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Abstract: This paper presents an algorithm for calibrating strapdown magnetometers in the magnetic field domain. [n contrast to the
traditional method of compass swinging, which computes a series of heading correction parameters and thus is limited to use with
two-axis systems, this algorithm estimates magnetometer output errors directly. Therefore, this new algorithm can be used to calibrate a
full three-axis magnetometer triad. The calibration algorithm uses an iterated, batch least-squares estimator that is initialized using a
two-step nonlinear estimator. The algorithm is simulated to validate convergence characteristics and further validated on experimental data
collected using a magnetometer triad. It is shown that the postcalibration residuals are small and result in a system with heading errors on

the order of 1 to 2 degrees.
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Introduction

Magnetometers measure the intensity of magnetic fields and are
used in many scientific and engineering applications. In vehicle
navigation, for example, they are used as inexpensive heading
sensors (where heading is the angle between the vehicle and
north). In these applications, heading is determined by measuring
the horizontal component of Earth’s magnetic field vector, h,
using a perpendicular pair (or an orthogonal triad) of magnetome-
ters. A magnetometer triad would measure h®=[r2h5h%}7, which,
as indicated by the superscript b, is Earth’s magnetic field vector
h expressed in a coordinate frame fixed to the body of the vehicle.
A pair of magnetometers would measure only two components of
the field vector or h®=[hZr2]".

If the the x—y plane of the body coordinate system is level
(i.e.. parallel to Earth’s local tangent), the magnetometer readings
are used to compute heading with respect to magnetic north using
the following formula:

b
¢=~tan"l(—2) (1)
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The negative sign in Eq. (1) ensures that clockwise heading
angles (measured from north) are positive when the magnetome-
ter measurements are parametrized using the standard aerospace
body axis convention (a body axis system where the x—y plane is
parallel to the local tangent and the positive z-axis is pointing
down when the vehicle is level). If the x—y plane is not physically
level, it can be leveled analytically by measuring the pitch and
roll angles of the vehicle. These angles are used to compute the

b—w

body-to-locally level transformation matrix, C , which is used to

map the magnetometer measurement to the locally level plane.
b—w

Note that C is the b to w coordinate frame transformation ma-
trix where the w is the x—~y—z coordinate frame having its x-axis
coincident with the vehicle’s longitudinal axis and its x—y plane
level or parallel to the local tangent. This coordinate frame is
sometimes called the wander azimuth plane (Siouris 1993).
Since the output of any sensor is to some degree corrupted by
errots, the actual measurement made by the pair or triad of mag-

netometers, h®, will be different from the true magnetic field h”.
The process of estimating these errors and removing them from
the magnetometer measurements is the subject of this paper.

For heading determination systems that use a pair of perpen-
dicular magnetometers, a well-known calibration procedure called
compass swinging has been used successfully (Bowditch 1984).
The compass swinging procedure involves leveling and rotating
the vehicle containing the magnetometers through a series of N
known headings, as shown schematically in Fig. 1. The differ-
ences between the heading determined using the magnetometer
outputs and the N known headings are used to compute calibra-
tion parameters. This procedure is discussed in more detail later
in the paper.

Compass swinging has several shortcomings, however, which
make it unsuitable for many current applications. Two of the most
significant shortcomings of this procedure are that (1) it requires
an external or independent source of heading; and (2) the plane

“containing the pair of magnetometers must be level. These two

factors limit or even preclude in situ calibration because the mag-
netometer being calibrated is normally the only source of heading
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""Swing" the vehicle
through a series of
headings to estimate the
calibration parameters

Fig. 1. Graphical description of swinging

information. Furthermore, the b and w coordinate frames will not
always be coincident.

Another deficiency of compass swinging is that it is a heading
domain calibration algocithm. That is, it involves computing a
series of heading correction parameters that, when added to head-
ing [as computed by Eq. (1)], cancel heading deviations caused
by magnetometer errors. Thus, the algorithm is not applicable for
applications other than heading determination, such as three-axis
attitude determination as discussed in Gebre-Egziabher et al.
(2001a,b), Gebre-Egziabher (2001), and Elkaim (2001). Another
shortcoming of compass swinging is that the quality of the cali-
bration degrades as the vehicle with the magnetometers is moved
farther away from the geographical point where the calibration
was performed. This is because the correction parameters com-
puted are functions of the local magnetic field strength.

Recently, different magnetometer calibration methodologies
that deal with some of the shortcomings of compass swinging
have been proposed. For example, Caruso (2000) proposed a
method that computes correction parameters for the magnetom-
eter’s field measurement errors instead of heading correction pa-
rameters. Since this is a procedure for calibration in the magnetic
field domain, unlike compass swinging, the results are location
independent. In addition, the calibration is not limited to magne-
tometers used solely for heading determination but is applicable
in cases where the magnetometers are used for any purpose
(Gebre-Egziabher et al. 2001a,b). However, the method discussed
in Caruso (2000) does have some limitations. For example, it still
requires that the x—y body plane of the vehicle containing the
magnetometers be level during calibration, which severely limits
the algorithm from real-time use in a vehicle that is moving.

To improve the performance of the above-discussed magnetic
field domain calibration procedure, this paper presents a reformu-
lation and extension of the method discussed in Caruso (2000).
First, a unified error mode! for strapdown magnetometers is pre-
sented, and then the problem of calibrating strapdown magneto-
meters in the context of the unified error model is discussed. Priot
art in calibration of magnetometers is then presented. In particu-
lar, we will discuss compass swinging or the classical method of
calibrating magnetometers in the heading domain. This will serve
as a motivation for the methods presented in this paper as well as
a benchmark against which we will compare these new calibra-
tion methods. The algorithm development section of the paper
will introduce an iterative, batch least-squares algorithm for cali-
bration in the magnetic field domain. We will also present a two-
step, nonlinear estimator used to establish the initial conditions
for the iterative, batch least-squares algorithm, followed by the
results of simulation and trade studies as well as experimental
results that validate the algorithms developed. Concluding re-
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marks and a discussion of future algorithm improvements close
the paper.

Error Modeling

The outputs of magnetometers are corrupted by wide-band
measurement noise, stochastic biases due to sensor imperfections,
installation errors, and unwanted magnetic interference in the vi-
cinity of the sensors.

The unwanted or interfering magnetic fields can be classified
into two distinct groups. The first group consists of constant or
slowly time-varying fields generated by primarily ferromaguetic
structural materials in the proximity of the magnetometers. The
field measurement errors resulting from such interferences are
referred to as hard iron biases (Kayton and Fried 1997).

The second group of interfering magnetic fields result from
materials that generate their own magnetic field in response to an
extemnally applied field. This generated field is affected by both
the magnitude and direction of the externally applied magnetic
field. Such materials are called soft irons, and the error they gen-
erate is referred to as a soft iron bias. In a moving vehicle, the
orientation of Earth’s magnetic field relative to the vehicle {and
any soft iron materials contained therein) changes continuously.
Thus, the resulting soft iron errors are time varying.

A comprehensive mathematical model for the output error of a
strapdown magnetometer can be written as

b—w

b= C [C,CyCulh” +b" + wh)] (2)

In this model, h”=measured {or estimated) field measurement
: s Wb [ by by bT b_T b b hT
in the w plane while b®=[6,b7b]" and w*=[wiww!]" represent
hard iron biases and wide-band noise, respectively, and are addi-
tive errors that corrupt the true field measurement h®. The vari-
ables Cg;, C,p, and C,, are 3X3 matrices that account for soft

iron, scale factor, and misalignment errors, respectively. The
b—w

matrix C is the 3 X 3 body-to-local-tangent transformation ma-

trix discussed earlier. These errors are discussed next in more

detail.

Hard Iron Errors (b?)

Normally, the largest errors tend to be null shifts caused by un-
wanted magnetic fields in the vicinity of the magnetometers. This
can be seen clearly by examining Fig. 2, which shows the output
error from a magnetometer measuring the vertical component of
Earth’s magnetic field vector, hf, at Stanford, California (approxi-
mately N37.5° latitude and W122.1° longitude). Earth’s magnetic
field vector at this location, h, in north-east-down (NED) coordi-
nates is equal to [0.23199 0.06361 0.43500]° Gauss (Barton
1997). Fig. 2 shows the output of a magnretometer measuring the
vertical component after &, (0.43500 Gauss) has been subtracted.
What is shown in the figure, therefore, is a null shift of 92
milli-Gauss and the largest component of the output error.

Wideband Noise (o)

Removing the null shift from the data shown in Fig. 2 leaves
errors due to magnetometer measurement wideband noise. Fig. 3
is a histogram of the data shown in Fig. 2. From Fig. 3, observe
that the wideband noise has a standard deviation, o, of approxi-
mately 5 milli-Gauss, which is smaller than the null shift.
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Fig. 2. Magnetometer null-shift time history (output from Honeywell
HMC2003 magnetometer triad)

Soft Iron Errors (Cg)

Even though it is not always valid, in this work we assume that a
linear relationship (without hysteresis) exists between the field a
soft iron generates and the externally applied field to which it
responds. For the application that motivated this work—heading
determination in aircraft—the assumption of no hysteresis is rea-
sonable for two reasons. First, aircraft structures are normally
made from nonferromagnetic materials that do not exhibit the
aforementioned hysteresis (e.g., aluminum or composites). Sec-
ond, even if ferromagnetic materials are present in the vicinity of
the magnetometers, the externally applied field would have to be
very large relative to Earth’s magnetic field before the hysteresis
loop becomes an issue. If care is taken during installation such
that objects that generate large magnetic fields (c.g., large perma-
nent magnets or current carrying wires) are not located in the
vicinity of the magnetometers, then hysteresis will not be an issue
even if ferromagnetic materials are located close to the sensors.
Thus, assuming no hysteresis, C; can be written as

.| Mean (u) =92 mili-Gauss

# of Samples

.| Standard Deviation (G, ) = 4.7 milli-Gauss. ... J

" 1 L
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-0.08

Fig. 3. Histogram of magnetometer output error shown in Fig. (2)

Oy Gy O

Qyx Qyy Ay (3)

U,y O o

C.=

si
fa 2

The a; tenns represent the effective soft iron coefficients and
are the constants of proportionality between the magnetic field
applied to a soft iron and the resulting induced magnetic field.
From a notation point of view, o, for example, represents the
effective coefficient relating the field generated in the x-direction
in response to an applied field in the y-direction. The term effec-
tive is used to describe these coefficients because they represent
the effect of all soft iron material present that may corrupt the
magnetometer outputs (Gebre-Egziabher 2001; Elkaim 2001).

Scale Factor (C.p)

Scale-factor errors are modeled using the 3 X3 matrix Cy given
by

(1+Sfx) 0 0
fo= 1] (1 + Sf_\,) 0 (4)
Q 0 (l+5fz)

The scale factor errors sg,. ify, and s, represent the uncertainty in
knowledge of the constant of proportionality relating magnetome-
ter input to output.

Misalignments (C,,)

In an ideal installation, the magnetometer triad will be mounted in
perfect alignment with the body axis of the aircraft. Stated differ-
ently, the magnetometer axes will be identical to the body axes. In
actual practice, perfect alignment cannot always be achieved. The
matrix C,, accounts for this misalignment and represents the re-
sidual error in our knowledge of the magnetometer axes (sensor

p—b
platform or p axes) to body frame transformation matrix C .
Since by definition residual misalignment errors are very small
(but not negligible), C,, can be modeled as the following skew-
symmetric matrix:

1 —€ ¢
Cm = EZ 1 —€, (5)
—€, & 1

The three independent parameters defining the matrix (e, €,,
and €,) represent small rotations about the body axes of the ve-
hicle that will bring the platform axes into perfect alignment with
the body axes. Thus, C,, is constant and only needs to be esti-
mated once. Note that the error mode! given by Eq. (2) and the
definition of C,, given by Eq. (5) do not imply that in an error-
free installation the magnetometer and body axes of the vehicle
are aligned. The magnetometer triad can be installed in any
known orientation relative to the body frame. In this instance, the

b—w
transformation matrix C from Eq. (2) can be redefined as the
magnetometer triad-to-local-tangent transformation matrix. The
matrix C,, will represent the error in our knowledge of the mag-
netometer triad-to-body transformation matrix.

The process of calibrating a pair or triad of magnetometers
involves estimating the various unknown vectors and matrices
defined in Egs. (2)~(5). Methods for estimating these unknown
parameters are the subject of the remainder of this paper.

JOURNAL OF AEROSPACE ENGINEERING © ASCE / APRIL 2006 / 89



Compass Swinging

The compass swinging algorithm has been used for some time in
marine (Bowditch 1995) and aviation (LITEF 2001) applications.
In these applications, the sensors traditionally used were a pair of
flux-gate or flux-valve magnetometers. The sensors are arranged
perpendicular to each other and coincident with the x and y body
axes of the vehicle. For these systems, the heading error, 8y, due
to both hard and soft iron biases is given by

Sy =A + B sin(fs) + C cos() + D sin(2y) + Ecos(2y)  (6)

This equation is derived in the appendix at the end of this
‘paper, and from that derivation it can be seen that the coefficients
A through E are functions of the soft iron coupling terms, ;;, and
Earth’s local hotizontal magnetic field strength, hy,.

The unknown coefficients A through E are estimated by level-
ing and rotating the vehicle through a series of N known head-
ings, as shown schematically in Fig. 1. At cach known kth head-
ing, the heading error, 8¢, is computed and used to form the
following system of equations:

ijr

Sy | |1 sin(ly) cos(yy) sin(2y;) cos(2y) 2

5!}!: ! sin(Wy)  cos(Yy) sin(24;) cos(24,) c

: : : D

Sy L sin(yy) cos(yy) sin(2yy) cos(24y) | E
)

A batch least-squares solution of Eq. (7) yields estimates for the
coefficients A through E.

Examination of Egs. (6) and (7) reveals at least two short
comings of the compass swinging procedure. First, the fact that
the coefficients A through E are functions of h, (see Appendix)
implies that the calibration is location dependent. Thus, if the
vehicle is expected to travel over large distances, multiple cali-
brations must be performed due to varations in Earth’s magretic
field.

The second shortcoming of compass swinging becomes appar-
ent when we note that heading is a required input to the algo-
rithm. Since heading errors due to hard and soft iron errors are
heading dependent, the heading input into the algorithm will be
corrupted by a nonconstant bias. Thus an independent measure-
ment of heading is required when calibrating magnetometers
using this method. In aviation applications, the standard

practice is to use a compass rose painted on the tarmac similar to -

what is shown in Fig. 1 as the secondary independent heading
measurement.

Calibration Algorithm

In addition to the above noted limitations, the fact that the vehicle
containing the magnetometers has to be level during calibration
prevents use of compass swinging in motion. To deal with this
shortcoming, an alternative calibration algorithm has been devel-
oped that works with both a pair and a triad of magnetometers.
We first develop the algorithm assuming that only a pair of mag-
netorneters are used. Once the basic algorithm has been devel-
oped, it is extended to three dimensions such that it is applicable
to magnetometer triads. The method developed corrects the field
measurement errors directly, and not the effect of field measure-
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ment errors on heading. Thus, as noted earlier, we will refer to
this as a method of calibration in the magnetic field domain.

The fundamental idea behind calibration in the magnetic field
domain is that the locus of error-free measurements from a pair of
perpendicular magnetometers is a circle. It is easy to show that
this is the case by examining the expressions for hz and h;’.. From
Fig. 1 it is clear that h2=h, cos({s) and h;’:—h,, sin(ys). Squaring
these expressions and adding them together leads to the following
equation:

(h? + (h’y’)2 =k} cos® Y + k2 sin® Y= h2 (8)

This is the equation of a circle with its center at the origin. The
radius of the circle is equal to the magnitude of the horizontal
component of the local Earth magnetic field vector and is a func-
tion of geographical location. The magnitude of the radius varies
with latitude, longitude, and altitude because Earth's magnetic
field vector varies with location. This variation of Earth’s mag-
netic field vector can be modeled with reasonable accuracy using
the current International Geomagnetic Reference Field (IGRF)
model (Barton 1997).

The effect of the various magnetometer errors described in Eq.
(2) is to alter the shape of the locus of measurements described by
Eq. (8). In this instance, as noted in Eq. (2), the erroneous x and
y magnetometer outputs will be };f and ﬁ;’ Hard iron errors, for
example, shift the origin of the basic locus, which can be shown
mathematicaily by considering a hard iron bias vector with com-
ponents b, and b,. If the x and y field measurements in the plat-
form axes are biased by b, and b,, respectively, the equation for
the locus of the magretometer measurements becomes

(R ~b)+ (W)~ b) =y ©

This is still the equation of a circle, but instead of having its
center located at the origin, its center is at (b,b,).

In the absence of other forms of errors, scale-factor errors
cause the body x- and y-magnetometer measurements to be dif-
ferent when both are subjected to an identical magnetic field. This
can be expressed mathematically as follows:

ﬁi’:(l +5p)hy, cos s, (10}
k== (1+s,)hy sin . ~ap
Squaring Eqs. (10) and ([1) and adding them together leads to
~p \2 < \2
h? K
1+ Sfx 1+ Sfy

which is the equation of an ellipse centered at the origin. The
major and minor axes’ magnitudes are determined by the scale-
factor errors, sp; and sz, When the hard iron errors b, and b, are
included in Eqs. (10) and (11), the resulting locus is still an ellipse
but its center is moved away from the origin to (b,,b,}. That is

~ 2 A 2
-p R —b,
(lx _4:) +( v 1) =hz (13)
L+5g L+sp
Soft iron errors. will modify the error-free circular locus into an
ellipse but also rotate the major and minor axes of the ellipse. To

show this mathematically, consider expressions for h® and h’y’
when soft iron biases are the only sources of error. In this instance

fzf and ;tz become [see Egs. (56) and (57) in the Appendix]

hE = hy cos Y(1 + ) — by, Sin (14)
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Fig. 4. Effect of errors on magnetic field measurement locus in 2D

ﬁ’;:-hh sin (1 + o)) — oty cos s (15)

In matrix form these equations become

hif - {(l +0Lx.t) Cyy ][ hh CO.S \II } (16)
hf, Qe (1 +(!yy) | ~ hy, sin s

Inverting this matrix equation and noting that Ke=hy, cos(is)
and h‘;:—hh sin(y) lead to the following:

[/’lf ] 1 [(1 +oy,)  — ] ﬁi
b= ”
hy I+ o)1 +a,)—o 0.l —oy, (1 +oy) h_’;

(17

If the two equations represented by this matrix are squared and
added, the resulfing locus will describe an ellipse with rotated
major and minor axes. If hard iron errors are present in addition to
soft iron errors, the locus will still be a rotated ellipse but its
center will be displaced from the origin. Fig. 4 is a graphical
summary of the effect of the various errors on the locus of mag-
netometer measurements.

For the remainder of this paper, we will assume that
C,,=identity matrix and «;; is where { # j is zero. The assumption

that o;;=0 for i#j is not always valid. In the application that
motivated this work [general aviation or uninhabited aerial ve-
hicle (UAV) heading determination]}, the assumption is reasonable
because aircraft structures are normally made from aluminum or
composite materials. This assumption is further validated by ex-
perimental data that will be discussed later in the paper. The data
-show that for a magnetometer installation in a wooden (compos-
ite) structure, the ellipse (or ellipsoid in the 3D case) had major
and minor axes aligned with the body axes justifying the assump-
tion that o;;=0 when i#j. Similarly, C,, was made to be the
identity matrix by careful installation of the magnetometers and
accounting for the residuals in postprocess.

Given the above assumptions {or simplifications), the hard iron
errors affect the center of the elliptical measurement locus while
the scale-factor errors and the a;; soft iron terms affect the size of
the major and minor axes. Thus the calibration algorithm that will
be developed is nothing more than a paramcter estimation prob-
lem. The algorithm is an attempt to fit the best ellipse (in the
least-squares sense) to the measured magnetometer data.

In the case of a magnetometer triad, the error-free locus of
outputs is a sphere. That will be centered at the origin with a
radius equal to the magnitude of Earth’s magnetic field vector.

The various magnetometer errors alter the spherical locus into an
ellipse and displace it from the center. In particular, the scale
factor and o; soft iron terms reshape the sphere into an ellipsoid
centered at the origin. Hard iron errors shift the ellipsoid away
from the origin, and the effect of the wideband noise is to roughen
the smooth surface of the measurement locus. Note that if o
#0, it implies that the major/minor axes of the ellipsoid are not
aligned with the body axis, which means that additional states are
required to completely describe the locus of measurements. Thus
the algorithm that will be presented is not valid if o; for i # j are
significantly different from zero.

Thus the calibration algorithm is the problem of determining
the parameters of an ellipsoid that best fits the data collected from
a magnetometer triad. Mathematically, the locus of measurements
is described by the following equation:

~ 2 - 2 - 2
h-b K -b Wb
llh||2=h2=( = ) +( * ’) +( — (18)
Yx Yy Y-

where
ve=(1+s)(1+ay) (19)
vy=(1+ sp)(1+ay) (20)
v, =(1+sp)(1+ ) (21

The parameters (o be estimated are the hard iron biases de-
noted by b,, b,, and b, and the combined effect of scale-factor
error and the a;; soft iron terms denoted by .. v,. and v, The
given or known inputs to the calibration algorithm are the mca-

sured magnetometer outputs, ﬁ’; ﬁ';, and ﬁf’ and the magnitude of
Earth’s magnetic field vector, {[A|=h, in the geographic area
where the calibration is being performed.

Least-Squares Estimation

We can fit an ellipsoid of revolution to the measured magnetic
field data by using a batch least-squares estimator. Different ap-
proaches can be used to derive the estimator equations for fitting
data to an ellipsoid. For example, one approach is discussed in
Eberly (2001). The approach taken here is to linearize Eq. (18),
which results in a set of equations that are easy to implement in a
Kalman filter, The estimator will have as states perturbations of
the ellipsoid parameters defined in Eqs. (18)—(21). Thus, given an
initial guess of the unknown parameters, the estimated perturba-
tions are sequentially added to the initial guess and the procedure
is repeated until convergence is achieved.

To linearize Eq. (18), we note that the perturbation of ||A],
written as k, is given by Kaplan (1952)

- - 2 "

K -b RS —b, Rt - b,
—811:( £ 2‘>8bx+( "/_._3)8\,,+< . 2’)8[7).

h-Y.r \h'yx h'Yy

Wb\’ b Wb\
+ —",—_T‘- By, + ——*|8b,+ £ = | ¥y,
VA, hy; vhy;

{00, + n,0v + CySby + T]ys'Yy + gzﬁbz + 'ﬂstz (23)

where h=[h]. Note that the measured magnetometer outputs K,

ilf., and /;Ij are functions of time, even though, for the sake of
clarity, we have dropped the explicit notation of time in Eq. (23).
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That is, it should be noted that ﬁf is actuaily fz’y’(t=tk) and corre-
sponds to the x magnetometer field measurement at time step k.

The same is true for the y and z field measurements. Thus, given

field measurements from k time steps, Eq. (23) can be written as

Loy My & oMy L omy 8b,

3k, C:z Thx, Cy; Ty, CZZ Mz 3y
8/12 _ C"J M, C)‘g My, §z3 Tz Bby
: : - : &y,

Bhy C"k—l Mixey Cyk—-l Ny gzk-l Mg, 8b,
L, Nk (kN Ty, Ck,,, TNk ;871

X

(24)

Eq. (24) is in the form Sh=H §x where 3x is the vector of
unknowns given by

dx =[8b, 3y, 8b, &y, 8b, 3vy,]" (25)

The vector 8h is the difference between the known magnetic

field vector magnitude and its magnitude as computed from the

magnetometer outputs. That is, Shk=hk—ﬁk where h; is computed
from the IGRF model (Barton 1996) and ﬁk is computed as

he= VA + hy +h (26)
An estimate of the calibration parameters l;x, b, I;Z, Yo ¥+ and
9, is obtained by using the following iterative algorithm:

. Select an initial guess for b,, by, b,, ¥, ¥,. and §,. The initial
guess for v,, v,, and -y, must be nonzero.

2. Using the values of b,, by, by Vo ,» and ¥, form Eq. (24).

3. Obtain a least-squares estimate for 8x, denoted by 3%, as
follows:

3% =(H"H)'Hsh 27

4. Use the estimate for 86X and update the unknown parameters
as follows [(+) denotes parameter after update and () de-
notes parameter before update]:

b(+)=b,(-)+d(1) (28)
Yolt) = Yol-) +8%(2) (2';)
by(+)=b,(-) +8%(3) (30)
Y+ ) = v,(= )+ 8%(4) (31)
b,(+)=b(-)+5%(5) (32)
Yo+ ) =v,(=) + 3%(6) (33)

5. Compute the covariance matrix P (which is a measure of the
quality of the calibration) by using
P=ci(H H)! (34)

where o,=standard deviation of the magnetometer wide-
band noise.
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Fig. 5. Quantifying size of magnetometer measurement locus
available for estimation

6. Return to Step (2) and repeat until convergence is achieved,
which is when the estimate of b,, by, b,, ¥,, ¥,. and -y, do not
change from one iteration to the next.

The estimated calibration parameters can now be used to compute

the corrected field measurements A2, h';, and hf from the measured

magnetometer readings ﬁi’ };ﬁ, and ﬁf using the following
relations:

R —b '

Bh= A= (35)
Ve

hb= 21— (36)
Yy



Fig. 6. Portion of ellipsoid representing locus of magnetometer
measurements from actual experimental data. Data are shown by
dark-color dots on smaller (inner) sphere. After calibration, locus of
measurements will lie on larger outer sphere, which has radius equal
to magnitude of local magnetic field vector.

-5,
-

As will be discussed in more detail later in the paper, the
stability of the least-squares solution is sensitive to the following
three factors:

1. Closeness of initial guess of hard iron biases and vy factors to
their actual value;

2. Magnitude of wideband noise on magnetometer outputs; and

3. Shape and size of magnetometer measurement locus.

For a given set of magnetometer measurement data, the wide-
band noise on the sensor output and the size or shape of the
measurement locus cannot be altered. Thus, to reduce the effect of
these factors, a judicious selection of the magnetometers and data
collection scheme must be performed; that is, nonalgorithmic
mitigation techniques must be used. The effect of the initial con-
ditions, however, can be mitigated algorithmically. In what fol-
lows, we will develop one such techmique, which will be used to
establish initial conditions.

b
hy=

(37

Establishing Initial Conditions

The algorithms for establishing initial conditions use a nonlinear,
two-step estimator that is an adaptation of an estimator presented
in (Haupt 1996) and breaks the parameter identification problem
given by Eq. (18) into two steps. In the first step, a first-step state
vector is formed, the elements of which are algebraic combina-
tions of the elements of the second-step state vector. The elements
of the second-step state vector, on the other hand, are hard iron
biases and those of the scale factor are soft iron y terms. The
estimation problem is linear in the first-step state and therefore
retains the desirable properties of a linear system. Following es-
timation of the first-step states, elements of the second-step state
vector are extracted through algebraic manipulation.

Derivation of the equations for the nonlinear two-step estima-
tor begin by expanding Eq. (18) as follows:

Table 1. Parameters for Magnetometer Calibration Simulations

Scale factor

Case and Hard iron and Wide band

strip size bias soft iron noise

I, 10° b, 1 Gauss Yx 4 5 milli-Gauss
by 2 Gauss Yy 3
b, ~3 Gauss Y. 2

II, 20° b, 1 Gauss Y 4 5 milli-Gauss
by 2 Gauss Yy 3
b, -3 Gauss Y, 2

i1, 10° b, 1 Gauss Ye 4 10 milli-Gauss
b, 2 Gauss Yy 3
b, -3 Gauss Y: 2

v, 20° b, 1 Gauss Ye 4 10 milli-Gauss
by 2 Gauss Yy 3
b, -3 Gauss Yz 2

o R -200)(b) + (0, (B -2E)(b) + (b))
h = 3 + 5
Vx Yy
() - 2(A)(b) + (b)°
+ ‘yz .

(38)

Note that the field measurements are a function of time. Given
k field measurements, we can construct k separate equations such
as Eq. (38). Rearranging k Eq. (38)-like expressions into a matrix
equation of the standard z=FHx+v form leads to

[ﬁ_’i(n)]ﬂ | b, ]
[ﬁ’;(tz)]z ' piby
[h.’:(‘ta)]l =[H,, Hy) Rab; ry (39)
: My
[ﬁf:(tk-l)]z He
| BT Lo ]

The vector v represents the measurement noise, and the mea-
surement matrix H consists of two kX3 submatrices, the first of
which, H,,, is defined as

(40)

. . o]
—2RMr) - 2Rbe) - 2hln)
—2(n)  -2h(e) 24
—2e)  —2h() - 2R%(e)

- 2h¥(ty) —2%(1}—1) “‘2/22(11(—1)
| =285 —2Rb) - 2h%() |

The second submatrix H,, is given by
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Fig. 7. Hard iron-caused null-shift (in Gauss) and vy (unitless) for iterative least-squares estimator
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(“n

The vector on the right side of Eq. (39), denoted as x, is the
first-step state vector and consists of the variables ., through p.,,

which are defined as follows:

2
Yx
wi=73 (42)
Yy
2
Yz
Wy = '—2 (43)
Yz
3= bf + }.lei + [.l.zbf — Ly (44)
o = ¥y = g = (B2 + b + puyb?) (45)
An estimate for x, denoted as X, is obtained by
%=(H" H)"'HTy (46)

Once the first-step state vector is estimated, I;x, b, I;Z, Vi Vyo
and ¥, are extracted from X by the following inverse relations:

b,=%(1)

(47)
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A R(2
-
%(4)

. X33
5,=20)
x(5)
f=y
x W

a _ g
ks }Llhz
5 = Mg
Y Mhz

(48)

(49)

(50)

(51)

(52)

It was found that Eqs. (39)-(52} provide a very good estimate
of the calibration parameters. It is conceivable, therefore, that this
initialization algorithm alone can be used as a snapshot solution
in lieu of the iterative least-squares solution developed earlier.
This was avoided, however, because the two-step formulation as
discussed here does not provide an easy way to compute the
posterior covariance matrix P, which will be used as a metric for
the quality of the calibration. This is because the measurement
noise vector v is the result of squaring the outputs of the magne-
tometers [i.e., vector on the right side of Eq. (39)] and thus is
neither zero mean nor Gaussian distributed. While novel, nonlin-
ear estimation techniques that combine the unscented transforma-
tion (Julier 2002) with Kalman (Julier and Uhlmann 1997) or
particle filtering (van der Merwe et al. 2000) can be used 1o di-
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Fig. 8. Hard iron-caused null shift (in Gauss) and vy (unitless) for iterative least-squares estimator

rectly estimate the posterior covariance matrix, for the work re-
ported in this paper, we will use the linearized estimate of P given
by Eq. (34). As will be shown in the next section, this estimate of
P generally tends to overbound the actual estimation errors at a
[-o level.

Simulation Studies

A series of simulation studies was performed to assess the perfor-
mance of the magnetometer calibration algorithms. Initially, the
performance of the iterative batch least-squares estimator alone
was evaluated. The results of this evaluation examine the sensi-
tivity of the iterative batch least-squares estimator to the three
factors noted earlier: the quality of the initial values for hard iron
bias and vy; sampling and sensor wideband noise; and the shape of
the measurement locus.

Recall that the iterative batch least-squares estimator requires
an initial guess of hard iron biases (b) and scale-factor/soft iron
error terms (7y). This is because the ellipsoid-fitting problem is
highly nonlinear and thus sensitive to initial values of hard iron
bias and vy. The first set of simulation studies, therefore, evaluated
the performance of the algorithm where the initial conditions
were chosen randomly without using the two-step nonlinear esti-
mator. The initial guesses for the hard iron biases were picked
from a normal distribution with a mean equal to the actual biases
and a standard deviation of 0.5 Gauss. Similarly, the initial
guesses for the scale-factor/soft iron error term, <y, were picked

from a normal distribution centered at the actual value of vy with
a standard deviation of 0.5.

Two values of measurement noise standard deviation, o,,, were
evaluated. One of the values considered was 5 milli-Gauss and is
based on the data shown in Fig. 3. The data shown in Fig. 3,
however, were collected on a system that used a digital prefilter to
process. field measurements before they were recorded. In the ab-
sence of such a filter, the value of the wideband noise can be as
high at 10 milli-Gauss. As such, the second value of o, consid-
ered was 10 milli-Gauss.

Fig. 5 is a schematic that illustrates the metric used for quan-
tifying the measurement locus geometry. If during the calibration
procedure the magnetometer assembly is rotated through space
such that the entire Euler angle space is spanned, the locus of
magnetometer measurements obtained would be as shown in Fig.
5(a). As can be seen from the experimental data shown in Fig. 6,
this is not always possible, as Fig. 6 shows only a small portion of
the ellipsoid. Thus, for the simulation studies we will also assume
that only a small portion of the ellipsoid is present [Fig. 5(b)]. The
central angle spanned by the strip of the ellipsoid, ®, is used to
characterize the geometry of the measurement locus [Fig. 5(c)].

Table | shows the four cases simulated to quantify estimation
accuracy as a function of the three sensitivity factors discussed
above. The results of these trade-off studies are shown in Figs.
7-13. Figs. 7 and 8 show thie performance of the iterative batch
least-squares estimator in the presence of a 5 milli-Gauss wide-
band noise and when 10° and 20° strips of measurement locus are
available. While these figures show cases where the algorithm
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Fig. 9. Hard iron-caused null shift (in Gauss) and vy (unitless) for iterative least-squares estimator -

converged, there were instances when the algorithm diverged.
The frequency of divergence increases as the wideband noise on
the magnetometer measurements increases, as shown in Figs.
9-11. In these figures the noise is increased to 10 milli-Gauss.
While the algorithm converged for the particular runs shown in
Figs. 9 and 10, it diverged for the run shown in Fig. 11.

The rate of divergence was observed to be higher for $=10°
than ®=20°. For example, in one simulation study, which con-
sisted of 1,000 runs, the divergence rate was approximately 1.5
times greater for the @=10° case when compared to ®=20°. This
is not surprising because at 10 milli-Gauss the estimator will have
a harder time distinguishing features of the ellipsoid from noise.
This is particularly true when the initial conditions assigned to
hard iron biases and <y are too far away from the actual values.
This is confirmed when we note that in Figs. 9-11 the initial
conditions are not the same because, as noted earlier, the initial
conditions were varied randomly from one try to the next. Ob-
serve, for example, that the initial conditions assigned to b, and b,
for the run shown in Fig. 9 are closer to the actual values than
assigned for the run shown in Fig. I1.

Precise quantification of the divergence rate of the algorithm
due to initial condition errors was not deemed important because,
as will be shown later, initializing the algorithm with the two-step
estimator eliminates divergence due to initial condition errors.
Nevertheless, from Figs. 9-11 we conclude that for relatively
low-cost magnetometers with relatively large magnitude output
noise, this algorithm is not suitable unless a large portion of the
ellipsoid is available. This seasitivity to measurement locus ge-
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ometry has a very-important practical implication. When discuss-
ing the methods for calibrating a two-magnetometer system, it
was noted that the parameter estimation problem is one where the
best circle (in the least-squares sense) is fitted to the noisy mag-
netometer measurement data. A simple 36° turn on a level surface
yielded the required measurement locus.

In extending this method to the 3D case, a tacit assumption
was made that the entire sphere would be available for the param-
eter estimation problem. Unfortunately this is not always the case
because getting a complete sphere requires spanning the entite
Euler angle space. Thus, unless the magnetometer triad is in-
stalled in an aerobatic airplane, spanning the entire Euler angle
space is not possible. So the 3D catibration algorithms must be
able to work with dara that comprise only a portion of the entire
sphere. Actual data collected from a flight test are shown in Fig.
6. It is clear from this figure that an entire ellipsoid cannot be
obtained in a nonaerobatic aircraft.

The simulation results for the cases where the nonlinear, two-
step estimator is used to initialize the iterative batch least-squares
estimator are shown in Figs. 12 and 13, which are histograms for
the bias and vy estimation errors (or residuais) for 10,000 Monte
Carlo simulation runs. For each run, simulated magnetometer out-
puts were corrupted with bias and scale-factor errors as well as
wideband noise. The bias and scale-factor errors were held con-
stant for all 10,000 simulation runs and had the values given in
Table 1. The wideband noise, however, was varied for each run in
a random sequence with a standard deviation of 5 or 10
milli-Gauss.
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Fig. 12. Hard iron bias estimation errors for when using nonlinear, two-step estimator for initialization (result from 10,000 Moate Carlo runs)

Fig. 12 shows the bias estimation residuals. In none of the
10,000 cases did the solution diverge. For the x and y axes hard
iron biases, the estimation errors are seen to be less than
+0.5 milli-Gauss. In comparison to the x and y axes, the z axis
estimation errors are slightly larger. However, this error is smaller
when the locus of magnetometer measurements is larger. A simi-
lar trend is seen in Fig. 13, which shows the scale-factor estima-
tion errors. The fact that the estimation errors for both the z axis
hard iron biases and scale-factor errors are larger in comparison to
the x and y axis errors is not surprising because even in the 20°
locus case the data span only a small amount of space in the z
direction.

The 1—¢ standard deviation of the hard iron bias and vy esti-
mation errors for one representative run are summarized in Table
2. The 1—o estimation errors are nothing more than the square
root of the diagonal elements of the covariance matrix P. As
noted earlier and confirmed by observing Figs. 12 and 13 and the
data in Table 2, the estimated covariance overbounds the actual
errors. Thus, P can be used as a conservative metric for the qual-
ity of the calibration.

In conclusion, initializing the iterative batch least-squares es-
timator using the nonlinear, two-step estimator is seen to provide
superior performance. More specifically, the algorithm does not
diverge even in the case when the wideband noise on the magne-
tometer measurements is large. Thus it requires a smaller portion
of the measurement locus than in the case where the iterative
least-squares algorithm is used alone.
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Experimental Results

As a final verification, a triad of low-cost magnetometers was
calibrated using the algorithms developed in this paper. The data
were collected from an experimental setup where a set of low-
cost magnetometers were strapped to a long wooden boom, as
shown in Fig. 14. The wooden boom was used to isolate the
magnetometers from magnetic field-generating electronics in the
data-collecting computer and associated hardware. To verify the
quality of the calibration, the postcalibration heading solution was
compared with the heading solution from an expensive navigation
grade INS (Honeywell YG1851 IRU). The INS and the experi-
mental set up are shown in Fig. 14.

Fig. 15 shows a histogram of the residuals in the magnetic
field domain after the calibration is complete. These residuals
were computed by resolving the known magnetic field vector in
the area where this calibration took place (i.e., the San Francisco
Bay Area) and resolving it into the axes of the magnetometer triad
using the precise INS attitude information. The largest residual,
which is on the x-axis magnetometer, has a mean of -0.007 Gauss
and a standard deviation of 0.004 Gauss.

Fig. 16 shows a 1 min trace comparing the heading solution
computed using the magnetometers with the heading solution
generated by the INS. The heading residuals for this 1 min trace
are less than 3° RMS. Fig. 17 is a histogram of the heading errors
for the entire experiment. Note that the heading error has a stan-
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Fig. 13. Scale factor/soft iron (y) estimation errors when using nonlinear, two-step estimator for initialization (errors are unitless)

dard deviation of 3.6° and a mean of [.2°. The largest heading
error observed was 18° and was the result of the wooden boom
flexing refative to the INS (i.e., the truth reference) during the
data collection maneuvers. Once the mean is removed, the re-
maining heading error is, to a large extent, in the form of wide-

band noise that can be easily filtered using a a low-pass filter.

Table 2. State Estimation Errors (1 -a)

Simulétion Bias estimation error Y estimation error

case (%1073 Gauss) (no units)

i 3b, 1.73 8y, 0.00549
3b, 1.30 &y, 0.00410
3b, 9.00 By, 0.361

I 3b, 1.34 8y, 0.00402
3b, 1.01 dyy 0.00304
ok, 3.90 3y, 0.0756

I db, 346 By, 0.0108
8b, 2.60 8y, 0.00809
3b, 1.70 3y, 0.631

v 3b, 2.70 3y, 0.00805
db, 2.03 3y, 0.00606
34, 7.55 3y, 0.143

Summary and Conclusions

An algorithm for calibrating strapdown magnetometers used in
heading determination systems was developed. Unlike. the classic
method of compass swinging, which computes a series of heading
correction parameters, this algorithm estimates magnetometer

INS Power
Supply

Fig. 14. Experimental setup for ground test
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output errors directly and thus is not limited to heading determi-
nation systems.

The calibration algorithm uses an estimator where the states
are the hard iron biases, soft iron biases, and scale-factor errors.
The estimator is a linearized, iterative batch least-squares estima-
tor. The initial conditions for the estimator are established using a
nonlincar, two-step estimator. When thus initialized, Monte Carlo

i
1

30
Tlme (sec)

20 40 s¢ 60

Fig. 16. Comparison of INS and magnetometer headings after
calibration

simulations show the estimation procedure to be very robust.

As presented in this paper, the calibration algorithm is limited
to estimation of the hard iron biases and combined scale factor
and some soft iron effects. However, it should be possibie to
extend the applicability of this method to all magnetometer errors,
including misalignment and all soft iron errors.

(206, T T T T Y T T
Heading Error Standard Deviation, 6, =3.6°

Heading Ervor Standard Mean, i, = 1.2°

L] 5
Heading Error (deg)

Fig. 17. Histogram of postcalibration heading errors
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Appendix. Compass Swinging Equations

In this appendix, we derive Eqs. (6) and (7), which are used in the
compass swinging algorithm. In what follows, it will be assumed
that the pair of magnetometers arc level and there are no mis-
alignment errors. The effect of misalignment errors will be con-
sidered later. A level and error-free pair of magnetometers mea-
sures the strength of the horizontal component of the local Earth
magnetic field vector, hy,. The measurement made by each of the
magnetometers will be

o =hycos(y) (53)

kb == hy, sin() (54)

where 4, =[lh,]| Since the magnetometer assembly is assumed to
be level, the body coordinate system is the same as the wander-
azimuth coordinate system and h? and 45 can be used in liew of A}
and A in Eq. (1). ‘

If measurement errors are present, the output from the magne-
tometers in the body frame will not be equal to hi’ and h": given by
Egs. (53) and (54). Instead, the output of the x—magnetoineter will
be }2’;:

hE = hE+ by + hd + o bl
= h2+ 8k, + cu b COS Y~y hy in (55)

Similarly, the y-magnetometer output will be ﬁ;’.

Re = 1, + Bhy + auhE o+ oy
=h) 4+ Bhy +ayhy cOs Y~ oy By sin (56)

The terms tho and 8h, represent the hard iron biases while
the remaining terms account for ervors due to soft iron. Our ob-
jective is to evaluate heading errors as a function of magnetome-
ter measurement errors. An expression relating heading errors to
magnetometer measurement errors can be arrived at by taking a
perturbation of Eq. (1). This leads to-

N A 1 . <
8¢=(£;)8hy+ (a—m)th:—;;(Slusmlb+8hycos¢) (57
The perturbation quantities 34 and 84, represent magnetome-

ter measurement errors and are given by

dh,=ht—h! (58)

Shy=ht -} (59)

Substituting these values into Eq. (57) and rearranging leads to
the following equation for heading error:

_ dh dh
% T %) o oy %0
8\1:—( 5 ) I sin({s) ™ cos(ir)

" (““—;"E)sm(w) + (3”;—“‘2)(:%(24:) (60)

This reduces to Eq. (6) when the following substitutions are
made:

A:(“—u;“ ) 61)
Shy, _

B=- (62)

h

Sk,
= 7}39 (63)
o=(25%) @
) e

Up to this point, misalignments have been ignored. Misalign-
ment errors can be classified into two categories. The first cat-
egory is the case of pitch-and-roll misalignments, which are in-
stallation erfors that result in the magnetometers not being level
when the vehicle is level. The 2D dimensional swinging algo-
rithm cannot deal with pitch-and-roll misalignments because the
errors introduced by such misalignments are time varying. The
second category is a yaw misalignment, which is the case where
installation errors result in the magnetometer assembly being in-
stalled with an azimuth bias. Mathematically, a constant azimuth
bias, 3y, due to installation errors medifies Eq. (60) in the fol-
lowing manuner:

5= A + B sin(ls + Sig) + C cos(i + i) + D sin(21s + 25)
+ E cos(2ds + 2815) (66)

When this equation is expanded using trigonometric identities
and rearranged, one gets

dy=A +B sin({) + C cos(¥) + D sin(2y) + E cos(28) (67)

which is identical to Eq. (6) except that the coefficients are now
modified. Thus, swinging can deal with yaw misalignments. This
also implies that a compass rose is not really required when using
a swinging algorithm. All that is required is to swing the magne-
tometer assembly through equally spaced headings around the
compass rose followed by one final known heading. In this in-
stance, the offset term, S5, will be the sum of the installation
error and the constant heading error introduced by the fact that a
compass rose was not used. Thus, the final known heading is used
to separate the two individual components of 3.
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