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V. CONCLUSION

In this correspondence, we proposed a novel DCT-based algorithm
for the fast computation of the MCLT. The method is based on two
DCTs, two stages of butterfly operations. We also gave the detailed
signal flow graph for the inverse MCLT. It is shown that the multi-
plicative complexity of the proposed algorithm is superior to any other
previous algorithm, and there is no penalty on the total number of mul-
tiplications and additions.
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Application of Randomization Techniques to Space-Time
Convolutional Codes
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Abstract—This correspondence introduces a new approach to design
space–time convolutional codes (STCCs) with large constellation size in
systems with any number of transmit antennas. Our design procedure
is based on utilizing quadrature phase-shift keying (QPSK) STCCs as
component codes, and, consequently, unlike existing techniques, the
search space does not grow exponentially with the constellation size. Our
approach is further based on the fact that an multiple-input mul-
tiple-output (MIMO) system is equivalent to distinct 1 systems.
By employing a common design for each individual 1 system, we
arrive at an approach whose complexity does not grow with the number
of transmit antennas. To describe our approach, we first demonstrate
that a system employing an STCC can be implemented with only a single
transmit antenna when there are multiple receive antennas. The idea is to
transmit more than one symbol from a single transmit antenna during a
symbol period by superimposing the encoded symbols on top of each other.
This objective is achieved by inducing randomness into the system, that
creates additional channel paths, called virtual paths. The design of the
distributions of the induced random variables is studied for slow Rayleigh
and Rician fading channels by utilizing an upper bound on the pairwise
block error probability. Simulation results evaluate the performance of
this technique for the case of two transmit antennas and several different
number of receive antennas, a spectral efficiency of 4 b/s/Hz for slow
Rayleigh and Rician fading channels.

Index Terms—Multiple-input multiple-output (MIMO), space–time
code.

I. INTRODUCTION

Multiple antennas are very important for increasing capacity and
reliability of wireless channels. It is a common belief that future
wireless systems will have multiple antennas at both transmitter
and receiver ends to be able to transmit high data rate video, data,
and voice. A system with multiple-input multiple-output (MIMO)
capability has much higher capacity than single-input single-output
(SISO) and single-input multiple-output (SIMO) systems [1]. Recent
research results have shown that not only is the channel capacity of
MIMO systems very high [1], [2], but large fractions of this capacity
can actually be achieved in implementations [3], [4]. Even with the
extensive research on space–time convolutional codes (STCCs), STCC
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code designs are lacking for cases with large constellation size and/or
a large number of transmit antennas. We will introduce a new approach
to design STCCs for any arbitrary n�m MIMO system with a search
space that does not increase exponentially with the constellation size
and that does not increase at all with the number of transmit antennas.

Our approach is based on the fact that one can view an n�mMIMO
system as an equivalent group of n distinct 1 �m systems. Then, by
producing a common design for each individual 1�m system, we ar-
rive at an approach whose complexity does not grow with the number
of transmit antennas. Further, we will build our STCCs from com-
bining small [quadrature phase-shift keying (QPSK)] constellation size
STCCs such that our search complexity grows slowly with constella-
tion size. To describe our approach, we first demonstrate that a system
employing a STCC can be implemented with only a single transmit an-
tenna when there are multiple receive antennas. The idea is to transmit
more than one symbol from a single transmit antenna during a symbol
period by superimposing the encoded symbols on top of each other.
This objective is achieved by inducing randomness into the system,
that creates additional channel paths, called virtual paths.

Inducing randomness into a physical channel has been proposed by
many authors [5]–[10]. The main objective of these techniques is to
induce more fluctuations into the channel. In [5], the authors induce
randomness into the downlink of a wireless communication channel to
create more fluctuations into an environment where slow fading or little
scattering may occur. The randomization concept has been also pro-
posed for space–time code applications [8]–[10]. The main idea behind
these works is to increase fluctuations in the channel. The work of [10]
is the first approach that evaluates improvement of MIMO channels
from an information theoretic perspective using outage probability. In
this correspondence, we propose to induce randomness into the phys-
ical channel in what appears to be a new way. The goal is to explore
the rich diversity capabilities of MIMO systems and to design STCC
with high spectral efficiency for any number of transmit antennas using
QPSK STCC as component codes. We will derive the conditions under
which maximum coding and diversity gain can be attained for fading
channels. Our optimization criterion is based on minimizing the upper
bound on the pairwise block error probability when induced random
variables are used. Our randomization approach does not attempt to in-
duce more fluctuations into the channel.

In Section II, we will review the system model and STCC design [12]
for slow fading wireless channels. The proposed algorithm utilizing a
STCC for the single transmit antenna case is formulated in Section III.
The optimum induced randomization for slow Rayleigh and Rician
fading channels is described in Section IV. It is shown in this section,
that this optimum randomization depends on the exact error pattern. In
Section V, we design an alternative randomization approach. Simula-
tion results on the performance of the proposed algorithm is given in
Section VI. Section VII contains the conclusion.

II. SYSTEM MODEL

We consider a wireless communication system utilizing n transmit
and m receive antennas. The channel path gain from transmit antenna
i to receive antenna j is denoted by hi;j and is a complex Gaussian
random variable with mean m1=

p
2 (m1 is zero for Rayleigh and

nonzero value for Rician fading channels) and variance 0.5 per
complex dimension (real–imaginary parts). We assume that different
channel path gains are statistically independent. We also assume that
the channel coefficients are constant during one block of data and
change independently from one block to another. The received data rjt
at antenna j and time t (slow fading channel) can be written as

rjt =

n

i=1

hi;jc
i
t

p
Es + njt ; 1 � j � m (1)

where cit is the complex transmit symbol with unit average power sent
from antenna i at time t, njt is the additive white Gaussian noise sample
with zero mean and variance No=2 per dimension, and Es is the con-
traction factor of the signal constellation. A block error occurs when
the decoded data sequence

E = e11 . . . e
n
1 . . . e1N . . . enN

is different from the transmit sequence

C = c11 . . . c
n
1 . . . c1N . . . cnN

whereN is the number of symbols in one block. It is shown in [12] that
for a maximum-likelihood receiver, an upper bound on the conditional
pairwise block error probability (slow fading channel) is

P (C! Ejhi;j ; 1 � i � n; 1 � j � m)

�
m

j=1

exp �
jBs(C;E)

�

j

Es

4No

(2)

where 
j = (h1;j; h2;j ; . . . ; hn;j), Bs(C;E) is an n � n matrix
whose elements are defined asBs;mn(C;E) =

N

t=1
(cmt �emt )(cnt �

ent )
� and � denotes the conjugate transpose operation. It can be shown

that [12] Bs(C;E) = V �DV is a Hermitian matrix, V is a unitary
matrix whose rows vj , 1 � j � n are the eigenvectors of Bs(C;E)
and D = diag(�1; . . . ; �n) where the �j ’s are the eigenvalues of
Bs(C;E). If a vector �j is defined as �j = [�1;j . . . �n;j ] = 
jV

�,
then


jBs(C;E)

�

j =

n

i=1

�ij�i;j j2: (3)

By substituting (3) into (2), one can average over j�i;j j for Rayleigh
channels and arrive at

P (C! E) �
n

i=1

1

1 + E

4N
�i

m

: (4)

For Rician channels, the hi;j ’s have nonzero mean and j�i;j j has the
Rician distribution. In this case, it can be shown that the pairwise block
error probability is upper bounded as [12]

P (C! E) �
m

j=1

n

i=1

1

1 + E

4N
�i

exp �Ki;j
E

4N
�i

1 + E

4N
�i

(5)

where Ki;j = jh�i;jij2 and h�i denotes the expected value.

III. PROBLEM FORMULATION

STCCs were originally designed to achieve diversity and coding gain
in wireless fading channels utilizing multiple transmit antennas. The
search space for these codes increases exponentially with the constella-
tion size. In this correspondence, we will first show that one can apply
STCCs in systems with only a single transmit antenna by using ran-
domization techniques as long as we have multiple receive antennas.
Then, we use this approach to design STCCs with high spectral effi-
ciencies using smaller constellation size STCCs such as QPSK STCC.
Therefore, we assume for now that the number of transmit antennas is
equal to 1, i.e., n = 1. Using this assumption, (1) can be written as

rjt = h1;jCt

p
Es + njt ; 1 � j � m: (6)

Here again, the physical channel path gains, the h1;j ’s, are independent
complex normal random variables with meanm1=

p
2 and variance 0.5
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Fig. 1. Comparison of (a) a 2 2 MIMO system with (b) a 1 2 SIMO system using the proposed algorithm (PA) and (c) a 2 2 MIMO system using the PA.

per dimension. How can we modify the transmit signal (Ct) such that
the system can use a STCC? We propose to use as the transmitted signal

Ct = A1c
1

t +A2c
2

t + . . . + Anc
n
t (7)

where the induced random variables, the Ai’s, are induced random
variables and the cit’s are from the output of a STCC encoder. The
Ai’s are also independent of the physical channel path gains, theh1;j ’s.
Combining (6) and (7) leads to

rjt =

n

i=1

h0i;jc
i
t

p
Es + njt ; 1 � j � m (8)

where h0i;j = h1;jAi is called a virtual path gain. We call this the vir-
tual path gain because only m physical paths exist in this system and
by introducing random data at the transmitter, we have created n�m
virtual paths. Of course, some of these virtual paths are statistically de-
pendent, but this approach will allow us to employ a STCC in a setting
with a single transmit antenna and numerical results to be presented
will demonstrate the gains that can be achieved. One way to interpret
these gains is to recall that STCCs can provide gains in channels with
correlated path gains, provided the correlation is not too close to unity.

One immediate application of the approach outlined above is to
model an n � m MIMO system as an equivalent group of n distinct
1�m systems. Fig. 1 compares a 2 � 2 MIMO system, a 1 � 2 SIMO
system, and a group of two 1� 2 systems that illustrates our approach.
Note that we do not claim that such an approach can change a SIMO
channel into a MIMO channel with independent path gains, nor do we
claim that the rank of the new channel matrix changes. The induced
random variables (Ai’s) can either change from symbol to symbol or
they can be constant during one data frame. Our intention is to derive
conditions under which one can obtain the minimum upper bound on
the pairwise block error probability.

Applying (2) and (3) to the virtual paths (h0i;j ’s), we see that the
conditional pairwise upper bound on the block error probability is

P (C! EjAi; h1;j ; 1 � i � n; 1 � j � m)

�
m

j=1

exp �jh1;j j2ABs(C;E)A
� Es

4No

(9)

where A = [A1; A2; . . . ; An] is the vector whose elements are the
induced random variables.

Let [T1; . . . ; Tn] = AV � and Bs(C;E) = V �DV , then (9) can be
written as

P (C! EjAi; h1;j ; 1 � i � n; 1 � j � m)

�
m

j=1

exp �jh1;j j2
n

i=1

�ijTij2 Es

4No

: (10)

By taking the average over (10) with respect to channel coefficients and
induced random variables assuming Rayleigh fading, we arrive at

P (C! E) � 1

1 + n

i=1
�ijTij2 E

4N

m

(11)

where h�i denotes the expected value. In (11), the expected value is
with respect to T1; . . . ; Tn, where each Ti depends on induced random
variables.

For the slow Rician fading channel, following a similar approach,
the pairwise upper bound on the block error probability is given by

P (C! E) � 1

1 + n

i=1
�ijTij2 E

4N

m

� exp �m
n

i=1
�ijTij2 E

4N
Ki;1

1 + n

i=1
�ijTij2 E

4N

: (12)

IV. OPTIMUM SOLUTION FOR SLOW RAYLEIGH AND

RICIAN FADING CHANNELS

In this section, we first find the optimum solution for Rayleigh fading
channels. It is straightforward to show that it is also the optimum so-
lution for Rician channels. For Rayleigh channels, we want to find the
joint probability density function (pdf) of (jT1j; jT2j; . . . ; jTnj) such
that the pairwise upper bound on the block error probability given in
(11) is minimized. Mathematically, the optimization problem is defined
as

min
hjT j i=1; i=1;2;...;n

1 +

n

i=1

RijTij2
�m

(13)

where Ri = �i(Es=4No). The condition hjTij2i = 1 is set to nor-
malize the power of induced random variables to one (increasing power
would clearly allow better performance so this is important).
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Theorem IV.1: The minimum of (13) is attained when the pdf of
(jT1j; jT1j; . . . ; jTnj) satisfies fjT j;jT j;...;jT j(x1; x2; . . . ; xn) =
�(x1 � 1)�(x2 � 1) � � ��(xn � 1).

To prove this theorem, we first need these two lemmas.
Lemma IV.1 (slight generalization of Jensen’s inequality): If the

function g(x1; x2; . . . ; xn) is convex, that is, its Hessian matrix is pos-
itive semidefinite, then we have

g( ~X) � g h ~Xi :

Proof: The proof of this lemma is simple and for brevity of the
correspondence, we omit the proof.

Lemma IV.2: The function g(~x) = g(x1; x2; . . . ; xn) = (1 +
n

i=1
Rixi)

�m is convex for xi � 0.
Proof: It is straightforward to show that the Hessian matrix of

g(~x) is a positive semi definite.
Proof of Theorem IV.1: First, we know that when fjT j;jT j;...;jT j

(x1; x2; . . . ; xn) = �(x1 � 1)�(x2 � 1) � � ��(xn � 1), we have

1 +

n

i=1

RijTij
2

�m

= 1 +

n

i=1

Ri

�m

:

Then, consider function g(~x) = (1 + n

i=1
Rixi)

�m and random
variable

~X = jT1j
2
; jT2j

2
; . . . ; jTnj

2
:

Using Lemmas IV.1 and IV.2 above, we obtain

1 +

n

i=1

RijTij
2

�m

= g( ~X) � g h ~Xi

= 1 +

n

i=1

Ri jTij
2

�m

= 1 +

n

i=1

Ri

�m

:

For the Rician fading channels, we can prove Theorem IV.1 using
a similar approach. Theorem IV.1 indicates that the amplitude of Ti
should be deterministic and equal to 1. However, the phase of Ti is a
random variable.

V. SELECTION OF INDUCED RANDOM VARIABLES

In the previous section, we demonstrated that if the magnitude of
each random variable, Ti for 1 � i � n, is equal to 1, then the pair-
wise upper bound on the block error probability will be minimized.
However, this derivation does not describe how the induced random
variables (Ai’s) should behave. In general, it is not possible to select
the random variables A1; . . . ; An to achieve jTij = 1 for all possible
choices of v�i . Since vi is an eigenvector of Bs(C;E) which is con-
structed from the difference between the transmitted codeword and the
decoded error data sequence, there are many values of vi to consider.
To address this difficulty, in the following, we provide a suboptimal so-
lution. This solution is based on designing dependent induced random
variables to improve the distant properties of the enlarged constellation
STCC.

A. Design of the Induced Random Variables Based on Minimum
Euclidean Distance of the New Code

Our objective in this section is to design a set of discrete random
variables that statistically depend on the STCC encoder output. The

objective is twofold, first, to generate a M-PSK signal constellation for
the transmit signal Ct that was defined in (7), and second, to maximize
the minimum Euclidean distance of the code (dmin). Maximizing dmin

will be a design criterion for these codes.
The conditional upper bound on the pairwise block error probability

in this case can be derived as
P (C! Ejh1;j ; 1 � j � m)

�

m

j=1

exp �jh1;j j
2

N

t=1

jCt �Etj
2 Es

4No

(14)

whereEt is the error signal defined similar to (7). Note that, in this case,
the induced random variables, the Ai’s, are embedded in Ct and Et

and for that reason, it is not feasible to separate them in this equation.
Averaging over (14) with respect to the channel coefficients, we arrive
at

P (C! E) �
1

1 + N

t=1
jCt �Etj2

E

4N

m

: (15)

This equation suggests that in order to minimize the upper bound on the
pairwise block error probability, we need to maximize the minimum
Euclidean distance of the modified codeword (Ct; t = 1; . . . ; N).
Therefore, we design the induced random variables such that this min-
imum Euclidean distance is maximized.

There are several different designs of QPSK STCC that consider
maximizing the minimum Euclidean distance between the pair of code-
words [13]–[15] while providing the maximum coding and diversity
gains. In this correspondence, we use the QPSK STCC design of [13]
with 16 states for simulation and code design. Fig. 2(a) and (b) demon-
strates the signal constellation and trellis diagram of QPSK 16 states
STCC design of [13]. This code is designed to have the maximum diver-
sity and coding gains as well as maximizing the minimum Euclidean
distance between the codeword pairs. Our objective is to design in-
duced random variables such that when we combine two QPSK signals,
the new transmitted signal has a finite number of constellation points,
i.e., equivalent to a 16-PSK constellation in this example, and at the
same time maximizes the minimum Euclidean distance between code-
words of the new transmitted signal (Ct). Fig. 2(c) illustrates this map-
ping for two QPSK signals. In this construction and mapping, we have
chosen to use only induced random variables that have unit amplitude
and who have statistically dependent random phases. These random
phases depend on the signals output by the STCC encoder that will re-
sult in such a construction Fig. 2(c). The construction of transmitted
signals (Ct) are carried in two steps. First, since all different combina-
tions of two QPSK signals yield 16 possible choices, we use the trellis
diagram of Fig. 2(b) to assign these 16 combinations such that the min-
imum Euclidean distance of the new code is maximized. This objective
is achieved by assigning every two QPSK symbols to a point in the
16-PSK constellation for all 16 possible choices and then computing
the distance properties of the resulting code. The signal assignment
that maximizes the minimum Euclidean distance of the resulting code
words will be selected. In the second step, we compute the Ai’s such
that the linear combination of two QPSK symbols using (7) will create
the appropriateCt as shown in Fig. 2(c). Utilizing this construction, for
any two QPSK signals at the output of the STCC encoder of [13], the
values of these induced random variables are known, however, since
the signals from the encoder output are random and unknown at the
receiver, the induced random variables are also unknown and random
at the receiver. Note that for this particular construction of the signal,
we no longer need to keep any table of induced random variables since
there is a one-to-one mapping between any two QPSK signals from
the output of STCC encoder and Ai’s. The design of these dependent
induced random variables are based on the desire to maximize the min-
imum Euclidean distance between any two codewords to improve (15).
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Fig. 2. Description of (a) mapping of QPSK constellation, (b) vucetic 16-states QPSK STCC, and (c) mapping of two QPSK signals into 16-PSK constellation.

Fig. 3. Frame error rate comparison between 16-QAM STCC of [12] and the PA for 2 2, 2 3, 2 4, and 2 5 systems in (a) Rayleigh and (b) Rician
fading channels with 260 bits for each block.

We do not claim that such construction is necessarily the optimum so-
lution; however, our simulation results will show that this construction
outperforms 16-QAM STCC of [12].

It is noteworthy to mention that another solution would be to choose
a uniform distribution for the random phase. Our simulation results
show that such approach performs poorly. This result implies that our
randomization technique is different from the phase sweeping approach
[6] or its extensions [5], [7]–[10].

VI. SIMULATION RESULTS

In the simulations presented in this section, coherent detection is
assumed along with perfect knowledge of the channel coefficients at
the receiver. We apply our approach for MIMO systems where each
transmit antenna can employ a STCC. Therefore, for a n�m system,
we can model it as an equivalent group of n distinct 1 �m systems,
each one transmitting a STCC with small constellation size. Fig. 1(c)

demonstrates this concept for a 2 � 2 system. We have used this ap-
proach to design a STCC with spectral efficiency of 4 b/s/Hz, using a
QPSK STCC for each antenna, and compare it with the 16-QAM STCC
of [12]. Simulation results, given in Fig. 3(a) and (b), clearly show that
our approach can perform better than that of [12] for 2 � m MIMO
systems with 2 � m � 5 and block lengths of 260 bits for Rayleigh
and Rician slow fading channels. For the Rician channel, the param-
eter k = 0 dB is used. The parameter k is defined as the ratio between
the deterministic signal power and the variance of the multipath, i.e.,
k(dB) = 10 log(m2

1=1) for this example.
The implementation of the Viterbi algorithm (VA) for the new

scheme is slightly different from the original VA. In the proposed
algorithm (PA), at each time interval the equivalent of n data symbols
are transmitted simultaneously from n different transmit antennas.
In this case, each path metric for the VA using the PA will compute
the equivalent of n path metrics from the original trellis diagram [see
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Fig. 2(b)]. Accordingly, we need to incorporate this feature when we
compute the survivor paths for each STCC block.

VII. CONCLUSION

In this correspondence, we present a new approach to design STCC
for MIMO systems with arbitrary constellation size and any number of
transmit antennas. Our approach is based on modeling an n�mMIMO
system as an equivalent of n distinct 1�m SIMO systems. Then, we
demonstrate that a STCC can be implemented for a SIMO system by
inducing randomness into the channel. Therefore, this design can be
applied to any arbitrary number of transmit antennas. The search space
for this code does not increase with the constellation size but rather re-
mains the same regardless of the constellation size and only depends on
the constellation size of the component codes, i.e., QPSK. One advan-
tage of this approach is the fact that the minimum number of states of
convolutional code for this approach depends on the constellation size
of the component codes rather than the entire code, allowing us to have
a better tradeoff between complexity and performance. The characteris-
tics of these induced random variables are defined based on minimizing
an upper bound on the pairwise block error probability. Simulation re-
sults for Rayleigh and Rician slow fading channels show that our ap-
proach performs better than one of the best existing 16-QAM STCC
designs when we use two QPSK STCCs as our component codes. This
is a powerful result since it allows us to design STCCs of any constella-
tion size by utilizing QPSK STCC as component codes. This simplifies
the design of STCCs for cases with high constellation sizes and will
no longer require exhaustive search for such codes. Our preliminary
results also show that using this approach allows us to reduce the com-
putational complexity of the receiver significantly. Due to space lim-
itations, we will present these results in another manuscript. Another
potential application for this approach is in the design of space–time
block codes (STBC).
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