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Abstract: The author considers the use of coding to reduce the peak-to-mean envelope power ratio
(PMEPR) for orthogonal frequency division multiplexing (OFDM) systems. Most of the existing
schemes that use coding for PMEPR reduction assume a PSK constellation. The author presents
the construction of non-squareM-QAM symbols from a combination of QPSK and BPSK signals
whenM=2n and n is an odd number. By using QPSK and BPSKGolay (or Golay-like) sequences,
M-QAM sequences with low PMEPR are generated. An upper bound for the instantaneous
envelope power of Golay-likeM-QAM sequences was derived. After the mean envelope power for
these sequences was computed, the general upper bound for the PMEPR of M-QAM sequences
with non-square constellations was derived.

I Introduction

Orthogonal frequency division multiplexing (OFDM) [1] is
a multicarrier modulation technique that has been adopted
for many types of applications in wireless systems such as
the physical layer of IEEE802.11a [2] and digital audio
broadcasting [3]. In wireless applications, severe multipath
propagation makes the recovery of the transmitted signal
very challenging in a mobile communication channel. In
particular, many mobile channels are subject to frequency-
selective multipath fading. An OFDM system divides the
channel spectrum into several sub-channels (also called
bins) and modulates the transmitted data using these sub-
channels, and this approach is therefore suitable for this
kind of mobile channel.
In asymmetric digital subscriber line (ADSL) modems

[4], a similar approach, called discrete multitone (DMT)
technology is used. For twisted pair wire applications, the
available spectrum is limited. The channel characteristics in
a twisted pair wire are a function of many factors such as
frequency, loop length, gauge etc. In this application, it is
desirable to use transmission techniques that are band-
width-efficient. The DMT technology can provide an
efficient way to transmit the data using an optimum bit-
loading algorithm [5].
As mentioned earlier, an OFDM system divides the

available spectrum into N sub-channels. In applications
such as ADSL modems, the value of N is as large as 256.
Such a high peak-to-mean envelope power ratio (PMEPR)
requires a large dynamic range for the power amplifier
within its linear amplification region which is not available
for many applications. This is the motivation behind a lot of
the work to reduce the PMEPR of the signal in OFDM
systems. In [6], the use of block coding with a small
PMEPR was recommended. A simplified version of this
approach is also proposed in the literature [7, 8]. There are

many other approaches (utilising coding) and the interested
reader should refer to [9–15]. There are also many other
PMEPR reduction techniques in the literature that do not
use coding, i.e. [16–19].
For coding-based PMEPR reduction approaches, the

phase shift keying (PSK) signal constellation is usually
considered. In order to utilise the available bandwidth
better, many applications use high level quadrature
amplitude modulation (QAM). Recently, there was an
attempt to generalise these codes to a 16-QAM constellation
[20]. We presented the general solution for an M-QAM
(M¼ 2n) signal constellation for even values of n in [21]. In
this paper, the solution for odd values of n together with its
PMEPR bound is derived.

2 Problem statements

Suppose the ith carrier of an OFDM symbol is defined as ai,
0rirN�1, then the transmitted signal is represented as

SaðtÞ ¼
XN�1

i¼0
ai expð2pjðfo þ ifsÞtÞ ð1Þ

where fo is the carrier frequency and fs is the bandwidth of
each sub-channel. In some applications, such as an ADSL
modem, the complex conjugates of N M-QAM symbols are
produced and a total of 2N complex values are at the input
of the inverse fast Fourier transform (IFFT) block. In this
case, Sa(t) is a real signal. In other applications, an
N-point IFFT is used and Sa(t) is a complex signal.
Throughout the paper, we assume that when the signal Sa(t)
is mentioned, it can be either a complex or a real signal. The
details of the operation of the transmitter and the receiver of
an OFDM system are beyond the scope of this paper and
can be found in [1, 22].
The vector a represents the codeword of N symbols, i.e.

a¼ (a0, a1,y, aN�1), C the ensemble of all possible
codewords (aAC) and 77a772 the power associated with
each codeword a. Let p(a) denote the probability of
codeword a being transmitted, then the mean envelope
power of the transmitted signal is defined as

Pav ¼
X
a2C
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If the instantaneous envelope power is P(t)¼ 7Sa(t)7
2, then

the PMEPR of the codeword a is defined as

PMEPRðaÞ ¼ max jSaðtÞj
2

Pav
ð3Þ

The maximisation is during one OFDM symbol period.
Our objective is to design codes C with a small PMEPR.
Suppose each element ai at the input of the IFFT block is

a complex number representing a point in the quadrature
PSK (QPSK) or binary PSK (BPSK) constellation symbol.
Later we will show that a non-square M-QAM symbol can
be represented as a sum of QPSK and BPSK signals.
Therefore equivalently ai can be shown as ai ¼ expða0iÞ.
Then (1) can be written as

SaðtÞ ¼
XN�1

i¼0
expða0i þ 2pjðfo þ ifsÞtÞ ð4Þ

Therefore the instantaneous envelope power can be given as

P ðtÞ ¼ jSaðtÞj2

¼
XN�1

i¼0

XN�1

j1¼0
expða0i � a0j1 þ 2pjði� j1ÞfstÞ ð5Þ

By substituting j1¼ i+u, P(t) can be written as

P ðtÞ ¼
XN�1

i¼0

XN�1�i

u¼�i

expða0i � a0iþu � 2pjufstÞ ð6Þ

For sequence a0 ¼ ða00; a01; 	 	 	 ; a0N�1Þ, the aperiodic auto-
correlation of a0 at displacement u is defined as

Ca0 ðuÞ ¼
XN�1

i¼0
expða0i � a0iþuÞ ð7Þ

Replacing (7) into (6) gives the following equation:

P ðtÞ ¼ N þ
X
u6¼0

Ca0 ðuÞ expð�2pjufstÞ ð8Þ

The above derivation has been described earlier in many
references, e.g. [10] and [23]. It can be seen [10] that the peak
envelope power is upper bounded as N2. The mean
envelope power over one symbol period is N. Therefore
the PMEPR is equal to N for a sequence without any
autocorrelation properties.

3 Construction of non-square M-QAM signals
from a combination of QPSK and BPSK signals

The QPSK constellation can be realised as QPSK ¼ jxi ,
where xiAZ4¼ {0, 1, 2, 3}. Thus any QPSK sequence
a¼ (a0a1?aN�1) can be associated with another (unique)
sequence xi ¼ ðx0i x1i 	 	 	 xN�1

i Þ where the elements of xi are in
Z4. The BPSK constellation can also be realised as the set
BPSK ¼ fð�1Þyi jyi ¼ 0; 1g. Thus one can associate with
any BPSK sequence a¼ a0a1?aN�1 a unique sequence
y¼ y0y1?yN�1, where yiAZ2.
By direct computation, it can be shown that the non-

square M-QAM symbol (M¼ 2n, n is an odd number) is a
set sum of QPSK and BPSK signals:

M-QAM ¼
ffiffiffi
2

p

2

 !
ðBPSKÞ exp pj

4

� �

þ
Xn�32
i1¼0

ð2i1Þð
ffiffiffi
2

p
Þðjxi1 Þ exp pj

4

� �
ð9Þ

for M¼ 2n, n¼ 3, 5, 7,?. Thus any point of our general
M-QAM constellation at time k can be written as:

exp
pj
4

� � ffiffiffi
2

p

2

 !
ð�1Þy

k

þ ð
ffiffiffi
2

p
Þðjxk0Þ þ 	 	 	 þ 2n�32 ð

ffiffiffi
2

p
Þ j

xkn�3
2

� �" #

for xk0; x
k
1; x

k
2; 	 	 	 2 Z4 and ykAZ2. In this way one can

associate with anyM-QAM sequence (with an odd value of
n) (a¼ a0a1?aN�1) a unique sequence:

ðy0x00x01 	 	 	 x0n�3
2

; y1x10x
1
1 	 	 	 x1n�3

2

; 	 	 	 ; yN�1xN�1
0 xN�1

1 	 	 	 xN�1
n�3
2

Þ

2 ZN
2 � ZN

4 � ZN
4 � 	 	 	 � ZN

4|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
n�1
2

In particular, we can write

Sy;x0;x1;			;xn�3
2

ðtÞ ¼ SaðtÞ

¼
XN�1

k¼0

ffiffiffi
2

p

2
ð�1Þy

k

exp
�
2pjðf0 þ kfsÞt þ

p
4

�
þ

Pn�32
i1¼0

2i1
ffiffiffi
2

p
ðjx

k
i1 Þ exp

�
2pjðf0 þ kfsÞt þ

p
4

�
8>>><
>>>:

9>>>=
>>>;
ð10Þ

The instantaneous power for M-QAM and odd values of n
is given by

Py;x0;x1;			;xn�3
2

ðtÞ ¼
�����X
N�1

k¼0

ffiffiffi
2

p

2
ð�1Þy

k

expð2pjkfstÞ
 !

þ
Xn�32
i1¼0

2i1
ffiffiffi
2

p
ðjx

k
i1 Þ expð2pjkfstÞÞ

�����
2

ð11Þ

By defining

SyðtÞ ¼
XN�1

k¼0
ð�1Þy

k

exp
�
2pjðf0 þ kfsÞt þ

p
4

�
and

SxiðtÞ ¼
XN�1

k¼0
jx

k
i exp

�
2pjðfo þ kfsÞt þ

jp
4

�
the instantaneous power can be written as

Py;x0;x1;			;xn�3
2

ðtÞ ¼
����
ffiffiffi
2

p

2
SyðtÞ þ

Xn�32
i1¼0

2i1
ffiffiffi
2

p
Sxi1 ðtÞ

����2 ð12Þ

The above results can be used to compute PMEPR bounds
when the M-QAM sequence is constructed based on a
combination of QPSK and BPSK Golay (or Golay-like)
sequences.

4 Golay sequences and Reed–Muller codes

Golay sequences were first introduced in [24]. Any two
sequences a and b are called Golay complementary pairs [24]
over ZN

H if CaðuÞ þ CbðuÞ ¼ 2NdðuÞ, where H is the alpha-
bet size and d( 	 ) is the Kronecker function. Any sequence
with this property is called a Golay sequence. Now assume

ai ¼ jx
i
1 and bi ¼ jx

i
2 for 0rirN�1. Let x1 and x2 be a

Golay complementary pair in ZN
4 . Based on the definition of

Golay complementary pairs and using (8), we can show [10]
that Pa(t)+Pb(t)¼ 2N. Since Pa(t) and Pb(t) are positive real
numbers, then Pa(t)r2N. The mean envelope power is N,
and therefore the PMEPR is at most 2 (the proof was given
in [10]). Comparing this bound with a sequence that does not
have any autocorrelation properties (PMEPRrN), we see
that Golay sequences have small PMEPRs.

IEE Proc.-Commun., Vol. 151, No. 1, February 2004 21



Reed–Muller codes can be defined in terms of Boolean
functions. These codes provide good error correction
properties as long as the block length is not too large [25].
Their minimum distance is lower than that of BCH codes.
The decoding of Reed–Muller codes is relatively simple
using majority logic circuits. The rth order binary Reed–
Muller code of length 2m RM(r, m) is constructed by the
monomials in the Boolean function of degree r or less. For
the binary data, Golay sequences are cosets of the first-
order Reed–Muller code within the second-order Reed–
Muller code. This was first introduced in [10]. For general
non-binary signals (M¼ 2n), these can be generalised for
Reed–Muller codes [10] based on the results in [26].
In [10], it was shown that one can use Golay-like

sequences with low PMEPR where jSaðtÞj ¼ U �
ffiffiffiffiffiffiffi
2N

p
,

where the lower bound is for Golay sequences and larger
values for Golay-like sequences. This will allow us to
have a trade-off between the block code rate and the
PMEPR.

5 Computation of PMEPR upper bounds for
M-QAM sequences constructed with QPSK and
BPSK Golay-like sequences

For the QPSK constellation, we showed that the PMEPR
of a single Golay sequence is at most 2. For the M-QAM
constellation, an analogous result is given below for Golay-
like sequences.

Theorem 1: For any sequence x 2 ZN
4 , let z¼ x+2 denote

the sequence given by zi¼ xi+2 for i¼ 0, 1,?, N�1. Then
(i) If x and y are Golay-like sequences then

Py;xþ 2; 	 	 	 ; xþ 2;|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
n�3
2

xðtÞ � 4:5U

(ii) If

xn�3
2
and xn�5

2

form a Golay complementary pair and

y; x0; 	 	 	 ; xn�7
2

are Golay-like sequences and not necessarily Golay
complementary pairs, then

Py;x0;x1;			;xn�3
2

ðtÞ �
�
Uffiffiffi
2

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5N2n�4

p
þ

ffiffiffi
2

p
ð2n�52 � 1ÞU

�2

(iii) If y; x0; 	 	 	 ; xn�3
2
are Golay-like sequences and not

necessarily Golay complementary pairs, then

Py;x0;x1;			;xn�3
2

ðtÞ �
ffiffiffi
2

p
� 2n�12 �

ffiffiffi
2

p

2

 !2
U 2

Proof: Recall from (12) that

Py;xþ 2; 	 	 	 ; xþ 2;|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
n�3
2

xðtÞ ¼
�����

ffiffiffi
2

p

2

 !
SyðtÞ þ 2

n�3
2 ð

ffiffiffi
2

p
ÞSxðtÞ

þ
Xn�52
i¼0
2i1ð

ffiffiffi
2

p
ÞSxþ2ðtÞ

�����
2

ð13Þ

By direct computation

Sxþ2ðtÞ ¼ �SxðtÞ

Thus

Py;xþ 2; 	 	 	 ; xþ 2;|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
n�3
2

xðtÞ ¼
�����

ffiffiffi
2

p

2

 !
SyðtÞ þ 2

n�3
2 ð

ffiffiffi
2

p
ÞSxðtÞ

þ
Xn�52
i¼0
2i1ð

ffiffiffi
2

p
Þð�SxðtÞÞ

�����
2

¼
ffiffiffi
2

p

2

 !
SyðtÞ þ ð

ffiffiffi
2

p
ÞSxðtÞ

�����
�����
2

ð14Þ

We now can use the Golay-like sequence equality
Pa(t)¼ 7Sa(t)7

2¼U2 and the triangle inequality to conclude
that

Py;xþ 2; 	 	 	 ; xþ 2;|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
n�3
2

xðtÞ � 4:5U 2 ð15Þ

which proves part (i)
To prove part (ii), suppose that

xn�3
2
and xn�5

2

are a Golay complementary pair. It follows from the proof
of part (i) that

Sxn�3
2

þ2ðtÞ ¼ �Sxn�3
2

ðtÞ

Furthermore, from (12) we have

Py;x0;x1;			;xn�5
2

;xn�3
2

ðtÞ ¼

ffiffiffi
2

p

2

 !
SyðtÞ þ

Xn�32
i1¼0

2i1ð
ffiffiffi
2

p
ÞSxi1 ðtÞ

������
������
2

¼
�����

ffiffiffi
2

p

2

 !
SyðtÞ þ 2

n�5
2 ð

ffiffiffi
2

p
ÞSxn�5

2

ðtÞ

þ 2n�32 ð
ffiffiffi
2

p
ÞSxn�3

2

ðtÞ þ
Xn�72
ii¼0
2i1ð

ffiffiffi
2

p
ÞSxi1 ðtÞ

�����
2

¼
ffiffiffi
2

p

2

 !
SyðtÞ þ 2

n�5
2 ð

ffiffiffi
2

p
ÞC þ 2n�32 ð

ffiffiffi
2

p
ÞBþ A

�����
�����
2

�
ffiffiffi
2

p

2

 !
SyðtÞ

�����
�����þ 2

n�3
2 ð

ffiffiffi
2

p
ÞBþ 2n�52 ð

ffiffiffi
2

p
ÞC

��� ���þ Aj j
 !2

ð16Þ

where

A ¼
Xn�72
i1¼0

2i1ð
ffiffiffi
2

p
ÞSxi1 ðtÞ; B ¼ Sxn�3

2

ðtÞ and C ¼ Sxn�5
2

ðtÞ

It can be easily shown that

2
n�3
2 ð

ffiffiffi
2

p
ÞBþ 2n�52 ð

ffiffiffi
2

p
ÞC

��� ��� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5N2n�4

p
ð17Þ
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All the elements in A are Golay-like sequences.

Aj j �
Xn�72
i1¼0

2i1ð
ffiffiffi
2

p
ÞSxi1 ðtÞ

��� ��� �
U �

Xn�72
i1¼0

2i1ð
ffiffiffi
2

p
Þ ¼

ffiffiffi
2

p
� 2

n�5
2 � 1

� �
U ð18Þ

Combining (18) and (17) with (16) and assuming Sy(t) is a
Golay-like sequence will prove (ii).

Py;x0;x1;			;xn�3
2

ðtÞ � Uffiffiffi
2

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5N2n�4

p
þ

ffiffiffi
2

p
2

n�5
2 � 1

� �
U

� �2
ð19Þ

If all the sequences are Golay sequences, then this upper
bound will be

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5� 2n�4

p
þ 2� 2

n�5
2 � 1

� �� �2
N

To prove part (iii), we recall from (12) that

Py;x0;x1;			;xn�3
2

ðtÞ ¼
ffiffiffi
2

p

2

 !
SyðtÞ þ

Xn�32
i1¼0

2i1ð
ffiffiffi
2

p
ÞSxi1 ðtÞ

������
������
2

By the triangle inequality we have

Py;x0;x1;			;xn�3
2

ðtÞ � 2
n�3
2 ð

ffiffiffi
2

p
ÞSxn�3

2

ðtÞ
�����

�����þ 	 	 	 þ
 

ð
ffiffiffi
2

p
ÞSx0ðtÞ

��� ���þ ffiffiffi
2

p

2

 !
SyðtÞ

�����
�����
!2

Considering both 7Sx(t)7
2 and 7Sy(t)7

2 are equal to U2, we
have

Py;x0;x1;			;xn
2
�1
ðtÞ �

Xn�32
i1¼0

2i1ðUÞð
ffiffiffi
2

p
Þþ ðUÞ

ffiffiffi
2

p

2

 !0
@

1
A2

¼
ffiffiffi
2

p
� 2n�12 �

ffiffiffi
2

p

2

 !2
U 2

ð20Þ
This completes the proof. &
In order to derive an upper bound on the PMEPR of the
M-QAMGolay-like sequences constructed above, we prove
the following theorem.
Theorem 2: Let y and xi s (1rir(n�3)/2) be independent
sequences of length N with equi-probable elements such
that EðSxiðtÞSxjðtÞÞ ¼ 0 and EðSyðtÞSxiðtÞÞ ¼ 0. Then the
mean envelope power is

Pav ¼
�
1

2
þ 2
3
ð2n�1 � 1Þ

�
N

Proof:

Pav ¼E

ffiffiffi
2

p

2

 !
SyðtÞ þ

Xn�32
i1¼0

2i1ð
ffiffiffi
2

p
ÞSxi1 ðtÞ

������
������
2

0
B@

1
CA

¼ 1
2
E SyðtÞ
�� ��2þXn�32

i1¼0
ð2i1

ffiffiffi
2

p
Þ2E Sxi1 ðtÞ
��� ���2

¼ 1

2
þ 2
3
ð2n�1 � 1Þ

� �
N ð21Þ

Pav is derived based on the assumption of independence
between these sequences since they are generated from
statistically independent uncoded data and the fact that

EjSxiðtÞj
2 ¼ EjSyðtÞj2 ¼ N . &

Theorem 3: Let ADZ4
N and BDZ2 be the set of Golay-like

sequences. Then the PMEPR for Z :¼ B� A1 � 	 	 	 � A
n�3
2

is bounded by

ffiffiffi
2

p
� 2n�12 �

ffiffiffi
2

p

2

 !2
U2

1

2
þ 2
3
ð2n�1 � 1Þ

� �
N

provided that B� A1 � 	 	 	 � A
n
2�1 is used for equi-probable

M-QAM OFDM transmission.
Proof: The result can be derived directly from part (iii) of
theorem 1 and theorem 2.
Figure 1 shows the PMEPR bound for non-square

M-QAM Golay sequences constructed from a combination
of BPSK and QPSK Golay sequences. As the constellation
size of the M-QAM sequence increases, the PMEPR
reaches a maximum value of 6.

6 Conclusion

In this paper, we have proposed technique to construct a
non-square M-QAM sequence from a combination of
BPSK and QPSK sequences. If these QPSK and BPSK
sequences are Golay (or Golay-like) sequences derived from
Reed–Muller codes [10], then the constructed M-QAM
sequence has a low PMEPR which is suitable for OFDM
systems.
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