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Abstract—The capacity of a wireless network is studied when
nodes communicate with one another in the context of social
groups. All the nodes are assumed to have the same number of
independent long-range social contacts, one of which each selects
randomly as its destination. The Euclidean distance between
a source and its social group members follows a power-law
distribution and communication between any two nodes takes
place only within the physical transmission range resulting in
communication over multi-hop paths. The capacity order of
such a composite network is derived as a function of the
number of nodes, the social-group concentration, and the size
of social groups. Our results demonstrate that when each node
has constant number of contacts which does not increase with
network size growth, and are geographically concentrated, then
the network behaves similar to social networks and communica-
tion network does not have any effect on the throughput capacity.
On the other hand, when the social contact population grows in
time, or social connectivity among nodes is highly distributed,
then the communication network is the dominant factor and the
composite network behaves similar to wireless networks, i.e., the
capacity is the same as Gupta and Kumar results. When neither
social connectivity nor communication network is dominant, then
the throughput capacity results are between these two extreme
cases.

Index Terms—Social networks, wireless networks, throughput
capacity.

I. INTRODUCTION

TARTING with the work by Gupta and Kumar [1],
S the order throughput capacity of wireless communication
networks has been studied extensively in the recent past,
and all this prior work has assumed that sources select their
destinations according to a uniform distribution. However,
some studies [2] show that the social influence, which is the
probability of having interaction, is heavily determined by
the distance. In other words, if the network nodes are social
entities or their relations are defined in a social context, the
probability of communicating is proportional to the inverse of
the Euclidean distance between two nodes with some power
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exponent. It has also been observed [3], [4] that there are some
patterns common in many different types of social networks ;
the examples include small-world [4], and power-laws [3] to
name a few.

Backstorm et al. [3] observed that the likelihood of having
contact with a person decreases with Euclidean distance
and follows a power-law distribution. Although prior results
have made significant contribution to the understanding of
the behavior of wireless networks, but these results on the
capacity order of wireless networks did not consider the social
characteristics of these networks.

On the other hand, as a result of early work by Milgram
on the small-world phenomenon [4], the modeling of social
networks have received considerable attention. For example,
Watts and Strogatz [5] divided the edges of a network into
local and long-range contacts and assume that there is always
an edge between a node and any of its local or long-range
social contacts. Dietzfelbinger et al. [6] calculated the average
number of steps between any source and target along a ring-
based network in which each node is connected to its left and
right neighbors and possibly to some further vertices, and the
long-range contacts may be selected through any distribution.
Fraigniaud et al. [7] assumed that the probability of a node
being the long-range contact of a source is proportional to the
rank of their distance among the distances from the source
to all the other nodes and derived the upper bound for the
expected number of steps for any source-target pair. Kleinberg
[8] introduced a model for the characterization of the small-
world phenomenon consisting of a two-dimensional extended
grid with point-to-point links in which each node has four local
contacts and one long-range contact. The source node s selects
any other node v as its long-range contact with a probability
proportional to d~%(s, v), where d(s, v) is the lattice distance
between s and v, and a > 0 shows the density of the social
network. Based on these assumptions, some upper or lower
bounds were derived for different social network densities. In
summary, the analysis of social networks did not consider the
effect of multihop communication on the capacity order.

What is needed to understand the true performance of
wireless networks is a model that captures the restrictions
imposed by the communication infrastructure, together with
the distribution of flows rendered by social groups. Therefore,
a model for composite networks that has both social and
communication characteristics is needed. In this regard, Li et
al. [9] studied the capacity of a wireless network in which
source-destination pairs follow a power-law distribution as in
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Kleinberg’s model; however, they provide only upper bounds
that need not be tight and provide no insight on the impact
of social-group sizes. More recently, Azimdoost et al. [10]
studied the impact of the interaction between communication
and social networks on the wireless network capacity, by
considering four local contacts and a single long-range contact
per node, with the source knowing the location of its four
local contacts and the destination. The source-destination pair
selection follows a power-law distribution that is a function of
the Euclidean distance between the source and the rest of the
nodes. While this model is a marked improvement over models
that assume a uniform distribution for source-destination pairs,
its results are limited in scope because a node usually has more
than one long-range social contact in its social group.

In this paper, we study the case of a wireless network in
which nodes communicate with others in the context of social
groups. Section II introduces the notation and some definitions
and results used throughout the paper.

Section III shows that the original power-law distribution
introduced by Kleinberg [8] cannot be used when the number
of long-range contacts ¢ is a function of the total number
of nodes n in the network. In fact, this limitation was also
mentioned by Kleinberg [8] . In addition, a modified power-
law distribution is introduced that is applicable for all values
of g(n).

The main contribution of this paper is stated in the following
theorem, which considers what we call a wireless social or
composite network . In such a network, each of the n nodes has
a social group consisting of ¢(n) long-range contacts selected
independently. Long-range social contacts are selected based
on the power-law distribution with parameter a identified
in Section III, and one of those long-range contacts is the
destination of the node’s flow. Communication between any
two nodes can take place only if they are within transmission
range (r(n)) and such communication succeeds according to
the protocol model of multiple access interference [1].

Theorem 1.1: Consider a wireless network consisting of
n nodes with social behavior modeled by the following
properties.

o Any two nodes in distance d away from each other are so-
cially connected with a probability inversely proportional
to d*, where « is the social group density.

« All the nodes have exactly ¢ independent social contacts
where ¢ =1,..,n — 1.

o Each source selects one of its social contacts as its
destination randomly with no preference.

Under these conditions and assuming the wireless transmis-
sion range r(n) = ©(4/ bi%) to guarantee connectivity [11],
the maximum capacity order in this wireless social network is

O (vt for ¢=0(n)
O(ts)  Jor (0, 2) "= (00,0)
@(Z;f(g) forg<oo,0<a<?2
@(n;;;qj(ln)) forg<oo,2<a<3
@(ggg(tj)) forg<o0,3<

Section IV presents the proof of Theorem 1 by deriving
the upper and lower bounds of the throughput capacity that

coincide for the various values of g(n). This result shows that
the scaling properties of a wireless network are a function of
the density («) and size of the social groups q. If the size
of social groups is proportional to the network size, then the
order network capacity is the same as if no social groups
existed, which is the same result by Gupta and Kumar [1].
Interestingly, this is the case even when the size of social
groups is an insignificant fraction of the number of nodes n
as n goes to infinity, and is intuitive by noticing that in such a
case source-destination pairs must consume communication
resources along large multi-hop paths linking sources with
destinations. By contrast, when social group sizes do not grow
as fast as the number of nodes in the network n, and their
spread is localized (o > 2), then such network has capacity
order much higher than a pure wireless network. Section V
concludes the paper by discussing the implications of our
results.

To the best of our knowledge, this is the first work that
considers the interaction between social groups and the un-
derlying wireless communication infrastructure in an analyt-
ical framework of the capacity order of wireless networks.
However, our model still lacks many characteristics of social
networks that should be added in the future works in order
to better understand the behavior of composite networks. For
this reason, the results presented in this paper are also limited
in scope.

II. PRELIMINARIES

The network is a dense network in a unit square area with n
uniformly distributed nodes. We use the protocol model [12]
to determine the success of communication in the presence of
multiple access interference (MAI). In particular, if ;, x; and
X% denote the Cartesian positions in the unit square area for
nodes v;, v; and vy, assuming that node vy # v; transmits on
the same sub-channel at the same time as v;, and r(n) is the
common transmission range of all the nodes in the network,
then node v; can successfully transmit to node v; if |x; —x;| <
r(n) and |xx — x;| > (1 + A)r(n), where A > 0 is the
guard zone factor. To guarantee connectivity in this network
[11], the transmission range (r(n)) is assumed to be r(n) =
Q(y/logn/n).

As Figure 1 illustrates, a TDMA medium access control
scheme is assumed to avoid MAI. The network area is divided
into square cells with side-length Cy7(n), (C1 < 1), and at
any given time the cells separated by M -cell distance are the
only cells allowed to transmit as shown with a cross sign inside
the cells in figure 1 where M > (2 4+ A)/C4.

The routing of information is very simple. Each node is
assumed to know the locations of its intended destination and
its immediate neighbors, and selects as its next hop to the
destination that local contact that is closest to the destination.
The local contacts are within the radio range since they are
the one hop physical neighbors of the node. Assuming that
there is at least one local contact in each of the four adjacent
cells of the source guarantees that this simple routing protocol

IFor n points placed uniformly at random on the unit square, the probability
that there is no node in the r(n) vicinity of any selected node tends to zero

if r(n) is at least @(\/MT?).
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Fig. 1. The solid-line circle shows the transmission range. Dark gray cells
(s;) contain the nodes with X = x. R; (R2) are used as the distance of each
node in this region instead of their real distances to achieve upper (lower)
bounds on P(X = z).

converges. If each node has more than four local contacts, i.e.,
all nodes within transmission range are local contacts, then
the order throughput capacity computation does not change
and the same results can be derived. The four local contacts
assumption was first considered in [8] for grid networks.

We use the notation of [13] to denote the elementary
symmetric polynomials of the variables z = (x1,...,2,) by
opn, 1 < p <n.In other words,

Z Tijy .o Tg P

1<i1<i2<..<ip<n

Opn(T) = 0pn(T1, ... 2n) =
Moreover, we define the elementary symmetric polynomials
of the same set of variables except one, zj, as

cr];’nfl(xl, o) = Opn1(T1, s The1, Tl 1y s Tnr)-

Lemma 2.1: [13] Let x4, ..., x,, be non-negative real num-
bers, n > 2. Then for 1 < p < n — 1, we have

n(p+1)
—-Dp
In Section IV (Lemma 4.1), we prove that this is a tight
bound for values of p that do not grow as fast as n.

The standard notations of O and €) are used to describe
the asymptotic upper and lower bounds respectively. When
f(n) = ©(g(n)), then it is denoted by f(n) = g(n).

O01,n0pn = Op+1,n-

III. A POWER-LAW DISTRIBUTION FOR SOCIAL GROUPS

In Kleinberg’s model [8], every node s has a directed edge
to every other node v; within lattice distance p > 1, and
directed edges to ¢ > 0 other nodes using independent random
trials. Each directed edge from s has endpoint v;,¢ = 1,..,n
with probability proportional to d; * £ d=“(s,v;) and nor-
malizing factor Y-, d; “. Considering the same probability
distribution function for long-range social contacts (LSC), the
probability that the LSC list contains exactly ¢ independently
selected members is the summation of all possible g-member

subsets of nodes probabilities.

2.

1<i1<...<ig<n

= > ﬁp(uij € LSC)

1<ir<...<ig<n j=1

P(ILSC| = q) = P(LSC = {vi,, .., v, })

5 d;*..d;
= 411 p .
1<ii1<...<ig<n (ijl dj )q

where v;, is the i;h node in the network for j = 1, ..., ¢ and
ij = 1,...,m. As can be seen, this probability is close to one
for ¢ = ©(1), decreases by increasing ¢, and approaches zero
when ¢ = ©(n). Kleinberg [8] assumed that ¢ is a universally
constant value and the above derivation proves that the original
power-law distribution used in his paper should be modified
to consider those cases when ¢ is a function of n. We assume
that each source node has the same number of LSCs ¢(n)
selected in independent random trials.

The long-range contacts are selected independently, while
closer nodes to the source have a better chance of being
selected as a LSC, thus, the probability that a particular g-
member set is the LSC set is proportional to the product of
the inverse of the distances of its members from the source.
This probability can be written as

di,*..d; *
Na#l
The normalization factor NN, 4 is obtained using the fact that

Zl§i1<...<iq§nP(LSC = {viy, i, }) = 1
Nog = Zl§i1<_“<iq§n di,*..d; (2)

The probability that a particular node vy is selected as a
LSC (i.e., the probability that vy is a member of the LSC set)
is given by?

- ¥

1<i1 <...<ig—1<n,i;#k

P(LSO:{’U“,...,UZ'LI}): (1)

P(uy € LSC)
P(LSC = {Ukja ’Uil 3ty viq—l})’

—a j—« —«
_ El§i1<...<iq,1§n,ij7ék dk d’i1 "'d’iq_l
- —a —«
Zl§i1<..,<iq§n dil "'d’iq

The above probability function denotes the probability of
node v being in LSC, and is non-decreasing in ¢. It also
guarantees that the described process ends up with a g-member
LSC set for each source node.

Let 1J; be a random variable denoting the destination node.
Then, for each particular vy, € V (the set of nodes except
source), we have
P(ﬁt = ’l}k) = P(ﬁt

+ P

Vk | vV € LSC) X P(Uk S LSC)
Vi | Vk ¢ LSC) X P(Uk ¢ LSC)

Given that the destination is only selected from LSCs,
Py = v, | vy ¢ LSC) = 0. Furthermore, the selection

Note that we assume that |LSC| is equal to ¢ for all sources.
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of destination from LSCs has a uniform distribution.

P(ﬁt = ’Uk) = 1P(’U}~C S LSC)
Hq 1d a

—Qx

El<11< <ig—1<n, 1]75]@

qzlgi1<...<iqgn j:l

Let v = (vy, ..., vy ) denote (d; <,
equation can be written as

., d%), then the above

404 1n-1 (V)

Ple=v) == @

3)

IV. THROUGHPUT CAPACITY ANALYSIS

Let X\ denote the data rate for each node and X be the
number of hops traveled by each bit from source to destination.
The total number of concurrent transmissions per second in
such a network is then nAE[X], where E[X] is the average
number of hops in a route for any given source-destination
pair. This value is upper bounded by the total bandwidth W
available, divided by the number of non-interfered groups in
the TDMA scheme as shown in Figure 1 (i.e., W)
Therefore, the maximum data rate for each node is [10]

__
nr2(n)E[X]"

The average number of hops can be computed as

A < Anaz = O( “4)

Tmax

z)=P(X=1)+ Y aP(X =u).

r=2

Tmax

Y aP(X =

r=1

E[X] =

P(X = 1) is the probability that the packets travel just one
hop from source to destination, and its value resides between
0 and 1. Since each packet needs to travel at least one hop
from the source to reach the destination, the average number
of hops between the sources and destinations cannot be less
than 1. Therefore, P(z = 1) does not change the order of the
E[X] and can be ignored when deriving the order of expected
number of hops.

To compute P(X = z) for z > 1, we need to consider
the long-range contacts outside the circle with radius r(n)
centered at the source node. Given that all the nodes inside
the transmission range of a source receive the data transmitted
from it in just one hop, P(X =z) =0forl <z < fc%—l—ﬂ.
The information between source and destination located on
two opposite corners of the network area passes through the
maximum number of hops which is [ 7. Thus, E[X] can
be calculated as

l—le(n)-‘

Z 2P(X = z).

[o7+11

E[X] =

To compute P(X = ) for & = [& + 1], .., [arigy |
we need to compute the number of nodes at a distance of
z hops from the source and their corresponding Euclidean
distances from the source. The geometric place of such nodes
is a rhombus around the source node as shown in Figure 1
and explained in [10]. The probability that the number of
hops between source and destination is x hops equals the

probability that the destination is located in one of the cells
on the boundaries of this rhombus. Hence,

4x
PX=x)= ZP(destination is inside s;)
=1
Y r=
=1 v in s;
Therefore,

2
(Cﬂ(n)] 4x

Z xz Z Py = vg)

[%14_1] =1 vg in s;

E[X] =

2
(Clr(n)] 4x

=y oy y e

’VC%JFH =1 v in s;

qlnl()

5
Can(®) &)

We now compute the average number of hops based on
different values of ¢ as a function of n.

A. Case I: q grows with n
If ¢ = n, then E[X] can be rewritten as

"le(")-l 4x ( )
n 1,n—1
BX] = ) @), ) m—v)
wz(cLlJrﬂ =1 v in s; nn
Since

dkaai 1,n—1(“) =d12“ H d;
i=1,i#k
-1l

then BX) = LT oS, 4, b

Because nodes are umformly distributed over the network
area, there are nC?7?(n) nodes inside each cell s; with high
probability. Thus?

= On,n(v),

l—C172‘(n)-‘

EX]= > 42°Cir’(n)
a=[ g7 +1]
ol 1
=r2(n) ' uldu = —.
[&;+11 r(n)

Hence, the per-node throughput capacity is ——, which

. . nr(n)
will lead to the same result obtained by Gupta and Kumar

1 . .. . .

(W) [1], if we use the .m.lnlmurp transrmsswn 'range
necessary to guarantee connectivity. This result is consistent,
because the number of social contacts is equal to the total
number of nodes in the network, and one of these nodes is
selected randomly and uniformly as the destination, which is
a similar assumption to that of the original work by Gupta
and Kumar [1].

The second case is when ¢ = ©(n) but ¢ # n. Define i.i.d.
random variables Y; = d; “ for 1 < ¢ < n and define the

3Note that we are computing the order of E[X] dropping constant factors.
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sequence Z; = logY; for all values of :. It is obvious that Z;
are i.i.d. as well. Utilizing the law of large numbers, we have
lim,, oo = - S Z = = Z where Z is the expected value of
random variable Z;. Thus equation (3) can be computed as
q
Zl§i1<..<iq§n73h:ih:k Hj:l Y;
q
q Zl§i1<..<iq§n Hj:l Y;
q
Z1gi1<..<iqgn3h:ih:k exp Ej:l Z
q
q Zl§i1<..<iq§n exp Zj:l Zi;
Zl§i1<..<iq§n,3h:ih:k expqZ

q Zl§i1<..<z‘q§n exp gz

P(’Lgt = ’Uk)

)

_ G o
BRI RY
Therefore, the value of F[X] is similar to the case ¢ = n.
lorecy ] 4z
Exl= Y 3 % EEL)
gc:[C%Jrﬂ =1 v in s

Using equation (4) provides the capacity as Mgz =
O(—-).
nr(n)

B. Case II: n grows much faster than q

In this case, the expected number of hops between source
and destination is obtained when lim,, .., % = 0, and two
mutually exclusive situations must be considered, namely:
limp—ooq = 00 and lim,, o ¢ < 0.

When lim,,_,o ¢ = oo, we can use law of large numbers
and a similar procedure as before to arrive at

1 1
Tn))a)\maz - @( )

When each node has finite number of contacts (lim,, .. ¢ <
00), the numerator of P(¢; = vy) can be expanded as

dy, Uz]; 1n—1() =d, “og—1n(v) —d;; 2 q 2.n—1(V)

- d]:2040,q_2’n (U) + dk 3a0§—3,n—1(v)'

EIX] = 6 T

= d,“0g—1,n(v)

Note that d,;o‘ and o,_;,—; are positive values; therefore,
the upper and lower bounds for P(¢; = vy) are obtained as

—aTq—1n(V) = d; “0g—2,(v)
P =
g 473.n(0) = P
d.%0u—1n
P(9; = vg) k 9q-1, (U) (6)

q0q,n(v)

Lemma 4.1: Let U = {¢1,...,1,} be a set of n > 2 non-
negative real numbers. Then for a finite p, i.e., lim, oo p <
00, we have

U1,n(\I’)Up7n(\Ij) _ ( n > . (7
(p+1)0ps1.0(P) n-p
Proof: Define random variables U/ = ;,...¢p;, for

i=1,.., (Z) where 1 < ¢; < .. < ip < n. Due to symmetry,
these random variables are identically distributed. Moreover,
their mean U, is a function of p. It can be easily seen that
these random variables are not independent, as they may

have common factors of ;,. We partition the set ¥ into p-
member subsets. Assume that T is the set of all possible such
partitioning (each denoted by 77) with no common member,
e, Tr N Tf = ¢. For a finite p, the number of 7P members

is |77 = (3)/(2) = (;21).

Now we can expand apm(\I/) to separate summations over
different partitions described above. Thus,

Op,n = E

1<i1 <. <ip<n

|77

=2

J=1 {4y i, YETT

wz& wzp I/Jil ..’(/Jip.

Because each inner summation is applied over one possible
partitioning of W, it is performed over 2 of independent U;

as described before. The law of large numbers can be applied

here.
. n—
w2 ey =lm D, UP=0T

{¥i) i, YETT {hiy i, YETT

Thus,
|TP
Z

A similar formulation can be derived for opi1,, ().

’UI3

[Pt
_ n —
Op+1,n Z —Upt1 = (p+1)UP+1
, p+1
Jj=1
Therefore,
01,n0p,n 01 ﬂ(n)U

(p+1)optin (p+ 1)(p+1) ;D+1

Note that U’ have identical distribution and v; are i.i.d..
Therefore, the expected value U4 can be expressed in terms
of U,

Uper = E[UT] = Eli, i,
— wz Eliy iy iy [V 1 P51,
= wil Vi1 B[y, Ip(Yi, 1)
= 7;:2: Vipe1 P(Viysr)
- U—,,.JH Uy

Furthermore, by utilizing law of large numbers for oy,
results in oy ,,(¥) — ni. Thus

T1,n(P)opn(¥)  _ nE) o n
P+ 1)opt1,n(¥)

P+1)Ga) n—p
|

Returning to the case of finite contacts, we use Lemma 4.1
(for p = ¢ — 1) and inequality (6) to obtain an upper bound
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for E[X] in equation (5).

"ClT(n)—l 4z o, )
ln
EEEE SRS ol g el
[C +1] =1 v in s; n

r Cy 72‘(71) -‘ 4z

"
E#qﬂ PORED DD D @®)

]’CL1+1'\ =1 v in s;

Referring to the results presented in [10], it can be observed
that the average number of hops in this case is n_’; -7 times
more than the case when there is only one long-range contact
for each source. To calculate the above summation, we need to
compute the distance between each node in s; and the source.
To simplify the problem, we use distances Ry = zCyr(n)/A;
and Ry = AsxCir(n) (A1,As > 1) for all such nodes to
reach upper and lower bounds for this summation (see figure

D).

Z Z Anglr

=1 vg 1n s;

a<z Z da

=1 vg in s

<Z Z (zCir(n)/A1)~¢

=1 v in s;

By replacing the number of nodes in each cell by nC?r?(n)
and ignoring the constant values in the above inequality, we
can see that the order of both upper and lower bounds are the
same.

’—Clz(n).| 4x

PO MBI

1 — i
’—C_1+1-‘ =1 v in s;
2
[Clr(n)—‘
E $2—a
1
[er+11
"C#‘H_l
a _ 17(n) _
= nr?"%(n) u?~du
oy 1]

The last equality (a) is obtained by replacing the sum by its
integral approximation. After computing that integral for a
sufficiently large value of n which leads to sufficiently small
transmission range, we arrive at

2
(Cﬂ(n)] 4x

doowd, D 4"

[%1+1] =1 v in s

[ eGy)
~ oG

Moreover, o1, can be written as

O1,n = nga E/

v r(n)

yfor0<a<3

,for3<a ©)

Ydmaz
nu'~%du,

where d,,q, 1s the maximum distance between any two nodes
in the network, and v < 1. Calculating the integral for a

sufficiently large value of n leads to

{@(n) for0<a<?2
O1,n =

G(Ta,’—é(n)) for2<a
The derivations of equations (9) and (10) are described in
the Appendix.

(10)

Now we can use these results in equation (8) to obtain
the following upper bound for E[X]. Note that E[X] > 1;
therefore, if the computation ends up with E[X] < 1, we
replace it with 1.
for0<a<?2
for2<a<3
for3<a

Ol vty
EX] =S OGirm=rm)

O(5=451)

The lower bound capacity follows immediately.

(ol for0<a <2

n2r(n)
A1’naw = 9(1;7:17%) fOT 2 <a< 3
O(Z4L)  for3<a

Thus, these are the upper bounds of F[X] and the lower
bounds on the capacity if the number of long-range contacts
is a finite number greater than one.

To compute the lower bound for E[X], we will study the
lower bound of P(¢; = vy) in equation (6). First, we calculate
the order of % This value is obtained by replacing
p=¢q—1and p=q — 2 in equation (7).

01,n0g—1,n _ @< n >
q0qn n—q+1

o)

(¢ —1og-1,n n—q+2

By multiplying these two equations and combining with
equation (10), we arrive at

RN VES
qOgn (n—q+1)(n—q+2)oi,

_{ e(m—qﬁ)_%) for0<a<?2

)

(1)

—1)r2*%4(n
O laiiaiyy) for2<a

The lower bound for E[X] is derived by combining equa-
tions (5) and (6).
E[X] >

2
"Cl'r(n)—l 4z

2w )

[CLl_;_l'\ =1 v in s;

d, “og—1,n(v) — d,:ZO‘aq_zm(v)
qogn(v)

’—Clg(n).| 4x
0g-1,n(v)

Soetal) SN S

qU'q,n( ) |—1 +17 =1 vg in s

’—le(n).| 4x

PO DD DR

[CL1+1'\ =1 v in s;

_Uq—Z,n(U)

12
10gn(0) (12

Following similar steps for deriving equation (9), we have



66 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 12, NO. 1, JANUARY 2013

(ﬁ] 4x

IO MDD

]’CL1+1'\ =1 v in s;
(2 ,for 0 <a<3/2
= (“")n) ! / (13)
@(742&_72(71)) ,fOT 3/2§O[

If the terms in the negative part of equation (12) are replaced
with their equivalents from equations (11) and (13), it is easy
to show that for connected networks (minimum transmission
range r(n) = O(4/ loi—”)), these negative parts will be of an
order less than one.

’—le(n).| 4x

0q—2,n(v) Z xz Z ;%
97q.n(v) [A+1] (=lvkin s
Olmgy) s for0<a<3)/2

= O(za }(n)) ,for3/2<a<2
®(r ) s for2<a
@(m) ,for 0 <a<3/2

= { Olm=aqgey) for3/2<a<2 =o(1)
@(mén) yJor2<a

Thus, these terms can be ignored compared to the positive
part of E[X] and the lower bound for F[X] is the same as
its upper bound. Therefore, the obtained bounds on capacity
are indeed tight bounds.

However, it is important to compute the traffic carried in
each cell and find out if this throughput capacity can be
supported for each cell.

It can be verified that the obtained capacity order is achiev-
able for all values of ¢ and o and the flow in no node may
become the bottleneck. In order to do that, we just need
to compute the total traffic load that a cell is required to
accommodate and check if it is not greater than the maximum
rate a cell can support.

The traffic load of a node may appear in different situations
of being source, relay or destination, the maximum of this
value multiplied by the number of nodes in a cell (traffic load
of a cell) should not exceed the maximum rate that each cell
can support which is ©(1).

o Traffic load of a source node

Each source is assumed to transmit data at rate \, so the
maximum load created by each source will be ©(\,4z)-

« Traffic load of a relay node

We need to compute the maximum number of paths passing
through each relay node. To compute this value, we calculate
the maximum number of source-destination paths passing
through each cell which is ( [14], [15])

E[X|Pr(Path; intersects cell;) =
O(E[X]r%(n)) < O(nr?(n)).

As they are ©(nr?(n)) nodes in each cell, using a routing
protocol that randomly and uniformly selects one node in a cell

to forward the packets will result in the maximum traffic load
of a relay node to be O(Apaznr?(n)/nr?(n)) = O(Mnaz)-

o Traffic load of a destination node

The power-law distribution of the social contacts leads to a
non-uniform distribution for destinations. However, we prove
that for large n this distribution is asymptotically uniform. The
probability that a node vy, is selected as destination is

Pr(vg is destination)

= ZPr(vk is destination|v; is source)Pr(v; is source),
v;

and as the source nodes are uniformly distributed, this prob-

ability is equal to

- ZPr(vk is destination|v; is source).
n
v;
As we have shown in equation (3), the probability inside the
d "o’k
summation is equal to %@3() where index i shows
q,n,i
that all the distances in this equation are measured toward
source v;. Replacing this value, which has been shown by
P(¥¢ = v,) throughout this paper, with the equivalent values
obtained for different values of ¢, it can be easily seen that
the probability that vy, is destination will be ©(L).
If ¢ goes to infinity for sufficiently large n,

Pr(vy is destination|v; is source) = —
Thus,

Z_:_

Pr(vy is destination) =

If ¢ does not grow with n,

Pr(vy is destination|v; is source) = Li
n—q+1oin;
Thus,
Pr(vy is destination) = ! Z G
—q +1 O1,m,i

Since o1, ; has the same order for all ¢, and by definition
is equal to )~ d, “, the above equation is equivalent to

1 >4 1
n—-q+1 o1, 0
Now since the maximum number of routes passing through
each cell is ©(nr2(n)), it can be concluded that the maximum
number of paths destined to each cell has the same order. Thus,

similar to the relay traffic load, each destination traffic load
will be ©(Anaz)-

The total traffic load of a node is Az (O(1 ) O(1)+06(1),
which results in a total traffic of \,,,,0(nr?(n)) for each
cell. If the transmission range is greater than O( l(’i ), the

traffic load will be A4, ©(logn) which is less than ©(1) for
all values of « and q.

Therefore, the maximum throughput capacity is upper
bounded by the inverse of this traffic [16], i.e., <

Amaw —
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Fig. 2. Throughput capacity vs. the number of nodes for different social
network densities o, when each source has ¢ = 1 long-range contact based
on Theorem 1 results (dash-dot curves), and the simulation results (solid
curves).

9(1(3;"), which does not violate the throughput capacity
bounds we derived earlier.

V. DISCUSSION AND FUTURE WORK

This paper presents a modeling framework for the capacity
of a wireless network in which nodes communicate in the
context of social groups and successful transmissions can
occur only between nodes within transmission range of each
other. The model characterizes a wireless network of n nodes
each with a social group size that is a function of the number
of nodes n, the probability of a node being a long-range
social contact of a source that is inversely proportional to their
Euclidean distance with power factor «, and MAI is modeled
according to the protocol model.

Figure 2 illustrates the results of Theorem 1 by plotting the
network capacity as a function of n for different values of
a (shown in dash-dot lines) when the transmission range is
the minimum value and the number of long-range contacts is
a fixed number, i.e., ¢(n) = 1. The solid lines show similar
results obtained through simulations which follow closely the
theoretical results. It can be observed that the capacity order
decreases exponentially as the number of nodes increases.
However, increasing the value of o affects the rate of this
capacity decrease. Small values of « correspond to the case
in which the social groups are highly distributed in the wireless
network, and lead to a rate of order-capacity decrease similar
to the results derived by Gupta and Kumar [1], in which no
social groups exist.

In contrast, for large values of «, social groups are localized,
the paths from sources to destinations involve only O(1)
hops, and the maximum throughput capacity is achieved.
Furthermore, rate of order-capacity decrease is much smaller
than with small values of a.

Figure 3 shows the throughput capacity versus the power
law exponent («) for two values of ¢(n). In one case, g(n) is
a function of n, i.e., g¢(n) = f(n), where f(n) is an increasing
function of n, and in the second case ¢(n) is a constant value,
i.e., g(n) = 100. It can be concluded that if the number of

max

‘®((nlog n)'l/2

Fig. 3. Throughput capacity is constant (or changes) with respect to social
network density oo when each source has finite (or infinite ¢ = f(n)) number
of social contacts.

long-range contacts is not a function of the number of nodes,
the resulting capacity changes with the parameter a. If «
assumes small values (« < 2), the network behaves as if there
were no social groups. For medium values of o (2 < o < 3),
an exponential growth is observed in the throughput capacity
from ©(1/y/nlogn) to ©(1/logn). For large values of «
(e > 3), each source selects its destination along a path
involving only ©(1) hops w.h.p. and the resulting capacity is
the maximum capacity that can be obtained. We also observe
that the rate of capacity increase is very slow for o > 4.

However, if the number of long-range social contacts g(n)
grows proportional to the number of nodes n, the network
behaves as if the network had no social groups, independently
of the rate of growth for ¢(n), and each node selects its
destination randomly from all the other network nodes. In this
case, the throughput capacity does not change with parameter
«, and this is true even if ¢(n) is much smaller than n, i.e.,
q(n) = loglog(n), which is a small number even when n is
a very large number.

This phenomenon can be described considering the prob-
ability of the source-destination distance (ds;) order being
©(1). When the number of social contacts of each node is a
finite number, this probability is very small, even if that finite
number is very large. While in the latter case, if the number of
social contacts grows with the network, it can be proved that
with high probability the source-destination distance is ©(1).

P’I"(dst = @(1)) = PT(Dl <dg < Dz)

= Pr(destination is inside the Ring(source, D1, D3))

2 l-a .z
:/ nx o'qfl,nfl dﬂ?

D, q0gq.n

(14)

where Di,Ds < oo are real finite numbers, and Ring
(source, Dy, Ds) is a ring with the inner radius of D
and outer radius of Dy centered on the source. Using the
approximations and techniques used in the paper, the following
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Fig. 4. Simulation results for network size n = 500 — 4000 and social
group size ¢ = 1,n — 1,n for social network density & = 5. The dash-dot
and solid lines correspond to theoretical and simulation results, respectively.

probability is proved in Appendix.

0 forg<oo,2<a

P st — 1 =
r(ds = O(1) 1 forg—o0cor0<a<?2

5)

Figure 4 illustrates the simulation results for a fixed large
social density o = 5 for three social group sizes; ¢ =
1,7 —1,n. It can be seen that the results are very close to the
analytical results even when n is not a very large value, i.e.,
500 < n < 4000.

In this work we have made many assumptions to simplify
our analytical framework. For example, we have assumed that
all the nodes have the same social group size and dispersion,
that each source unicasts with a single destination in its social
group, that the protocol model is used to model MAI, and
that all radios are similar. In addition, we have not addressed
the role of content popularity or common interest in content
within social groups. We hope to relax these assumptions in
our future work, and that this paper will inspire more modeling
work on the impact of social groups in wireless networks.

APPENDIX

DETAILED DERIVATION OF EQUATION (9)

r Cq 72‘(71) -‘ 4z

2wy D 4°

"CL1+1'\ =1 v in s;
fﬁ(n)-\"'l
=nr’"%(n ! ur du
[&+11
nr?=%(n) 2 1
— 1 33—« _ _ 1 33—«
T (g1 + 0P = (T + 1))

If the transmission range decreases with increasing n, then
for sufficiently large n, we have

(o1 +1) =0l

If o < 3

2 a 1 a
(fm] +1)% — (fa +17)°

Il
©)
—
<
¥
Q
—~
3
~
~—
|
@
—
—
~—

Therefore,

r Cy 72‘(71) -‘ 4z

2wy D 4°

"CLlJrﬂ =1 v in s;
nr?=(n) 1 _ n
T~ 3-a (r3*a(n)):®(Tn))

For dense social networks in which o > 3, we have

r Cq 72‘(71) -‘ 4z

2w ) 4"

]’CL1+1'\ =1 vg in s;
nr?~%(n) I 1 a—
= () (),
« (C_1+1-| I_Clr(n)~|+]‘
and for large n
1 1
(7)04—3 _ (7)04—3
(C% + 1-| I—C1T2(n)~| +1

=0(1) - 6(7‘0"3(11)) =0(1)
Thus, the above summation is equivalent to

nr?=%(n) n

DETAILED DERIVATION OF EQUATION (10)

For large n with minimum transmission range, we have

Ydmaz
O1n = / nu'~%du
r(n)
n

_ 2—«
T3 _a ((7d7nar)

For ¢« < 2 and small r(n), we arrive at oy, =
ﬁ('ydmaz)Q_a = 0(n).
And for o > 2, 014, 18

— ()

R P T
T = e () ('Ydmaw) )
B O O

DETAILED DERIVATION OF EQUATION (15)

Based on the computations in section IV and if lim,, ,, ¢ =
00, the probability of a node vy, at distance d, = = away from
the source being the destination (equation (3)) will be

—Q T
x Uqflmfl

q0q,n

S

4Note that for o = 3, both Cases I and II give the same result.
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Thus equation (14) equals to

Pr(ds =0(1)) = /D2 xdr = O(1).

D,

For networks with finite number of contacts per node,
lim, ¢ < o0, the probability that a node at distance z

is selected as the destination is

(equation (8)).

nr_ %
(n—q+1)o1,n

By replacing this value in equation (14) we have

Dy 11—«
Pr(dy = (1) = —— / Y dx
n—q+1/p 0o1n
1 for0<a<2

a—2
logn for 2 < a
\ <

= @(L) =

O1,n

As can be seen, for both finite and infinite values of ¢ when
0 < a < 2, with high probability the destinations are at
distance of ©(1) from the sources, while for concentrated
social networks(2 < «) with finite ¢, this probability is
asymptotically negligible.
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