn — n; nodes in the network as

C(n) < Ki(s+1)logn (2) relays for the traffic clasq;, at least the same capacity can
) be attained for the traffic class as when there were no relays
where K, is a constant. in the network for the traffic class. However, one can design a

2 . . new optimum technique to achieve the maximum throughput
Our channel assumption is identical to the one used®byir et al. [4]

and the reader can read the detailed justification for thenokl model in capacity Cons'de”ng .the relays which is at least equ‘?l to or
[41. greater than the previous case. Therefore, for any traffisscl



utilizing a multiple-channel multiple-radio (MC-MR) sysh example, in the first capacity region of Eq. (7), the terms
provides an upper bound on the capacity of that traffic classlogn and logn are related to unicast and data-gathering
In addition, given that the total bandwidth of the networkommunication, respectively. It can be easily shown that th
W and the number of traffic classés are constants, dividing per-node throughput capacity of the unicast communication
the bandwidth into smaller portions does not change tlier our technique is always greater than that of [4], while th
order throughput capacity and the optimality of the resulttotal unicast capacity is smaller than that of [4], becahseg
Hence, MC-MR systems provide the optimal order capacigre onlys < n unicast pairs in our scheme. The reason for this
for heterogeneous traffic networks. B capacity improvement is the use of relays in our scheme. We
This simple theorem provides a significant result for heteralso note that in [4] all nodes were participating in unicast
geneous traffic networks. The theorem states that, by intiliz communication, while in [9], there are few unicast sessions
MC-MR systems, the nodes in the network that are not sourcasd the rest of the nodes are relays. One of the results in
or destinations of a particular traffic class can be usedlagse this paper is the computation of the throughput capacitggsi
to improve the capacity of the network. We will show som&IMO cooperation when the number of relays in the network
examples of this intuitive result in this paper. changes as a function of We also observe that, for the first
Another important implication of the above theorem is theapacity region, the throughput capacity is equal to thesupp
fact that all analysis for homogeneous traffic can be usedund capacity that was derived in Section lll. This is the
for heterogeneous traffic, as long as we allow some nod@st paper to report per node throughputlog » for unicast
in the network to participate as relays. Then the capacity eédbmmunications.
the network can be computed for that particular traffic patte
by changing the number of relays. A. Capacity Analysis for Unicast Traffic
The following theorem establishes the main contribution of ) o . )
this paper, and the rest of the paper is dedicated to provin ased on the sepa_ratlon theorem, |f[ is sufflc_lent to derive
this theorem. the throughput capacity for each traffic class indepengientl
Theorem 4.2:Consider a network with one access nod¥ithout being concemed about the optimality of our result.
receiving information fromk sources ands different nodes OUr main approach for the computation of unicast traffic
that select random destinations uniformly from all othedes Ca@P2city is based on the hierarchical MIMO cooperation

in the network. By using the MC-MR scheme, the achievabfPProach introduced b@zgir et al. [4]. However, given that
aggregate throughput is given by we take advantage of relays in this paper, we modifyTthee-

Phasescheme in [4] based on the number of relays available

R(n) = in the network in order to maximize the achievable capacity.
n \ 7T The details of these schemes are described in the rest of this
Q((s +1)logn), s=0 (1 > ; section.
Ogn 2+51+5
) 1) The Case of:s_O((ln. ) o
n n 2+eg+teg ogn
Q (W + logn) , ((k)gn) ) =s First, we introduce a useful lemma from [7].
) Lemma 4.3:Let B(m,n) be the random variable that
_0 nlogn \ #Feztes counts the maximum number of balls in any bin when we
B loglogn * throw m balls independently and uniformly at random into
sl | ! bins. Then
24e9+e
Q25282 Liogn ), of (=) T ) =5 logn .
log s loglogn [e) ’ if m < ,
. log =~ logn
nlogn 2
_ 1 .
O((loglogn) )’ (C) % , if +§m<<nlogn,
| B(m,n) = log === polylogn
Q(E—i—logn), Q<< nlogn>2>_s O (logn), if m=c-nlogn
5 loglogn for some constant,
1
:O(n2751+64), @(@) , if m>>nlogn.
n
Qs tlogn),  Q(neE ) = s o . (8)
By dividing the network intos'*2 clusters and using
=0(n) Lemma4.3, the following theorem can be proved.

(7)  Theorem 4.4:Consider a network withn nodes ands
wheree,, €9, €3, ande, are positive small numbers betweersource nodes distributed uniformly in the network such that
0 and1 ande, < ;. s =n" and0 < a; < 17 If the network is divided

Note that there are two terms corresponding to unicast aimdo s'*=2 clusters, there are at moét(1) source nodes and
data gathering communications for each capacity region. F® (51%2) nodes w.h.p. in each cluster. In any circle with



radius 1@+53 or (1@)5 , where0 < 3; < 1, there Phase 2. MIMO Cooperation Transmission At the begin-
2s ning of the second phase, all nodes in the cluster containing

2 n 2
are © (7= or © (=455 ) nodes, respectively w.h.p. _ o .
The proof of this theorem is given in Appendix A. To Sim_the source nodes decode the information into a finite number

plify the analysis, we assume that there are exal€ly—;+= ch b'tsﬁ This hlnformi'uog |sﬁ1mappedb |Int<$1 F]I*E;(*;S or
nodes in each circle with radius—Y2 K n Ly WHER S = (n™)) symbols, peretn 1S a
Szt D2p0F=)m  constant. Then the source nodes along with the relays form

nodes in each circle with radius(l\f_%m, and K5 source a distributed MIMO system to transmit their information to

nodes in each cluster. We now intfoduce othree-Phase _the destinations and the relays surrounding the destimatio

communication scheme for each capacity region. Withowt lo} that cluster (see Fig. 1). Given tr_lat_there arsources in
of generality, the source nodes are considered at the ceﬁteF e network, there are MIMO transmissions to complete this
each cluster to simplify the analysis. The total transmiv@o phase.

required to transmit all unicast traffic i3, Watts and for each
phase isP{ = 1 P;.

Phase 1. Distribution of packets from source to relays ;
in the same cluster As in previous work [4], we divide the % /
entire network into smaller cells or clusters of square shap %@/

If the network area is divided inte' ™2 clusters, then each
cluster has an area of#-. In order to avoid interference,
the cells are grouped intd’s non-interfering groups using

a TDMA scheme. We divide this region intoltwo regions of ?//
)“EZ“SQ where /v/;/'%

s:O(nﬁl) andQ(nBl):s:O ( n

logn

(1 is an arbitrarily small constant number. Note that there are
at most K3 sources in each cluster. Whén(nf') = s =

1
0 <( i )2+52+53>, then we letK, 2+ nodes in the

logn Fig. 1. MIMO Cooperation Transmission. The black nodesesent sources

circle of radius—4_ help each source in the cluster tg" destinations. The gray nodes are the relays.
Treptes

2s
transmit information. Fos = O (n”1), it is easy to show that  The aggregate throughput for this phase is given by the
Ko > Ko—745sr- Therefore, onlyKs —2-5- relay following lemma.

nodes in the circle of radius—%4—— help each source in Lemma 4.6:The aggregate throughput for the MIMO co-

.. 2n 3 eration transmission scheme is at le&§t—2— when
the cluster to transmit information. These nodes operate QPR 1 stteates
2Feotes

relaysin the network. Each source node transrlﬁ’@swﬁ QO (nﬁl) =s=0 (logn) > and K%mﬁ when
(or K> —545757)blocks of information based on the size ©f
to the relays in its cluster. Each block has a lengthl.ofAt
the end of phase 1, each relay in the circle has receive
different block of information. The next Theorem describe
the total aggregate throughput in the network.

Theorem 4.5:Consider a network organized intg!'+e:
clusters. Then by implementiqg the TDMA scheme describ
) 2Fegtes

s = O (nP*) for the MIMO quantized channel.
d a{l’his lemma is proved in [4]. It is easy to show that the total
required time for Phase 2 ighase 2= O(s) = I%s

Phase 3. Transmission from Relays to DestinatiarPhase
3 is the reverse of phase 1 with relays in the destinationt@lus
&&Jantizing the observed information and transmitting them

sequentially to the destination. Usingemma4.6 it can be

above whers = O ((lo’g‘n ) the aggregate through-proved [4] thatK7 2+ (or K7~y fors =0 (nf1))

. s(K4log ntKs throughput can be achieved. Note that the TDMA scheme for
put for the netvyork gL 1.%6 + )'. . parallel transmissions in clusters is implemented for BHs
The proof of this theorem is given in Applendlx B. From the above discussion, the time requirement for Phase

When Q (n®) = s = O (@) 2275} then the 3, the total time and the aggregate throughput as the rebult o
three phases can be given as follows.

WhenQ (n?1) = s =0 (( n )H;”) then

transmission time required to complete this phase is

" SKQLSIﬁﬁ KGKQLW% (9) logn
Phase 1— = .
%{W Kylogn + Ks ,  $CyCsrtry KeCoCs ey 1
Phase 3— s(KstKailogn) K5+K4logn ’ ( )
Whens = O (nf1), then the transmission time required to Ko
complete this phase is
P P ttotal = tPhase 1+ tPhase o+ tPhase 3
SKQLW _ KﬁKQLW (10) . KGKQLM% C’ls KGCQC351+E%7 (12)

t — fr— . - I T LI Vo
Phase 1 W K4logn—|—K5 K410gn—|—K5 K7 K5+K4logn
6



and Phase 3 This phase is similar to previous one except that
KoLs—rtr the aggregate throughput Is1;s and the total required time
s €2TE3

Ri(n) = Kool Trires =T e o for this phase can be easily derived as
Kyl + K K Ks+ Kyl 1 log
S K ;lsgg; ’ ’ e (13) < Ko 1557055 C5Cs (%)  KoCsCsnyggiss (19)
= 8 . = - .
Phase 3 Kiis Ki1s
The lower llaound in (13) is correct whens = Therefore, the aggregate throughput in this region of
O<(lo'rg7,n) 2 3>_ R (n) N SKlOL (%)
2 - og s og s °
Whens = O (nﬁl), then KoKrolniligs 4 Cas KoCsOsnrgiogs
Kiis K2 Kiis
‘ . SCQC?,W . K60203n(1+% (14) (20)
Phase 3= ~S(K, T Kilogn) K5+ Kqlogn > - 1 . .
Ke Whens = O (log loggn) , then the first and third terms
in the denominator are the dominant factors. Hence, the rate
total = tPhase 11 tPhase 21 tPhase 3 can be written as
__n __ __n __
_ K;KiQLn(l_:a;éﬁl % K]G{Cf?[)(n(lfra2)ﬁl ’ (15) RQ(n) > SKlOL (%)
4 Ogn 5 7 > 4 Ogn - 2 K9K10Llolgolgo§s + K9C5C?’lolgolgozs ﬂ’
and K11 K1 s
R (TL) _ K2L3n(1+22m1 — KBM' (21)
1 KoK L—z v L O K6CoCs —3ypr log s
Kalogn+tKs K7 Ks+HKalogn The Three-Phaseapproach that was described in Sec-
> Kgslogn. (16) tion IV-Al is optimum for that region. However if we use
L (14eg)p this approach for the second capacity region, it will reduce
. . n £2)B1 . . . .
The lower bound in (16) is correct when= O (W - the capacity from the peak of first capacity region. Now

For the rest of this section, we use tfilree-Phaseeom- the question is that if we use Section IV-Al scheme in
munication with slight modifications based on the values.of this region, at what point the throughput capacity for the

Therefore, we only mention the differences between thescas@o schemes are equal, i.®(Ri(n)) = O(Ra2(n))? It
. 1
and theThree-Phasescheme that vvzidiscrlbed above. wrns out that wherf ((mnn)—wﬂsg) — s, then Ry (n)
2) The Case of: Q ((mnﬂ) aree = 5 = _ &
) & can be approximated a&;(n) = © (s=&+=). For the
O (nlogn )5 same capacity region, it is easy to show that(n) =
loglogn

sloglogn \3 H
Phase 1 The only differences in this region is the fact®( log n ) + By making the two ratedt; (n) and fx(n)

S S
that we divide the network inte clusters which results in equal, we arrive at = © ( nlogn )2+52+€3 _ Therefore

: e Tog Iog
log’izs) sources for each cluster. Similar Theoremé.4, celoen

1 1
it can be proved that there aé(2) nodes in each cluster andwhen Q ((logn) 2“2*53) =5=0 ((lgg‘;’g‘g"n) e >
all these nodes will be used as relays unlike previous Sectig ;56 the transmission scheme shown in Section IV-A, and
that we only used nodes inside a circle. The following thaforefOr the rest of second capacity region, we utilize the second

can be proved for this phase. Three-Phasepproach that we explained here. By doing this,

Theorem 4.7:The link capacity between any two nodes ifhe maximum throughput capacity is achieved in the second
a cluster undePhase Oneand Phase Threef this capacity capacity region.

region is at leasB(1). tozn \ 2

The proof of this theorem is omitted due to page limitations. 3) The Case of:2 (1ggf§gnn) =5=0(n)

The aggregate throughput in this phase@s¢s) = Kis. For this region, given that the number of source-destimatio
Therefore, the time needed in this phase is given by pairs is large, the original Hierarchical MIMO cooperation

log s " Jog s scheme of [4] provides the highest throughput capacity. The
o < $Koiogiogs K100 (3) _ K9K10L”loglogs_ 17) main feature of theHierarchical Cooperationscheme is the
Phase 1= Kiis Ki1s fact that each cluster is further divided into smaller cdust
Phase 2 This phase is also identical to previous one exce d the distributed MIMO system is utilized in a hierarchica

that the aggregate throughpu ) for transmittingC4 2 ashion. .
99reg ghputis.z (5) ghas Let A, denote an area of a cluster. Frofheorem4.4, it

symbols. Therefore, the required time for this phase is . .
y q P can be shown that the number of sources in each cluster is
tPhase 2= sCil2) _ Gas,

BT Kip () Kie

(18) Swe used the fact that in this region,= n” for some constant value of



M, = ©(Ass) = K14As and the total number of nodes inthe number of sources and fulfills the condition in Eq. (22).
each cluster isV, = © (MT”) = K5 (M;") as long as the Therefore, the aggregate throughput is given by

following condition is satisfied. N 5k
2—b
K (K21 (;) ) ns

A
Ay =w (?) (22)  Rs(n) — ,
s2)2-b 2
Note that the communication scheme for each hierarchy is Ko (K21 (%) ) n+ K08
very similar to that of the previous section. Due to page lim- KisKo1 T (@ =
itations, we only state the differences in each commurdoati = 5 n¥rsTt = Kos?b (—) )
phase K19K21 + Koo §
) 1-b
Phase 1 This phase is identical to Phase 1 in the previous = KyysTstloes (2)z=® _ K22S(ﬁ+ﬁlogs(%))’
section, except that there ar&4,A,s source nodes and (b)
Min 2 Koysimertea (29)
Kis ( ) nodes in each cluster. Besides, each node transmits 22 :
K15 () blocks of bits to relays and the link throughput is Equality (a) in the above equation is derived by defining
KlGMb whereb is a constant between zero and one related E@ _KysKa and equality (b) is obtained by letting
the number of hierarchies. The time required for this phase i 1Kb19K21 "+ Kz0
&1 = 3 andey, = logS (Z). It is easy to show that
o M- Ke¢Ky5L (MT") 23) g4 < g1 in all cases. Note that the result from this scheme is
Phase 1~ KigM?P similar to that of [4] whens = n. As in [4], if the capacity in

the current h|erarchy |5K223 then the capacity in the next
ﬁlerarchy |sK223( EE RS = 1og5(3)), which can be shown to
hA increase monotonically. Now we investigate the case when th
maximum capacity is achieved or equivalently,

Phase 2 This phase is also similar to that in the previou
section, except that the total number of transmitted bitsria
cluster for each source 54 ) and the aggregate throug
put for the network |$K17( ") symbols. The required time
to finish this phase is 1 1- b1 . (ﬁ) _1

- + -
sC (Msn) Cﬁ 2—b 2-0b
K17 (I\ls’n.

) = K17 (24)  This equality is satisfied when= /n orb = 1. Howevers =
\/n is not acceptable, because it violates the condition in Eq.

Phase 3 This phase is similar to Phase 3 in the previou®?2). |n additionb is always smaller than one and, therefore,
section with link throughput in the network ds1sM.. The the capacity of phase three cannot reach its maximué(ej.

(30)

UPhase 2=

required time to complete this phase is Now the question is for what value of we have
, M, - KoCrCs (Man) O(R2(n)) = O(R3(n)) in this capacity region. Following
UPhase 3= KioM? . (25) a similar procedure as in the previous section, it can be

) o proved thats = © (n?*fllw . Similarly, this capacity region
Thus, the total required time is

" M - KeK5L (Mssn) + =5 Cﬁ M, - KgC7C3 (M;n

total KigM? K7’ K6 M} 6 s=0 (n?*fiw ) then R, (n) provides a higher throughput
26

) can be divided into two regions. Whem(( nlogn )2> =

loglogn

capacity of K{;2 and for (n27611+64) = s = O(n), R3(n)

Then, the aggregate throughput for the network is gives Kaps' <1451 throughput capacity.

Mgsn
Rs(n) = > KlS,,L( = ) = IiliMsnS , (27) B. Capacity Analysis for Data-Gathering Traffic
tiotal K19gM3 "n + Kyps? . L . . .

This section is dedicated to computation of achievable
where K1 = Ky5L, K9 = fefask 4 Kelrls and Ky = capacity forMany-to-One TrafficWe assume that a bandwidth
gf?. of Wy, = W — W, is allocated to this traffic. Our analysis is

By computing the derivative oR3(n) with respect toM, similar to the method used in [10], with the exception that
and equating it to zero, we have nodes are uniformly distributed in a square plane in thisspap
X I o 2ip as opposed to sphere in [10]. It can be proved that the upper
M, = < 20 > (5_) = Koy <S_) bound is als@® (logn), which is similar to the lower bound.
Ki9(1 —) n n ’ We adopt aTwo-Phasescheme that utilizes),P, and
8) (1 — n4) P> Watts for power consumption in Phases 1 and
. 2, respectively.

where Ko = (m) Phase 1. Broadcasting Transmissianin the first phase,

It can be shown from Eq (28) that the number of sourcesly one of the source nodes broadcast its information to the
in each cluster is at least a constant value wheaw(y/n), nodes of radiug around it. Ifr is small enough, all the nodes
which guarantees that the number of clusters is less thanthe circle with radiusr can decode the information. The



aggregate throughput we can achieve is given by the follgwimumber of sources in each cluster is a constant value instead

theorem. of a random variable, then it is easy to show that a capacity
Theorem 4.8:Let r = n=%5, wheree; for 0 < ¢5 < 1. of ©(s) can be achieved.
Then with bandwidthi¥; and total transmit powetj Ps, Fig. 2 plots the capacity region that was derived in (7). From

an aggregate throughput of at ledsts logn + K24 can be this figure, we see that, when 1the number of unicast sessons i
achieved. n | ZFe2tes
This theorem is proved in Appendix C. from 110 6 { 51 = (m)
Phase 2. Cooperative Many-to-One Transmissiarin the are part ofMany-to-One Trafficand we call this region as
second phase, all the relays within a radius-dfansmit the Many-to-One TrafficThe achieved capacity in this region is
data along with the source node, thus creating a distributé® optimum value. Whef2 (S;) = s = O (54 = n2*51+54),
MISO system. The aggregate throughput that can be achievken the number of nodes for both traffic patterns are compa-
is given by the following theorem. rable. Hence, we call itleterogeneous Traffiegion. It is not
Theorem 4.9:The aggregate throughput of the cooperativelear whether our achievable capacity region is optimum for
Many-to-Ondransmission scheme is at ledét; logn+ K.  this region. Finally whers = Q (S,4), then majority of nodes
This theorem is proved in Appendix D. Therefore, thare involved in unicast communication and we call this ragio
total throughput capacity for the data gathering scheninicast traffic

, the majority of nodes

is RMany-to-Onén) = K27 logn + K28 where K27 =
Hlin(Kgg, K25) and Koz = min(K24, K26). R(n) @[[Sl()glo‘gs+ljlogn]
The total throughput capacity in the network as a result of log’ s
these two types of traffics is the summation of their indiadu R, (_)’ 7 +1ogn\
rates, i.e.,R(n) = Ri(n) + Rwmany-t-ondn). The result is R L*
provided inTheoremd4.2. R
V. DISCUSSION ANDFUTURE WORK ©((s+1)logn)
The first major contribution of this paper is the separation
theorem for heterogeneous traffic. This simple theorenestat

that when there are multiple classes of traffic in the netyark P P
simple way to achieve the maximum order throughput capacity - Ma?i;ﬁ?{g"eQF};{Eth?:iousﬁ* Teateic
is to allow all nodes in the network to operate on a single : L
traffic class for an assigned bandwidth. This result imptes
multiple-radio multiple-channel systems are order-optim

for heterogeneous traffic. The main reason for this result is
the fact that nodes that are not part of a specific traffic can beI
utilized as relays [9], which clearly improve the throughth
capacity of the network.

The second major contribution of this paper is the compu
tion of the achievable throughput capacity when the number
relays and source-destination pairs are changing as aidanct ACKNOWLEDGEMENT
of n. Gastpar and Vetterli [9] have solved this problem when

there is only one source-destination pair in the ngtwork a@%arch Laboratory under the Network Science Collaborative
the rest of the nodes are relays. We have shown different fq*réchnology Alliance, Agreement Number W911NF-09-0053
warding strategies when the ratio between relays and unic Army Research CSffice under agreement numberW911NF’—
sessions changes by utilizing an extended version of tI113E¢=.={hr05_1_0246 by the National Science Foundation under grant
phas_e approach intro_ducegl in [4]. Our results also CorIauhorCCF-O729,23O, and by the Baskin Chair of Computer Engi-
previous res“'_ts qbtalneq in [4] when the number of SourCﬁéering. The views and conclusions contained in this dootme
dest!nat!on pairs 13 and in [9] when there ar®(1) source- are those of the author(s) and should not be interpreted as
destination paurs in the netwprk. . . _ representing the official policies, either expressed orlieap

Note that, in the last capacity region, the achievable aBPaCHt he .S, Army Research Laboratory or the U.S. Govern-
is ni = ¢4 instead of capacity oh'~*' as reported in [4]. ment. The U.S. Government is authorized to reproduce and
The gain ofn®* for &4 = 1=llog, (Z) is achieved by ' .

s distribute reprints for Government purposes notwithstagd
employing relays to improve the throughput. This gain ramcany copyrigr?t notation hereon purp tag

as s tends ton, because, — 0.
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APPENDIXA The capacity between a source nddand the relayi is
PROOF OFTHEOREM4.4 Case . P?{|sz‘|2
For the number of source nodes in each cluster, we ¢ =Wilog | 1+ W AT
consider the problem as bins and balls problem. Here the N0+ 3 jer iz 5 | Hiil
number of balls iss and the number of bins is!™<2. By P (va 2
using Lemma 4.3, the maximum number of source nodes in s \43
each cluster is given by =Wilog | 1+ 7o
Py G
log s1+e2 WiNo + ZjeT,j;ék Tl (d_%)
B(s,s'") =0 | === |, ’
log == > Wi log
(1+e2)logs
=0 (————=— ) =0(1). 31 /
( s (1. (31) wl e
s 7
For the number of the nodes in each cluster, we can use ( 1+52+€%
Chebychev’s inequality [15]. The Chebychev’s inequalsy i L+ 2
given below. e
Lemma A.l:Let X be a random variable with mean and WiNo + 327, 8154 =
standard deviation ofi, ando, respectively. Then ((l\/_ 1 1+5 Oien) )
2
oZ = W log
Pr(|X — po| 2 ap) < =5 (32) plG Otepsena_
x A% S 2
for any anyag > 0. 1+ Wi Ny + (ﬁ Zoo 8l ) (1+;2)a_1
Assumea2 = /o x = whereq is defined as a sequence 1t § =1 (IVKe—1)~
+ = 7, for any positive value of PG (heates)a g
. Define the random varlabléf as the number of nodes > Wi log A% T
|n each cluster. Because the nodes uniformly distributed in ( P l\/— 1)a) S



1
= Wi log ( =
2Zl:1 (l\/K_S(f,l)a

(@) s3a
Z K5+W110g((nﬁl) % )
= K5 + M logn,

) + Wi log (s¥)

(34)

where inequality(a) is derived because whem > 2, then

8l i
Sy vk, 1= converges to a constant value anf is a
posmve constant value.

B. Whens = O (nﬁl)
Under the condition it is easy to show thag@;2 >
2

S
(]‘fgmz > (1‘@)51 for appropriate value of; such that
1 2
fy < l0gmiaalg,

(a) is derived by replacing distance for interference with
smaller distance and replaciagn numerator by its maximum
value and replace it with 1 in the denominator. Note that
My = Wy w —61) is a positive value given
the condition above fops.

Thus, the achievable rate between nodeand i is given

by

Rki( ) min (CCase 1 Cgiase 3 ’
= min (M; logn + K5, Mylogn + K5),
= Inin(Ml, MQ) 1ogn + K5,

= Kylogn + Ks (36)

where Ky = min(M;, M>).
Given the TDMA parameterKy, there are on average

If the source node transmits information within a circle otz nodes sending their information. Thus, the aggregate

_ VA
(A+e2)B ?

L .2n, 2
and: is given below.

radius

CCase 2
2
K (e
S d}?
=Wilog | 1+ : 5
WlNO + Z]ET j£k s (d\/_%i>
> Wi log
2
P Vel
()
(tex)B
1+ 5

VG
((l\/K_sfl)(l% ) )
s 2

WiNy + 572, 812

[T

(a)
> Wi log
2

nP1

wlp

el
m

1+ " 3

WiNy + Zl 1 8l

[Nl

(lr D) <1+a2m2>

(1+52)0451 —B
=Wilog | 1+ A2
(14+eg)afBa
W1N0+( lel\/_ 1)) 2
P G (1+522)0<51 —B
> W1 log A%

P’G Z (1+522)0¢/32
=1 (l«/ 1) n

:Wllog ; +W110g( w—ﬁl)
2Zl 1 (21— 1)a

= K5+ Mslogn (35)

then the achievable rate between nodes throughput is given by

s(Kqlogn + Ks)
Kg '
APPENDIXC

PROOF OFTHEOREM4.8

Under theMany-to-Onetransmission model, the capacity
between source nodeand the relay nodéin the circle with
radiusr = n~%5 is given by

RPhasein) > (37)

N4 Pa| Hy; |2
Cr; = W5l 1+ —
k 2 0g< + WoNo
2
Wl e (L%C;)
> 14+ — N2 7
= VValog + WaNg
naPoG N PG
=Wsl 1 ) > Wyl Escx
2 Og( BT ) = Og(WQNO"

PG
= Wslog (774 2 ) + Waesalog (n) = Koy + Koz logn
W5 Ny

(38)

Wherngg = Wsesa and Koy =Wo log (%52\5)

APPENDIXD
PROOF OFTHEOREM4.9

Similar to Theorem4.4, we can prove that the number of
nodes in the circle with radius of==s is © (n!=2%) =
Myn'=25, Then the capacity is computed as

i-2e <@>2
<
dj

WoNo

(1= n4) P>

CMany—to-One: Walog | 1+

1-— PyGM,
> Wy log (—( WZ%OEC; 4n1255>

= K25 1ogn + K26 (39)

Wherngg, =1-—2¢5 and Ko = Ws log (%).
2No



