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ABSTRACT

Stanford University’s GPS Laboratory has developed a
demonstrated a fully autonomous, small, unmanned airpla
Recent flight tests of the airplane have been extended
collect appropriate open-loop data to perform syste
identification.  In previous research in the GPS Lab, t
autonomous airplane, utilizing Carrier-Phase Differential GP
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(CDGPS), has flown several flights of a predetermine
trajectory from take-off to landing.  GPS, providing position
velocity, attitude, and attitude rate, was the primary sensor 
the automatic controller.  No inertial sensors were used dur
the autonomous flights.  The only additional sensors for the
previous flights were indicators for wind speed and direction

Carrier Phase Differential GPS was the enabling technolo
for the autonomous control.  In earlier flight tests, the lo
noise, high bandwidth, precise positioning allowed th
controller to function well with full sensor feedback.  In fac
sensor performance was accurate enough to allow 
controller to perform well even without an elaborat
mathematical system model of the aircraft.  Previous flig
tests demonstrated a total system error of typically less th
0.5 m.

The same low noise, high bandwidth qualities of the GP
position and attitude system make it ideal for syste
identification.  The multiple vehicle state information is
collected and used to generate a mathematical model of 
airplane.  During the recent flight tests, the control surfac
are systematically disturbed to observe the aircraft mod
Several different modeling techniques are applied to the sa
data and results are compared.  Standard aircraft mode
techniques using parameter identification and a priori
knowledge of linearized dynamics are compared to techniqu
assuming no a priori information.

INTRODUCTION

The primary goal of this work was to experimentall
demonstrate system identification of a small, unmann
airplane using CDGPS as the primary sensor for vehic
position and attitude.  Air speed and direction sensors were 
only additional sensors used in this experiment.

The application of GPS as a sensor for control is expandi
There are many potential uses for land, air, and sea vehic
Stanford University has utilized the accuracy of CDGPS a
demonstrated autonomous control of a small, unmann
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airplane, the Stanford UAV.  Additionally, CDGPS can b
used, through system identification, to develop a mathemat
system model to describe the dynamics of the airplane a
improve the controller’s performance.

Previous research used CDGPS as the primary sensor
autonomous control of the UAV from take-off to landing [1]
The only other control sensor was for air speed and directi
Full sensor feedback was used in the controller.  This w
possible only because of the low noise characteristics of 
GPS system, and its ability to measure all necessary airpl
states of position, velocity, attitude, and attitude rate.  T
controller’s performance, however, can be improved with t
addition of an estimator into the control equations.  T
estimator will smooth the state measurements to lead
smaller control effort, allow for the on-line compensation o
biases or noise, the optimal integration of additional senso
and smoother performance during measurement dropouts.

The same low-noise, complete state sensor used for 
autonomous flights, are ideal for system identification of th
aircraft.  Several open-loop flight tests have resulted in t
system identification process described in the paper.   T
flight test data is processed with three separate sys
identification techniques. The newly developed state-spa
models are validated and compared using testing data.  
new models can now be used for an expanded control sys
and for aircraft simulations.

BACKGROUND

The Stanford UAV is a 12-foot wing span, heavily modified
Telemaster 12 model airplane.  Most of the modifications a
to accommodate a large avionics bay in the front section of 
airplane.  In previous research, Paul Montgomery develop
the Stanford UAV to take-off, fly a predetermined set o
rectangular patterns, and land completely autonomous
Figure 1 shows an overhead view of a typical autonomo
flight result.  Several autonomous flights were flown an
typical altitude, airspeed, and tracking errors were 0.21 
0.23 m, and 0.44 m,  respectively [1].

Figure 1 – Typical Autonomous Flight Results
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The control law used for the autonomous flights was based 
standard LQR methods.  The gains were determined in Matl
using a simulation state-space model of the airplane.  Th
model was developed using a vortex panel method to det
mine aerodynamic characteristics, and combined with physic
measurements of  the airplane’s mass and inertia’s [1].

FLIGHT TEST SETUP

For the system identification, flight test data collection
several open-loop flight tests were performed.  The sam
hardware set-up as used for the closed-loop tests was used
the open-loop tests.

In the airplane, there are two TANS Quadrex receivers, o
acts as an attitude receiver with antennae at the nose, wingt
and master at the tail.  The other receiver is for position, usi
the tail antenna only.  The receivers report data at 10 Hz to
486  single board computer, the flight control computer.  Th
computer also receives up-linked differential packets from th
ground.  The flight control computer, in a closed-loop tes
generates the servo commands and passes them to ano
processor.  This processor, a Tattletale model 7, also colle
the air data information and transmits this information to th
flight control computer.  When the Tattletale has serv
commands, it sends the commands to an RC switch.  T
switch passes the commands to the servos, unless, they 
overridden by commands received from the remote pilot o
the ground.  This pilot override process is how the open-loo
data was collected.  Also on the ground is the reference TAN
receiver with antenna, another 486 computer for display, a
data-link modems [1].

For the open-loop tests, the remote RC pilot is in control of th
UAV at all times.  The pilot flies the airplane to altitude and
trims to level flight.  He then flies several passes overhead t
airfield.  During each overhead pass, the pilot slightly perturb
a control surface back and forth.  This persistent excitation
to excite the natural modes of the airplane.  The contr
surfaces are perturbed individually or simultaneously to ensu
adequate visibility of both the lateral and longitudinal mode
of the aircraft.  Care was taken not to maneuver the plane
much as to lose lock on a satellite, or create a cycle slip in t
receiver.

Figure 2 is a collection of two typical open-loop data passe
In first, the ailerons are perturbed, in the second, the eleva
is perturbed.  The figure shows the control surface command

SYSTEM IDENTIFICATION TECHNIQUES

Once the flight test data was collected, three differe
techniques were used to identify the system models.  For 
the techniques, we assume the airplane could be descri
with linear state-space equations.  We also assumed 
airplane dynamics were uncoupled, meaning that separ
longitudinal and lateral models would be sufficient to describ
the airplane motion   This is a very common assumption f
the symmetric airplane that we are using [2,3].
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The longitudinal modes are the short period and phug
modes, both oscillatory.  These modes are observable thro
perturbations in forward and vertical speeds (u, w), pitch ra
(q), and pitch angle (θ).  These modes are controllable throug
elevator deflections and throttle inputs [3].

The lateral modes are the spiral, roll and Dutch roll mode
Only the Dutch roll mode is oscillatory.  These modes a
observable through perturbations in horizontal speed (
heading and roll rates (r, p), and roll angle (φ).  These modes
are controllable through aileron and rudder deflections [3].

The measured states used in each system identifica
technique are the  eight listed above.  The control surfa
inputs are the four mentioned above.  Assuming lateral a
longitudinal models also made comparison with the deriv
simulation model from previous work much easier.  Th
models may have given better performance if addition
measured states were used, such as wind speeds.

The data sets were collected and separated as either te
training data.  The training sets are used with each techni
to determine the system models, while the test sets are u
only to validate and compare each model.  Since each sta
based on perturbations from a nominal value, biases in 
data are removed before processing to get a truer meas
perturbation.
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Moshe Idan
The first technique chosen for system identification is 
parameter estimation technique.  Parameter estimation is
commonly used technique for aircraft system identification
where unknown parameters of a state-space model a
identified using flight test data [4].  The model is usually
derived from dynamics analysis of the system.  For an airplan
theses parameters are commonly known as stabili
derivatives.  The derivatives represent the effect of forces o
the airplane due to changes in the states and control surfa
[3].

A maximum likelihood approach is used in paramete
estimation for a system with both process and measureme
noise.  There are many similar algorithms based on filterin
and/or smoothing techniques.  A technique described b
Moshe in 1990 [4] was used here because it eliminated som
of the common difficulties faced with other paramete
estimation techniques.

The Idan method uses a smoothing algorithm that identifie
system parameters by computing sensitivities of the los
function to changes in the parameters.  It does not, howev
treat the parameters as additional states of the system.  T
greatly simplifies the process computationally for system
with large numbers of unknown parameters.  One smoothin
pass through the data is sufficient to compute the gradients 
any number of parameters [4].
Figure 2 – Open-Loop Control Inputs

0 10 20 30 40 50 60
-20

0

20

 E
le

va
to

r 
(d

eg
) 

Measured Aircraft Inputs

0 10 20 30 40 50 60
-5

0

5

T
hr

ot
tle

 (
m

/s
/s

)

0 10 20 30 40 50 60
-20

0

20

 A
ile

ro
n 

(d
eg

) 
 

0 10 20 30 40 50 60
-10

0

10

Time (sec)

  R
ud

de
r 

(d
eg

) 
 



d
s
er
n
s

n
]

ur
e

l
o

d

o

a
ar
d

ed

re

ce

els
s a
ly

m
d
to
f

The smoothing algorithm involves solving a linear two poin
boundary value problem with a forward and backward pa
through the data.  The performance measure J is modified by
adjoint constraint variables using LaGrange multipliers.  T
gradient of J with respect to the parameters is next evaluate
Then the parameters are updated with a quasi-Newton grad
algorithm, where the inverse Hessian of J is estimated using a
rank-two update algorithm [4].

Although the Idan method was far simpler, and perform
better, than other maximum likelihood techniques, it did ta
much trial and error to achieve the best results.  It also work
best if given a good set of initial parameters from which 
start.  Stability derivatives from a Cessna 172 where modif
and used as the first guess of the parameters [5].  Of course
parameter estimation techniques take a good knowledge of
system dynamics in order to determine the parameters
which to identify.

Observer/Kalman Identification Process
The second method of identifying the airplane model is t
observer/Kalman filter identification method (OKID).  The
system uses only input and output data to construct a disc
time state space realization of the system.  The method 
spawned numerous extensions but the concept is essent
the same [6].

The basic idea is to identify a linear discrete time, state-sp
system that models the aircraft.  Therefore we need 
determine [A,B,C,D].  OKID begins by computing observe
Markov parameters from experimental data [6] with th
number of parameters specified by the user.  The choice m
be sufficiently large to find a solution.

The system Markov parameters are the system’s respo
when perturbed from rest.  From the observer Mark
parameters, the system Markov parameters and the obse
gain Markov parameters can be calculated.  The syst
Markov parameters can then be assembled to form 
generalized Hankel matrix.  The Hankel matrix can b
decomposed into the Observability matrix, a state transit
matrix, and the Controllability matrix.  The Hankel matrix
(which must always be of full rank) can then be truncat
using singular value decomposition (SVD) at an order th
sufficiently describes the system.  The truncated Han
matrix is then used to reconstruct A,B, and C using 
minimum balanced realization algorithm that ensures that 
controllability and observability Grammians are equal.  This
known as the Eigensystem Realization Algorithm (ERA) and
modified version with data correlation (ERA/DC) can also b
used.  D is recovered from the observer Markov paramet
directly.  The observer gain matrix can then be compute
When reduced to system order, the identified observer ha
be a Kalman filter and thus the observer gain matrix G giv
the steady state Kalman filter gain . [6]

Subspace
The third method used for system identification is a subspa
process.  Subspace identification algorithms attempt to de
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mine a system by first estimating the (Kalman filter) states an
then determining the system matrix [7].  Subspace algorithm
are simple to use, fast, and robust.  The only required us
specified parameter is system order. They are fast whe
implemented correctly and there are no convergence problem
[7].

A combined deterministic stochastic subspace identificatio
algorithm was used.  Again we need to determine [A,B,C,D
but in addition we will also determine [Q,S,R], the noise
process and measurement covariance matrices.  For o
system and each model type (longitudinal and lateral), w
have a set of data with k = 4 outputs, and m = 2 inputs.

The method begins by computing oblique and orthogona
projections of the modified input and output data sets t
determine Zi, Zi-1, and Oi (the weighted oblique composition).
An orthogonal projection is defined as the projection of the
row space of a matrix A onto the row space of a matrix B an
denoted by A/B.  An oblique projection A/cB is the projection
of the row space of a matrix A along the row space of C ont
the row space of B [7].

The SVD of weighted oblique composition is calculated and 
system order, n, is then chosen by inspection of the singul
values.  The SVD is then used to estimate the extende
observability matrix Γi ( i > n), a ki x n block observability
matrix.  Γi-1, a k(i-1) x n block observability matrix, is found
by removing the last k rows of Γi.   The following set of linear
equations are solved for A, C and κ through least squares and
then

Γ Γi-1
t
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where r  and r  are the process and measurement
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The least squares solution computes asymptotically unbias
estimates of the system matrix.  Γi  and Γi-1 can now be
recalculated and the residuals can be found.  B and D a
solved for through a minimization problem.  Since the
problem is convex, there is a unique minimum.  Finally, the
residuals can be used to compute the noise covarian
matrices and K can be determined from Q,S, and R [7].

RESULTS

Once the data was processed and the three technique’s mod
determined, each was validated as an estimator and also a
predictor.  For these validation and comparison data runs, on
the test data sets were used.

The estimator comparisons show how the system may perfor
in a controller.  A steady state Kalman gain is determined an
used in conjunction with the actual measurement outputs 
determine how well the models would follow the test data i
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each had some knowledge of the current measurement at 
epoch.  The gain determines how much information about 
measurement is feedback into the estimator equations.  
comparisons of the different techniques, this process can
misleading if the gains are not determined in the same man
If for one technique, the gains are too large, the system w
weight the measurement output more heavily, and theref
track the measurement more than another technique mo
with a lower gain.

For a clearer idea of the model’s performance, the techniq
are compared as predictors only.  The gain is zero so 
knowle
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knowledge of the current measured state is feedback into t
predictor equations.  This testing configuration determine
how well the models simulate the airplane motion.

All three models, Idan, OKID, and Subspace, are compare
with the derived model from previous research.

Figure 3 shows the predictor performance for all the
techniques in the longitudinal modes.  Figure 4 shows th
predictor performance for all the techniques in the latera
modes.
Figure 3 – Longitudinal Comparison
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Figure 4 – Lateral Comparison
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The following charts summarize by showing the percent e
per output for all techniques uses as an estimator (Figur
and as a predictor (Figure 6) over all the test data sets. 
percent error per output is the residual at each ep
normalized by the measured output at that epoch for e
state.  This facilitates the comparison of model performa
from one state to another.  The longitudinal states are s
followed by the lateral states for each technique.

Figure 5 – Estimator: Percent Error per Output

0%

5%

10%

15%

20%

25%

Id
an

O
K

ID

S
ub

sp
ac

e

D
er

iv
ed

u

w

q

Theta

v

r

p

Phi
1070
ror
 5)
The
ch

ach
ce
ow

Figure 6 – Predictor: Percent Error per Output

CONCLUSIONS

The same GPS sensor set-up used for the succes
demonstration of autonomous flight with the Stanford UAV 
also an excellent tool for the system identification of th
aircraft.  From essentially one box, all necessary states 
measured with little noise.  This data and set-up is ideal 
system identification.

The Moshe Idan technique and the OKID technique for syst
identification delivered very good system models fo
simulation and possibly control.  The Idan method need
much more a priori information about the system, but bo
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were computationally intensive and took some trial and er
to use.  The subspace technique was less computation
intensive and took little trial and error to achieve resu
comparable with the other techniques.

The ultimate test of all the techniques will be a closed-lo
test using the models as estimators in the controller of 
airplane.
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