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We present an extension of the nonlinear two-step estimation

algorithm originally developed for the calibration of solid-state

strapdown magnetometers. We expand the algorithm to include

nonorthogonality within a sensor set for both two- and three-axis

sensors. Nonorthogonality can result from manufacturing issues,

installation geometry, and in the case of magnetometers, from soft

iron bias errors. Simulation studies for both two- and three-axis

sensors show convergence of the improved algorithm to the true

values, even in the presence of realistic measurement noise.

Finally the algorithm is experimentally validated on a low-cost

solid-state three-axis magnetometer set, which shows definite

improvement postcalibration. We note that the algorithm is

general and can be applied to any two- or three-axis sensor set

(such as accelerometers) with an error model consisting of scale,

offset, and nonorthogonality errors.
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I. INTRODUCTION

With the increase in autonomous systems has
come an increase in the need for location awareness
using sensors that are compact and have low power
requirements. Heading based on magnetic north
is an approach that has been borrowed from the
aviation industry, partly due to the very high cost of
north-seeking gyroscopes. Magnetometers, sensors
that detect magnetic fields, are often used to determine
magnetic north [1]. Due to the significant progress
in magnetometery, accurate and reliable heading
information can be achieved by employing a small,
low-cost, and highly reliable magnetometer. To
achieve equal accuracy in heading determination using
gyro-compassing would necessitate an expensive,
large, and near-navigation grade gyro. In the case
where size, cost, or power constraints rule in micro-
electro-mechanical (MEM) type gyros, then magnetic
heading becomes the only choice.
Anisotropic magnetoresistive (AMR) sensors

are compact, low power devices that are capable of
measuring magnetic fields. A Wheatstone bridge of
permalloy produces a differential output proportional
to the direction and magnitude of magnetic fields on
the sensitive axis of the bridge, see Fig. 1. Permalloy
is a nickel-iron alloy with an electrical resistance that
changes based on its orientation to a magnetic field.
Multiple bridges can be combined in a single sensor
set allowing for two and three axes of sensitivity.

Fig. 1. Four permalloy elements in Wheatstone bridge
configuration.

The minimum required to generate a crude heading
is magnetic sensitivity in the vehicle body x and
y directions. That is, we use the standard aircraft
coordinate body frame with the positive x-axis
forward out the nose, the positive y-axis out the right
wing, and z-axis positive down. For the navigation
frame, we use the North-East-Down (NED) coordinate
frame such that North is +x. Assuming that the
vehicle is level, the heading Ã, or angle between a
vehicle’s positive x-axis and magnetic north, is given by

Ã =¡arctan
Ã
Bby
Bbx

!
(1)
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where Bbx is the x-direction component of the Earth’s
magnetic field in the body fixed reference frame,
and Bby is the y-direction component. The symbol
B is the Earth’s magnetic field, and a b superscript
refers to body fixed reference frame quantity. An n
superscript refers to a navigation fixed reference frame
quantity. The subscripts x, y, and z represent the axis
of measurement.
Using the raw sensor readings in (1) results in

only crude headings as it does not take into account
any of the various sources of error in a magnetic
field measurement, nor any pitch or roll deviations
from a level plane. An accurate heading can be
found by developing a mathematical model of the
sensor readings that include the sources of error,
performing a calibration routine to determine the error
coefficients, and finally, processing the raw data to
remove the error corruption.
This paper expands upon an algorithm for

performing magnetometer and accelerometer
calibration originally discussed in [2] and [3]. The
procedure detailed here will allow sources of error
to be removed from magnetic sensor readings in real
time, allowing for accurate heading calculations. We
note that the algorithm is general and can be applied
to any two- or three-axis sensor set with an error
model consisting of scale, offset, and nonorthogonality
errors. We note that this algorithm is developed
for calibration of three axis magnetometers in a
magnetically “clean” environment. That is, the
algorithm requires knowledge of the magnitude of
the total magnetic field around the vehicle, either
this is modeled from the Earth’s magnetic field, or an
independent, accurate measure of the field is required.
Future work will use this same algorithm to calibrate
the magnetometers in-situ, using entire vehicle motion,
rather than just that of the sensors.
Section II details the errors specific to

magnetometer readings. Section III discusses
prior art, including the original nonlinear two-step
algorithm. Section IV discusses the expanded two-step
nonlinear algorithm showing both the two- and
three-dimensional cases. Section V shows simulations
of both the two- and three-dimensional cases,
followed by experimental results of a three-axis sensor
set in Section VI. Finally the conclusion of this paper
is in Section VII.

II. MAGNETOMETER ERRORS

Any magnetic sensor used to detect the Earth’s
magnetic field can be influenced by several different
sources of error, all combining to corrupt the output.
These error sources can be counteracted, but first
mathematical modeling and estimation is required.
The magnetometer output is typically corrupted due
to five error sources, namely: scale factor errors Csf ,

misalignment errors Cm, null shift errors Czb, and
finally, hard iron and soft iron errors ±

¡!
Bb and Csi,

respectively. At the physical level, these error sources
can be broken into two categories, those caused by
the sensors and those inherent in the measuring of
magnetic fields. Scale factor errors and null shift
errors are a trait of each individual sensing element,
and physical misalignment errors are caused by
manufacturing tolerances in the construction of sensor
sets. Hard iron and soft iron errors on the other hand
are side effects of measuring a magnetic field (caused,
respectively, by permanent magnetization of ferrous
metals induced usually by stress during manufacture,
and variable magnetic permeability which causes
induced magnetic fields to appear). Despite different
physical causes, both error categories appear in the
same form mathematically.
The null shift of a sensor, also known as a sensor’s

dc offset or zero bias, is a constant offset that shifts
the output of each sensor. Zero biases are most
evident when a sensor is exposed to no magnetic
field on the sensitive axis, however the sensor outputs
a non-zero value. Czb is a n£ 1 vector where n is
either 2 or 3 for the two- and three-dimensional
cases, respectively, that represents this zero bias
error shifting the final output of the each sensor by
a constant amount.
The scale error of a sensor is a side effect of

varying sensitives between sensors. The sensitivity
of a sensor serves to scale the output, and as no two
sensors will have the exact same sensitivity it must
be determined for each axis independently (note
that even sensors in the same integrated circuit (IC)
package will often have very different scale factors
and null shifts). Csf is an n£ 1 vector (where, again,
n is either 2 or 3) that accounts for the sensitivities of
the individual sensors by scaling the outputs.
The misalignment error of a sensor set comes from

a nonorthogonality between individual sensors in the
set. When the sensors in a set are aligned properly,
a field aligned with only one axis is observed by
only one sensor. However, if there is a misalignment,
multiple sensors will observe a field that is on only
one axis. Cm is an n£ n matrix that accounts for
sensor misalignment through scaling the sensor
outputs.
The hard iron errors are constant, unwanted

magnetic fields observed by a magnetometer. Up
to this point we have been careful to define

¡!
Bb as

the Earth’s magnetic field, however a magnetometer
will pick up any magnetic field, including those not
belonging to the Earth. Because hard iron errors must
be constant fields, their source must be attached to
the same body frame as the magnetometer, otherwise
the fields would vary depending on the vehicle’s
position. ±

¡!
Bb is an n£ 1 vector that represents the

sum of all permanent magnetic fields and shifts
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the sensor outputs by a constant amount. Note that
mathematically, hard iron errors and null shift errors
are indistinguishable.
Unlike hard irons where the field emitted is

constant, soft irons are materials that emit their own
field in response to exposure to an external field. For
the purpose of this paper we will assume that the
responses of soft iron materials are linear and without
hysteresis such that a square matrix is sufficient.
Like with hard iron errors, we only take into account
sources that are fixed to the same body frame as the
magnetometer. Csi is an n£ n matrix that represents
the sum of soft iron errors that are fixed to the body
frame that serve to scale the sensor outputs.
Combining all five of these error sources into a

single mathematical model, the measured magnetic

field
c¡!
Bb, as a function of the Earth’s magnetic field, isc¡!

Bb = CmCsfCsi(
¡!
Bb+ ±

¡!
Bb)+Czb: (2)

Note that in this paper we use the ˆ for measured
quantities, not the usual estimated quantities (for
estimated quantities, we use the subscript est).
It should be noted that there are additional

sources of error that are not included in this model,
specifically sources not attached to the vehicle. We
have taken into account permanent magnetic fields
whose influence on the magnetic sensors do not vary
over time, as well as soft iron sources that are fixed
to the body frame. We have not taken into account
any field with a source not fixed to the body frame,
or any fluctuating magnetic fields. Although these
error sources are present, they are not included in
this model as they would make it too complicated to
process.

III. PRIOR ART

Before the original nonlinear two-step calibration
algorithm, magnetic sensor sets were typically
calibrated through a process called “swinging” [4].
This fairly cumbersome process required putting the
sensor set in several known orientations corresponding
to specific headings, comparing the output of the
sensor set with a reference baseline, and calculating
the resulting heading error. Several drawbacks to this
approach have been discussed, including the manual
process of precisely aligning the sensor set with the
predefined orientations, the requirement of a more
accurate sensor to provide the reference baseline, and
the fact that this routine calibrates the sensor set to the
Earth’s local magnetic field, requiring recalibration if
the sensor set was to travel any significant distance,
or very careful factory calibration must be included.
Note that in practice, the true orientation of the sensor
or vehicle need only be accurate to §5± as long as
the arc swung can be measured accurately either by

optical or on-board inertial navigation system (INS)
sensors.
The nonlinear two-step algorithm developed in

[5] avoided many of these drawbacks by solving
for the error factors directly in the magnetic domain
rather than calibrating the sensor set in the heading
domain. The first key to the algorithm is noticing
that if one was to plot the output values of an error
free or perfect sensor set that was rotated through
various angles, those points would fall on top of a
circle for the two-dimensional case, or on top of the
surface of a sphere for the three-dimensional case
(that is: in the 2-D case if we rotated the perfect
sensor 360 deg and plotted the points, we would
see a perfect circle, centered at [0,0]). The second
key is to realize that the various errors in (2) serve
only to warp the circle or sphere into a distorted
ellipse or, in the three-dimensional case, a distorted
ellipsoid.
The nonlinear two-step algorithm in [3] has several

advantages over magnetometer swinging. The first is
that it applies to any two- or three-axis sensor, not
just a magnetometer. Moreover, the method requires
no external information other than the data recorded
from rotating the sensor and the total magnitude of the
vector quantity being measured (that is, no precisely
measured angles are required at all). The method is
the same as presented in this work, except that the
nonorthogonality terms (½, Á, and ¸) are all zero.
Again, the measurements taken during sensor/vehicle
rotation are stacked, and a least-squares estimate is
made for algebraic combinations of the parameters
of interest. Then the actual parameter estimates are
extracted using algebraic manipulation. For a full
treatment of the method, including simulated and
experimental results, see [6], [3].
Using these key points, a relationship can be

derived between the values that are generated by
the rotation of the sensor set and (2). Because this
relationship is not linear with respect to the various
error sources, a two-step process was developed with
the first step solving a linear relationship between
the measured values and intermediate variables, and
the second step solving an algebraic relationship
between these intermediate variables and the error
sources. This is an alternative to [7]. Once the error
parameters were calculated, these errors could be
removed from measurements in real time and an
accurate measurement of the Earth’s field generated.
Heading could be then determined by comparing
this corrected measurement to the known magnetic
field either as a stright magnetic azimuth calculation,
or as one of the two vector measurements required
for a Wahba’s problem-type full attitude solution.
For a quaternion implementation of the Wahba’s
problem-type attitude solution that uses a three-axis
magnetometer and three-axis accelerometer, see [6].
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IV. CALIBRATION ALGORITHM DEVELOPMENT

We made three modifications to the original error
model, and the resulting changes to the calibration
algorithm are presented here. The first two changes
are the removal of assumptions made about the sensor
misalignment and soft iron errors. The original paper
assumed that care would be taken in the assembly of
a sensor set such that any sensor misalignment would
be negligible. Furthermore, in addition to assuming
that soft iron errors could be represented linearly with
no hysteresis, the original paper assumed that any
soft iron material could be identified and would be
positioned far enough from the magnetometer set such
that it would have no effect. With the removal of these
assumptions, the soft iron error and misalignment
error factors will remain in our sensor model.
The final modification to the original error model

is the addition of the null offset error. Although the
original paper did not account for the null offset error
on each sensor, the algorithm produces correct results
because the zero bias was simply interpreted as an
additional hard iron error. With that said, the zero
bias error has been added to (2) in an attempt to be
complete, knowing that further calibration beyond
that of our algorithm would be required if one cared
to separate the hard iron errors from the zero bias
errors.

A. Two-Dimensional Case

As stated earlier, the first key to this algorithm
is to realize that a plot of the output of an ideal x-y
magnetometer leveled and rotated about the z-axis is
a circle with a radius equal to the magnitude of the
magnetic field to which it was exposed. The second
key is to realize that with the addition of the error
sources expressed in (2), the circle is altered until it
becomes a distorted ellipse. Mathematically, this can
be shown as follows.
For a level, error-free x-y magnetometer set, the

square of the magnitude of the horizontal component
of the Earth’s magnetic field is equal to the sum of
the square of the x and y components, or the equation
of a circle centered at the origin with a radius of BH :

B2H = B
b2

x +B
b2

y : (3)

Next the offset and scale factors are added to
the equation. Both hard iron and zero bias errors
combine to offset the output of the magnetometer
set by a constant amount. Because we have no way
of mathematically separating these two errors, we
will define xo and yo as the total offsets in the x and
y directions (note that these offsets can be separated
physically by using magnetic shielding for a “factory”
calibration). sfx and sfy are used to represent the x and
y components of the scale factor error. Adding these

Fig. 2. Sensor axes diagram for nonorthogonality. Note that
x-sensor lines up with x-true axis, but that y-sensor is off by

angle ½, which causes y-sensor to respond to both y-component of
field and x-component as well.

errors to our equations gives

B̂bx = sfxB
b
x + xo (4)

B̂by = sfyB
b
y + yo: (5)

Solving for Bbx and B
b
y then substituting them into (3)

shows the equation of an ellipse shifted off the origin,
or:

B2H =

Ã
B̂bx ¡ xo
sfx

!2
+

Ã
B̂by ¡ yo
sfy

!2
: (6)

The final errors come from the two sources
previously unexplored, the misalignment errors and
soft iron errors. To handle the misalignment error,
we assume that the x-sensor is perfectly aligned with
the x-axis and we define the misalignment as being
between y-sensor and the y-axis. For soft iron errors,
they can split into a combination of a scale error and a
misalignment error.
Just as with the offset errors, this algorithm will

not be able to mathematically separate the total scale
errors between scale and soft iron, nor will it be able
to mathematically separate the total misalignment
error between physical misalignment and soft iron
(again, these can be physically determined using
other methods to the accuracy required for a “factory”
calibration). Therefore a is defined as the total scale
error on the x-sensor, b is the total scale error on the
y-sensor, and maintaining that the x-sensor as being
perfectly aligned with the x-axis, ½ is the total angular
misalignment between the y-sensor and the y-axis
(see Fig. 2). Note that as can be seen from Fig. 2, the
y-sensor senses both the y-axis as well as a part of the
x-axis before being scaled. Including these errors into
our previous equations gives

B̂bx = aB
b
x + xo (7)

B̂by = b[B
b
y cos(½)+B

b
x sin(½)]+ yo: (8)

The result of solving for Bbx in (7), plugging that into
(8) to solve for Bby , then plugging both into (3) can be
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written in the form of a shifted, distorted ellipse as

AB̂b
2

x +BB̂
b
x B̂

b
y +CB̂

b2

y +DB̂
b
x +EB̂

b
y +F = 0 (9)

where A, B, C, D, E, and F are functions of a, b, xo,
yo, and ½. Equation (9) is not linear in terms of a, b,
xo, yo, and ½ but is linear in terms of the intermediate
variables A, B, C, D, E, and F.
Best estimates for A—F in a least-squares sense

can be found by restructuring (9), putting it in matrix
form and performing a batch least-squares best fit.
Equation (9) can be rewritten as

1 =

"
B̂b

2

x

B̂b2y

B̂bx B̂
b
y

B̂b2y

B̂bx

B̂b2y

B̂by

B̂b2y

1

B̂b2y

#
2666666666666664

¡A
C

¡B
C

¡D
C

¡E
C

¡F
C

3777777777777775
:

(10)

Because A—F are constant for all k measurements, all
the data points can be combined into a large matrix
equation such that

X£P=W (11)
where

P=

2666666666666664

¡A
C

¡B
C

¡D
C

¡E
C

¡F
C

3777777777777775

T

(12)

W=

26666664

1

1

¢
¢
1

37777775 (13)

and

X=

26666666666666664

B̂b
2

x1

B̂b2y1

B̂bx1 B̂
b
y1

B̂b2y1

B̂bx1

B̂b2y1

B̂by1

B̂b2y1

1

B̂b2y1

B̂b
2

x2

B̂b2y2

B̂bx2 B̂
b
y2

B̂b2y2

B̂bx2

B̂b2y2

B̂by2

B̂b2y2

1

B̂b2y2
¢ ¢ ¢ ¢ ¢
¢ ¢ ¢ ¢ ¢
B̂b

2

xk

B̂b2yk

B̂bxk B̂
b
yk

B̂b2yk

B̂bxk

B̂b2yk

B̂byk

B̂b2yk

1

B̂b2yk

37777777777777775
: (14)

Finally Pest, a least-squares best fit estimate for P,
can be calculated as

Pest = (X
TX)¡1X: (15)

Now that estimates for A—F have been found, and
assuming BH is known, solutions for a, b, xo, yo, and
½ can be solved algebraically.

B. Three-Dimensional Case

The restriction that the two-dimensional sensor set
must remain level while being rotated can be removed
through the addition of a z-sensor. Equation 3, no
longer just for the horizontal component, but rather
the total of the Earth’s magnetic field, becomes

B2 = Bb
2

x +B
b2

y +B
b2

z : (16)

Defining c as the total of all scale factors on the
z-sensor, zo as the total of all offsets on the z-sensor,
Á as the misalignment angle between the z-sensor
from the x-z plane, and ¸ as the misalignment angle
between the z-sensor from the y-z plane, the equation
for the magnetic field on the z-sensor is

B̂bz = c[B
b
z cos(Á)cos(¸) +B

b
x sin(Á)cos(¸) +B

b
y sin(¸)] + zo:

(17)

Solving for Bbz , (16) can be written in the form of a
distorted ellipsoid as:

AB̂b
2

x +BB̂
b
x B̂

b
y +CB̂

b
x B̂

b
z +DB̂

b2

y +EB̂
b
y B̂

b
z

+FB̂b
2

z F+GB̂
b
x +HB̂

b
y + IB̂

b
z + J = 0 (18)

where A, B, C, D, E, F, G, H, I, and J are, again,
functions of a, b, c, xo, yo, zo, ½, Á, and ¸.
Using the same process as for the two-dimensional

case, (18) can be put into matrix form, multiple
readings gathered, a batch least-squares estimation
for A—J produced, then estimations for the individual
calibration parameters solved algebraically. Note that
the linearization in this case is along the parameters
A-J , and not along the desired parameters a¡¸. In
this case, while A-J will be optimal in a least-squares
sense, the true parameters a-¸ may not necessarily
be so. Further work involving geometric projection
and numerical solution to the full nonlinear problem
has shown that this method produces, in fact, very
good estimates. However, formal analysis is for future
work. Furthermore, while a posteriori estimates of the
covariance is available for A-J , these are not easily
transferable through the algebraic manipulations
required to extract the parameters of interest.

V. SIMULATIONS

Simulations of this calibration procedure were
performed in Matlab for both the two-dimensional and
three-dimensional cases.
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Fig. 3. Two-dimensional simulation of calibration procedure. Uncalibrated data on perimeter of rotated ellipse (upper right) and
corrected data on perimeter of circle with radius equal to field strength (lower left), both with center points labeled. Note that units here
are in “Earth magnetic field equivalents,” and that original offsets in simulation are [1:4,0:98], which are recovered by the algorithm,

along with scale factors and nonorthogonality. That is, a perfect sensor would show a circle of radius 1.

A. Two-Dimensional Case

1000 data points are generated in such a way
that they simulate a single level rotation of an x-y
magnetometer set about the z-axis in a constant
field with a magnitude of one. Scale, offset, and
misalignment factors are added to simulate the
combination all of the error sources discussed in
this paper. Random noise up to 5% of the total field
strength is added to each reading to account for sensor
broadband noise.
Calibration parameters are estimated in Matlab

with the procedure presented in this paper then used
to reverse the various error sources. Both the raw,
corrupted data, and the regenerated data are displayed
in Fig. 3. An ellipse based on the estimated error
parameters and a circle with a radius of one are also
shown to evaluate the accuracy of the fit.

B. Three-Dimensional Case

In the three-dimensional simulation, 5000 data
points are generated in such a way that they simulate
the sensor set being exposed to a constant field with
a magnitude of one while completing five horizontal
rotations and half a vertical rotation. DC offsets, scale
errors, and misalignments are applied to the data
followed by the addition of random noise up to 5%
of the magnetic field strength.
Calibration parameters are then estimated with

the procedure detailed above and used to remove
the errors from the raw data. Fig. 4 shows both the
original corrupt data and the final calibrated data
along with the estimation ellipsoid and a sphere with a
of radius one.

VI. EXPERIMENTAL RESULTS

Only the three-axis case was validated
experimentally, and note further that only the “sensor”
was rotated, not the entire vehicle. A three-axis
magnetometer set was created by combining a
two-axis HMC1052 with a single-axis HMC1021Z.
Both these magnetometers are made by Honeywell
and provide a §6 gauss range. The differential output
from these three axes were then passed to a unity
gain operational amplifiers (OpAmps) in a differential
configuration with the final analog voltage being fed
to a Texas Instruments MSC1200Y2 microprocessor
with an integrated 24 bit delta-sigma analog to digital
converter (¢§ ADC). The three magnetometer
readings were sampled at 100 samples per second
(SPS) and the results recorded as the sensor set was
rotated through various angles for a total of over
78,000 data points. Note that this resolution is far
better than the sensor resolution from the data sheet,
which would require only 19 bits, however, the ADC
is low cost, and the extra bits are distributed as white
noise. For more details on this hardware setup, see
[8].
After recording data, the calibration algorithm

discussed in this paper was used to generate
calibration parameters and correct the raw data. The
total Earth magnetic field at the point where this data
was collected was found using [9]. Fig. 5 shows the
raw data on the best fit calibration ellipsoid, and
Fig. 6 shows the corrected results on a sphere with
radius equal to the magnitude of the Earth’s magnetic
field. The calculated parameters for this sensor set are:
xo = 262:73, yo =¡159:19, zo = 23:01, a= 1:24e+8,
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Fig. 4. Three-dimensional simulation of calibration procedure. Uncalibrated data on surface of rotated ellipsoid (lower right) and
corrected data on surface of sphere with radius equal to field strength (upper left), both with center points labeled. Note that units here

are in “Earth magnetic field equivalents,” and that original offsets in simulation are [1:5,0:8,¡0:5], which are recovered by the
algorithm, along with scale factors and nonorthogonality. That is, a perfect sensor would show a sphere of radius 1.

Fig. 5. Raw data from three-axis magnetometer plotted on estimation ellipsoid based on calibration parameters with center point
labeled. Note that units here are in raw ADC counts, with center offset at [263,¡159,23].

b = 1:26e+8, c= 1:20e+8, Á=¡3:98±, ½= 3:10±,
and ¸=¡6:03±.
Note here that the angular deviations for

nonorthogonality are immediately recognizable in
the size of their effect. The effect of the scale factor
and null shift is harder to quantify in recognizable
terms, however. In terms of heading angles, the results
of this calibration result in a yaw angle deviation
of approximately 0:25±. In terms of variation in the
magnitude of the measured magnetic field, before
calibration, the data shows a standard deviation of
0.0184 gauss; postcalibration, the same data shows

a standard deviation of 0.00093 gauss, as shown
in Fig. 7. This is an improvement by a factor of
approximately 20!

VII. CONCLUSIONS

This paper has presented an expansion of the
previously published nonlinear two-step calibration
algorithm for solid-state strapdown magnetometers.
We have expanded on the original error model,
removed two assumptions on error sources, and
solved for the calibration parameters using the
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Fig. 6. Corrected data from three-axis magnetometer plotted on sphere with radius equal to Earth’s magnetic field and center pointed
labeled. Scale factors, biases, and nonorthogonality have all been removed from raw data. Note that units are now in gauss, as opposed

to ADC counts in Fig. 5.

Fig. 7. Pre- and postcalibration magnitude of measured magnetic field. Note that before calibration, magnitude of magnetic field
(which should be constant), varies with standard deviation of 1840.8 nT, and that postcalibration, this has been reduced to 93 nT.

same nonlinear two-step approach for both the
two-dimensional and three-dimensional cases.
The resulting algorithm now solves for angular
misalignment parameters caused by both sensor
misalignment and soft iron errors in the same body
frame as the sensor set. Simulations and experimental
data have been generated to show the success of the
algorithm. In the case of the experimental data using a
small low-cost three-axis magnetometer, the standard
deviation of the magnetic field magnitude before

calibration (1840.8 nT) improves by a factor of 20
once calibrated (93.1 nT).
Note that future work will include comparing

this algorithm to the nonlinear expansion including
all terms and optimized numerically using geometric
numerical techniques. Also, we will install the sensor
in a vehicle and use our technique as compared
with conventional “swinging” to determine what
improvement this technique yields when calibrating
the full vehicle as opposed to just the sensor.
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