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Pseudo-Maximum-Likelihood Data Estimation
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Abstract—A pseudo-maximum-likelihood data estimation
(PML) algorithm for discrete channels with finite memory in
additive white Gaussian noise environment is developed. Unlike
the traditional methods that utilize the Viterbi algorithm (VA)
for data sequence estimation, the PML algorithm offers an alter-
native solution to the problem. The simplified PML algorithm is
introduced to reduce the computational complexity of the PML
algorithm for channels with long impulse response. The adaptive
version of the PML algorithm suitable for time-varying channels
such as frequency-selective Rayleigh fading channels is also intro-
duced. Computer simulation results demonstrate the performance
of these algorithms and compare them to the VA-based techniques
for different types of channels. The performance design criterion
for the PML algorithm is derived in the Appendix.

Index Terms—Fading channels, maximum-likelihood decoding,
MLSE.

I. INTRODUCTION

T HE TERM blind equalization or deconvolution in com-
munication and signal processing applications refers to re-

covering the input data sequence which is transmitted through
a linear channel by knowing its output only. If the channel is
known or a training sequence is transmitted at the beginning of
the transmission, the equalizer utilizes this information to com-
pensate for the intersymbol interference (ISI). There are sev-
eral different criteria to design an equalizer. Equalization tech-
niques developed from the maximum-likelihood (ML) criterion
(see example in [1]) generally utilize maximum-likelihood se-
quence estimation (MLSE) at the receiver by using the Viterbi
algorithm (VA) [2] for data sequence estimation. VA-based tech-
niques estimate asequenceof data with a delay proportional to
the length of the channel impulse response (CIR).

In time-varying environments such as mobile communica-
tions systems, adaptive MLSE receivers are required for adap-
tive channel identification and tracking. In traditional adaptive
MLSE, adaptive channel estimation algorithms are based on the
estimated data sequence derived from the VA with significant
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decision delay. For time-varying fading channels, the channel
estimation performance degrades significantly due to this delay
in the data estimation inherent in the VA. Adaptive channel esti-
mation in the VA can be improved using tentative decision based
on the best survivor path with small delay [15]. In this approach,
the channel estimation is more accurate due to the small delay in
the channel update. This technique will be referred to as “con-
ventional” adaptive MLSE in this paper.

A new algorithm based on MLSE for an unknown channel
is proposed in [10]. The joint channel and data estimation is
based on per-survivor processing (PSP). Each state in the VA
has a seperate CIR estimate that is based on the survivor path
leading to that state. The CIR update in the PSP for each state
is carried without any decision delay. This algorithm exhibits
considerable improvement compared to the conventional adap-
tive MLSE while its computational complexity increases signif-
icantly.

Another approach is proposed based on the MLSE using a
block of symbols at a time. The metric computation for each
block is similar to the VA. The survivor paths for all the states
are traced back to detect a merge. If a merge occurs within the
block, a decision is made based on the merged data sequence up
to that time . Then a new window of data symbols is selected
starting from time . If a merge is not detected within the block,
the data symbols with the best survivor path is selected. The
states in the VA are initialized based on the results from the
previous block. The channel is updated once at the beginning of
each block based on the survivor path from the previous block.
This technique will be referred to as block sequence estimation
(BSE) [12]. The variable in Table I is a function of merging
delay inside each block.

We suggest a new algorithm (pseudo-maximum-likelihood
[PML]) based on the ML criterion that does not utilize the
VA. The PML algorithm is a symbol-by-symbol estimation
algorithm with some delay and the CIR is estimated within the
algorithm. The PML is suitable for time-invariant channels.
Adaptive version of the PML algorithm (APML) is introduced
for time-varying environments such as frequency-selective
Rayleigh fading channels.

Throughout this paper, the CIR is modeled as a discrete fi-
nite impulse response (FIR) filter with length. The discrete
CIR can be thought of as the convolution of the transmitter
filter, the physical channel, and the receiver filter. The received
signal is the convolution of the data sequence
and the channel coefficients corrupted by a sequence
of additive white Gaussian noise samples . The data is
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TABLE I
COMPARISON OFCOMPLEX MULTIPLICATION PER DATA SYMBOL BETWEEN VA-BASED METHODS AND THEAPML

assumed an independent identically distributed (i.i.d.)-ary
signal. The transmitted data sequence and noise are indepen-
dent. The channel length is either known or upper bounded.
According to this model, can be written as

(1)

The above equation for discrete time model is based on a
whitened matched filter (WMF) at the front-end receiver [13].
The WMF consists of a filter matched to the continuous time
channel impulse response cascaded with a noise whitening
filter. The match filter can be realized at the receiver when the
continuous time channel ( ) is known. If is unknown,
the front-end WMF can be derived based on the assumption that
the channel is characterized by a finite number of parameters
such as the tapped-delay line model [14]. In this case, the
front-end processor consists of a fractionally spaced processing
filter matched to the known data pulse followed by a whitening
filter.

There are no other restrictions on the nature of the channel,
i.e., with or without zeros in its frequency response, linear or
nonlinear phase. The transmitter and the receiver are assumed
synchronous.

The paper is organized as follows. Section II describes the
mathematical derivation of the PML algorithm briefly. Sec-
tion III describes the SPML and APML algorithms. Computer
simulation results are given in Section IV. The performance
design criterion for the PML algorithm is presented in the
Appendix. A summary and some suggestions for future work
conclude the paper.

II. PML A LGORITHM

A. Derivation of the PML Algorithm

In vector form (1) becomes

(2)

where , ,
, and

...
...

...

From (2), the conditional probability density function (pdf) of
the received signal given and is

(3)

where is the variance of the noise. Let

(4)

be the likelihood function. The minimization of this likelihood
function with respect to given the data matrix is a straight-
forward least squared estimation problem.

(5)

where is the transpose of . If (5) is set to zero, the ML
estimate of will be obtained.

(6)

is the pseudoinverse of and even when the
is not full rank, the singular value decomposition (SVD)

technique can be used to compute the pseudoinverse of
[9, ch. 11].

The new likelihood function is obtained by substituting
into (4).

(7)

It can be shown [3] that minimization of (7) is equivalent to
maximization of the following likelihood function:

(8)

is a function of the received signal and the trans-
mitted data sequence .

The following assumptions have been made for optimization
of the likelihood function. The data sequence is known (or esti-
mated) prior to time and our objective is to estimate
the data from to . At time , the known (or
estimated) data will be shown as and the transmitted data as

. Matrix at can be written as



122 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 49, NO. 1, JANUARY 2001

where is the same as before with all its elements are known
(or estimated) and is shown in the equation at the bottom
of the page. If is defined as

where is the same as before and
, then is given by

(9)

Our objective is to maximize . can be
expressed recursively. The details of this derivation is in [3] and
the results are given here.

(10)

where and are defined as

(11)

(12)

and is given by

(13)

where is the identity matrix. Equation (10) is a recur-
sive equation and in order to maximize at each time
period, should be maximized. It is shown in [4] that

is maximized when

(14)

It can be proved that (14) provides the global maximum1 of
assuming that can take on an arbitrary continuum

of values through [4]. can be also written as

(15)

where is defined in (6).

B. PML Algorithm

1) At the beginning, create the matrix . To create this ma-
trix, data is needed. This data is obtained from
either a training sequence or a blind initialization algo-
rithm (see Section II-D). Then compute the vector.

2) There are possible values for matrix or equiva-
lently . Multiply each candidate by and find

1We cannot infer from this development that the ML demodulation will result,
since the transmitted data sequence must be constrained to discrete values.

the minimum Euclidean distance () between the vectors
and . This distance is defined as

(16)

3) If the best data sequence of lengthwhich has the
minimum distance between and is de-
fined as , then

. The remaining estimated data sequence
will be discarded. The min-

imum Euclidean distance computations in Step 3) can be
used for the next iteration (see Notes below).

4) Set . Return to Step 2) and continue the algo-
rithm to estimate the next data.

Notes:

1) The PML algorithm is defined for time-invariant chan-
nels. Therefore, when the ML estimate of the CIR ( )
is computed, it can be used for the entire data sequence.
If the ML estimate of the CIR needs to be updated, we
can use Greville’s theorem to recursively compute the
pseudoinverse of [16]. For time-varying channels, the
APML algorithm recommends more practical and com-
putationally efficient algorithms.

2) This algorithm is general and can be applied to both bi-
nary signal set or -ary complex data. In the case that
the data sequence is complex, is a complex vector.

3) In order to minimize the computational complexity for
the PML algorithm, the following procedure can be uti-
lized for Steps 2) and 3). Eachth row of is mul-
tiplied by and its squared distance from theth ele-
ment in is computed and stored. There will be a total
of positive real
numbers. Adding these values in the right order will pro-
vide all possible values of . After is estimated,
only possible values of these
real numbers are required to be stored for the next time
interval. In the next time interval, we only need to com-
pute the vector multiplications of the last row of the new

matrix by and compute its squared distance
from the last element of the new vector. When ,
the computational complexity is proportional to and
if , the computational complexity is proportional to

. The memory requirements is always proportional to
.

4) The performance of the PML algorithm depends on the
accurate channel estimate and correct choice for.
estimation can be improved by choosing a large value for

. In order to evaluate the performance of the PML, a
lower bound for the mean value of is derived in the Ap-
pendix. If the average minimum computed in practice
is much larger than this bound, then this is an indication

...
...
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that the PML does not perform well. A new CIR estimate
and/or an increase inis required to improve the perfor-
mance of the PML algorithm.

5) The PML algorithm as described above is similar to tree
search algorithms. In [18], a tree search algorithm similar
to the PML is proposed.

C. Intuitive Discussion

The above condition (14) has a significant physical interpre-
tation. When each row of is multiplied by , this is
equivalent to the convolution of the transmitted data sequence
with the estimated channel coefficients. Obviously, we expect
this value to be equal to the received signal at that time period.
The received signals are the elements ofvector. If ,
then PML is equivalent to a decision-feedback equalizer (DFE)
[5]. DFE is an example of symbol-by-symbol detection, where
in each time interval, the ISI is subtracted from the received
signal and the output is fed back to a slicer which makes the
decision about the current symbol. This is exactly the case for
the PML algorithm when . When , then perfor-
mance of the PML is equivalent to that of the VA. Obviously,
any value of in the middle of these two values will provide
a performance of the PML which will be between the perfor-
mance of the DFE and the VA. Section III will discuss some
techniques to reduce the computational complexity of the PML
for channels with long impulse response and also application of
this algorithm to time-variant systems.

D. Blind Initialization

To start the PML algorithm, data is needed ( is
the number of rows in and is the length of the CIR). If a
global search is conducted, there are possible values.
The global search will find the best data sequence of length

that optimizes (7) or (8). Instead of a global search, we
can divide this data sequence intosubsets and try to optimize
(7) or (8) by utilizing alternating minimization procedure [6]
with some modifications to the original technique. By using this
approach, the computational complexity will be reduced from

in the global search to . The alternating
minimization procedure is a numerical solution for extremum
problems arising in information theory and statistics.

Let be a real valued function of two variables
and where is the Euclidean distance between
and , and and are two convex sets. Let’s choose an arbi-
trary element , and find which has the closest
distance to . Then fix , and find which has the
closest distance to . If this procedure continues alternatively
for and ( ), it is proven in [6] that this method
converges to the minimum distance in these two sets, provided
that the sets are convex and the distance satisfies certain condi-
tions.

In our problem, it is unknown whether the condition for
reaching the global optimum is satisfied. We still choose to
apply the alternating minimization procedure as follows.

1) Start with an initial value for the data sequence of length
.

2) Randomly divide the data sequence of length
into subsets. For example, suppose
and . In this step, we can have two subsets as

and .
3) Apply the alternating minimization procedure for theth

set while keeping the remaining sets fixed
. Equation (7) or (8) is used for optimization

of the likelihood function. Continue this method until the
data sequence of length converges.

4) Based on the converged data sequence in Step 3) above,
regroup (in an arbitrary manner) the converged data se-
quence of length into , randomly indexed,
new data sets again of the same length. Continuing on the
example in Step 2), we can have the new two subsets as

and .
5) Return to Step 3) and continue this procedure until the

optimum result for the new data sets is the same as the
previous data sets.

When the alternating minimization procedure is applied to
each data set, it does not necessarily converge to the global op-
timum. However, after it converges to a local optimum, by rear-
ranging the data sequence into a new subsets of data in Step 4,
the alternating minimization procedure will converge to a new
local optimum which is closer to the global optimum than the
previous one if the new iteration has different result from the
previous one. The reason is because the previous local optimum
is the starting point for the new iteration.

In general, data is needed to start the algorithm.
This can be provided by using the blind initialization procedure
or using a training sequence.

III. A PPLICATION OF THEPML ALGORITHM

This section describes two versions of the PML algorithm.
The SPML algorithm is a suboptimal approach with less com-
putational complexity than the PML algorithm. This algorithm
does not search globally among different possible values of

and it is suitable for systems with long CIR and/or large
alphabet size of the signal set. It has been shown by simulation
that this algorithm can perform close to the PML algorithm with
less computational complexity.

The APML algorithm is designed for time-variant channels.
This algorithm addresses different issues related to the effective
estimation of the CIR specially for time-variant channels.

A. SPML Algorithm

The purpose of the SPML algorithm is to reduce the compu-
tational complexity of the PML algorithm. Three techniques are
introduced here.

1) Using the Previous Estimated Data Symbols:The PML
algorithm performs a global search to find the best data symbols
of length , selects only the first data and discards the remaining

data symbols. In the SPML algorithm, the remaining
estimated data symbols will be used in the next iteration. Sup-
pose at time , data are estimated in the time interval

. The first data is selected as the estimated
data symbol at time , i.e., . The last data in
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the interval [ , ] will be transferred to
the next time period. By transferring the lastdata to the next
time period, the number of global search is reduced fromto

and consequently, the number of operations per symbol
is now proportional to .

The rational to use the lastdata is as follows. The Euclidean
distance ( ) between and is defined as

(17)

In (17), is just in the last row of . is in
the last two rows of and finally, is in all the
rows of . Obviously, the effect of is less than
the effect of in the computation of . When the last

estimated data symbols are transferred to the next iteration,
poor estimation of these data symbols will not have signifi-
cant effect in the computation of and consequently, will not
degrade the performance considerably. On the other hand, any
mistake in estimating has a significant effect on the
value of . This phenomenon is very similar to weighting the
data symbols between time to . The re-
cent data ( ) is weighted more heavily than the future
data ( to ). In general, if the power of the CIR
for the first taps is smaller than the total power of the
CIR , then this technique will
not degrade the performance of the PML algorithm consider-
ably. This technique is not very effective for channels with short
length of memory. Because if is small, has almost
the same effect as and poor estimation of will
have a significant effect on the value ofand consequently, on
the symbol-error rate (SER) performance. Notice that after each
symbol period, one of the estimated data symbols will be up-
dated. Therefore, after symbol period, the previous estimated

data symbols are updated with a new set. On the other hand,
the data in the time interval [ , ] and

are updated at each symbol period while the re-
maining last data from time to
are updated between every two symbol period (2, is the
symbol period) for to every symbol period for

depending on their effect on the value of.
We can also compare this technique to delayed decision-feed-

back sequence estimator (DDFSE) algorithm. In DDFSE [8],
part of the past data is fed back and subtracted from the received
signal as the DFE section of the equalizer. In SPML, the future
decoded data are transferred to the next time interval to avoid
global search.

2) Alternating Minimization Procedure Technique:After
transferring data to the next time interval, there are still

decoded data symbols available that can be utilized
in the next time interval. Instead of searching among
different data symbols, this data can be divided into sets.
Then the alternating minimization procedure [6] will be applied
to these sets. estimated data from the previous time
interval will be used as the initial value to start the alternating
minimization procedure. Since this procedure does not start
from an arbitrary value for the data symbols of length ,

this method can converge very fast. The number of operations
per symbol is now proportional to . It is important that
after data are divided into subsets, the first search is
applied to the most future data subset and the last search is
applied to the most recent data subset which includes .

3) Estimating More Than One Data:When data are esti-
mated in the PML algorithm, we can select more than one data
at each time.

The vector multiplications in the PML and SPML algo-
rithms can be computed simultaneously by utilizing parallel
processing.

B. APML Algorithm

In some practical applications such as mobile radio commu-
nications environment, the CIR varies with time. Mobile radio
communications usually occur between a fixed base station (BS)
and several mobile stations (MSs). When the BS transmits a
signal, the MS does not necessarily receive the signal from one
path. The original signal from the BS is reflected and diffracted
by buildings and other materials in urban or rural areas. Each re-
ceived signal by the MS has a different path and, consequently,
a different time-delay, amplitude, phase, and Doppler shift. If
the symbol rate is high, the spreading of each symbol into the
future symbols can cause intersymbol interference (ISI). This
section will introduce an adaptive version of the PML algorithm
(APML) which can reduce the effect of the ISI for time-variant
channels.

In the APML algorithm, the CIR estimation is no longer
restricted to ML estimate and any adaptive algorithm such as
least mean square (LMS) or recursive least-square (RLS) [9]
for channel estimation can be utilized. When the CIR is esti-
mated by some adaptive algorithm, then the rows of are
multiplied by the CIR( ). This multiplication is equivalent
to the convolution of the transmitted data sequence in the time
interval [ ] with the estimated CIR ( ) at time .
If the CIR is time-variant, after each time interval, the CIR
can change considerably. Therefore, convolving the same CIR
for the entire time interval [ ] is not an accurate
assumption. On the other hand, if an update of the CIR is used
at each time interval , then the performance of the APML
algorithm will improve. Suppose the CIR is known at time. In
order to update the CIR for the time interval [ ], we
need to know the transmitted data sequence in this interval. At
time , however, the transmitted data sequence is unknown for
the interval [ ]. Since the data sequence is discrete,
there are possibilities for each transmitted data symbol.

In the APML algorithm, the estimated CIR at time, i.e.,
, is only multiplied by the first row of the data matrix, .

At time , in unknown and for a -ary signal set, there are
possible values for . Each possible value of corresponds

to a unique CIR estimate at time ( ). Each
is multiplied by some of the candidates for the second row of the
data matrix depending on the value of the data symbol
which corresponds to that CIR estimate at time .

This procedure can continue for all the rows of the data matrix
by estimating the CIR in the time interval ,

namely, . Notice that the CIR estimate
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Fig. 1. Performance of PML for channel a andl = 9 and� = 5; 8; 12; 15; 30; and60.

is multiplied by the ( )th row of the data matrix
.

The CIR estimation can be calculated for , , ,
where . Selecting a larger number for

will improve the performance as well as increase the computa-
tional complexity of the algorithm. In general, has
different values. Supposeis chosen smaller than . Then

is not only multiplied by the ( )th row of , but
also by the remaining rows of , namely, .

This technique is similar to per-survivor processing (PSP)
[10] algorithm for using more than one CIR estimate. For a CIR
with length in a -ary signal set, PSP estimates CIR’s
corresponding to all of the states in the VA and their survivor
paths leading to those states. In the APML algorithm, there are

CIR estimates.
The APML algorithm can be computed similar to the PML

(Section II-B, Note 3). Eachth row of is multiplied by
the appropriate CIR estimate ( ) and its squared
distance from the n-th element ofis computed. For any value
of , all these computations up to the ( )th row can be trans-
ferred to the next time interval. Specifically for and

, at each time interval, we only need to compute all
possible channel estimates for . Then multiply

these CIR estimates by the last row of the matrix and com-
pute their squared distance from the last element of the vector.
In this special case, the computational complexity of the APML
is equivalent to that of the PSP ( channel estimation and

squared distance computations).
Suppose the CIR is estimated in the APML by utilizing the

LMS algorithm and . Then APML[LMS(3)] is the nota-
tion for expressing that the LMS algorithm is used for the CIR
estimation and for all possible values of , , and

based on .

IV. EXPERIMENTAL RESULTS

The PML and SPML algorithms were simulated for the
binary signal set and their BER performance are derived for
two channels. The first channel, ,
has a deep null in its frequency response but no phase dis-
tortion. The CIR for the second channel is

. This channel has a relatively
flat amplitude spectrum but it has phase distortion [11].is
defined as . Fig. 1 compares the performance of the
optimum receiver (VA with known CIR) to the performance of
the PML algorithm for channel “a” and different values of
and constant . If increases, it results a more accurate
CIR estimation and consequently, the performance of the PML
algorithm improves. Fig. 2 compares the performance of the
optimum receiver to the performance of the PML algorithm for
channel “a” and different values ofand constant .
From Figs. 1 and 2 it can be concluded that increasingand/or

will improve the performance of the PML. The SPML algo-
rithm is simulated for the second channel when ,

, and alternating minimization procedure is
applied only once for all sets in each time interval. Fig. 3
compares BER performance of the SPML to that of the PML
and the VA under the assumption that the channel “b” is known.
The number of operations per bit in the SPML for this example
is approximately 680 compared to 22 528 operations per bit for
the PML while its BER performance is approximately 0.5 dB
worse than the PML for this example. Memory requirements
for the SPML is proportional to 176 while for the PML, it is
proportional to approximately 4096. The result demonstrates
the advantage of the SPML over the PML in terms of computa-
tional complexity and memory requirements.



126 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 49, NO. 1, JANUARY 2001

Fig. 2. Performance of PML for channel a and� = 15 andl = 5; 7; 9, and 11.

Fig. 3. Comparison between the PML, SPML, and the VA.

The APML algorithm is simulated for a mobile com-
munication channel in a Rayleigh fading environment. The
time-division multiple-access (TDMA) scheme based on
the North American Dual-Mode Cellular System (IS-54) is
applied to a three-tap CIR (=3). The elements of the CIR
( ) have equal power for

. This corresponds to a fading environment where
there is no line of sight. Each tap of the CIR is generated by
passing a white complex Gaussian noise generator through a
Doppler filter. The Doppler filter is a second order Butterworth
digital filter whose cut-off frequency is determined by

(18)

where , , , and are the symbol period, the carrier fre-
quency of the transmitted data sequence, the speed of the MS
with respect to the BS, and the speed of light, respectively.

The definition of the signal-to-noise ratio (SNR) for time-
variant channels is

(19)

where is the variance of the input data. For time-invariant
channels, the expected value in the summation will not be used.

For this channel, a vehicle speed of=150 mi/h is selected.
The normalized Doppler frequency () corresponding to this
speed is 0.0085 if the carrier frequency is 900 MHz. The equiv-
alent Doppler frequency is 206.5 Hz

The APML algorithm is compared with three different
VA-based algorithms. These techniques are PSP [10], BSE
[12], and “conventional” MLSE [15]. The computer simulation
results of these three VA-based algorithms are obtained from
[12].

The modulation scheme of QPSK is chosen for the data. The
input alphabet is , where
denotes the imaginary unit.

The simulation results for PSP, BSE, and conventional MLSE
are based on a decision delay of 5 L. The optimum block length
for BSE was found to be 11 via simulations. The optimum delay
in the CIR estimation for conventional MSLE to achieve the best
performance is 4 for these examples. The weighting factor in
RLS is optimized for all these techniques in each example to
achieve the best possible performance.

When mi/h, the APML(RLS(0)) and
APML(RLS(2)) are simulated for . For all the sim-
ulations, the SER was computed over a time interval of 7200
consecutive TDMA time slots, each with the structure of IS-54
time slot for the BS to the MS. For simplicity, only the training
sequence of length 28 symbols and the user information of
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Fig. 4. APML(RLS(0)) versus� on mobile channel (f = 0:0085).

Fig. 5. APML(RLS(2)) versus� on mobile channel (f = 0:0085).

260 symbols inside each time slot are considered [19]. At the
beginning of each time slot, an initial vector of is
chosen for the CIR coefficients. Then the training sequence is
utilized to estimate the CIR using the RLS algorithm.

Figs. 4 and 5 illustrate the SER performance of the
APML(RLS(0)) and APML(RLS(2)) when the RLS weighing
factor ( ) varies between 0.1 and 1.0 at SNR = 20 dB. These
figures demonstrate that the APML algorithm is not very
sensitive to variations of the weighting factor and there is an
acceptable range for choosingin order to obtain a reasonable
SER performance. Fig. 6 compares the SER performance
of the APML(RLS(0)) and APML(RLS(2)) algorithms to
that of the PSP, BSE, and “conventional” MLSE algorithms.
APML(RLS(2)) performs better than the VA-based algorithms.
This figure also illustrates the importance of the right choice for
and in the APML algorithm. If the channel is varying rapidly

with time, then should be selected close to, i.e., .

Fig. 6. Simulation performance of APML on mobile channel (f = 0:0085).

Otherwise, the performance of the APML algorithm degrades
considerably. The reason is that the CIR estimate used in the
APML does not represent the accurate channel estimation due
to small choice for compared to.

Table I illustrates the computational complexity of these al-
gorithms in terms of the number of multiplications ( ). The
complexity is computed for a CIR of lengthand a symbol al-
phabet size of . In general, the APML algorithm is as complex
as the PSP algorithm when and . In this par-
ticular example, APML(RLS(2)) has the same computational
complexity as the PSP algorithm for and .

V. SUMMARY

This paper described briefly the PML algorithm for data esti-
mation in an ISI environment using the ML design criterion. Un-
like the conventional ML methods which apply the VA, the new
algorithm (PML) does not apply the VA. A theoretical lower
bound for the mean of in the PML algorithm is derived. This
threshold can reduce the computational complexity of the PML
algorithm as well as checking its performance.

The SPML algorithm is a suboptimal approach which is suit-
able for channels with long impulse responses and has much
less computational complexity than the PML while its perfor-
mance is similar to that of the PML. The APML algorithm is
introduced for time-variant channels which can outperform all
of the VA-based techniques for some examples.

The PML-based algorithms should be applied to more time-
invariant channels as well as time-variant channels to have a
better understanding of these algorithms. We do not have an ana-
lytical performance analysis of the SPML algorithm. In general,
PML-based algorithms can have other applications beside what
we have mentioned here that can be explored in the future.

APPENDIX

PERFORMANCEDESIGNCRITERION FOR THEPML ALGORITHM

In this section, the error covariance matrix between the
channel coefficients and its estimate will be given. Also a
lower bound for the mean (expected value) ofin the PML
algorithm is developed. This lower bound can be used in the
PML to choose the appropriate value for. For example, if the
minimum in each iteration is much larger than this bound,
then should be increased to improve the performance of the
PML algorithm.
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A. Cramer–Rao Lower Bound for the Covariance of the
Channel Coefficients Error

is an unbiased estimate of the CIR [7]. The lower bound
of the covariance matrix can be derived using Cramer–Rao
lower bound.

(20)

where is the Fisher information matrix given by

(21)

The lower bound of the covariance matrix can be written as

(22)

where is the variance of the data sequence andis the
identity matrix.

B. A Lower Bound for the Mean of in PML

The PML algorithm is based on finding the minimum Eu-
clidean distance ( ) between and . The minimum of
is obtained through a global search of different possible
values for the -ary transmitted data sequence of length.
is a random variable with a mean and a variance. In this sec-
tion, a lower bound for the mean of is derived. This lower
bound will be used as an internal check on the performance of
the PML algorithm. When is computed for each candidate
of , this value of is compared to the lower bound. If is
smaller than the lower bound, the global search will be stopped
and that particular data sequence of lengthwill be picked as
the best data sequence. In this case, the receiver does not need to
search through all different values of and consequently,
the computational complexity of the PML algorithm is reduced
[17]. However, if the minimum that is obtained by the global
search is much larger than the lower bound for all values
of , then the receiver should increaseand/or to improve
the performance. It will be shown later that the lower bound is
a function of , , and . It is assumed that the receiver es-
timates by some method and it is beyond the scope of this
paper to discuss the details of these methods.

The following notation is defined.

is the estimated value of based on the estimated data se-
quence of length in . In order to find a lower bound for
the mean of , we assume that the data sequence of lengthis
estimated accurately and is used for derivation of the mean
of . From the above assumption,can be written as

(23)

where and

The mean of can be calculated as follows:

(24)

represents the expected value of a random variable. The order
of summation and expectation can be interchanged in (24).

is the estimated CIR based on the received data sequence
prior to and therefore, independent of the data se-
quence after . In (24), can be partitioned into
two parts.

(25)

The elements of and are the data se-
quence after and prior to , respectively. There-
fore, is independent of and . The
first term in (24) can hence be partitioned as follows:

(26)

where . The expected value of the
first term of (24) is determined by calculating the expected value
of (26).

(27)

and are statistically independent.
is obtained from (22).

(28)

(27) can be lower bounded as

(29)

where is a diagonal matrix that its firstth
diagonal elements are and the remaining diagonal elements
are zero.

(30)
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Notice that is independent of and
the data sequence is zero mean.

(31)

The first term in (24) can be lower bounded using (29). The
second term in (24) is equivalent to the variance of the noise.
The third term in (24) is

(32)

Equation (24) will be lower bounded as

(33)

The above lower bound for the mean ofis valid when .
If , the same steps can be followed and the lower bound
will be

(34)

If the CIR and data sequence are estimated accurately, then
. Therefore the mean of would be . This

is the first term in (33) [or (34)]. The remaining terms are due
to the fact that the channel estimation is not perfect and there is
some error between and . The above inequalities give a
lower bound for the mean of . Equation (33) [or (34)] will
provide a fixed value for the lower bound of the mean once
these parameters ( and ) are measured. However,
is a random variable and for each data, the minimum ofthat
is obtained through the global search can be smaller or larger
than this lower bound. In order to apply the lower bound of the
mean of , we multiply this bound by a constant (). c is usually
chosen smaller than unity to assure that the global search will
not stop unless the best data sequence of lengthis selected.
Computer simulation is demonstrated the results for different
values of in [17].
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