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Pseudo-Maximum-Likelihood Data Estimation
Algorithm and Its Application over Band-Limited
Channels

Hamid R. SadjadpouSenior Member, IEEEBNd Charles L. WebeFellow, IEEE

Abstract—A pseudo-maximum-likelihood data estimation decision delay. For time-varying fading channels, the channel
(PML) algorithm for discrete channels with finite memory in  estimation performance degrades significantly due to this delay
additive white Gaussian noise environment is developed. Unlike ;i {he gata estimation inherent in the VA. Adaptive channel esti-

the traditional methods that utilize the Viterbi algorithm (VA) tion in the VA bei d using tentative decision based
for data sequence estimation, the PML algorithm offers an alter- mation inthe VA can be improved using tentative decision base

native solution to the problem. The simplified PML algorithm is ~ On the best survivor path with small delay [15]. In this approach,
introduced to reduce the computational complexity of the PML the channel estimation is more accurate due to the small delay in

algorithm for channels with long impulse response. The adaptive the channel update. This technique will be referred to as “con-
version of the PML algorithm suitable for time-varying channels ventional” adaptive MLSE in this paper.

such as frequency-selective Rayleigh fading channels is also intro- .
duced. Computer simulation results demonstrate the performance A new a'QPT'thm based. O_n MLSE for an unknown Cha_nne,l
of these algorithms and compare them to the VA-based techniques iS Proposed in [10]. The joint channel and data estimation is

for different types of channels. The performance design criterion based on per-survivor processing (PSP). Each state in the VA

for the PML algorithm is derived in the Appendix. has a seperate CIR estimate that is based on the survivor path
Index Terms—Fading channels, maximum-likelihood decoding, leading to that state. The CIR update in the PSP for each state
MLSE. is carried without any decision delay. This algorithm exhibits

considerable improvement compared to the conventional adap-
tive MLSE while its computational complexity increases signif-
icantly.

HE TERM blind equalization or deconvolution in com- Another approach is proposed based on the MLSE using a

munication and signal processing applications refers to figlock of V symbols at a time. The metric computation for each
covering the input data sequence which is transmitted througlock is similar to the VA. The survivor paths for all the states
a linear channel by knowing its output only. If the channel igre traced back to detect a merge. If a merge occurs within the
known or a training sequence is transmitted at the beginningtgibck, a decision is made based on the merged data sequence up
the transmission, the equalizer utilizes this information to corto that timek. Then a new window oV data symbols is selected
pensate for the intersymbol interference (ISI). There are s&tarting from timek. If a merge is not detected within the block,
eral different criteria to design an equalizer. Equalization tecthe N data symbols with the best survivor path is selected. The
niques developed from the maximum-likelihood (ML) criteriorstates in the VA are initialized based on the results from the
(see example in [1]) generally utilize maximume-likelihood seprevious block. The channel is updated once at the beginning of
guence estimation (MLSE) at the receiver by using the Viterbach block based on the survivor path from the previous block.
algorithm (VA) [2] for data sequence estimation. VA-based teciThis technique will be referred to as block sequence estimation
niques estimate sequencef data with a delay proportional to (BSE) [12]. The variablef.,, in Table | is a function of merging
the length of the channel impulse response (CIR). delay inside each block.

In time-varying environments such as mobile communica- We suggest a new algorithm (pseudo-maximume-likelihood
tions systems, adaptive MLSE receivers are required for ad@PpML]) based on the ML criterion that does not utilize the
tive channel identification and tracking. In traditional adaptivgA. The PML algorithm is a symbol-by-symbol estimation
MLSE, adaptive channel estimation algorithms are based on #igorithm with some delay and the CIR is estimated within the
estimated data sequence derived from the VA with significaalgorithm. The PML is suitable for time-invariant channels.

Adaptive version of the PML algorithm (APML) is introduced

_ _ o for time-varying environments such as frequency-selective
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TABLE |
COMPARISON OFCOMPLEX MULTIPLICATION PER DATA SymBOL BETWEEN VA-B ASED METHODS AND THEAPML

BSE PSP APML(RLS(0)) | APML(RLS(2))
L=[=3,i=0 L=1=3,i=2
Metric Nyt | L x ME % fo, L x ME ~Ix M L x ML

update
CIR update | Ny 8x L 8 x L x ML 8 x L x M 8 x L x Mt
(RLS)

assumed an independent identically distributed (i.iddJary From (2), the conditional probability density function (pdf) of
signal. The transmitted data sequence and noise are indepka-received signal giveAy andh is
dent. The channel length is either known or upper bounded.

2
According to this modely;, can be written as JAn. h) = 1 ey — Anh 3
f(xy/An, b) (O’n\/%)N exp “202 3)
L
— Z Rian—iv1 + . (1) whereo? is the variance of the noise. Let
i=1

C(AN, h) = |£N — Axh 2

4
The above equation for discrete time model is based on a “)

whitened matched filter (WMF) at the front-end receiver [13ke the likelihood function. The minimization of this likelihood
The WMF consists of a filter matched to the continuous tIM@inction with respectth gi\/en the data matri¥d  is astraight-
channel impulse response cascaded with a noise whitenfggivard least squared estimation problem.
filter. The match filter can be realized at the receiver when the
continuous time channeh(t)) is known. If k(t) is unknown, IdC(An,h) ¢ ¢

) : ———1= = 2A%ry — 2AAnh 5
the front-end WMF can be derived based on the assumption that oh NEN NANZ ()
the channel is characterized by a finite number of parameters . )
such as the tapped-delay line model [14]. In this case, t&€reAl is the transpose aly . If (5) is set to zero, the ML
front-end processor consists of a fractionally spaced processfiymate ofa will be obtained.
filter matched to the known data pulse followed by a whitening ~ _
filter. hy = (AVAy) " Alry (6)

There are no other restrictions on the nature of the chanrge)%AN)qARr is the pseudoinverse ofy and even when the

i.e., with or without zeros in its frequency response, linear o[t ~ is not full rank, the singular value decomposition (SVD)
nonlinear phase. The transmitter and the receiver are assum ( nique can be uéed to compute the pseudoinversexof
synchronous. 9, ch. 11].

The paper is organized as follows. Section Il describes t éThe new likelihood function is obtained by substituti?ng[
mathematical derivation of the PML algorithm briefly. Secfnto ). ML
tion Il describes the SPML and APML algorithms. Computer
simulation results are given in Section IV. The performance
design criterion for the PML algorithm is presented in the

Appendix. A summary and some suggestions for future work s . .
conclude the paper. [t can be shown [3] that minimization of (7) is equivalent to

maximization of the following likelihood function:

2

" —1
C(An, hyyp) = ey — Ax (A An) "~ Ajry

()

IIl. PML ALGORITHM C'(Ax) =iy Ay (Al Ax) " Alry (8)
A. Derivation of the PML Algorithm

, : . , . )
In vector form (1) becomes C’(Ay) is a function of the received sign@l) and the trans

mitted data sequendey,).

The following assumptions have been made for optimization
of the likelihood function. The data sequence is known (or esti-
mated) prior to timé& + NV 4 1 and our objective is to estimate

'y = Axh + ny (2)

wherer  =[71 o e b ny =[ng N T )
N [’? _ [7’”’]1 I an7dk+]\ ooy =[mn N 1 e data fromk + N 4110k + N + 1. At time %, the known (or
= Ll estimated) data will be shown &g and the transmitted data as
Qg1 a A T ax. Matrix A atk + IV + 1 can be written as
A2 AR41 T Ak—L+3
An = . . ) . Ay

t
Ak+N  Ok+N—-1 - Ok4N—L+1 Apn g
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whereA y is the same as before with all its elements are known
(or estimated) and?, /4 1S shown in the equation at the bottom
of the page. Ity , is defined as

'y

Inpi = |~~~ 3)
I
where r, is the same as before and; =
[Tk-l—N-i—l Tkt N1 ]t, thenC (AN-H) is given by
C'(An+1) = ey Av (A Av ) T A e 9)
Our objective is to maximiz€’(An ;). C'(An4i) can be 4)

expressed recursively. The details of this derivation is in [3] and
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the minimum Euclidean distanc®] between the vectors
k, andr,;. This distance is defined as

D=l - 51|2 = (r; — k)" (r; — ky)- (16)

If the best data sequence of lengthwhich has the
minimum distance D between k; and r; is de-
fined as (aj nip - Wyngr)r then Gryngr

= ay,n41- The remaining estimated data sequence
(@hy Ny2 a4 1) Will be discarded. The min-
imum Euclidean distance computations in Step 3) can be
used for the next iteration (see Notes below).

Setk = k + 1. Return to Step 2) and continue the algo-
rithm to estimate the next data.

the results are given here. Notes:
1) The PML algorithm is defined for time-invariant chan-
Cl(An+) = C'(An) + Alky, ke) (10) nels. Therefore, when the ML estimate of the CIR ()
wherek, andk; are defined as is computed, it can be used for the entire data sequence.
If the ML estimate of the CIR needs to be updated, we
k, =aly (A An) T4y (11) can use Greville’s theorem to recursively compute the
ko =aby (AYAn) tan i (12) pseudoinverse o i [16]. For time-varying channels, the

andA(k,, k») is given by

2

Ay, ko) = — K (ko + 1)k, + 20k, + rfkor, )
—riko(ko + ;) 'kor; — 2riko(ko + ;) 7'k,

(13) 3)

wherel; is thel x [ identity matrix. Equation (10) is a recur-
sive equation and in order to maximi¢&( Ay ;) at each time
period,A(k,, k2) should be maximized. It is shown in [4] that
A(kq, k) is maximized when

ki =1, (14)

It can be proved that (14) provides the global maxiniuof
A(k;, ko) assuming thak, can take on an arbitrary continuum
of values througlax; [4]. k; can be also written as

k, = a?\"-HEML (15)

whereh,,; is defined in (6).

B. PML Algorithm

1) Atthe beginning, create the matrixy . To create this ma-
trix, N + L — 1 data is needed. This data is obtained from 4)
either a training sequence or a blind initialization algo-
rithm (see Section 1I-D). Then compute thg;; vector.

2) There areV/’ possible values fos, -, Matrix or equiva-
lently k, . Multiply each candidata’, , by h,,;, and find

IWe cannot infer from this development that the ML demodulation will result,
since the transmitted data sequence must be constrained to discrete values.

APML algorithm recommends more practical and com-
putationally efficient algorithms.

This algorithm is general and can be applied to both bi-
nary signal set oA/-ary complex data. In the case that
the data sequence is complé,; is a complex vector.

In order to minimize the computational complexity for
the PML algorithm, the following procedure can be uti-
lized for Steps 2) and 3). Eackh row of ai\url is mul-
tiplied by h,;; and its squared distance from tith ele-
ment inr; is computed and stored. There will be a total
of 2! M = (M(M' —1))/(M — 1) positive real
numbers. Adding these values in the right order will pro-
vide all possible values dP. After a4 y+1 IS €stimated,
only M(M'*~t — 1)/(M — 1) possible values of these
real numbers are required to be stored for the next time
interval. In the next time interval, we only need to com-
pute the vector multiplications of the last row of the new
aly_; matrix by h,;; and compute its squared distance
from the last element of the new vectgr When! < L,

the computational complexity is proportional 3¢' and

if I > L, the computational complexity is proportional to
M. The memory requirements is always proportional to
M(M!"—1)/(M —1).

The performance of the PML algorithm depends on the
accurate channel estimate and correct choicé.fhg,;
estimation can be improved by choosing a large value for
N. In order to evaluate the performance of the PML, a
lower bound for the mean value 6fis derived in the Ap-
pendix. If the average minimu®® computed in practice

is much larger than this bound, then this is an indication

Ak+N+1 OGk+N
t _ .
ANy —

Ak+N+1 Ak+N+1

Ak+N

Ap+N—L+2

At N+ L+1
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that the PML does not perform well. A new CIR estimate 2) Randomly divide the data sequence of lenjth- L. — 1

and/or an increase ihis required to improve the perfor- into S subsets. For example, suppase+ L — 1 = 10

mance of the PML algorithm. and S = 2. In this step, we can have two subsets as
5) The PML algorithm as described above is similar to tree {a1, ag, a3, a4, as} and{ag, ar, as, ag, a10}.

search algorithms. In [18], a tree search algorithm similar 3) Apply the alternating minimization procedure for tfta

to the PML is proposed. set while keeping the remainir(@ — 1) sets fixed(j =
1,2, ..., .5). Equation (7) or (8) is used for optimization
of the likelihood function. Continue this method until the
data sequence of lengf¥ + . — 1 converges.

The above condition (14) has a significant physical interpre- 4) Based on the converged data sequence in Step 3) above,
tation. When each row offy,, is multiplied byhy,;, this is regroup (in an arbitrary manner) the converged data se-
equivalent to the convolution of the transmitted data sequence quence of lengthV + L — 1 into S, randomly indexed,
with the estimated channel coefficients. Obviously, we expect  new data sets again of the same length. Continuing on the
this value to be equal to the received signal at that time period.  example in Step 2), we can have the new two subsets as
The received signals are the elements-ptector. If [ = 1, {a1, a3, as, az, ag} and{az, ay, as, as, aio}-
then PML is equivalent to a decision-feedback equalizer (DFE) 5) Return to Step 3) and continue this procedure until the
[5]. DFE is an example of symbol-by-symbol detection, where  optimum result for the new data sets is the same as the
in each time interval, the ISI is subtracted from the received  previous data sets.
signal and the output is fed back to a slicer which makes thewhen the alternating minimization procedure is applied to
decision about the current symbol. This is exactly the case f@4ch data set, it does not necessarily converge to the global op-
the PML algorithm wheri = 1. When! > L, then perfor- timum. However, after it converges to a local optimum, by rear-
mance of the PML is equivalent to that of the VA. Obviouslyianging the data sequence into a new subsets of data in Step 4,
any value ofl in the middle of these two values will providethe alternating minimization procedure will converge to a new
a performance of the PML which will be between the perfolocal optimum which is closer to the global optimum than the
mance of the DFE and the VA. Section IIl will discuss somgrevious one if the new iteration has different result from the

techniques to reduce the computational complexity of the PMJrevious one. The reason is because the previous local optimum
for channels with long impulse response and also applicationjgfthe starting point for the new iteration.

C. Intuitive Discussion

this algorithm to time-variant systems. In general, N + L — 1 data is needed to start the algorithm.
This can be provided by using the blind initialization procedure
D. Blind Initialization or using a training sequence.
To start the PML algorithmV + L — 1 data is needed\ is
the number of rows il - and L is the length of the CIR). If a I1l. APPLICATION OF THEPML ALGORITHM

global search is conducted, there a7é"t-~! possible values. _ _ _ _ _

The global search will find the best data sequence of lefgth This section d_escnpes two versions of the PML algorithm.
L — 1 that optimizes (7) or (8). Instead of a global search, wE® SPML algorithm is a suboptimal approach with less com-
can divide this data sequence iffsubsets and try to optimize Putational complexity than the PIM'- algorithm. This algorithm
(7) or (8) by utilizing alternating minimization procedure [G]d?es not search globally among" different possible values of
with some modifications to the original technique. By using thdx+: @nd it is suitable for systems with long CIR and/or large

approach, the computational complexity will be reduced frof{Phabet size of the signal set. It has been shown by simulation
MN+L-1in the global search t8/(N+L-1)/5_The alternating that this algorithm can perform close to the PML algorithm with

minimization procedure is a numerical solution for extremuf§SS computational complexity. _ _
problems arising in information theory and statistics. The APML algorithm is designed for time-variant channels.
4 This algorithm addresses different issues related to the effective

Let d(a, b) be a real valued function of two variables= > &9 . ; )
estimation of the CIR specially for time-variant channels.

andb € B whered(a, b) is the Euclidean distance between
andb, and A and B are two convex sets. Let's choose an arbi- _
trary elemend, € B, and finda; € A which has the closest A. SPML Algorithm

distance td. . Then fixa = a,, and findb, € B whichhasthe  the purpose of the SPML algorithm is to reduce the compu-
closest distance to, . If this procedure continues alternatively;stional complexity of the PML algorithm. Three techniques are
for a; andd; (i = 1, 2, - --), itis proven in [6] that this method ;troduced here.
converges to the minimum distance in these two sets, providedl) Using the Previous Estimated Data SymboEhe PML
that the sets are convex and the distance satisfies certain Coaﬁjbrithm performs a global search to find the best data symbols
tions. o - of lengthl, selects only the first data and discards the remaining
In our problem, it is unknown whether the condition fof _ ; 4ata symbols. In the SPML algorithm, the remainirgl
reaching the global optimum is satisfied. We still choose {gstimated data symbols will be used in the next iteration. Sup-
apply the alternating minimization procedure as follows. pose attime: - N + 1, [ data are estimated in the time interval
1) Start with an initial value for the data sequence of lengfts+ N +1, £+ N +{]. The first data is selected as the estimated
N+ L-—1. data symbol at timé& + N + 1, i.e.,ax+ 1. The last/ datain
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theinterval f + N +1—.J+1, k+ N 4[] will be transferred to this method can converge very fast. The number of operations
the next time period. By transferring the labtata to the next per symbol is now proportional t/‘—“/5 . It is important that
time period, the number of global search is reduced fidhto  after! — .J data are divided int& subsets, the first search is
M7 and consequently, the number of operations per symlapplied to the most future data subset and the last search is

is now proportional ta\/'=7. applied to the most recent data subset which incluges, ;1.
The rational to use the lagtdata is as follows. The Euclidean 3) Estimating More Than One DataWWhen! data are esti-
distance D) betweerafwr]\urlﬁML andr; is defined as mated in the PML algorithm, we can select more than one data
at each time.
R The vector multiplications in the PML and SPML algo-
D = a4 yyihy, — 1 rithms can be computed simultaneously by utilizing parallel

t N ty t N i
= (af v — 1) (@ p vy — 7). (17)  Processing.

In (17), ap+n+1 IS justin the last row oﬁﬁ\,H. ar+N+i—118in B, APML Algorithm
the last two rows ok | ., and finally,ax, 41 is in all the ) o ) )
RN+ AT In some practical applications such as mobile radio commu-
rows ofal,, ;. Obviously, the effect oty is less than 1N pre pp ch as mo : _
the effect ofaxs 41 in the computation o). When the last nications environment, the CIR varies with time. Mobile radio

J estimated data symbols are transferred to the next iteratiGRmMMmunications usually occur between afixed base station (BS)
poor estimation of thesé data symbols will not have signifi- and several mobile stations (MSs). When the BS transmits a

cant effect in the computation @ and consequently, will not Si9nal, the MS does not necessarily receive the signal from one
degrade the performance considerably. On the other hand, BA{- The original signal from the BS is reflected and diffracted

mistake in estimating,.x-1 has a significant effect on the by. U|Id|_ngs and other materlals_ln urban or rural areas. Each re-
value of D. This phenomenon is very similar to weighting th&€1Ved signal by the MS has a different path and, consequently,
data symbols between timie+ N + 1 to k + N + L. The re- & different tlme-(_llela_y, amplitude, p_hase, and Doppler _shlft. If

cent data qu; 1) is weighted more heavily than the futurethe symbol rate is high, the_ spreading qf each symbol into the
data @442 10 anyyi). In general, if the power of the CIR future symbols can cause intersymbol interference (ISl). This

for the first J + 1 taps is smaller than the total power of theection willintroduce an adaptive version of the PML algorithm
CIR (7H n2/ 3 _h2) < 1), then this technique will (APML) which can reduce the effect of the ISI for time-variant

=1
not degrade the performance of the PML algorithm considéi?@nnels.

ably. This technique is not very effective for channels with short In the APML algorithm, the CIR estimation is no longer
length of memory. Because If is small, az4 y4: has almost restricted to ML estimate and any adaptive algorithm such as
the same effect a1 and poor estimation afy. x4 will least mean square (LMS) or recursive least-square (RLS) [9]
have a significant effect on the value Bfand consequently, on for channel estimation can be utilized. When the CIR is esti-
the symbol-error rate (SER) performance. Notice that after ed®@ted by some adaptive algorithm, then the rowsjgf, are
symbol period, one of thé estimated data symbols will be up-multiplied by the CIRL(k)). This multiplication is equivalent
dated. Therefore, aftef symbol period, the previous estimated© the convolution of the transmitted data sequence in the time
J data symbols are updated with a new set. On the other hatigierval [k + 1, k + 1] with the estimated CIRK(%)) at timek.
the data in the time intervak[+ N + 2, k + N+ — J]and If the CIR is time-variant, after each time interva), the CIR
k + N + 1+ 1 are updated at each symbol period while the réan change considerably. Therefore, convolving the same CIR
maining last/ data from timek + N +1—J +1tok+ N +{ for the entire time interval{ + 1, k£ + ] is not an accurate
are updated between every two symbol periof, (2, is the assumption. On the other hand, if an update of the CIR is used
symbol period) fofas 4 41— 741 t0 everyJ symbol period for at each time interval’;, then the performance of the APML
ars N+ depending on their effect on the valuedf algorithm will improve. Suppose the CIR is known at tifndn

We can also compare this technique to delayed decision-fe@&der to update the CIR for the time interval+ 1, £ + 1], we
back sequence estimator (DDFSE) algorithm. In DDFSE [g]ged to know the transmitted data sequence in this interval. At
part of the past data is fed back and subtracted from the recei&e , however, the transmitted data sequence is unknown for
signal as the DFE section of the equalizer. In SPML, the futue interval - + 1, k +[]. Since the data sequence is discrete,
decoded data are transferred to the next time interval to avéigre arel/ possibilities for each transmitted data symbol.
global search. _In the APML algorithm, the estimated CIR at tinig i.e.,

2) Alternating Minimization Procedure Techniquédter (%), is only multiplied by the first row of the data matriq, ;.
transferringJ data to the next time interval, there are stilAt time %, a;, in unknown and for @1 -ary signal set, there are
I — .J — 1 decoded data symbols available that can be utilized possible values far,,. Each possible value af; corresponds
in the next time interval. Instead of searching amavig 7 toaunique CIR estimate at timet-1 (h(k +1)). Eachh(k +1)
different data symbols, this- .J data can be divided int§ sets. is multiplied by some of the candidates for the second row of the
Then the alternating minimization procedure [6] will be appliedata matrixa; |, depending on the value of the data symipl
to these setd. — J — 1 estimated data from the previous timevhich corresponds to that CIR estimate at tine- 1.
interval will be used as the initial value to start the alternating This procedure can continue for all the rows of the data matrix
minimization procedure. Since this procedure does not staft,; by ?Stimating thg CIR in the time interv@l + 1, & + 1],
from an arbitrary value for the data symbols of lengthJ —1, namelyh(k+1), ---, h(k+I—1). Notice that the CIR estimate
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Fig. 1. Performance of PML for channel a ahe: 9 anda = 5, 8, 12, 15, 30, and60.
ﬁ(k + ¢) is multiplied by the { + 1)th row of the data matrix IV. EXPERIMENTAL RESULTS
-
The CIR estimation can be calculated ftk), h(k +1), - The PML and SPML algorithms were simulated for the
(k + i) where0 < i < [ — 1. Selecting a larger number for binary signal set and their BER performance are derived for
will improve the performance as well as increase the computao channels. The first channdi,, = [0.407, 0.815, 0.407],
tional complexity of the algorithm. In generdi(k 4 i) hasM’ has a deep null in its frequency response but no phase dis-
different values. Supposeis chosen smaller thah— 1. Then tortion. The CIR for the second channel is = [0.04,
h(k+1) is not only multiplied by thei(+ 1)th row OfaNJ,l, but  —0.05, 0.07, —0.21, —0.5, 0.72, 0.36, 0.0, 0.21, —0.5, 0.72,
also by the remaining rows afy_ ,, namely,i 42, ---, 1. 0.36, 0.0, 0.21, 0.03, 0.07]. This channel has a relatively

This technique is similar to per-survivor processing (PSHAat amplitude spectrum but it has phase distortion [d]js
[10] algorithm for using more than one CIR estimate. For a ClBefined asx = (N/L). Fig. 1 compares the performance of the
with lengthL in aM-ary signal set, PSP estimate&“~ CIR's  optimum receiver (VA with known CIR) to the performance of
corresponding to all of the states in the VA and their survivahe PML algorithm for channel “a” and different values @f
paths leading to those states. In the APML algorithm, there aiad constant(l = 9). If « increases, it results a more accurate
M* CIR estimates. CIR estimation and consequently, the performance of the PML

The APML algorithm can be computed similar to the PMlalgorithm improves. Fig. 2 compares the performance of the
(Section II-B, Note 3). Eachth row of aly_,, is multiplied by~ optimum receiver to the performance of the PML algorithm for
the appropriate CIR estimata({* + » — 1)) and its squared channel “a” and different values éfand constante(« = 15).
distance from the n-th elementnfis computed. For any value From Figs. 1 and 2 it can be concluded that increasifagd/or
of ¢, all these computations up to thiet 1)th row can be trans- [ will improve the performance of the PML. The SPML algo-
ferred to the next time interval. Specifically fér = 1. and rithm is simulated for the second channel whea L = 11,
i = [ — 1, at each time interval, we only need to compute all. = 3, S = 2 and alternating minimization procedure is
M*E=1 possible channel estimates otk + ). Then multiply applied only once for all sets in each time interval. Fig. 3
these CIR estimates by the last row of tig, ; matrix and com- compares BER performance of the SPML to that of the PML
pute their squared distance from the last element of the vectorand the VA under the assumption that the channel “b” is known.
In this special case, the computational complexity of the APMLhe number of operations per bit in the SPML for this example
is equivalent to that of the PSRAZ~* channel estimation and is approximately 680 compared to 22 528 operations per bit for
M?T squared distance computations). the PML while its BER performance is approximately 0.5 dB

Suppose the CIR is estimated in the APML by utilizing thevorse than the PML for this example. Memory requirements
LMS algorithm andi = 3. Then APML[LMS(3)] is the nota- for the SPML is proportional to 176 while for the PML, it is
tion for expressing that the LMS algorithm is used for the ClRroportional to approximately 4096. The result demonstrates
estimation and for all possible valueslaft +1), h(k+2), and the advantage of the SPML over the PML in terms of computa-
h(k + 3) based orh(k). tional complexity and memory requirements.
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Fig. 2. Performance of PML for channel a and= 15 and! = 5, 7, 9, and 11.
1.0E-01 § The definition of the signal-to-noise ratio (SNR) for time-

1
] variant channels is

1.(]5-02;

2
— | %a 12
& : ' SNR = 10 x 1og,<E z_: E(|hy) )) (19)
1.0E:03 1 | ——PMU=1kmomnCR =1
{| = SPVLE=11S2.59) known O wherec? is the variance of the input data. For time-invariant
— —+— VA Ko QR channels, the expected value in the summation will not be used.
: - For this channel, a vehicle speedwf150 mi/h is selected.
4 56 7 8 91 The normalized Doppler frequency,) corresponding to this
SNA(E) speed is 0.0085 if the carrier frequency is 900 MHz. The equiv-
. . alent Doppler frequency is 206.5 Hz
Fig. 3. Comparison between the PML, SPML, and the VA, The APML algorithm is compared with three different

VA-based algorithms. These techniques are PSP [10], BSE
[12], and “conventional” MLSE [15]. The computer simulation
) S ) results of these three VA-based algorithms are obtained from
The APML algorithm is simulated for a mobile com-rj51
munication channel in a Rayleigh fading environment. The The modulation scheme of QPSK is chosen for the data. The
time-division multiple-access (TDMA) scheme based Ofput alphabet i1+ j, =1+ j, =1 — 4, +1 — j}, wherej
the North American Dual-Mode Cellular System (1S-54) i§anotes the imaginary unit.
applied to a three-tap CIRLE3). The eIer2r1ents of the CIR " The simulation results for PSP, BSE, and conventional MLSE
(hi(k), ha(k), ha(k)) have equal powew;, = 1/3 for 416 hased on a decision delay of 5 L. The optimum block length
i=123. _Thls corresponds to a fading environment Wherg, BSE was found to be 11 via simulations. The optimum delay
there is no line of sight. Each tap of the CIR is generated By he CIR estimation for conventional MSLE to achieve the best
passing a white complex Gaussian noise generator throudBeformance is 4 for these examples. The weighting factor in
Doppler filter. The Doppler filter is a second order Butterwortly, g is optimized for all these techniques in each example to

digital filter whose cut-off frequencyy is determined by achieve the best possible performance.
v When v = 150 mi/h, the APML(RLS(0)) and
fa=Tofe (18) APML(RLS(2)) are simulated fof = 3. For all the sim-

ulations, the SER was computed over a time interval of 7200
whereT7y, f., v, andv, are the symbol period, the carrier fre-consecutive TDMA time slots, each with the structure of 1S-54
guency of the transmitted data sequence, the speed of the fi%e slot for the BS to the MS. For simplicity, only the training
with respect to the BS, and the speed of light, respectively. sequence of length 28 symbols and the user information of
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Fig. 6. Simulation performance of APML on mobile channgl & 0.0085).

Otherwise, the performance of the APML algorithm degrades
considerably. The reason is that the CIR estimate used in the
APML does not represent the accurate channel estimation due
to small choice for compared td.

Table I illustrates the computational complexity of these al-
gorithms in terms of the number of multiplication¥.(.,;). The
complexity is computed for a CIR of lengfhand a symbol al-

J phabet size al1 . In general, the APML algorithm is as complex
as the PSP algorithm wheln = [ and¢ = [ — 1. In this par-
ticular example, APML(RLS(2)) has the same computational
complexity as the PSP algorithm far= [ = 3 andi = 2.

10 1 Il 1 1 L 1
01 02 03 04 05 06 07 08 09 10

RLS parameter ()

Fig. 4. APML(RLS(0)) versug on mobile channelfy; = 0.0085).

SNR=20dB
v =150 miles/h

e—— APML(RLS(2)),1=3
V. SUMMARY

This paper described briefly the PML algorithm for data esti-
] mation in an ISI environment using the ML design criterion. Un-
like the conventional ML methods which apply the VA, the new
algorithm (PML) does not apply the VA. A theoretical lower
bound for the mean ab in the PML algorithm is derived. This
threshold can reduce the computational complexity of the PML
algorithm as well as checking its performance.

The SPML algorithm is a suboptimal approach which is suit-
able for channels with long impulse responses and has much
less computational complexity than the PML while its perfor-
mance is similar to that of the PML. The APML algorithm is
introduced for time-variant channels which can outperform all
of the VA-based techniques for some examples.

The PML-based algorithms should be applied to more time-
260 symbols inside each time slot are considered [19]. At thigariant channels as well as time-variant channels to have a
beginning of each time slot, an initial vector f 0 0]" is  petter understanding of these algorithms. We do not have an ana-
chosen for the CIR coefficients. Then the training sequenceygical performance analysis of the SPML algorithm. In general,
utilized to estimate the CIR using the RLS algorithm. PML-based algorithms can have other applications beside what

Figs. 4 and 5 illustrate the SER performance of thge have mentioned here that can be explored in the future.
APML(RLS(0)) and APML(RLS(2)) when the RLS weighing
factor () varies between 0.1 and 1.0 at SNR = 20 dB. These
figures demonstrate that the APML algorithm is not ver APPENDIX

gures - A 9 . ¥’ERFORMANCEDESIGN CRITERION FOR THEPML ALGORITHM
sensitive to variations of the weighting factor and there is an
acceptable range for choosifign order to obtain a reasonable In this section, the error covariance matrix between the
SER performance. Fig. 6 compares the SER performandeannel coefficients and its estimate will be given. Also a
of the APML(RLS(0)) and APML(RLS(2)) algorithms tolower bound for the mean (expected value)i®fin the PML
that of the PSP, BSE, and “conventional” MLSE algorithmsalgorithm is developed. This lower bound can be used in the
APML(RLS(2)) performs better than the VA-based algorithm$ML to choose the appropriate value foiFor example, if the
This figure also illustrates the importance of the right choice faninimum D in each iteration is much larger than this bound,

[ and: in the APML algorithm. If the channel is varying rapidlythen! should be increased to improve the performance of the
with time, theni should be selected close koi.e.,: =1 — 1. PML algorithm.

Pr{symbol error)
1S

10 1 1 1 1 L
01 02 03 04 05 06 07 08 09 10

RLS parameter(s)

Fig. 5. APML(RLS(2)) versus on mobile channelfl; = 0.0085).
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A. Cramer—Rao Lower Bound for the Covariance of the WheregzNH)i = [ar4N+i ** Gr+Nti—r+1] @and
Channel Coefficients Error

t
h,,; is an unbiased estimate of the CIR [7]. The lower bound ol g({\’f”l
of the covariance matrix can be derived using Cramer—Rao N+l — at
lower bound. S(N+D

The mean ofD can be calculated as follows:

4
~ 2
e =€ |3 ((atwen, (0= Bn)) + o
where.J is the Fisher information matrix given by lz; ( (NV+s ( )) AN

I (21) +27‘Lk+N+i§2N+1)i (h - ﬁML) ) ] (24)

covar (hyy —h) > J! (20)
(B ~B)

0? No?
Jz—g{wlnPr(gN/h)}z 2
£ represents the expected value of a random variable. The order
of summation and expectation can be interchanged in (24).

. o2 hyp, isthe estimated CIR based on the received data sequence
covar (QML - h) Z N2 I (22)  prior tok + N + 1 and therefore, independent of the data se-
¢ guence aftek+ N +1. In (24),@2N+l>i can be partitioned into
whereo? is the variance of the data sequence nistheL x L tWo parts.
identity matrix.

The lower bound of the covariance matrix can be written as

gEN-l—l)i = [ak-l—]\‘r—l—i et ak+1\r+10 . 0]
B. A Lower Bound for the Mean @ in PML I Y

The PML algorithm is based on finding the minimum Eu- IQENJrl)f(l) +§EN+I)7-(2)' (25)
clidean distancel{) betweenk; andr;. The minimum ofD
is obtained through a global search &f' different possible
values for thelM -ary transmitted data sequence of lengtiv
is a random variable with a mean and a variance. In this s
tion, a lower bound for the mean @ is derived. This lower

The elements ohf ., (1) andaf, ., (2) are the data se-
quence aftek + IV and prior tok + IV + 1, respectively. There-
fore, af ;. (1) is independent ohyy. andag,.,, (2). The
st term in (24) can hence be partitioned as follows:

bound will be used as an internal check on the performance T ¢ h—h 7 W 1

the PML algorithm. WherD is computed for each candidate \™(¥+9: (— —ML)) Ay, (HWavg, (1)

of k,, this value ofD is compared to the lower bound. ¥ is + 280y 40, (DWay 12, (2)
smaller than the lower bound, the global search will be stopped + §2N+l)z- (2)Wainip,(2) (26)

and that particular data sequence of lengthill be picked as

the best data sequence. In this case, the receiver does not negghiqe 2 (h — Iy )(h — Iy )t The expected value of the

search through all/* different values ok, and consequently, firstterm of (24) is determined by calculating the expected value
the computational complexity of the PML algorithm is reducegs (2g).

[17]. However, if the minimunD that is obtained by the global

search is much larger than the lower bound fordl values & (gENH)_(1)W§(Ar+l)7_(1))
of ky, then the receiver should incredsand/or N to improve _¢ W Dat 1
the performance. It will be shown later that the lower bound is = £ (trace (Wagy 41, (1) &' (w40, (1))
a}functlon ofl, N, L ando2. Itis ass'umed that the receiver es- = trace(E(W)E (Q(NH)Z_ (1) QENH)Z_ (1)) 27
timateso2 by some method and it is beyond the scope of this
paper to discuss the details of these methods. W and (aiv 4, (1)§EN+I)7- (1)) are statistically independent.
The following notation is defined. E(W) is obtained from (22).
AL R 2
ki 2 aly, EW) 2 I (28)

a

kl is the estimated value &; based on the estimated data sg27) can be lower bounded as
qguence of lengtld in ay;. In order to find a lower bound for 5 2
the mean ofD, we assume that the data sequence of lehgth  (27) > trace <U_n Ir, x diag(c?--- 620 0)) = %

estimated accurately arld is used for derivation of the mean ogN ¢
of D. From the above assumptial, can be written as (29)
A 2 wherediag(o? - -- 02 0- - - 0) is a diagonal matrix that its firgth
D= ‘aRerz (h - hML) +gz‘ diagonal elements are’ and the remaining diagonal elements
are zero.

=3 (alyso, (B hur) + nk+N+i)2 (23) & (a1, ()Waiy10,(2)) =0. (30)

i=1
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Notice that(gENH)i (_1)) is independent of Wa y ), (2)) and 6]
the data sequence is zero mean.
. 2 [7]
2 (QENH)i @Wani, (2)) =& (§2N+l>i (2) (h - hML)) -
>0. (31)
[9]

The first term in (24) can be lower bounded using (29). The[m]
second term in (24) is equivalent to the variance of the noise.

The third term in (24) is
[11]

& (2nk+N+i§EN+1)i (h - ﬁML)) = 0. (B2)
Equation (24) will be lower bounded as (13
o2i 2 2 I+1

The above lower bound for the meanfis valid when! < L. [15]
If I > L, the same steps can be followed and the lower bound

will be [16]
L(1- L)
L2,

If the CIR and data sequence are estimated accurately, th&}!
r; — ki = n;. Therefore the mean dd would bel x ¢2. This
is the first term in (33) [or (34)]. The remaining terms are due[19]
to the fact that the channel estimation is not perfect and there is
some error betweeh andﬁML. The above inequalities give a
lower bound for the mean ab. Equation (33) [or (34)] will
provide a fixed value for the lower bound of the mean once
these parameters, (V, L, ando?2) are measured. Howeve)
is a random variable and for each data, the minimurivdhat
is obtained through the global search can be smaller or larg
than this lower bound. In order to apply the lower bound of tr
mean ofD, we multiply this bound by a constari(c is usually
chosen smaller than unity to assure that the global search \
not stop unless the best data sequence of lehighselected.
Computer simulation is demonstrated the results for different
values ofc in [17].

L(L+1)
2N

(17]

E(D) > o2 x <l + (34)
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