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Abstract—This paper presents the first comprehensive
capacity-delay tradeoff study for random wireless ad hoc net-
works under all information dissemination modalities (unicast,
multicast, broadcast, anycast) when nodes operate either with
multi-packet reception (MPR) or single-packet reception (SPR)
capabilities.

Our results demonstrate that for unicast, increasing capacity
requires additional delay for SPR similar to the results in [1]
while MPR incurs no penalty, i.e., we can increase capacity and
decrease delay simultaneously for MPR. For multicast, there is
no tradeoff for both SPR and MPR. However, similar tradeoff
can be observed for broadcast when MPR is used while there is
no tradeoff with SPR.

I. INTRODUCTION

The seminal work by Gupta and Kumar [2] on the scaling

laws of wireless ad hoc networks for unicast with multihop

communication demonstrate that when nodes only receive a

single packet (SPR), the capacity decreases as the number of

nodes in the network increases. As a result, many research

activities focused on improving this capacity for unicast [3],

[4]. Furthermore, there are many contributions in computing

the scaling laws in wireless ad hoc networks for multicast [5]

and broadcast [6]. Our first contribution focuses in developing

a unifying approach to compute different information dissem-

ination modalities (unicast, multicast, broadcast, anycast) for

multi-packet reception (MPR) technique based on the results

of point-to-point single-packet reception (SPR) technique de-

rived in [7].

Another important area of research is related to the capacity-

delay tradeoff study [1] in wireless ad hoc networks. However,

there is no contribution in literature to study this tradeoff for all

kinds of communications. Our next contribution in this paper

relates to introducing the first tradeoff study between capacity

and delay for different information dissemination modalities

and when nodes are endowed with SPR or MPR capabilities.

Multi-packet reception (MPR) is a cooperative technique [8]

that allows multiple nodes to transmit their packets simulta-

neously to the same receiver node, which can in turn decode

all such packets successfully. There are many ways for trans-

mission cooperation such as multiuser detection (MUD), di-

rectional antennas, or multiple input multiple output (MIMO)

techniques. MPR has been shown to increase the capacity

regions of ad hoc networks, and recently Garcia-Luna-Aceves

et al. [4] have shown that the order capacity of ad hoc

networks subject to multi-pair unicast traffic is increased with

MPR. However, no capacity results have been reported on

the benefits of MPR in networks subject to other classes of

information dissemination.

The paper is organized as follows. Section II describes the

assumptions and definitions that we use throughout the paper.

In Section III, we compute a tight bound for the capacity of

wireless ad hoc networks with MPR. Section IV describes the

delay computation together with capacity-delay tradeoff for all

information dissemination modalities when nodes are endowed

with MPR or SPR. In Section V, we discuss the results derived

earlier and their implications.

II. NETWORK MODEL AND PRELIMINARIES

Our capacity analysis is based on the protocol model for

dense networks introduced by Gupta and Kumar [2]. The case

of what we call SPR corresponds to the original protocol

model, and we make an extension to account for MPR

capability at the receivers.

Definition 2.1: The Protocol Model for SPR: All nodes

use a common transmission range r(n) for all their commu-

nications. The network area is assumed to be a unit square

area. Node Xi can successfully transmit to node Xj if for any

node Xk, k �= i, that transmits at the same time as Xi, then

|Xi − Xj | ≤ r(n) and |Xk − Xj | ≥ (1 + Δ)r(n).
In wireless networks with MPR capability, the protocol

model assumption allows simultaneous decoding of packets

for all nodes as long as they are within a radius of R(n) from

the receiver and all other transmitting nodes have a distance

larger than (1 + Δ)R(n). The difference is that we allow

the receiver node to receive multiple packets from different

nodes within its disk of radius R(n) simultaneously [4].

Note that r(n) in Gupta and Kumar’s model is a random

variable while R(n) in MPR is a predefined value which

depends on the complexity of receivers. We assume that

nodes cannot transmit and receive at the same time, which

is equivalent to half duplex communications [2]. The data rate

for each transmitter-receiver pair is a constant value of W
bits/second and does not depend on n. Given that W does

not change the order capacity of the network, we normalize

its value to one. The relationship between receiver range of

MPR throughout this paper and transmission range in [2] is
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defined as R(n) = r(n) ≥ Θ
(√

(log n)/n
)

to guarantee the

connectivity criterion [2].

Definition 2.2: (n,m, k)-cast tree: An (n,m, k)-cast tree

is a set of nodes that connects a source node of an (n,m, k)-
cast with all its intended k receivers out of m choices

(k ≤ m ≤ n), in order for the source to send information

to k of those receivers. By this definition, it can be seen

that (n, 1, 1), (n,m, m), (n, n, n), and (n,m, k) are unicast,

multicast, broadcast, and anycast respectively.

Definition 2.3: Feasible throughput capacity of (n,m, k)-
cast: In a wireless ad hoc network of n nodes in which each

source node transmits its packets to k out of m destinations, a

throughput of λm,k(n) bits per second for each node is feasible

if there is a spatial and temporal scheme for scheduling

transmissions, such that by operating the network in a multi-

hop fashion and buffering at intermediate nodes when awaiting

transmission, every node can send λm,k(n) bits per second

on average to its k out of its m chosen destination nodes.

That is, there is a T < ∞ such that in every time interval

[(i − 1)T, iT ] every node can send Tλm,k(n) bits to its

corresponding destination nodes.

Definition 2.4: Order of throughput capacity: Cm,k(n) is

said to be of order Θ(f(n)) bits per second if there exist

deterministic positive constants c and c′ such that

⎧⎨
⎩

lim
n→∞ Prob (Cm,k(n) = cf(n) is feasible) = 1

lim
n→∞ Prob (Cm,k(n) = c′f(n) is feasible) < 1.

(1)

Keshavarz et al. [6] used Maximum Independent Set

MIS(Δ, r(n)) to describe the maximum number of simul-

taneous transmitters and Minimum Connected Dominating

Set MCDS(r(n)) for computing the minimum rebroadcasting

times required to reach the destinations in a network when

nodes use SPR and broadcasting. For the same purpose and to

account for the use of MPR and (n,m, k)-cast, we define the

Maximum MPR Independent Set (MMIS (Δ, R(n))) and the

Minimum Euclidean (n,m, k)-cast Tree (MEMKT (R(n)))
definitions.

Definition 2.5: Maximum MPR Independent Set
(MMIS (Δ, R(n))): An MPR independent set is a set of nodes

in a graph G that contains one receiver node and all (trans-

mitting) nodes within a distance of R(n) from this receiver

node. A Maximum MPR Independent Set (MMIS (Δ, R(n)))
consists of the maximum number of MPR sets that simulta-

neously transmit their packets while MPR protocol model is

satisfied for all these MPR sets. If we add any transmitter node

from G to MMIS(Δ, R(n)), there is at least one MPR set that

violates the MPR protocol model.

Definition 2.6: Minimum Euclidean (n,m, k)-cast Tree
(MEMKT (R(n))): The MEMKT(R(n)) is an (n,m, k)-cast

tree in which the k destinations out of m nodes receive

information from the source and this (n,m, k)-cast tree has the

minimum total Euclidean distance. For example, when k = m,

MEMKT(R(n)) denotes the minimum Euclidean multicast

tree, (MEMT (R(n))), that is defined in graph theory.

Following the assumption in [1], [2], we assume that the

packet size is small enough so that the packet delay is

essentially equal to the number of hops taken by the packet.

Definition 2.7: Delay in (n,m, k)-cast communication In

(n,m, k)-cast, the delay of a packet in a network is the time

it takes the packet to reach every destination after it leaves

the source. We do not take queuing delay at the source into

account, since our interest is in the network delay. The average

packet delay for a network with n nodes Dm,k(n), is obtained

by averaging over all packets, all source-destination pairs, and

all random network configurations.

For the rest of this paper, ‖T‖ denotes the total Euclidean

distance of a tree T ; #T is used to denote the total number of

vertices (nodes) in a tree T ; and ‖T‖ is used for the statistical

average of the total Euclidean distance of a tree.

III. THE CAPACITY OF (n,m, k)-CAST WITH MPR

A. Upper Bound

The following Lemma provides an upper bound in terms

of the ratio of the size of MMIS(Δ, R(n)) to the size of

MEMKT(R(n)). Essentially, #MEMKT(R(n)) equals the

minimum number of transmissions required to (n,m, k)-cast

a packet to k destinations out of m, and #MMIS(Δ, R(n))
represents the maximum number of successful simultaneous

transmissions when MPR is used. The proof is similar to [7]

and because of page limitation, it is not provided here.

Lemma 3.1: The per-node throughput capacity of (n,m, k)-
cast with MPR is given by O

(
1
n × #MMIS(Δ,R(n))

#MEMKT(R(n))

)
.

We next compute the upper bound of #MMIS(Δ, R(n))
and the lower bound of #MEMKT(R(n)). To compute the

lower bound for #MEMKT(R(n)), we find the relationship

between #MEMKT(R(n)) and the total length of Euclidean

Minimum Spanning Tree (EMST), ‖EMST‖. Because of space

limitation, the proof of this Lemma is omitted and similar

proof can be found in [7].

Lemma 3.2: In (n,m, k)-cast applications, the average

number of nodes in MEMKT(R(n)) has the following lower

bound as

#MEMKT(R(n)) ≥

⎧⎪⎨
⎪⎩

Θ
(
k(
√

mR(n))−1
)

for m ≤ Θ (mb)
Θ (k) for k ≤ Θ (mb) < m

Θ
(
R−2(n)

)
for Θ (mb) < k ≤ m

,

(2)

where mb = R−2(n).
Combining Lemmas 3.1, 3.2, and the obvious observation that

#MMIS(Δ, R(n)) ≤ Θ(n), we can compute the upper bound

capacity of (n,m, k)-cast with MPR in the following theorem.

Theorem 3.3: In dense random wireless ad hoc networks

with MPR, the upper bound per-node throughput capacity of

(n,m, k)-cast is

Cm,k(n) =

⎧⎪⎨
⎪⎩

O
(
k−1

√
mR(n)

)
for m ≤ Θ (mb)

O
(
k−1

)
for k ≤ Θ (mb) < m

O
(
R2(n)

)
for Θ (mb) < k ≤ m

, (3)

where mb = R−2(n).
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B. Lower Bound

To derive an achievable lower bound, we use a TDMA

scheme for random dense wireless ad hoc networks similar

to the approach used in [9]. We first divide the network area

into square cells which has been shown in Fig. 1. Under this

condition, connectivity inside all cells is guaranteed and all

nodes inside a cell are within communication range of each

other. We build a cell graph over the cells that are occupied

with at least one vertex (node). Two cells are connected if

there exists a pair of nodes, one in each cell, that are less

than or equal to R(n) distance apart. Because the whole

network is connected when R(n) = r(n) ≥ Θ
(√

log n/n
)

,

it follows that the cell graph is connected [9]. Let L represent

the minimum number of cell separations in each group of

cells that communicate simultaneously. The capacity reduction

caused by the TDMA scheme is a constant factor and does not

change the order capacity of the network.

Next we prove that, when n nodes are distributed uniformly

over a unit square area, we have simultaneously at least
1

(LR(n)/
√

2)2
circular regions (see Fig. 1), each one containing

Θ(nR2(n)) nodes w.h.p..

Lemma 3.4: The circular area of radius R(n) corresponding

to the receiver range of a receiver j contains Θ(nR2(n)) nodes

w.h.p., and is uniformly distributed for all values of j, 1 ≤
j ≤ 1

(LR(n)/
√

2)2
.

Proof: From the Chernoff bound we used in [7], for

any given 0 < δ < 1, we can find θ > 0 such that

P [|Nj − E(Nj)| > δE(Nj)] < e−θE(Nj). Thus, we can con-

clude that the probability that the value of the random variable

Nj deviates by an arbitrarily small constant value from the

mean tends to zero as n → ∞. This is a key step in showing

that when all the events
⋂ 1

(LR(n)/
√

2)2

j=1 |Nj−E(Nj)| < δE(Nj)
occur simultaneously, then all Nj’s converge uniformly to their

expected values. Utilizing the union bound and E(Nj) =
πnR2(n), we arrive at

lim
n→∞P

⎡
⎢⎣

1
(LR(n)/

√
2)2⋂

j=1

|Nj − E(Nj)| < δE(Nj)

⎤
⎥⎦

≥ 1 − lim
n→∞

1
(LR(n)/

√
2)2

e−θπnR2(n) (4)

Utilizing the connectivity criterion, limn→∞ e−θπnR2(n)

R2(n) →
0, which finishes the proof.

Define #MEMKTC(R(n)) as the total number of cells that

contain all the nodes in an (n,m, k)-cast group. Next Lemma

provides a tight bound for #MEMKTC(R(n)).
Lemma 3.5: The average number of cells covered by the

nodes in MEMKTC(R(n)), is tight bounded as follows:

#MEMKTC(R(n)) =

⎧⎪⎪⎨
⎪⎪⎩

Θ
(
k

(√
mR(n)

)−1
)

for m ≤ Θ (mb)

Θ (k) for k ≤ Θ (mb) < m

Θ
(
R−2(n)

)
for Θ (mb) < k ≤ m

(5)

Fig. 1. Cell construction used to derive a lower bound on capacity

where mb = R−2(n).
Proof: The proof for the tight bound of

#MEMKTC(R(n)) is similar to the proof of tight bound for

#MEMTC(R(n)) which can be found with details in [7].

Theorem 3.6: The achievable per node lower bound of the

(n,m, k)-cast throughput capacity with MPR is

Cm,k(n) =

⎧⎪⎨
⎪⎩

Ω
(
k−1

√
mR(n)

)
for m ≤ Θ (mb)

Ω
(
k−1

)
for k ≤ Θ (mb) < m

Ω
(
R2(n)

)
for Θ (mb) < k ≤ m

, (6)

where mb = R−2(n).
Proof: There are (R(n)/

√
2)−2 cells in the unit square

network area and only (LR(n)/
√

2)−2 of these cells

can communicate simultaneously because of the TDMA

scheme that we described earlier. From the definition of

#MEMKTC(R(n)), it is clear that there are in the order of

#MEMKTC(R(n)) transmissions required in order to transfer

a packet from source to all its destinations in any (n,m, k)-cast

communication scheme. It is clear from Lemma 3.4 that for

each of (LR(n)/
√

2)−2 simultaneous transmitting cells, there

are Θ
(
πR2(n)n

)
nodes transmitting packets to their respected

receiver nodes using MPR. Since each one of (n,m, k)-cast

group requires #MEMKTC(R(n)) transmissions, the total

throughput capacity lower bound for the network is equal

to Ω( (R(n)/
√

2)−2×(πR2(n)n)

#MEMKTC(R(n))
). If we divide this value by the

total number of nodes in the network, n, and substitute

#MEMKTC(R(n)) with the results from Lemma 3.5, then

the theorem will be proved.

C. Capacity with MPR and SPR

From Theorems 3.3 and 3.6, we can provide the tight bound

throughput capacity for the (n,m, k)-cast when the node have

MPR capability in dense random wireless ad hoc networks as

follows.

Theorem 3.7: The throughput capacity of (n,m, k)-cast in
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a random dense wireless ad hoc network with MPR is

Cm,k(n) =

⎧⎪⎨
⎪⎩

Θ
(
k−1

√
mR(n)

)
for m ≤ Θ (mb)

Θ
(
k−1

)
for k ≤ Θ (mb) < m

Θ
(
R2(n)

)
for Θ (mb) < k ≤ m

, (7)

where mb = R−2(n).
The throughput capacity for networks using SPR is given in

[5] for the case of multicasting (i.e., (n, m, m)-cast). However,

the results we just derived for the capacity of (n,m, k)-cast

with MPR can be extended to address SPR as stated in the

following theorem. Due to space limitations, we only present

summary of the proof and the details can be found in [7].

Theorem 3.8: The throughput capacity of (n,m, k)-cast in

a random dense wireless ad hoc network with SPR is

Cm,k(n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Θ
(√

m (nkr(n))−1
)

for m ≤ Θ (mb)

Θ
((

nkr2(n)
)−1

)
for k ≤ Θ (mb) < m

Θ
(
n−1

)
for Θ (mb) < k ≤ m

,

(8)

where mb = r−2(n).
Summary of proof: The proof follows the same approach

used for the case of MPR, with two key differences. First, the

receiver range R(n) must be replaced with the transmission

range r(n) for SPR. Second, there can be at most a single

successful transmission inside a circle of radius r(n) centered

around each receiver node.

Note that for the computation of capacity, we have com-

puted three different regions of capacity both for the MPR and

SPR approaches. These three regions of capacity are called

unicast, multicast, and broadcast regions depending on the

values of m and k. In this paper, we did not show how to

derive these three different regions due to space limitations.

The interested reader can find the details for the SPR case in

[7] and the proof for the MPR is similar.

IV. DELAY WITH MPR AND SPR

In this section, we present the result regarding the tradeoff

between delay and capacity. As we defined earlier in definition

2.7, packet delay is proportional to the total number of hops

required from each source to its destinations. In order to

compute this delay, we first prove the following lemma.

Lemma 4.1: The delay of (n,m, k)-cast in a random dense

wireless ad hoc network with MPR is

Dm,k(n) = Θ
(
#MEMKTC(R(n))

)
(9)

Proof: From the definition of #MEMKTC(R(n)) and

Lemma 3.5, we conclude that #MEMKTC(R(n)) is pro-

portional to the minimum number of hops in which the

information is routed from source to all its destinations. Since

we are using a TDMA scheme to achieve the lower bound for

the capacity, it is clear that in order to transport the information

from one cell to the next adjacent cell, we need between one

to two hops (see Fig. 1). Therefore, #MEMKTC(R(n)) is

also in the same order as the total number of hops. Based on

the definition of delay, it is clear that #MEMKTC(R(n)) is

also the same order bound as the total delay which proves the

Lemma.

Lemma 4.1 can be similarly extended to SPR to compute

the delay and due to page limitations, we simply omit the

results.

El Gamal et. al [1] demonstrated the tradeoff relationship

between capacity and delay only for SPR and the multi-pair

unicast case. Here, we extend this relationship for the general

(n,m, k)-cast and both for SPR and MPR cases. Our result

corroborates the unicast with SPR [1] as well as provides new

results for all other cases of communications in wireless ad

hoc networks.

Theorem 4.2: The relationship between capacity and delay

for (n,m, k)-cast with MPR is given below and shown in

Table I.

Cm,k(n)Dm,k(n) = Θ(1) (10)

Proof: The results can be easily derived by comparing

Theorem 3.7 with Lemmas 4.1 and 3.5.

TABLE I
THE RELATIONSHIP BETWEEN CAPACITY AND DELAY WITH MPR

Dm,k(n) Cm,k(n)

k ≤ m ≤ Θ
(
R−2(n)

)
Θ

(
k√

mR(n)

)
Θ

( √
mR(n)

k

)

k ≤ Θ
(
R−2(n)

) ≤ m Θ(k) Θ
(

1
k

)
Θ

(
R−2(n)

) ≤ k ≤ m Θ
(
R−2(n)

)
Θ

(
R2(n)

)

Theorem 4.3: The relationship between capacity and delay

in (n,m, k)-cast with SPR is given below and shown in Table

II.

Cm,k(n)Dm,k(n) =
(
nr2(n)

)−1
(11)

TABLE II
THE RELATIONSHIP BETWEEN CAPACITY AND DELAY WITH SPR

Dm,k(n) Cm,k(n)

k ≤ m ≤ Θ
(
r−2(n)

)
Θ

(
k√

mr(n)

)
Θ

( √
m

nkr(n)

)

k ≤ Θ
(
r−2(n)

) ≤ m Θ(k) Θ
(

1
nkr2(n)

)

Θ
(
r−2(n)

) ≤ k ≤ m Θ
(
r−2(n)

)
Θ

(
n−1

)

The capacity-delay tradeoff in [1] is a special case of our

results for m = k = 1 which can be shown as D1,1(n) =
Θ(nC1,1(n)).

V. DISCUSSION OF RESULTS AND CONCLUSIONS

Theorems 3.8 and 3.7 provides capacity information for

SPR and MPR respectively. There are three different capacity

regions depending on the values of k and m in (n,m, k)-
cast. Fig. 2 compares the tradeoff between throughput capacity

and delay for MPR and SPR for all these three regions of

capacity. By observing the capacity for MPR and SPR, we

notice that the receiver range R(n) is multiplied for capacity

computation in MPR in two regions in Eq. (7) and in one

region is independent of R(n) while the transmission range

r(n) is divided for capacity computation in SPR in the first

two regions of capacity. This behavior is demonstrated in Fig.
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(a) k ≤ m ≤ Θ
(

1
r2(n)

)
(b) k ≤ Θ

(
1

r2(n)

)
≤ m (c) Θ

(
1

r2(n)

)
≤ k ≤ m

Fig. 2. The tradeoff between capacity and delay

2. This fundamental difference is due to the fact that the MPR

scheme embraces interference, while SPR is based on avoiding

interference by limiting transmission range.

The above result indicates that large capacity increases can

be attained by embracing interference with MPR and em-

bracing opportunism by appropriate use of in-network storage

and information dissemination from the nearest site(s) of a

communication group, rather than from pre-defined origins

hosting the content. If the communication group is the entire

network (m = n), information flows from the closest neigh-

bor(s) to each node and the maximum capacity gain is attained.

If the group size is independent of the size of the network

(m = Θ(1)), the order capacity is the same as for unicasting.

Fig. 2(a) is the first region in capacity for both SPR and

MPR. When m = k = Θ(1), the left plot in this figure is

very similar to the results derived in [1]. Another interesting

observation is the fact that unlike SPR that increasing capacity

results in increasing delay, we can increase capacity and

decrease delay simultaneously with MPR. This is a significant

advantage of using MPR and stems from the fact that MPR

embraces interference and consequently, we do not need to

sacrifice capacity or delay to improve the other parameter.

Fig. 2(b) shows the capacity-delay tradeoff in the second

capacity region for only SPR. For the case of MPR, the

capacity or delay is not a function of R(n) and therefore,

there is no tradeoff and therefore, we did not plot that result.

For this case in SPR, increasing r(n) decreases capacity but

has no effect on the delay.

Fig. 2(c) is the third region of capacity for SPR and MPR.

This is the broadcasting region of capacity for SPR and MPR

and it is clear from this figure that SPR does not provide

any tradeoff. In general, by increasing the transmission range

we can decrease delay while the capacity remains constant.

The reason for this behavior is the fact that all nodes in

broadcasting region are receiving the packet and increasing

transmission range does not create any interference. On the

other hand, when we use MPR and increase the receiver range,

again both capacity and delay are improved similar to the

first case. Clearly, the capacity of the network with MPR

is maximized if we maximize the number of simultaneous

transmissions in the network. Ideally, if the receiver range

can be made Θ(1), then a network using MPR can scale

linearly with n. Obviously, the receiver range is restricted in

practice by the complexity of the receivers. However, even

with the minimum value for the receiver range, which is

the connectivity criterion, MPR still renders a capacity gain

compared to SPR. Furthermore, this gain is still an order gain

equal to Θ(log n) compared to the capacity attained with SPR

for (n,m, k)-casting.
In summary, the tradeoff between capacity Cm,k(n) and

delay Dm,k(n) with MPR is in sharp contrast to SPR. The

results in this paper provide new directions and opportunities

for future research activities in wireless ad hoc networks.

Another important aspect that we did not discuss in this paper

is related to practical limitations and decoding complexity that

we can have with MPR scheme. This aspect is important and

its investigation is the subject of future studies.
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