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ABSTRACT

For point to point navigation, calculating suitable paths
for an an autonomous ground vehicle is computationally
difficult. Maneuvering an autonomous vehicle safely around
obstacles is essential, and the ability to generate safe paths
in a real time environment is crucial for vehicle viability. We
previously presented a method for developing feasible paths
through complicated environments using a baseline smooth
path based on cubic splines. This method iteratively refines
the path to more directly compute a feasible path and thus
find an efficient, collision free path in real time through an
unstructured environment. This method, when implemented in
a receding horizon fashion, becomes the basis for high level
control.

Previous work on spline collision free path generation is
extended to include experimental validation using the Overbot,

an autonomous ground vehicle developed for the original
DARPA Grand Challenge in 2004. Using the previously
developed software, an information grid is populated with
potential obstacles. This grid becomes the basis for the
pixel search along the spline path, that identifies collision
points to be resolved with the presented methodology. Tests
are conducted on a 600m offroad course using randomly
generated virtual obstacles. Experimental results demonstrate
good performance, with collision free paths being found, or a
termination criteria reached, in under one second.

INTRODUCTION

Autonomous vehicles refer to a class of robotics in involving
vehicle based systems that control their own behavior without
external human input. Common in military and commercial ap-
plications, current research focuses on the use of autonomous
vehicles for personal applications. In unknown or dynamic
environments, trajectory generation is essential to maneuver
safely from point to point. A new path planning method is
implemented on one such vehicle, the Overbot, and demon-
strates the ability to traverse GPS waypoints while avoiding
obstacles and honoring a defined corridor constraint.

PATH PLANNING ALGORITHM

In the context of path planning, it is obvious that a path,
f , needs to be continuous and, furthermore, when considering
vehicles such as the Overbot, which are unable to instanta-
neously change heading, related to D1f , the continuity of the
first derivative must also be enforced in order to guarantee
a feasible path. The additional restriction that the second
derivative remain continuous allows the vehicle to remain
moving throughout its path. A discontinuity in D2f , which
is related to steering angle, would require a vehicle like the
Overbot to stop and reposition its front wheels in order to
match the discontinuity. As a result, cubic splines are used
to represent the trajectory, as they easily meet the required
conditions. The mathematics of using cubic splines for path
planning is discussed in previous work [3][4].
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PATH OBJECTIVE AND COORDINATE SPACES

The Overbot was constructed to accept a sequence of GPS
waypoints used to define the high level mission. The vehicle’s
task is to traverse through each waypoint, in order, while
staying within a given radius of the nominal straight line
path (Figure 1). This radius defines a corridor bounding the
vehicle’s possible locations.

For the detection of obstacles, the Overbot includes various
imaging devices such as a color camera and laser rangefinder.
As all sensors are fixed on the vehicle, obstacles are viewed
relative to the vehicle position and heading, in the body
reference frame. Because the vehicle is constantly in motion,
the obstacles must be rotated and shifted into a constant
reference frame, referred to as the Map Frame. The GPS Frame
refers to the North East Down reference frame of the GPS
waypoints.

INITIAL PATH SEGMENTS

The Overbot is a dynamic system with motion, control and
sensor error as well as limited sensor range. It is therefore
naive to pre-plan the entire vehicle path from the outset.
Instead, the vehicle continually generates trajectories from
the current position and orientation, using the most current
obstacle map, in a receding horizon fashion. Paths are limited
to consider only the next two waypoints. In this way, it is
ensured that the next turn will be maneuverable and once
executed, a new path will be generated to guide the vehicle
into a suitable position for the following turn. For this reason,
only three consecutive waypoints are used at any given time,
the most recently passed, WGPS

1 = (xGPS
1 , yGPS

1 ) and the
following two points, WGPS

2 and WGPS
3 (Figure 1).

In order to construct a spline through these points, it must
be guaranteed that (xGPS

1 , xGPS
2 , xGPS

3 ) is strictly increasing
[3][5]. Let WGPS

M be the midpoint of the line segment
between WGPS

1 and WGPS
3 . Define the Path Frame to be

the GPS Frame rotated and shifted such that WGPS
i maps to

WPath
i , WPath

1 is at the origin, xPath
3 is positive, and the

line segment between WPath
M and WPath

2 is vertical (Figure
1). Because WPath

M and WPath
2 are vertically aligned, the

waypoints are constrained not to double back, ensuring that
(xPath

1 , xPath
2 , xPath

3 ) is strictly increasing. A spline can now
be constructed using these points. In practice, it has been found
to the useful to include additional points along the straight
line path. By including additional points, the initial path is
kept closer to the nominal straight line path and is therefore
less likely to violate the corridor constraint. The quantity and
number of these points depend greatly on the relationship
between the individual path lengths and the corridor width.
These points are only used for the initial path estimate and
are not rigid constraints in the final path.

At this point, a cubic spline, f , is computed through the
points ξ = (xPath

V , xPath
2 , xPath

3 ) to represent an initial path.
The spline begins at the vehicle’s current position, WPath

V ,
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Fig. 1. The current path segments are rotated to guarantee monotonicity.

with an initial heading, CPath
V , equal to the heading of the ve-

hicle at WPath
V . The final heading, CPath

F , is also constrained
to be tangent to the second path segment. The resulting func-
tion, f , is additionally constrained to be continuous through
the second derivative, D2f .

OBSTACLE CONSTRAINTS

DETECTING COLLISIONS

On the Overbot vehicle, obstacles are mapped from various
sensors into the Map Frame. The map is stored as a pixelated
map, with each pixel denoting the presence or absence of an
obstacle. In some applications the map may contain informa-
tion about the severity of the terrain. To validate a path as
obstacle free, it is evaluated within the map. A transformation
zMap = H(zPath) is defined as the needed rotation, shift and
scaling required to translate from the Path Frame to the Map
Frame. The path, therefore, becomes H · f in the Map Frame,
evaluated over [H(zPath

V ),H(zPath
3 )].

To evaluate the curve within the map, a pixelated version
of the curve is generated [2]. The converted spline can be
evaluated at each pixel and compared to the map to detect a
collision. Since the path has no width, each obstacle must be
inflated by at least half the width of the vehicle to compensate
for the vehicle’s size. Alternately, a corridor could be defined,
having the curve of the spline but the width of the vehicle.
Using this method, every pixel within the corridor would need
to be evaluated instead of the single pixel wide path. The
faster solution would rely on the relationship between path
length and the size and density of the obstacles. In this work,
obstacles are inflated when added to the obstacle map. The co-
location of a path and obstacle pixel indicates a collision, each
of which is recorded for later use in resolving these collisions.

PATH MANIPULATION

When the path collides with an obstacle, or violates the
corridor constraint, the spline is manipulated to avoid the given
obstacle. As multiple collisions may have occurred, the list of
collision pixels is truncated to include only the first collision.
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Fig. 2. The midpoint of the collision is adjusted until a clear path is found.

The first and last pixels of this collision define the entry and
exit points of the collision, CMap

Entry and CMap
Exit (Figure 2).

An additional control point is introduced into the spline to
guide the path around the obstacle. The midpoint, CMap

Adj =
(CMap

Entry + CMap
Exit )/2 is used as a point of manipulation.

CMap
Adj is moved perpendicular to the line [CMap

EntryCMap
Exit ] by

a distance of approximately one pixel per step. The point is
continually updated and checked against the map and corridor
until CMap

Adj is free of collision. Therefore, a path through
CMap

Adj will no longer collide with the obstacle at that point.
CMap

Adj is mapped into CPath
Adj and added to the list of control

points. A new spline is computed through the new set of
points, retaining the desired characteristics of the previous
path, but also passing through the new point, CMap

Adj .

Each new spline is mapped back into the Map Frame and
the process is repeated. If the new spline still intersects the
obstacle, the collision will tend to be shorter and closer to
the edge of the obstacle. Thus the algorithm will continue
to displace the spline around the remaining portion of the
obstacle (Figure 3). Because the points are fit with cubic
functions, and xPath

i is constrained to be strictly increasing,
a large number of control points within close proximity to
each other can cause large vertical deviations in the path. A
simple adjustment to the control points is used to alleviate
this issue. When adding a new point, CPath

Adj , any other control
points within a given radius of CPath

Adj are removes. In essence,
when an adjustment fails to avoid the obstacle, the new point
replaces the old one. All points, except the initial position,
are removable. Deletion of the endpoint is acceptable as the
path will be replanned after the next way point, and the second
segment of the three waypoint set will never be fully executed.

There are, however, instances when both adjacent control
points may be necessary. A cyclic insertion and deletion of
similar points may occur and the radius can be adjusted
to allow for both points. Steps can also be taken to help
avoid the situation. Though CMap

Adj is moved in increments
of approximately one pixel, a minimum radius for the first
adjustment is enforced. There are cases when the spline is
moved away from one section of the obstacle and onto another.
The adjust found for the second collision may be to move
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Fig. 3. Smooth curves (blue) are iteratively generated, bending around
obstacles until a collision free path (red) is found.

the curve back, and a cycle will develop. By detecting these
cycles, and increasing the minimum adjustment radius, larger
and larger steps away from the obstacle are used, eventually
breaking the cycle. In this way irregularities inherent in certain
obstacles are overcome.

The final obstacle-free spline is mapped back into the GPS
frame to be used by the vehicle. The path, as defined by
the spline, ensures safe passage of the vehicle through its
environment and contains all necessary information for vehicle
control. The steering angle can be derived from the derivatives
of the path. The control architecture is such that the spline path
forms the feed forward term for conventional feedback used
to keep the vehicle on the reference path.

ADAPTING THE ALGORITHM

A COMPILED IMPLEMENTATION

This path planning algorithm was demonstrated and ana-
lyzed previously using MATLAB [4]. However, the software
and path planning run on the Overbot is compiled C code
designed to run faster and more efficiently than the simulation
implementation. The simulation environment used spline li-
braries provided by the makers of MATLAB which are not
available on the Overbot platform. The calculation of the
cubic splines involves solving for the coefficients of each
of the polynomials involved. Because of the structure of the
polynomial constraints, the coefficients are coupled and must
be solved for simultaneously. Given a set of l+1 control points,
and an initial and final heading, a system of linear equations
can be established Ax = b, where A ∈ <4·l×4·l and b ∈ <4·l×1

contain information on the control points and derivatives and
x ∈ <4·l×1 is a vector of the coefficients of the cubic splines.
Solving these equations computationally can be accomplished
more efficiently using LU decomposition than by calculating
A−1 directly [9]. For this approach to produce a solution,
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Fig. 4. The inflation of an obstacle is approximated by a square and cross.
The obstacles and paths are displayed to aid development.

A is required to be full rank. This has been guaranteed by
construction, however, and is discussed in previous work [3].

ELIMINATION OF THE MAP FRAME

The definition of the path planning problem discusses
the transformation between the GPS and Map Frames. The
Overbot’s vision implementation aligns the obstacle map with
a GPS North East Down (NED) coordinate system and centers
both maps about the same point. The transformation from one
system to the other is replaced by scalar multiplication of the
map’s cell resolution and reduces the computation required for
the transformation, simplifying the algorithm and decreasing
running time.

OBSTACLE INFLATION

The path planning techniques originally used on the Overbot
evaluated an arced section about the curve for obstacles. Due to
the frequency of replanning, this method requires considerably
more time over other methods. To increase efficiency, an
inflation radius is defined about each obstacle within the map.
A circle, though ideal for inflation, requires additional compar-
isons to draw accurately. Instead, the circle was approximated
by the use of a square and cross as demonstrated in Figure 4.

Additional optimizations were included to further reduce
the time required for this procedure. As obstacles are likely
to be larger than one map pixel, much of the inflation process
becomes redundant. A simple check is performed on the four
immediate neighbors of the obstacle cell being inflated. If
a given neighbor cell contains an obstacle, then it can be
assumed that both quadrants on that side of the current cell
have already been inflated and can be skipped. This method
only requires a few extra comparisons, but in practice can
greatly reduce memory accesses to the obstacle map.

For development and debugging purposes, log files are
generated by the Overbot software to track the behavior of
the vehicle. These logging routines were updated to log the

additional map information as well as the splines that result
from the new path planning techniques. The log files can be
read by a visualization program that shows, in real time, the
environment as seen by the Overbot, the current path solution
and tracks the vehicle’s movements. This program was also
modified to display the inflation cells and plot the spline paths
as shown in Figure 4. This program is an extremely powerful
debugging tool as it not only shows data from the vehicle, but
can be used to playback log files generated from running the
software on simulated environments.

ROTATION MODIFICATION

During testing of the algorithm within the architecture of
the vehicle, undesired behavior was discovered. In the case
of three linear, or near linear waypoints, the defined Path
Frame rotation will generally rotate the segments to be nearly
vertical. In these cases, the behavior of the cubic polynomials
was empirically found to be irregular with vertical fluctuations
resulting in the vehicle doubling back on the path. When the
angle between the two path segments is greater than 3·π

4 ,
the rotation angle is defined to make the first path segment
horizontal. Because the angle between the segments is obtuse,
the monotonicity of the points is still guaranteed.

CURVATURE CALCULATIONS

The MATLAB simulations discussed previously were used
only to generate paths. To be useful for autonomous vehicles,
control must be implemented to follow the calculated path. The
Overbot architecture uses a measure of curvature to command
a desired steering angle where the curvature c = 1/r, the
radius the resulting circle. Therefore c = 1/r = 2π/2π · r,
or more intuitively, the ratio of the change in heading to a
change in arc length, dθ

dL . Given a spline f(x), the desired
curvature c, therefore, is c = dθ

dL = dθ
ds · ds

dx · dx
dL where s = df

dx
is the slope of the spline. The heading is a function of slope,
θ = arctan(s), so dθ

ds = d
ds · arctan(s) = 1

1+s2 . As s = df
dx ,

it follows that ds
dx = d2f

dx2 . For an instantaneous slope s, dL =√
dx2 + (s · dx)2 = dx · √1 + s2, therefore dx

dL = 1√
1+s2 .

Hence,

c =
dθ

dL
=

dθ

ds
· ds

dx
· dx

dL
=

1
(1 + s2)3/2

· d2f

dx2
.

VEHICLE PERFORMANCE

The path planning algorithm described here is implemented
on the Overbot, and tested in a real world environment. For
comparison, all tests are performed with the spline based
approach presented here, as well as the arc based method orig-
inally implemented on the Overbot [7]. This earlier approach
was found to have many weaknesses in real world tests, the
results of which are available in previous work. The method
relies on singular circular arcs and generally results in paths
of only 10− 20m.
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Fig. 5. The test course stretched over 600m across a hillside with randomly
placed, point-like obstacles. This course contains 40 obstacles.

TEST SETUP

The Overbot’s test route consists of a dirt road in a field of
tall grass and medium to large sized bushes. The course, shown
in Figure 5, followed a 600m rutted dirt road with a right turn
approximately halfway through. The course spans a hillside
and various sections of the route are inclined, both up and
down, as well as pitched side to side. The final 200m of this
course represents a continual incline, climbing approximately
30m.

The vehicle’s vision software was modified to load a
simulated set of obstacles in order to provide controlled
environments for testing. Obstacles are mapped relative to GPS
coordinates and therefore provide consistent testing environ-
ments for each test run of the vehicle. Sample environments
contained randomly placed, point-like obstacles of varying
quantity. An example is provided in Figure 5.

For each test, the vehicle started from the same position
and orientation. The entire course provided clear view of the
sky for continuous GPS signal reception. The success of each
test run was determined by the forward progress made and the
ability to find feasible paths. The running time was recorded
as the real time elapsed for the computation and verification
of the path as well as the feedback terms required for control.

SUCCESSFUL PATHS

Initial tests were conducted on the previously mentioned
course without the presence of obstacles. The feedback con-
troller was refined to more accurately track the curves involved
in this course. Both the original arc-based approach, and the
new spline method presented here were tested. Each were
able to consistently complete the defined course. This test
demonstrates the functionality of the algorithm within the
context of the vehicle and confirms the satisfiability of the
corridor constraint.
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Fig. 6. Both the arc-based method (green) and the spline-based approach
(yellow) were run through the course without the presence of obstacles.

The completion of the multiple waypoint course also indi-
cates the successful implementation of the receding horizon
control. Log files from the vehicle confirm the replanning
of paths as the vehicle progressed through the course. In
general, the new paths were very similar to previous routes
but were able to compensate for errors in vehicle control or
GPS drift. Figure 6 shows the paths actually traversed by the
two planning methods, each completing the course three times.
In the absence of obstacles, both algorithms performed nearly
identically to each other. It should be noted that the modified
controller gains greatly increased the performance of the arc-
based approach. This method is now empirically more stable
and more consistent than in prior experiments [7].

A virtual environment was constructed with 10 randomly
placed obstacles used as a simulated environment for the
Overbot. Again, both methods were run through the entire
course. The spline-based algorithm was able to successfully
find clear paths around the new obstacles and traverse the
course. The test data, shown in Figure 7, show paths adapting
to obstacles and maneuvering around them.

Because of the use of a simulated environment, all obstacles
are immediately available to the vehicle. Under normal operat-
ing modes, the obstacles would not be detected until they are
within range of the vision sensors. Because of this, the path
planning is often considering obstacles that may not yet have
been detected under normal use. As a result, the new algorithm
is performing more computations than normally necessary
and as a consequence, this test fails to fully demonstrate the
adaptability of the algorithm to deal with new obstacles as
they appear.

An additional test was run on an environment containing 20
obstacles. Due to various issues, discussed in the next section,
the test was only run up to the main turn, approximately 300m.
The results continue to verify the success of the algorithm
on the vehicle. As shown in Figure 8, the obstacles are
denser than previously tested. The vehicle is able to maneuver
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Fig. 7. The vehicle was also run through an environments with 10 randomly
placed obstacles (red). The paths followed by the arc (green) and spline
(yellow) methods are shown.
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Fig. 8. The spline-based path planning presented here was tested in an
environment with more densely placed obstacles.

around these obstacles, even when complex maneuvers are
needed to avoid multiple obstacles. This test demonstrates the
algorithm’s ability to wind paths between obstacles. Again
the vehicle traverses the course while satisfying the corridor
constraint and the avoiding obstacles.

RUNNING TIME

The running time of the path planning algorithm was logged
as the real time elapsed for the construction and verification of
the path, as well as the calculation of the curvature and control
terms. The new path planning method considers much greater
length paths than the previous method used and generally
requires more time for verification. The running time increases
as the quantity and density of obstacles increases. As stated
above, the testing setup made all obstacles available to the
path planning algorithms even though in normal operation
the limited vision range would limit the number of obstacles
considered at any time. As such, it is likely that addition
iterations were required, and more computation time was used
during these tests than may be used normally. The arc-based
approached is designed to consider only paths within the
sensor range, and therefore the running time of that approach

Environment Arc Mean Arc Max Spline Mean Spline Max
No Obstacles 29.9ms 115.0ms 27.5ms 121.0ms
10 Obstacles 30.3ms 53.0ms 40.2ms 215.0ms
20 Obstacles N/A ms N/A ms 36.0ms 657.9ms

TABLE I
RUNNING TIMES ARE COMPUTED FOR THE ORIGINAL ARC-BASED

ALGORITHM AND COMPARED TO THE NEW SPLINE-BASED METHOD FOR

VARIOUS ENVIRONMENTS.

is not effected by this setup.

For the initial tests involving an obstacle free environment,
the running time for both methods is comparable. Both took an
average of approximately 30ms with a peak time of 120ms. For
a real time vehicle, these times are within an acceptable bound-
ary. As the environments became more complex and included
the presence of obstacles, the running time of the spline-
based algorithm increased. In general, the average running
time remained in the 30−40ms range, however, the maximum
time taken by a single iteration increased greatly in the more
complex environments. As stated above, this may be an artifact
of infinite sensor range generated by the simulated obstacles.
Even in the presence of complex environments, no running
time exceeded 1sec. Given correct software architecture, this
performance would be acceptable for autonomous vehicles. A
complete set of data is available in Table I.

As testing environments became more complex, and the
density of the obstacles increased, the running time of the
new path planning method increased greatly. The software
architecture in use on the Overbot relies on the strict timing
of some events. As the running time of the path planning
algorithm increased, the frequency of calls to other software
decreased. The GPS software was unable to receive updates
as often as the software requires and incorrectly concluded
that GPS data was lost. As a result, the vehicle miscalculated
its position, generated fault conditions and stopped despite
the presence of feasible paths. As such, testing of more
complicated environments was not possible on this vehicle.
The method is still shown to be valid, but more useful within
a different software structure. The use of a faster processor,
the restructuring of the vehicle software, or the use of a more
parallel approach to path planning would help alleviate this
problem.

CONCLUSION

A new path planning algorithm is developed to run on
the Overbot, an autonomous ground vehicle, within the soft-
ware environment already present. Modifications are made
to interface with the sensor and actuator systems present
on the vehicle. A test course is set up and implementation
results calculated for this algorithm on the vehicle. The results
demonstrate the success of this new algorithm on the Overbot
by planning paths through the defined course. The algorithm is
implemented in a receding horizon fashion and uses feedback
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control to track the computed paths. Within the context of the
Overbot, the running time of the algorithm has been shown
to cause issues with other software running on the vehicle.
As such, test are only conducted on simpler environments,
though test data indicates the success of the algorithm in more
intensive situations.

FUTURE WORK

DYNAMIC OBSTACLES

In static environments, the presented algorithm has been
demonstrated to perform well for most circumstances. For
many military or rescue situations, it may be acceptable to
assume a fixed environment. In the case of urban applications,
however, the vehicle must interact with other vehicles and
pedestrians. Without universal algorithms or vehicle commu-
nication, the behavior of other vehicles may be unpredictable.
Furthermore, without knowledge of other vehicles, it may be
difficult for vision sensors to differentiate between static and
dynamic obstacles. For these reasons, less confidence can be
placed on the accuracy of the obstacle map.

As this algorithm is continually recalculated using up to
date information, it is theoretically possible to avoid dynamic
obstacles by increasing the rate at which a path is computed.
This refresh rate would depend on the speed of the vehicle as
well as the speed of the obstacles. In practice, it would likely
be too fast to compute in real time. Furthermore, in order
to be useful, the sensors would need to reevaluate the entire
environment between each iteration of the algorithm. The slow
speed of the vision techniques and the high frequency of the
refresh rate would ultimately make this approach infeasible.

A more practical approach may be to estimate the movement
of each obstacle. By computing a trajectory for the various
dynamic obstacles, estimates of future position could be used
when detecting potential vehicle collisions. The path would be
evaluated within estimated, timed versions of the obstacle map.
The approach would require time or speed information to be
encoded into the path planning algorithm. The implementation
presented in this paper plans only the vehicle position and
orientation. Some evaluation may be needed to determine
the degree of accuracy needed to accurately track obstacles.
Obstacles that are farther away from the vehicle may have a
large change in position as well as be more likely to stray
from a straight line course. However, this technique need only
overcome the short falls of the slower refresh rate. To that
end, it may be likely that assuming straight line courses for
those short periods of time will yield sufficient results. On
the Overbot, the CCD camera could be used to track the
motion of an obstacle, while the Lidar accurately maps the
given obstacle’s location.

BOUNDED DERIVATIVES

By construction, the splines used in this algorithm are able
to enforce continuity on the second derivative, but unable to

bound their value as is possible in some other work [6]. Most
ground based vehicles have physical limits on the steering
systems that limit the turning rate of the vehicle. Because the
algorithm does not enforce bounds on the second derivative, it
is possible to construct paths that are not traversable. This issue
is further complicated by the fact that the second derivative
represents the rate of change of the spline’s slope, not heading.
Therefore, the needed bound is a function of the first derivative
at the given point.
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