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airplane, the Stanford UAV. Additionally, CDGPS can beThe control law used for the autonomous flights was based on
used, through system identification, to develop a mathematicatandard LQR methods. The gains were determined in Matlab
system model to describe the dynamics of the airplane anging a simulation state-space model of the airplane. This
improve the controller’s performance. model was developed using a vortex panel method to deter-

Previous research used CDGPS as the primary sensor Trﬁr):rlne aerodynamic characteristics, and combined with physical

autonomous control of the UAV from take-off to landing [1]. easurements of the airplane’s mass and inertia’s [1].
The only other control sensor was for air speed and directioFLIGHT TEST SETUP
Full f k in th ller. Thi . I . :
ull sensor feedback was used in the controlier S War the system identification, flight test data collection,

possible only because of the low noise characteristics of tg‘igveral open-loop fiight tests were performed. The same

GPS system, and its ability to measure all necessary airpla
states of position, velocity, attitude, and attitude rate. Th ardware set-up as used for the closed-loop tests was used for
' ! X e open-loop tests.

controller's performance, however, can be improved with th
addition of an estimator into the control equations. Then the airplane, there are two TANS Quadrex receivers, one
estimator will smooth the state measurements to lead tacts as an attitude receiver with antennae at the nose, wingtips,
smaller control effort, allow for the on-line compensation ofand master at the tail. The other receiver is for position, using
biases or noise, the optimal integration of additional sensorge tail antenna only. The receivers report data at 10 Hz to a
and smoother performance during measurement dropouts. 486 single board computer, the flight control computer. This

The same low-noise, complete state sensor used for tr(l:gmputer also receives up-linked differential packets from the

autonomous flights, are ideal for system identification of thegroundi T?he flight control cogmute(rj, in a cloiﬁzd-lo?p testt,h
aircraft. Several open-loop flight tests have resulted in thgenerates the servo commands and passes them (o another

system identification process described in the paper. T ocessor. This processor, a Tattletale model 7, also collects
flight test data is processed with three separate 'syste}%e air data information and transmits this information to the
identification techniques. The newly developed state-spac ght cogtrollt comgut?r:. When ghe tTattleglclze ha_lts hserEI/_(r)]
models are validated and compared using testing data. TfHEMMands, it sends the commands 1o an switeh. €

new models can now be used for an expanded control systéW |tch passes the commands to the servos, unless, 'ghey are
and for aircraft simulations. overridden by commands received from the remote pilot on

the ground. This pilot override process is how the open-loop
BACKGROUND data was collected. Also on the ground is the reference TANS
receiver with antenna, another 486 computer for display, and

The Stanford UAV is a 12-foot wing span, heavily mOdiﬁed’data-link modems [1]
d .

Telemaster 12 model airplane. Most of the modifications ar
to accommodate a large avionics bay in the front section of tHeéor the open-loop tests, the remote RC pilot is in control of the
airplane. In previous research, Paul Montgomery developedAV at all times. The pilot flies the airplane to altitude and
the Stanford UAV to take-off, fly a predetermined set oftrims to level flight. He then flies several passes overhead the
rectangular patterns, and land completely autonomouslirfield. During each overhead pass, the pilot slightly perturbs
Figure 1 shows an overhead view of a typical autonomous control surface back and forth. This persistent excitation is
flight result. Several autonomous flights were flown andto excite the natural modes of the airplane. The control
typical altitude, airspeed, and tracking errors were 0.21 nsurfaces are perturbed individually or simultaneously to ensure
0.23 m, and 0.44 m, respectively [1]. adequate visibility of both the lateral and longitudinal modes
of the aircraft. Care was taken not to maneuver the plane so
much as to lose lock on a satellite, or create a cycle slip in the
receiver.

Figure 1 — Typical Autonomous Flight Results

Automatic Flight Path 11/27/95 Figure 2 is a collection of two typical open-loop data passes.

In first, the ailerons are perturbed, in the second, the elevator
200 is perturbed. The figure shows the control surface commands.
= 0 SYSTEM IDENTIFICATION TECHNIQUES
=t Once the flight test data was collected, three different
5 -200 techniques were used to identify the system models. For all
z the techniques, we assume the airplane could be described
-400 with linear state-space equations. We also assumed the
airplane dynamics were uncoupled, meaning that separate
longitudinal and lateral models would be sufficient to describe
-600 the airplane motion  This is a very common assumption for

the symmetric airplane that we are using [2,3].
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The longitudinal modes are the short period and phugoi¥oshe Idan
modes, both oscillatory. These modes are observable throughe first technique chosen for system identification is a
perturbations in forward and vertical speeds (u, w), pitch ratparameter estimation technique. Parameter estimation is a
(9), and pitch angledj. These modes are controllable throughcommonly used technique for aircraft system identification
elevator deflections and throttle inputs [3]. where unknown parameters of a state-space model are
. identified using flight test data [4]. The model is usually
The lateral modes are the spiral, roll and Dutch roll modesyeiyeq from dynamics analysis of the system. For an airplane
Only the Dutch roll mode is c_)scnla_tory. _These modes ar eses parameters are commonly known as stability
observable through perturbations in horizontal speed (Vygriyatives. The derivatives represent the effect of forces on

heading and roll rates (r, p), and roll angpp. (These modes e ajrplane due to changes in the states and control surfaces
are controllable through aileron and rudder deflections [3]. 3].

The measured states used in each system identificatig) maximum likelihood approach is used in parameter

technique are the eight listed above. The control surfacgtimation for a system with both process and measurement
inputs are the four mentioned above. Assuming lateral anghise. There are many similar algorithms based on filtering
longitudinal models also made comparison with the derivedng/or smoothing techniques. A technique described by
simulation model from previous work much easier. Theygshe in 1990 [4] was used here because it eliminated some

models may have given better performance if additionaht the common  difficulties faced with other parameter
measured states were used, such as wind speeds. estimation techniques.

The data sets were collected and separated as either testiip |gan method uses a smoothing algorithm that identifies
training dgta. The training sets are qsed with each techmq@stem parameters by computing sensitivities of the loss
to determine the system models, while the test sets are usgfhction to changes in the parameters. It does not, however,
only to validate and compare each model. Since each statéyigat the parameters as additional states of the system. This
based on perturbations from a nominal value, biases in thgeatly simplifies the process computationally for systems
data are removed before processing to get a truer measuigflh jarge numbers of unknown parameters. One smoothing
perturbation. pass through the data is sufficient to compute the gradients for
any number of parameters [4].

Figure 2 — Open-Loop Control Inputs
Measured Aircraft Inputs
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The smoothing algorithm involves solving a linear two pointmine a system by first estimating the (Kalman filter) states and
boundary value problem with a forward and backward pasthen determining the system matrix [7]. Subspace algorithms
through the data. The performance meagusemodified by are simple to use, fast, and robust. The only required user
adjoint constraint variables using LaGrange multipliers. Thepecified parameter is system order. They are fast when
gradient of] with respect to the parameters is next evaluatedmplemented correctly and there are no convergence problems
Then the parameters are updated with a quasi-Newton gradidiif.

algorithm, where the inverse HessianJa$ estimated using a

rank-two update algorithm [4]. A combined deterministic stochastic subspace identification

algorithm was used. Again we need to determine [A,B,C,D]
Although the Idan method was far simpler, and performedbut in addition we will also determine [Q,S,R], the noise
better, than other maximum likelihood techniques, it did tak@rocess and measurement covariance matrices. For our
much trial and error to achieve the best results. It also workezystem and each model type (longitudinal and lateral), we
best if given a good set of initial parameters from which tdhave a set of data with k = 4 outputs, and m = 2 inputs.

start. Stability derivatives from a Cessna 172 where modifieq. e method bedins by computing oblique and orthogonal
and used as the first guess of the parameters [5]. Of course, am 9 y puting q 9

L . ojections of the modified input and output data sets to
parameter estimation techniques take a good knowledge of t%& and O (the weighted oblique composition).

o : étermine £ Z ,
svyhﬁzirqo?ggﬁ?&cs in_order to determine the parameters | n orthogonal projection is defined as the projection of the

row space of a matrix A onto the row space of a matrix B and
denoted by A/B. An oblique projection B/is the projection
Observer/Kalman Identification Process of the row space of a matrix A along the row space of C onto
The second method of identifying the airplane model is théhe row space of B [7].

(S)b:gr\:]egseasln;?:] mtert |degt|f|ctat|(znd TeihOd (OtKlDt)' d'!'he he SVD of weighted oblique composition is calculated and a
Y y Input and output data to construct a dISCrelgqq order, n, is then chosen by inspection of the singular
time state space realization of the system. The method h

. . . \Yalues. The SVD is then used to estimate the extended
spawned numerous extensions but the concept is essentlag . . : ) "
the same [6]. observability matrix™, (i > n), a ki x n block observability

matrix. ', a k(i-1) x n block observability matrix, is found
The basic idea is to identify a linear discrete time, state-spagg removing the last k rows &f. The following set of linear

system that models the aircraft. Therefore we need igy,ations are solved for A, C ardhrough least squares and
determine [A,B,C,D]. OKID begins by computing observerihan

Markov parameters from experimental data [6] with the
number of parameters specified by the user. The choice must
be sufficiently large to find a solution. .

Urt,.ziv B_OAD-t Opw
The system Markov parameters are the system’s respon%I 1Yi|i| 1@‘ EEEri LU +BEE
when perturbed from rest. From the observer Markoy;
parameters, the system Markov parameters and the observer & andy are the process and measurement
gain Markov parameters can be calculated. The system . . . . s
Markov parameters can then be assembled to form the
generalized Hankel matrix. The Hankel matrix can be'' designates the Moore Pensrose pseudoinverse
decomposed into the Observability matrix, a state transition
matrix, and the Controllability matrix. The Hankel matrix
(which must always be of full rank) can then be truncated’he least squares solution computes asymptotically unbiased
using singular value decomposition (SVD) at an order thagstimates of the system matrixI, and [, can now be
sufficiently describes the system. The truncated Hankekcalculated and the residuals can be found. B and D are
matrix is then used to reconstruct AB, and C using &olved for through a minimization problem. Since the
minimum balanced realization algorithm that ensures that thgroblem is convex, there is a unique minimum. Finally, the
controllability and observability Grammians are equal. This isesiduals can be used to compute the noise covariance

known as the Eigensystem Realization Algorithm (ERA) and anatrices and K can be determined from Q,S, and R [7].
modified version with data correlation (ERA/DC) can also be
used. D is recovered from the observer Markov parametef%ESULTS

directly. The observer gain matrix can then be computeddnce the data was processed and the three technique’s models
When reduced to system order, the identified observer has #atermined, each was validated as an estimator and also as a
be a Kalman filter and thus the observer gain matrix G givegredictor. For these validation and comparison data runs, only

iiiY is found directly from output data

the steady state Kalman filter gain . [6] the test data sets were used.
The estimator comparisons show how the system may perform
Subspace in a controller. A steady state Kalman gain is determined and

The third method used for system identification is a subspads€d in conjunction with the actual measurement outputs to
process. Subspace identification algorithms attempt to detef€termine how well the models would follow the test data if
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each had some knowledge of the current measurement at e&ctowledge of the current measured state is feedback into the
epoch. The gain determines how much information about thgredictor equations. This testing configuration determines
measurement is feedback into the estimator equations. Fbow well the models simulate the airplane motion.
comparisons of the different techniques, this process can

mislgading if the gains are not deterr?ﬂned in thg same mannzﬁl three mpdels, Idan, OKID, a_nd Subspace, are compared
If for one technique, the gains are too large, the system Win’Ith the derived model from previous research.

weight the measurement output more heavily, and therefolgigure 3 shows the predictor performance for all the
track the measurement more than another techniqgue modethniques in the longitudinal modes. Figure 4 shows the
with a lower gain. predictor performance for all the techniques in the lateral

For a clearer idea of the model's performance, the techniqug%OdeS'
are compared as predictors only. The gain is zero so no
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Figure 3 — Longitudinal Comparison
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Predicted (;, -., --, -) and Real Lateral Outputs
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Figure 4 — Lateral Comparison

The following charts summarize by showing the percent error
per output for all techniques uses as an estimator (Figure 5)
and as a predictor (Figure 6) over all the test data sets. The

Figure 6 — Predictor: Percent Error per Output

percent error per output is the residual at each epoch 100% O
normalized by the measured output at that epoch for each 80% u
state. This facilitates the comparison of model performance 60%- Bw
from one state to another. The longitudinal states are show 0% Oq
followed by the lateral states for each technique. 0 OTheta
20%+ Hv
0%+ - o o - ar
s ¥ g £ Hp
2 g OPhi
n
Figure 5 — Estimator: Percent Error per Output
25% = CONCLUSIONS
0, u
20% Ew The same GPS sensor set-up used for the successful
15% Oq demonstration of autonomous flight with the Stanford UAV is
10%- OTheta also an excellent tool for the system identification of the
50 aircraft. From essentially one box, all necessary states are
By measured with little noise. This data and set-up is ideal for
0% s 0 g m Er system identification.
N4 P . .
= 0 § ?, Ophi The Moshe Idan technique and the OKID technique for system
§ o identification delivered very good system models for
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simulation and possibly control. The Idan method needed
much more a priori information about the system, but both



were computationally intensive and took some trial and error
to use. The subspace technique was less computationally
intensive and took little trial and error to achieve results

comparable with the other techniques.

The ultimate test of all the techniques will be a closed-loop
test using the models as estimators in the controller of the
airplane.
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