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Construction of OFDMM-QAM Sequences With
Low Peak-to-Average Power Ratio

Beeta Tarokh and Hamid R. SadjadpoBenior Member, IEEE

Abstract—\We present a technique to deriveM-quadrature we construct M-QAM signal constellations as the vector
amplitude modulation (QAM) signals from quaternary phase-shift sum of quaternary phase-shift keying (QPSK) constellations.

keying (QPSK) constellations whenM = 2™ and n is an even ; ;
number. By utilizing QPSK Golay sequences, we have constructed Section I\é glﬁélggs ;htﬁ upper bounds on the peak envelope
M -QAM sequences with low peak-to-mean envelope power ratios. power an orthese sequences.

Several upper bounds for theseM-QAM sequences were derived.

Index Terms—&Golay, multicarrier, orthogonal frequency-divi- Il. PROBLEM STATEMENTS

sion multiplexing (OFDM), peak-to-mean envelope power ratio  |f the //-QAM symbol assigned to thgh carrier of OFDM

(PMEPR). symbolisdefinedas;,i = 0,1, ---, N—1, then the transmitted
signal is represented as
I. INTRODUCTION No1
RTHOGONAL frequency-division multiplexing Sa(t) = Z a; exp(2mj (fo +ifs)t) Q)
(OFDM) [1] is a multicarrier modulation technique i=0

that has been adopted for many types of applications in wirelesi

. i eref, isthe carrier frequency anf is the bandwidth of each
systems, such as wireless local-area networks [2] and digita ) . .
Ubchannel. At the receiver, the inverse operation is conducted

on the received data that contains the signal plus noise. The de-

systems is that when the channel is divided iNtgsubchannels, __. . .
. . - ' tails are beyond the scope of this paper and can be found in [1]
the peak-to-average power ratio can be as highVasThis nd [8]

IS @ major const_ram_t on the analog part of the modem. ia}]The vectora represents the codeword &f symbols, i.e.,
some other applications, the peak envelope power has some :
(ag,a1,-..,an—1), C the ensemble of all possible code-

restrictions due to regulatory or design constraints. Effecuve@gr ds(a € C), and|ja|? the power associated with each code-

this characteristic of OFDM systems forces us to reduce t . .
: word a. Let p(a) denote the probability of codewoed being
mean envelope power. Lowering the mean envelope power . .
S re%nsmltted, then the mean envelope power of the transmitted
causes many limitations on the OFDM system and does no . )
. . - signal is defined as
allow us to utilize the transmit power efficiently.
This is the motivation behind a lot of work to reduce the _ 2
. e e P =Y |lal*p(a). @
peak-to-mean envelope power ratio (PMEPR) of the signal in
OFDM systems. In one approach [4], the authors recommended
the use of block coding to transmit sequences with smallthe instantaneous envelope powerfi§t) = |S,(t)|?, then
PMEPR. These approaches consider phase-shift keying (P8 PMEPR of the codeworal is
signal constellations. However, there are many OFDM systems )
that utilize M-quadrature amplitude modulation (QAM) PMEPR(a) = M_

constellations. Recently, there was an approach to generalize Pay

these codes to a 16-QAM constellation [6]. We have built 04fye maximization is during one OFDM symbol period. Our ob-
approach based on th_|s work to find _the general solution ff%rctive is to design code& with small PMEPR. It can be seen
M-QAM (M = 27) signal constellations when has even g that the peak envelope power is upper bounded/asThe

values. The golution for odd valuesmofcan _be fouqd in [7]. _mean envelope power over one symbol period/isTherefore,
The paperis structured as follows. Section Il briefly describgse pMvEPR is equal tdV for a sequence without any auto-
the mathematical model for OFDM systems. In Section Il relation properties.

video broadcasting [3]. One significant problem with OFD

aceC

®3)
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Fig. 1. Construction of a 16-QAM symbol by adding two QPSK symbols.
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We will use the above results to compute PMEPR bounds
when theM-QAM sequence is constructed based on QPSK
Golay sequences. Golay sequences were first introduced in [9].

Reed-Muller codes can be defined in terms of Boolean func-
tions. These codes provide good error correction properties as
long as the block length is not too large [10]. Their minimum
distance is lower than that of Bose—Chaudhuri-Hocquengem
(BCH) codes. The decoding of Reed—Muller codes are rela-
tively simple using majority logic circuits. Theth-order bi-
nary Reed—Muller code of leng#f* RM(r,m) is constructed by
the monomials in the Boolean function of degree r or less. For
the binary data, Golay sequences are cosets of the first-order

for a 16-QAM constellation and (4) describes the equivalent ofeed—Muller code within the second-order Reed—Muller code.

eration for general/-QAM symbols.

21
22" (?) (j*

;=0

M — QAM =

)exp (%) @

Thus, any point of the generdd — Q AM constellation at time
k can be written as

exp (%) Kg) (76) + (V@) (51) + -
()]

for x’@_,x’f,x§,--~,xkn/2 _, € Z In this way, one can
associate with any\/-QAM sequencea = agpa;---an—_1
a unique sequencergw - x{, oy, THTL Tl ey 1

N—-1_N-1 N-1 N N N :
0 a1 gy € Zy X Z) x---x Z;" . In partic-

n/2
ular, the signalS,(t) can be written as

®)

his was first introduced in [5]. For general nonbinary signals
(M = 2™), these can be generalized for Reed—Muller codes [5]
which is based on the results in [11].

IV. CoMPUTATION OF PMEPR WPPERBOUNDS FORM -QAM
SEQUENCESCONSTRUCTEDWITH QPSK GOLAY SEQUENCES

For the QPSK constellation, it is proved that the PMEPR of
a single Golay sequence is, at most, two [5]. For iieQAM
constellation, an analogous result is given below.

Theorem IV.1:For any sequence € ZY, letz = x + 2
denote the sequence givenqy= z;+2fori = 0,1,---, N—1.
Then,

* |. If xisaGolay sequence, thély . o ... x 9 () <

n/2—1
N.

o Il If x(,/2)—1 @andx(, /2y_2 form a Golay complemen-
tary pair andxo,---,x(,/2)—3 are Golay sequences
and not necessarily Golay complementary pairs, then
Pug 1,y (1) < (VB x 2044 (200/D72_1))2 N,

o Il If xg,---,%x(,/2)-1 are Golay sequences and
not necessarily Golay complementary pairs, then

N-—1%—1
< . 8 n/2 2
Sxo,xl, ,X_71(t) = Z (2“) @ JTfl PXO’XI"”’X(”/z)—l(t) S (2 /2 — 1) N.
2 =0 1.0 2 Proof: Recall from (8) that
. 77
xeXp(Zm(foJrkfs)HZJ)-(G) Pyt2 ... x+2x()
—
Simplifying the above, the instantaneous envelope power is s .y 5
given by . G 7% 5
=251 (£> Se(t)+ Y 2" <£) Sita(t) (10)
2 , 2
Pxo,xl,---,xg,1 (t) 1=0
N—135-1 9 B .
2 ; V2\ o By direct computation
=1 > (2" (7 g% exp (2mjk fst) (7)
k=0 i1=0 Sepalt) = —Sul(t).
In other words thus
g /3 2 Pyt19,.. x+2x()
< . _/_/
Pryxyoxp_ (t) = 20 [ =) S, (t 8 A
ooy (1) ; (2> (1) ®) . . 2
_|oz-1( V2 i1 vayl
whereS,, (t) is defined as - ( 2 ) Sx(t) + z:% 2 X ( ) (=5x(1))
N-1 . 2
ok . g 2
5o = Y i ew (2wt b+ )@ =[Ps) ay
k=0
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We now can use inequaliti, (t) = |Sa(t)|*> < 2N to conclude All the elements ind are Golay sequences.
that

23
PX+277X+2,x(t)SN (12) |A| ZZ‘I (—) xil(t)
N——— i1=0
-1 23 /3
which proved. <VRN ) 2t (7)
To provell , suppose that,, /2)_» andx(, j2)_1 are a Golay i1=0
complementary pair. It follows from the proof bthat — (2572 1)\/N. (18)
Sxp_y42(t) = =Sk, (). Combining (18) and (17) with (13) will provié
n 2
Furthermore, by (8) we have Pry xz iy (1) < ( 5x2n4 4 (2272 — 1)) N. (19)
Pryor s ain (1) To provelll , we recall from (8) that
ny 2 21 2
= Z Qi1 <_> le(t) Pxo,xl,---,x%_l(t) = Z 9t <—> Xi, (t)
i1=0 i1—0

252 <\/§> Sn (1) + 251 (@) Sxu (1) By the triangle inequality, we have

9%-1 (g) Sxg () 4+ <g> Sxo (1)

g1 (V2
2 <7>SX%1(t)

<

Considering the upper bound ft#, (#)|? is 2N, we have

2
_ |32 <—2> C 428 <Q) B+A
2 2
2
+ |A|) (13) - 2

251 <@> B+2:7? (@) c
2 2 ' V2
Pryixi iy, (1) < | D 271 (V2N) (7>

whered = S"/273 201 (2/2)S,, (£), B = Sx,, 0, (1), A
andC = Sx,,, _,(t). We define the following positive real =2 - 1N (20)

functions: This completes the proof.
2 In order to derive an upper bound on the PMEPRBQAM
F1(B,C) =251 @ B4 252 @ cl 4 Golay sequences constructed above, we prove the following
2 2 lemma.
2 Lemma IV.1: Let x¥’s be independent sequences of length
F2(B,C) =252 V2 B _9%-1 V2 c| .(5) N and each element of them are equiprobable, such that
2 2 E(Sx;(t)Sx;(t)) = 0. Then the mean envelope power is
P,, = N/2 x (27/2 —1).
Combining the above, we arrive at Proof:
1 1 V) ’
_[ton—2, 1on-a 2 2 . i 2
PUB.C+F2B.0) = (32 + 32 < (BE+ICP) P -5 F <7> 50,0t
:5N2n_4. (16) 5_1 2
N
= || E|Sx. ) =—=(2"-1). (21
We used the fact thay , ,, ,(¢) andSx, ., ,(t) are Golay Z ( ) S, (0) 6 ( ). (21)
complementary pairs. Since botfil andF are real positive
numbers, therefore The second equality is based on the assumptionghdt) are
independent sequences since they are based on statistically inde-
} ) pendent uncoded data, and for QPSK sequencgs,. (t)|* =
VF1(B,C) =251 (?) B+2272 <?) C N.
Theorem IV.2:Let A C Z be the set of Golay sequences.

<VB5N2n—4, (17) Then the PMEPR fog := A! x --- x A(™/2~1 is bounded
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mean envelope powdr,, = %(2" — 1). By lll of Theorem envelope power ratio of multicarrier transmission schemes by block
IV.1, the peak transmitted envelope power is bounded above ceding,” inProc. IEEE 45th Vehicular Technology Cartthicago, IL,

. July 1995, pp. 825-829.
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