
Analysis of a Spline Based, Obstacle Avoiding Path
Planning Algorithm

John Connors and Gabriel Elkaim
Jack Baskin School of Engineering
University of California, Santa Cruz

Santa Cruz, California, 95064

Abstract—The Overbot is one of the original DARPA Grand
Challenge vehicles now being used as a platform for autonomous
vehicle research. The vehicle, equipped with a complete actuator
and sensor suite, provides for an extremely capable robotic
platform with computing infrastructure and software framework
already in place to create a reconfigurable testbed.

For point to point navigation, calculating suitable paths is
computationally difficult. Maneuvering an autonomous vehicle
safely around obstacles is essential, and the ability to generate
safe paths in a real time environment is crucial for vehicle
viability. We previously presented a method for developing
feasible paths through complicated environments using a baseline
smooth path based on cubic splines. This method is able to
iteratively refine the path to more directly compute a feasible path
and thus find an efficient, collision free path in real time through
an unstructured environment. This method, when implemented
in a receding horizon fashion, becomes the basis for high level
control. In this work we perform Monte Carlo simulations to
validate algorithm performance. The algorithm demonstrates a
high success rate for all but the toughest of environments.

Index Terms—Mobile robot motion-planning, Motion-
planning, Mobile robots, Land vehicles, Road vehicle control,
Road transportation, Spline functions

I. INTRODUCTION

The Overbot, originally designed to run the DARPA Grand
Challenge, has been retasked as an off-road autonomous
vehicle testbed. The vehicle is presently being used to fur-
ther research in autonomous vehicles at the University of
California, Santa Cruz. Various elements are being improved
and upgraded including substantial efforts to improve path
planning algorithms. In addition to obvious military appli-
cations, autonomous vehicles have generated significant in-
terest for commercial applications. The removal of human
interaction from everyday driving could lead to safer roads,
fewer accidents and increased traffic bandwidth. Even basic
vehicle operation requires significant path planning to provide
an accurate, feasible and smooth path from point to point
through a potentially complex environment. The introduction
of obstacles, such as buildings, pedestrians and other vehicles
increase the complexity and limit traversable paths.

This paper focuses on analyzing the performance of the path
planning algorithm detailed in previous work [2]. The algo-
rithm employs cubic splines to define the vehicle path and can
therefore guarantee the needed conditions for a ground vehicle,
namely a continuous heading and steering angle. Through
the introduction of additional control points, the shape of the

spline is manipulated to fall within a given corridor constraint
and bend around obstacles. We have demonstrated success-
ful path generation through a variety of environments while
avoiding obstacles and the ability to compute paths in near-
real time which makes this method practical for autonomous
vehicle control.

We will define the path planning problem and provide a
brief description of the algorithm. A more complete definition
and a review of splines can be found in our previous paper
[2]. We present the application of Monte Carlo simulations to
our algorithm and derive algorithm performance analysis from
the results.

II. ALGORITHM

In the context of path planning it is obvious that a path, f ,
needs to be continuous and, furthermore, when considering ve-
hicles such as the Overbot, which are unable to instantaneously
change heading, D1f , we must also enforce the continuity
of the first derivative in order to guarantee a feasible path.
The additional restriction that the second derivative remain
continuous allows the vehicle to remain moving throughout
its path. A discontinuity of D2f would require a vehicle like
the Overbot to stop and reposition its front wheels in order to
alter its steering angle, which is proportional to D2f .

A. PATH OBJECTIVE AND COORDINATE SPACES

The Overbot was constructed to function according to the
guidelines of the DARPA sponsored Grand Challenge. The
vehicle, therefore, accepts a sequence of GPS waypoints used
to define the high level mission. The vehicle’s task is to
traverse through each waypoint, in order, while staying within
a given radius of the nominal straight line path (Figure 1).
This radius defines a corridor bounding the vehicle’s possible
locations.

For the detection of obstacles, the Overbot includes various
imaging devices such as a color camera and laser rangefinder.
As all sensors are fixed on the vehicle, obstacles are viewed
relative to the vehicle position and heading. Because the
vehicle is constantly in motion, the obstacles must be rotated
and shifted into a constant reference frame which we refer to
as the Map Frame.

B. INITIAL PATH SEGMENTS

The Overbot is a dynamic system with motion, control and
sensor error as well as limited sensor range. It is therefore

1550-2252/$25.00 ©2007 IEEE 2565

GPS Frame Path Frame

Fig. 1. The current waypoints (blue) and corridor (grey) must be rotated to
guarantee that the points are monotonic.

naive to pre-plan the entire vehicle path from the outset.
Instead, we replan the path from the the current position and
heading, and using the most current obstacle map and do so in
a receding horizon fashion. We limit our path look ahead to the
next two waypoints only. In this way, we help ensure the next
turn will be maneuverable and once executed, a new path will
be generated to guide the vehicle into a suitable position for
the following turn. For this reason, we only work with three
consecutive waypoints at a time, the most recently passed,
WGPS

1 = (xGPS
1 , yGPS

1) and the following two points, WGPS
2

and WGPS
3 (Figure 1).

In order to construct a spline through these points, we must
guarantee that (xGPS

1 , xGPS
2 , xGPS

3) is strictly increasing. We
let WGPS

M be the midpoint of the line segment between
WGPS

1 and WGPS
3 . We now define the Path Frame to be

the GPS Frame rotated and shifted such that WGPS
i maps to

WPath
i , WPath

1 is at the origin, xPath
3 is positive, and the

line segment between WPath
M and WPath

2 is vertical (Figure
1). We constrain the waypoints to not double back, therefore
(xPath

1 , xPath
2 , xPath

3) is strictly increasing. Though we can
now construct a spline using these points, we have found it
useful to include additional points along the straight line path.
The quantity and number of these points depend greatly on
the relationship between the individual path lengths and the
corridor width. By including additional points, the initial path
is kept closer to the nominal straight line path and is therefore
less likely to violate the corridor constraint. These points are
only used for the initial path estimate and will not be rigid
constraints in the final path.

At this point we can apply our spline function in order to
generate an initial path. We construct a path, f , of degree
3 through the points ξ = (xPath

V , xPath
2 , xPath

3). The spline
started at the vehicle’s current position, WPath

V and having an
initial heading CPath

V , equal to the heading of the vehicle at
WPath

V . We can also constrain the final heading CPath
F , to be

tangent to the second path segment.

III. OBSTACLE CONSTRAINTS

A. DETECTING COLLISIONS

As described above, obstacles are mapped from various
sensors into the Map Frame, which maintains a constant

rotation and shift relative to the GPS Frame. The map is
stored as a pixelated map, each pixel denoting the presence or
absence of an obstacle (binary), or the severity of the terrain
as required by the mission. To check our path against the
map, we define a transformation zMap = H(zPath) to be the
needed rotation, shift and scaling required to translate from
the Path Frame to the Map Frame. Therefore our path in the
Map Frame become H · f evaluated over [zPath

V , zPath
3].

To evaluate our curve against the map, we create a pixelation
of the curve. The converted spline can be evaluated at each
pixel and compared to the map to detect a collision. It should
be noted that each obstacle must be inflated by at least half
the width of the vehicle to guarantee that a collision does not
occur. One could also define a corridor having the curve of
the spline but the width of the vehicle. Using this method, one
would have to then evaluate every pixel within the corridor
instead of the single pixel path. The faster solution would
rely on the relationship between path length and the size and
density of the obstacles. In this work, we inflate our obstacles
within the map. The co-location of a path and obstacle pixel
indicates a collision, which is stored for later use.

B. PATH MANIPULATION

Once it has been determined that the path collides with an
obstacle, or violates the corridor constraint, we manipulate the
spline to avoid that obstacle. As multiple collision may have
occurred, we first edit the list of collision pixels to include
only the first collision. The first and last pixels of this collision
define the entry and exit points of the collision, CMap

Entry and
CMap

Exit . We add an additional control point to our spline to
guide the path around the obstacle. We use the midpoint,
CMap

Adj = (CMap
Entry + CMap

Exit)/2 as our point of manipulation.

We move CMap
Adj perpendicular to the line [CMap

EntryCMap
Exit] by

a distance of approximately one pixel per step. The point is
continually updated and checked against the map and corridor
until CMap

Adj is free of collision. This means that a path through

CMap
Adj will no longer collide with our obstacle at that point.

CMap
Adj is mapped into CPath

Adj and added to the list of control
points. A new spline is computed through these points still
having our desired characteristics but also passing through the
new point (Figure 2).

Each new spline is mapped back into the Map Frame and
the process is repeated. If the new spline still intersects the
obstacle, the collision will be shorter and closer to the edge
of the obstacle. Thus the algorithm will continue to displace
the spline around the remaining portion of the obstacle (Figure
3). Because the points are fit with cubic functions, along with
the constraint that xPath

i be strictly increasing, a large number
of control points within close proximity to each other can
cause large deviations in the path. To avoid this, we include
a simple adjustment to the control points; when adding a new
point, CPath

Adj , we remove any other control points within a
given radius of CPath

Adj . In essence, when an adjustment fails
to avoid the obstacle, the new point replaces the old one.
All points, except the initial position, are removable. Deletion

 2566

Fig. 2. The midpoint of the collision is moved out until a clear path is found.

−5 0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

Map Frame Curves

Fig. 3. We iteratively generate smooth curves(blue) bending them around
obstacles until a collision free path(red) is found.

of the endpoint is acceptable as the path will be replanned
after the next way point, and the second segment of the three
waypoint set will never be fully executed.

There are, however, instances when both adjacent control
points may be necessary. It is easy in these cases to detect
the cyclic insertion and deletion of points and the radius
can be adjusted to allow for both points. Another method,
which we use, to determine when to keep the adjacent control
points is as follows. Though CMap

Adj is moved in increments of
approximately one pixel, we also enforce a minimum radius
for the first adjustment. This addresses situation when the
spline is moved away from one section of obstacle and onto
another. If the adjustment for the second segment is to move
the curve back, a cycle will develop. By detecting these cycles,
and increasing the minimum adjustment radius, we take larger
and larger steps away from the obstacle, eventually breaking
the cycle. In this way we can overcome the irregularities
inherent in certain obstacles.

Once the final obstacle-free spline is found, it can be
mapped back into the GPS frame to be used by the vehicle.
The path, as defined by the spline, ensures safe passage of
the vehicle through its environment and contains all necessary
information. The steering angle can be derived from the second
derivative of the path. The control architecture is such that the

spline path forms the feed forward part of the conventional
feedback used to keep the vehicle on the reference path.

IV. PERFORMANCE ANALYSIS

To analyze the performance of this algorithm, we break
it into the following steps: Calculation of the initial spline,
evaluating a given spline, and generating new control points.
The initial baseline spline is calculated only once and always
through a fixed number of points and therefore requires a
constant amount of time. The evaluation of a spline for
obstacle collisions and corridor violations is based on the
length of the spline, which is roughly proportional to the
the length, L, of the two segments. Likewise, as paths tend
to run down the length of the corridor, the amount of work
required to adjust a control point is roughly proportional to
the width, W , of the corridor. Given a limit, I , on the overall
number of iterations the algorithm performs, this method is
order

⊙
(I(L + W)).

A. MONTE CARLO SIMULATION SETUP

We perform a series of Monte Carlo simulations over
random environments to determine average running times and
success rates of this algorithm. For each iteration of the simu-
lation, we generate a random path consisting of two segments,
55m and 50m long respectively, and having a random angle
between them measuring in the range (−150◦, 150◦). Longer
paths would fall outside the sensor range of most vehicles
and would not contribute to the difficulty of the problem. The
vehicle is placed at the beginning of the first segment with a
random heading in the range (−30◦, 30◦) relative to the first
segment. Obstacles are chosen from a library of configurations
and randomly placed within the 5 meter corridor around the
path. The first 5 meters of the corridor are left vacant to
allow the vehicle to maneuver before entering the obstacle
field. This simulates the receding horizon implementation of
the algorithm that would have already allowed the vehicle to
approach this segment from a favorable direction. Example
environments are demonstrated in Figure 5.

Each iteration is performed on a new path and random
placement of obstacles. An iteration of the algorithm is
considered successful if a feasible path is found from the
vehicle’s current position to the end of the second corridor
while satisfying the corridor constraint over the entire path
and not colliding with any obstacles. We also measure the
real time performance of each iteration as the time elapsed
from the creation of the initial spline to the verification of the
final path. We do not include the time needed to inflate the
map as it is assumed that all obstacles can be inflated at the
time of their insertion in to the map. All tests were performed
on a Pentium Mobile class processor clocked at 2 GHz, using
Matlab.

B. MONTE CARLO ANALYSIS

We performed a series of 5,000 iterations of the algorithm
varying the number of obstacles from 5 to 50, in increments
of 5, as well as varying the size of the obstacles up to several

 2567

1 2 3 4 5 6 7 8 9 10
1

2

3

4

5

6

7

8

9

10

Fig. 4. Monte Carlo simulations were run over environments having between
5 and 50 obstacles of size up to several square meters to determine the success
rate of the algorithm.

square meters. The algorithm was set to generate up to 50
different paths for each scenario before failing. The results of
this simulation are presented in Figure 4.

The algorithm was found to be over 70% successful for most
environments up to approximately 30 obstacles measuring 6
square meters, including environments that may not have been
feasible at all. For more difficult environments, performance
diminished quickly and the algorithm was unable to find fea-
sible paths beyond this level of difficulty. A random sampling
of these environments demonstrates their complexity (Figure
[5), and in many cases confirms that no feasible path in fact
exists. This method is well suited for most environments that
are encountered in autonomous vehicle applications. In ap-
plications that regularly traverse difficult environments, other
methods can be used that guarantee feasible paths if in fact
one exists. For all other applications, this method has been
shown to be very successful, and when a feasible path is not
found, additional methods such as the A∗ algorithm can be
implemented to overcome the local difficulties.

C. RUNNING TIME

In addition to the success of each iteration, the running
times were averaged for each combination of obstacle size and
density. The measurements indicate the real time that elapsed

Fig. 5. Environments with increasingly large and more densely packed
obstacles become difficult to traverse and some have no feasible paths.

from the the creation of the initial spline to the verification
of the final path. The results follow a trend similar to that
of the success rate data. The running time of the algorithm
increases with the complexity of the environment until the
feasibility boundary, at which time the running time reaches
the

⊙
(I(L + W)) estimate (Figure 6). The data shows that

even for complicated situations, the algorithm is able to find
a feasible path, valid for the next 100m, within approximately
7 seconds. Furthermore, for the majority of applications and
scenarios, solutions are available in approximately 3 or 4
seconds. In the situations in which the algorithm fails in the
presence of a feasible path, more complicated methods can be
implemented and the lost time is bound by

⊙
(I(L+W)), in

this case approximately 10 seconds.

V. CONCLUSIONS

We have presented a method for solving path planning
problems by bending smooth cubic splines to avoid obstacle
collisions. We have developed a simple method for generating
maneuverable paths through potentially complex environments
(Figure 3). In the context of real time systems, this approach
is designed to run efficiently by converging toward feasible
solutions instead of investigating the entire path space. The
use of cubic splines guarantees continuous vehicle heading and
turning angle which is ideal for many ground based vehicles.

We have analyzed the performance of this algorithm through
a number of randomly generated environments. The Monte
Carlo simulations indicate a high success rate for the most
common scenarios through very complex environments. Fur-
ther analysis demonstrates running times sufficient for real
time environments and suffering no great penalties in the
harshest situation where other methods may need to be em-
ployed.

VI. FUTURE WORK

It has not been proven that the algorithm can guarantee a
feasible path if one exists. We plan further work to investigate
this topic and make the method more robust in difficult

 2568

Fig. 6. The running time of the algorithm increased with the number and
density of obstacles.

Fig. 7. The algorithm is able to find feasible paths through very difficult
environments.

environments. It can be noted that a heading can also be
constrained at any point on the curve by simply breaking the
curve into two sections, thereby allowing the new endpoint to
have first derivative constraints. This feature makes it possible
then to not only force the vehicle through a narrow opening,
but control its direction through that opening. Doing so,
however, loses the continuity of the second derivative at that
point, and thus requires a vehicle stop to readjust its steering
angle. Note that in practice, the control system feedback would
simply treat the discontinuity as a plant disturbance, and
regulate back to the path as required. We also plan to explore
the effects of moving obstacles using this method; there are
interesting tradeoffs that develop due to the relationships of
vehicle and the dynamic obstacle speed (note that refresh rates
of both the obstacle map and the path itself become relevant
with these tradeoffs).

Finally, experimental validation of this algorithm will be
implemented on the real time OS of the Overbot to perform its
path planning. As stated previously, planning past the next two
waypoints is wasteful, unless the waypoints are very closely
spaced. As the vehicle passes the first of these two waypoints,
a new path is generated from its current position and proceed-
ing two more waypoints ahead. The portion between the first
and second waypoints may or may not remain the same, but
will now compensate for any changes that need to be made to
navigate around the second waypoint as opposed to arriving
there. Furthermore, continually replanning along the segments
can help compensate for positioning errors and allow for the
discovery of new obstacle information.

REFERENCES

[1] T. Berglund, H. Jonsson, and I. Sderkvist, “An obstacle-avoiding mini-
mum variation b-spline problem,” Proceedings of the 2003 International
Conference on Geometric Modeling and Graphics, 2003.

[2] J. Connors and G. H. Elkaim, “Manipulaiting b-spline based paths for
obstacle avoidance in autonomous ground vehicles,” Proceedings of the
ION National Technical Meeting, 2007.

[3] C. de Boor, A Practical Guide to Splines, revised ed. Springer, 1978.
[4] G. Elkaim, J. Connors, and J. Nagle, “The overbot: An off-road

autonomous ground vehicle testbed,” Proceedings of the ION Global
Navigation Satellite Systems Conference, 2006.

[5] Y. Kanayama and B. I. Hartman, “Smooth local path planning for au-
tonomous vehicles,” International Journal of robotics Research, vol. 16,
no. 3, p. 263, 1997.

[6] P. M. Kinney, M. Dooner, J. Nagel, and P. G. Trepagnier, “Kat-5: Sys-
tems based on a successful paradigm for the development of autonomous
ground vehicles,” Position, Location, and Navigation Symposium, p. 378,
2006.

[7] K. H. Lim, “Position estimation for team overbot,” Stanford University,
2003.

[8] Z. shiller and Y.-R. Gwo, “Dynamic motion planning of autonomous
vehicles,” IEEE Transactions on Robotics and Automation, vol. 7, no. 2,
p. 241, 1991.

[9] S. Thompson and S. Kagami, “Continous curvature trajectory generation
with obstacle avoidance for car-like robots,” Proceedings of the 2005
International Conference on Computaional Intelligence for Modelling,
Control and Automation and International Intelligent Agents, Web
Technologies and Internet Commerce, 2005.

[10] C.-H. Wang and J.-G. Horng, “Constrained minimum-time path planning
for robot manipulators via virtual knots of the cubic b-spline functions,”
IEEE Transactions on Automatic Control, vol. 35, no. 5, p. 573, 1990.

[11] A. R. Willms and S. X. Yang, “An efficient dynamic system for real-
time robot-path planning,” IEEE Transactions on Systems, Man and
Cybernetics, vol. 36, no. 4, p. 755, 2006.

 2569

