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ABSTRACT 

Operating heavy equipment can be a difficult and very tedious task. Control of 
an agricultural tractor requires the continuous attention of the driver, and farmers 
often work long hours during critical times of planting and harvesting. Loaders 
and other ground vehicles are frequently used in situations that are unpleasant 
or even hazardous for a human operator. 

This paper explores the use of carrier-phase DGPS as the sole position and 
attitude sensor in closed-loop control of farm and construction vehicles. A land 
vehicle optimal control system was designed and simulated using realistic plant, 
sensor, and disturbance models. To validate this simulation, a GPS-equipped elec- 
tric golf cart was driven to high accuracy under automatic steering control. Golf cart 
experimental data were examined in post-processing to determine the feasibility of 
on-line system identification with GPS. 

INTRODUCTION 

Background 

Ground vehicle automatic control has been a research objective for many 
years. Superior control for individual vehicles and cooperative efforts for multi- 
ple vehicles have myriad applications. Smart roads on which a driver merely 
programs a destination, construction vehicles that automatically build roads, 
agricultural vehicles that allow full resource utilization, and vehicles operating 
in hazardous environments are a few examples. In the short term, the largest 
application of autonomous vehicle control would be farm vehicles in which only 
high-level decisions would be made by a human operator. 

Farm vehicle operation can be a trying and tedious task; speeds are very 
slow across large fields, and often fog, dust, or darkness limits visibility. Opera- 
ting heavy equipment requires the full attention of the driver in a high-noise 
and -vibration environment. Farming operations during critical times such as 
harvest require long hours of labor, and high-precision operations such as 
bedding and cultivating are usually limited to daylight hours. Autonomous 
control could provide many potential benefits, such as allowing operation with 
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limited visibility, more accurate control of row spacing, removal of a human 
operator from a chemically hazardous environment, and increased efficiency 
in farming techniques. 

Previous Work 

Autonomous guidance of agricultural vehicles is not a new idea. However, 
previous attempts to navigate and control ground vehicles for farming applica- 
tions have been largely unsuccessful because of sensor limitations. Some guid- 
ance systems require cumbersome auxiliary guidance mechanisms in or around 
the field of interest 11, 21. Others rely on a camera system requiring clear 
daytime weather and field cues that can be deciphered by visual pattern recog- 
nition 13, 41. 

The ground vehicles described above typically operate in environments with 
good sky visibility. With the recent arrival of GPS, engineers now have access 
to a low-cost sensor that is well suited for use in vehicle navigation. GPS 
is already being used in a number of ground vehicle applications, including 
agriculture. Meter-level code differential techniques have been used for geo- 
graphic information systems 15-71, driver-assisted control 181, and automatic 
control of ground vehicles 191. 

Using precise differential carrier-phase measurements of the satellite sig- 
nals, GPS navigation systems have demonstrated accuracies of a few centime- 
ters in vehicle positioning 1101 and better than 0.1 deg in attitude 1111. Also, 
with aiding from a pseudosatellite (pseudolite)-based Integrity Beacon Landing 
System (IBLS), navigation system integrity is impeccable 1121. This ability to 
measure multiple states accurately and reliably makes GPS ideal for system 
identification, state estimation, and automatic control of dynamic systems. 

This paper specifically focuses on the automatic control of ground vehicles 
using carrier-phase differential GPS (DGPS) as the position and attitude sen- 
sor. A ground vehicle automatic control system using GPS was developed and 
simulated in software. This control system was implemented and tested experi- 
mentally on an electric golf cart. Experimental data were used to study a 
recursive system identification algorithm to determine whether important, 
time-varying vehicle parameters could be ascertained from sensor data in 
real time. 

EXPERIMENTAL SETUP 

The primary goal of this work was to experimentally demonstrate closed- 
loop control of a land vehicle using GPS as the sole sensor of position and 
attitude. This section describes the hardware used during the testing. 

Vehicle Hardware 

The platform chosen for the ground vehicle testing described in this paper 
was a 1984 model Yamaha Fleetmaster electric golf cart, pictured in Figure 1. 
The vehicle has a 1.55 m wheel base and is just under 2 m tall with the canopy 
attached. Four single-frequency GPS antennas are mounted to the top of the 
canopy. The top speed of the golf cart is around 5 m/s. 
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Fig. l-Golf Cart 

Vehicle steering angle was sensed and actuated by a modified Navico WP5000 
ship autopilot. A Motorola MC68HCll microprocessor board served as the 
communications interface between the computer and the autopilot, as shown 
in Figure 2. The microprocessor sent a pulse width modulated signal to the 
steering motor and encoded the steering angle from a feedback potentiometer- 
the only non-GPS sensor on the vehicle. The maximum steering angle was 
+ 30 deg, and the motor commanded rate was limited to Z? 2.3 deg/s. 

GPS Antennas 

Fig. a-Vehicle Hardware Architecture 
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GPS Hardware 

The GPS system used for vehicle position and attitude determination was 
identical to the one used by the IBLS 1101, also shown in Figure 2. A 4-antenna, 
6-channel Trimble Quadrex receiver produced 4 Hz carrier-phase measure- 
ments for attitude determination. Measurements from a single-antenna 
g-channel Trimble TANS receiver were used to determine vehicle position. 
Data collection and automatic control were performed using an on-board Dolch 
computer running with a Pentium-90 microprocessor. This computer performed 
attitude determination, position determination, and control signal computa- 
tions in separate software processes using the LYNX-OS real-time operating 
system. 

The ground reference station consisted of a Dolch computer, a single-antenna 
g-channel Trimble TANS receiver generating carrier-phase measurements, and 
a Trimble 4000ST receiver generating RTCM code differential corrections. The 
RTCM corrections and raw carrier-phase measurements were transmitted from 
the ground station to the vehicle through Pacific Crest 450-470 MHz radio 
modems at 4800 bps. The reference station was approximately 500 m from the 
testing site. 

VEHICLE MODEL IDENTIFICATION 

The most difficult aspect of performing a meaningful ground vehicle simula- 
tion is arriving at a good model of vehicle dynamics and disturbances. Ground 
vehicle dynamic models range from very simple to overwhelmingly complex, 
and there is no single model that is widely accepted in the literature [131. The 
most sophisticated mathematical model of a dynamic system is not always 
appropriate to use 1141, especially since controller and estimator design requires 
a simple (typically linearized) model of plant dynamics. 

Steering Linearization 

Before performing experiments to identify the golf cart dynamics, calibration 
tests were run to linearize the steering angle sensor and the steering actuator. 
The calibration produced look-up tables that were implemented in software on 
the navigation and control computer. 

Transfer Function Identification 

Open-loop tests using sinusoidal or random control inputs (standard system 
identification techniques 1151) posed a problem. Only a limited amount of data 
could be taken before the vehicle traveled to the end of the field of operation. 
To avoid this problem, a basic controller was designed for closed-loop straight- 
line and U-turn driving based on a simple kinematic vehicle model. The vehicle 
model used assumed no wheel slip, small steering and heading angles, constant 
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velocity of the rear wheels, actuation through a single front tire, and no roll 
or pitch motion (see Figure 3). 

This controller was purposely designed with no filtering of sensor data so 
the control signal would be noisy in response to noisy sensor measurements. 
Also, feed-forward U-turn trajectories were designed to require large positive 
and negative control signals. Both of these steps were taken to excite the 
golf cart dynamics sufficiently to provide rich data for identification of an 
appropriate vehicle model in post-processing. 

After some problems with instability due to actuator hard limiting, the con- 
troller succeeded in guiding the golf cart for a 5 m trial, complete with six 
U-turns, as seen in Figure 4. Recursive transfer function system identification 
techniques based on the LMS algorithm [161 were used on the golf cart data 
to determine the appropriate discrete model order to use for control system 
design. By performing identification on increasing model orders until pole-zero 
near-cancellations occurred, it was found that only one state was needed to 
describe the control to steering angle transfer function, and two states were 
needed to describe the control to heading transfer function. Furthermore, the 
transfer functions found were consistent with the simple kinematic vehicle 
model described above. 

GROUND VEHICLE SIMULATION 

Because the simple kinematic model matched the golf cart experimental 
data, it was used for the vehicle simulation and control system design in this 
work. It is important to note that farm and construction vehicles will almost 
certainly require a more complex dynamic model for automatic control. The 
major differences are described in the discussion of parameter identification 
later in this paper. Using the kinematic model, the controllable vehicle states 

A 
I 
I 

: Steering Angle 
I 
I 6 

Linearized Equations of Motion: 

; = vx(-J Y - vxo 11 6 

(11+12) 

L u 

Fig. J-Vehicle Kinematic Model 



172 Navigation Summer 1996 

Golf Cart System Identification Test 
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Fig. 4-Golf Cart System Identification Passes 

are lateral deviation from desired position (y), heading ($1, and steering angle 
(6). The steering angle rate (u) was limited in the simulation to t 2.3 degk 
to resemble the golf cart hardware. 

Optimal Es tima tor and Con troller 

The technique used for vehicle automatic control was a standard discrete 
linear quadratic regulator/estimator, as shown in Figure 5. The control gains 
(K) were chosen to minimize a quadratic cost function based on control inputs 
and state deviations from nominal 1171. The optimal estimator gains (L) were 
found using the assumed vehicle dynamic model and a model of disturbances 
based,on the experimental data 1181. Within the estimator, the vehicle state 
vector was appended to include the observable sensor biases, +-bias and S-bias. 

The estimator design and ground vehicle simulation both assumed random, 
uncorrelated measurement noise with normal distribution. The 1 u measure- 
ment and discrete disturbance errors are shown in Table 1. 

Two cases were explored in the simulation. In one case, the control signal 
sent to the vehicle was a linear combination of the measured state with sensor 
biases approximated and no filtering (No Estimator Case). In the second case, 
the control signal was a linear combination of the optimally estimated state 
(Estimator Case). The same controller gains, sensor noise, and measurement 
noise were used in both simulations. 
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Controller Z.O.H. Ground Vehicle 

Fig. 5-EstimatorlController Block Diagram 

Table 1 -Simulated Measurement and Disturbance Noise 

Vehicle State 

Lateral Position y (cm) 
Heading IJJ (deg) 
Steering 6 (deg) 
Heading Bias (deg) 
Steering Bias (deg) 

Measurement Noise (1 u) Disturbance Noise (1 CT) 

2.0 0.1 
0.3 0.06 
0.3 0.3 
- 0.006 
- 0.006 

Simulation Results 

Figure 6 shows the simulation results for both cases simulated with an initial 
lateral position error of 30 cm. Cross-track position error (y), actuator control 
effort (u), and estimated sensor biases are plotted for a typical 100 m path. 
The initial errors on steering and heading biases were 0.2 deg. 

An extended simulation was run for a 10 km path to gather statistical data. 
The results for true vehicle position error (y), control signal (u), and sensor 
bias estimate errors are shown in Table 2. 

The simulation showed that a fairly small sensor bias error can significantly 
affect the lateral position accuracy of the ground vehicle. This is especially 
true because the level of control being sought is so precise. A 0.2 deg bias in 
two sensors caused a 16.3 cm bias in the lateral position, which was held to a 
precision of around 3 cm. Estimating the vehicle state and sensor biases in 
real time eliminated the lateral position bias. 

The amount of control used in the simulation was also quite different between 
the two cases. The control signal standard deviation in the Estimator Case 
was half the size of that in the No Estimator Case. This is important because 
controller design typically involves a trade-off between control effort and system 
performance. For farm and construction vehicles, small control effort is desired 
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Fig. 6-Simulation Results 

Table 2-Simulation Statistical Results 

Deviation From Truth (Mean ? 1 u) 

Lateral Position y (cm) 
Control u (deg/s) 
+-Bias Error (deg) 
&Bias Error (deg) 

No Estimator Estimator 

16.3 + 2.7 0.0 a 3.1 
0.00 ” 0.92 0.00 +- 0.43 
0.20 2 0.00 0.00 +- 0.06 
0.20 2 0.00 0.00 +- 0.03 

to provide smooth vehicle motion and avoid actuator hard limiting, while small 
lateral position errors are needed to successfully perform vehicle operations. 
By reducing the noise in the control signal, an estimator allows for more 
aggressive control law design. 

GOLF CART TEST RESULTS 

After running the simulations, the controller and observer gains from the 
Estimator Case were used to perform closed-loop tests on the actual golf cart. 
This section describes the golf cart experimentation. 

Testing Configuration 

To achieve centimeter-level position accuracy quickly and reliably, a 
predefined location was surveyed using the IBLS software. To begin testing, 
the vehicle was taken to this location and its navigation solution initialized. 
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The integer residuals were checked after the initialization to help verify that 
the correct integers had been obtained. A final system for safe, reliable ground 
vehicle navigation and control will probably require a better method of integer 
cycle ambiguity resolution. Using an integrity beacon near the field of operation 
would allow rapid integer determination; provide an additional ranging signal 
for navigation system accuracy and integrity; and still allow the user to operate 
with less expensive, more reliable single-frequency SPS equipment. 

During the tests, the golf cart forward velocity was controlled manually. An 
estimate of forward velocity was displayed to the driver, who attempted to 
regulate to a nominal speed of 2 m/s. Experiments took place on “The Oval”- 
a large grass field on the Stanford campus. 

The vehicle attempted to follow the same straight line for 12 separate trials. 
A simple, linear control law combined with physical hard limits on actuator 
authority led to instability in 2 of the 12 trials, but the golf cart successfully 
followed the 100 m line for the other 10 trials. A perfect measurement of true 
vehicle position error was not available, so the carrier-phase DGPS measure- 
ments from the 10 successful runs are shown in Figure 7. Note that these 
measurements are a combination of navigation system error (measurement 
error) and vehicle position error. 

The measured cross-track position had a zero mean and a standard deviation 
of 5.0 cm. The control effort had a mean of - 0.01 deg/s and a standard deviation 
of 1.26 degls. 

The experimental results show that more control effort was required and 
accuracy was poorer than predicted by the simulation. This is probably due 
to an inexact disturbance model in the simulation, since the measurement 
performance of the GPS system is fairly well understood. The repeated pattern 
in the cross-track position error for the 10 trials suggests that the disturbance 
is strongly correlated with vehicle position. 

The most likely cause of the disturbance noise was the roll motion of the 
golf cart. Although the roll angle of the vehicle was measured, the resulting 
motion of the 2 m high positioning antenna relative to the wheel base was not 
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Fig. 7-Golf Cart Experimental Results 
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corrected for. The data show that the high-frequency roll motion was on the 
order of + 1 deg, which corresponds to an unexpected lateral disturbance 
motion of about 4 cm. Also, the areas where large roll motion occurred corre- 
spond to the areas of large lateral position errors. 

PARAMETER IDENTIFICATION 

The dynamic model used to represent the electric golf cart will almost cer- 
tainly be inadequate for simulation and testing of farm and construction vehi- 
cles in realistic settings. The most likely differences will come from wheel slip, 
disturbances from towed implements, and vehicle inertia properties, all of 
which can vary with time. Extending the research described in this paper to 
more complicated land vehicles will require good modeling, and may even 
require an algorithm to identify relevant, changing vehicle parameters in real 
time. Since carrier-phase DGPS is able to measure multiple vehicle states very 
accurately, it is an ideal sensor for parameter identification. 

To determine the feasibility of real-time parameter identification using GPS, 
the data taken during the first closed-loop control trial (Figure 5) were run 
through a sequential extended Kalman filter 1191. The vehicle state included 
IJJ, 6, and S-bias. The state transition matrix parameter - V,J(l, + 12) was 
appended to the original state vector and was estimated along with the state. 

The parameter and steering bias values were initially set to zero to see how 
the filter would converge. The results of the identification are shown in Figure 8. 
The time history of these values is plotted, along with their “expected” values 
based on previous identification and golf cart dimensions. The parameter esti- 
mate converged within about 25 s, and the steering bias within around 60 s. 

CONCLUSION 

This research is significant because it is the first step toward a safe, low- 
cost system for adaptive, highly accurate control of a ground vehicle. It is 
anticipated that the implementation of these ideas will take place in three 
steps: (1) driver-in-the-loop control using a graphical display; (2) driver- 
assisted automatic control, with an on-board operator making only high-level 
decisions; and (3) vehicle autonomous guidance and control with on-line param- 
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Fig. 8-Extended Kalman Filter Results 
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eter identification and adaptive control that will operate for several hours 
without human intervention. 

The results presented in this paper are promising for a number of reasons: 

1) 

2) 

3) 

4) 

A ground vehicle control system was simulated and demonstrated using 
GPS as the only sensor for position and heading. One additional sensor- 
a simple potentiometer-was used to measure steering angle. 
A constant gain controller based on a very simple vehicle model success- 
fully stabilized and guided a golf cart along a straight, predetermined 
path. 
Using a slow actuator and sensors with significant biases, a vehicle was 
controlled along a path with no steady cross-track position bias and a 5 cm 
cross-track position standard deviation. The structure and repeatability in 
the experimental path-following data suggest that performance could be 
improved by correcting for the positioning antenna moment arm. 
The ability to estimate vehicle dynamic parameters in real-time has been 
demonstrated using an extended Kalman filter on experimental data. This 
suggests that adaptive control may be feasible for dealing with changing 
dynamics on a more complicated vehicle or in more complex field settings. 

It will be a big step to perform automatic control of a large farm or construc- 
tion vehicle, since these vehicles typically have more complex dynamics and 
larger physical disturbances acting on them than do other vehicles. This paper 
has described a control methodology that was employed successfully to control 
a simple land vehicle to high accuracy. This same methodology, combined 
with a more sophisticated dynamic model and possibly real-time parameter 
identification, should be sufficient to control more complicated vehicles. Further 
research is currently under way to explore this possibility. 
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