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Construction of OFDMM -QAM Sequences With
Low Peak-to-Average Power Ratio

Beeta Tarokh and Hamid R. Sadjadpour, Senior Member, IEEE

Abstract—We present a technique to derive -quadrature
amplitude modulation (QAM) signals from quaternary phase-shift
keying (QPSK) constellations when = 2 and is an even
number. By utilizing QPSK Golay sequences, we have constructed

-QAM sequences with low peak-to-mean envelope power ratios.
Several upper bounds for these -QAM sequences were derived.

Index Terms—Golay, multicarrier, orthogonal frequency-divi-
sion multiplexing (OFDM), peak-to-mean envelope power ratio
(PMEPR).

I. INTRODUCTION

ORTHOGONAL frequency-division multiplexing
(OFDM) [1] is a multicarrier modulation technique

that has been adopted for many types of applications in wireless
systems, such as wireless local-area networks [2] and digital
video broadcasting [3]. One significant problem with OFDM
systems is that when the channel is divided intosubchannels,
the peak-to-average power ratio can be as high as. This
is a major constraint on the analog part of the modem. In
some other applications, the peak envelope power has some
restrictions due to regulatory or design constraints. Effectively,
this characteristic of OFDM systems forces us to reduce the
mean envelope power. Lowering the mean envelope power
causes many limitations on the OFDM system and does not
allow us to utilize the transmit power efficiently.

This is the motivation behind a lot of work to reduce the
peak-to-mean envelope power ratio (PMEPR) of the signal in
OFDM systems. In one approach [4], the authors recommended
the use of block coding to transmit sequences with small
PMEPR. These approaches consider phase-shift keying (PSK)
signal constellations. However, there are many OFDM systems
that utilize -quadrature amplitude modulation (QAM)
constellations. Recently, there was an approach to generalize
these codes to a 16-QAM constellation [6]. We have built our
approach based on this work to find the general solution for

-QAM signal constellations when has even
values. The solution for odd values ofcan be found in [7].

The paper is structured as follows. Section II briefly describes
the mathematical model for OFDM systems. In Section III,
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we construct -QAM signal constellations as the vector
sum of quaternary phase-shift keying (QPSK) constellations.
Section IV provides the upper bounds on the peak envelope
power and PMEPR of these sequences.

II. PROBLEM STATEMENTS

If the -QAM symbol assigned to theth carrier of OFDM
symbol is defined as , , then the transmitted
signal is represented as

(1)

where is the carrier frequency and is the bandwidth of each
subchannel. At the receiver, the inverse operation is conducted
on the received data that contains the signal plus noise. The de-
tails are beyond the scope of this paper and can be found in [1]
and [8].

The vector represents the codeword of symbols, i.e.,
, the ensemble of all possible code-

words , and the power associated with each code-
word . Let denote the probability of codewordbeing
transmitted, then the mean envelope power of the transmitted
signal is defined as

(2)

If the instantaneous envelope power is , then
the PMEPR of the codeword is

(3)

The maximization is during one OFDM symbol period. Our ob-
jective is to design codes with small PMEPR. It can be seen
[5] that the peak envelope power is upper bounded as. The
mean envelope power over one symbol period is. Therefore,
the PMEPR is equal to for a sequence without any auto-
correlation properties.

III. CONSTRUCTION OF -QAM SIGNALS FROM

QPSK CONSTELLATIONS

The QPSK constellation can be realized as QPSK
where . Thus, any QPSK sequence

can be associated with another (unique)
sequence where the elements of are in

. One can use shift and rotation operation to create-QAM
constellations from QPSK symbols. Fig. 1 shows this procedure
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Fig. 1. Construction of a 16-QAM symbol by adding two QPSK symbols.

for a 16-QAM constellation and (4) describes the equivalent op-
eration for general -QAM symbols.

(4)

Thus, any point of the general constellation at time
can be written as

(5)

for . In this way, one can
associate with any -QAM sequence
a unique sequence , ,

. In partic-

ular, the signal can be written as

(6)

Simplifying the above, the instantaneous envelope power is
given by

(7)

In other words

(8)

where is defined as

(9)

We will use the above results to compute PMEPR bounds
when the -QAM sequence is constructed based on QPSK
Golay sequences. Golay sequences were first introduced in [9].

Reed–Muller codes can be defined in terms of Boolean func-
tions. These codes provide good error correction properties as
long as the block length is not too large [10]. Their minimum
distance is lower than that of Bose–Chaudhuri–Hocquengem
(BCH) codes. The decoding of Reed–Muller codes are rela-
tively simple using majority logic circuits. Theth-order bi-
nary Reed–Muller code of length RM(r,m) is constructed by
the monomials in the Boolean function of degree r or less. For
the binary data, Golay sequences are cosets of the first-order
Reed–Muller code within the second-order Reed–Muller code.
This was first introduced in [5]. For general nonbinary signals

, these can be generalized for Reed–Muller codes [5]
which is based on the results in [11].

IV. COMPUTATION OF PMEPR UPPERBOUNDS FOR -QAM
SEQUENCESCONSTRUCTEDWITH QPSK GOLAY SEQUENCES

For the QPSK constellation, it is proved that the PMEPR of
a single Golay sequence is, at most, two [5]. For the-QAM
constellation, an analogous result is given below.

Theorem IV.1:For any sequence , let
denote the sequence given by for .
Then,

• I. If is a Golay sequence, then

.
• II. If and form a Golay complemen-

tary pair and are Golay sequences
and not necessarily Golay complementary pairs, then

.
• III. If are Golay sequences and

not necessarily Golay complementary pairs, then
.

Proof: Recall from (8) that

(10)

By direct computation

thus

(11)
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We now can use inequality to conclude
that

(12)

which provesI .
To proveII , suppose that and are a Golay

complementary pair. It follows from the proof ofI that

Furthermore, by (8) we have

(13)

where , ,
and . We define the following positive real
functions:

(14)

(15)

Combining the above, we arrive at

(16)

We used the fact that and are Golay
complementary pairs. Since both and are real positive
numbers, therefore

(17)

All the elements in are Golay sequences.

(18)

Combining (18) and (17) with (13) will proveII

(19)

To proveIII , we recall from (8) that

By the triangle inequality, we have

Considering the upper bound for is , we have

(20)

This completes the proof.
In order to derive an upper bound on the PMEPR of-QAM

Golay sequences constructed above, we prove the following
lemma.

Lemma IV.1: Let ’s be independent sequences of length
and each element of them are equiprobable, such that

. Then the mean envelope power is
.

Proof:

(21)

The second equality is based on the assumption that are
independent sequences since they are based on statistically inde-
pendent uncoded data, and for QPSK sequences,

.
Theorem IV.2:Let be the set of Golay sequences.

Then the PMEPR for is bounded
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by , provided that is
used for equiprobable -QAM OFDM transmission.

Proof: By Lemma IV.1, the transmission requires a
mean envelope power . By III of Theorem
IV.1, the peak transmitted envelope power is bounded above
by . Thus, the PMEPR is bounded above by

.
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