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The Overbot, originally designed to compete in the DARPA Grand Chal-

lenge, has been retasked as a testbed for autonomous vehicle research. A

complete platform, the vehicle allows for development and validation of

new control algorithms, actuators and sensors by allowing integration into

an existing architecture. An overview of the vehicle is provided, describ-

ing the interaction of hardware and software. A new method is developed

for manipulating spline-based paths in obstacle rich environments. The

generated trajectories are forwarded to a new controller developed for the

vehicle to follow the given paths. Various control techniques are tested on

the vehicle and both the path planning and control are validated on a 600m

offroad course.

Nomenclature

c Curvature

dist(·, ·) Euclidean distance

f Trajectory curve

i Integral

k Gain

Pos Position

W GPS Waypoint in GPS frame

WP Initial waypoint
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Y Crosstrack

θ Heading

ξ Position

Subscript

carrot Projected along heading

Error Error

Goal Goal or Target

Proj Projected along path

V Current

I. THE OVERBOT

The Overbot, shown in Figure 1 was designed and built by a team of Silicon Valley

engineers to compete in the 2004 and 2005 DARPA Grand Challenge events. Though selected

for both competitions, the Overbot was unable to complete the qualifying events for either

race. In 2005, the vehicle was donated to the University of California, Santa Cruz, for use

as a research tool in the Autonomous Systems Laboratory.

The Overbot is a fully autonomous vehicle, designed to follow a series of GPS waypoints.

The goal of the vehicle is to traverse each waypoint, in order, while staying within a given

radius of the nominal straight line path and avoiding all obstacles. To accomplish this

task, the vehicle is equipped with various sensors and actuators, as well as custom designed

software to navigate the vehicle. During autonomous operation, the vehicle is completely

self contained and receives no external human input.

I.A. Hardware Architecture

The Polaris Ranger is a commercially available utility vehicle designed for off-road environ-

ments. The Ranger is aptly suited for traversing mountainous and rocky terrain with a top

speed of around 40 mph and the ability to climb over large obstacles.

The Sick Lidar unit is a highly accurate laser rangefinder. Using a rotating mirror, the

Lidar emits an infrared beam across a 180◦ viewing angle. As the beam reflects back to

a sensor, the range can be calculated for each point in the beam’s rotation [10]. On the

Overbot, the Lidar unit has been mounted above the vehicle on a custom gimbaled mount.

This setup allows the Lidar to project downward onto the ground, and thus provide a contour

of the road ahead. The mount itself is driven by a servo motor and can be pitched relative to



Figure 1. The Overbot autonomous vehicle.



the vehicle itself. Additionally, the Overbot incorporates a Unibrain Fire-I 400 color camera,

a CCD based camera capable of 659(H) x 494(V) resolution. The camera is mounted atop

the vehicle near the Sick Lidar unit for a similar vantage point of the terrain.

The Crossbow AHRS 400CB-200 is an attitude and heading reference system incorpo-

rating a 3-axis accelerometer, rate gyros, and a three axis magnetometer. By fusing these

measurements the unit is able to estimate roll, pitch and yaw as well as their relative rate of

change. Together, these measurements determine the orientation and motion of the vehicle

dynamics. The AHRS 400CB-700 is accurate to ±2.5◦ for pitch and roll, and ±4◦ for yaw [8],

though in practice, it has been found to be highly susceptible to noise.

For the vehicle to autonomously maneuver from location to location, it is essential to

maintain an accurate measurement of the vehicle’s position. The Overbot relies on a com-

mercial Global Positioning System (GPS) device from Novatel. The Novatel ProPak-LB,

when coupled with the Omnistar L-Band service, use differential corrections to reduce typi-

cal position errors to less than 0.10 meters [9].

On the Overbot chassis, Galil motion controllers are used to control the steering, throttle,

brakes and shifting. The steering shaft is rotated by an industrial servo motor and the

original steering rack is used to control the vehicle. A modified cruise control unit actuates

the throttle to regulate fuel to the Ranger’s engine. A screw drive and cable actuates the

vehicle’s stock brake pedal to regulate brake pressure in the master cylinders. This setup

always manual application of the brake system if necessary. An additional motor is used to

actuate the transmission linkage to select various forward and reverse gears.

Each subsystem on the vehicle is connected together through an Ethernet network and a

series of routers. Communication is handled by transmitting UDP packets from device to de-

vice. Some devices, like the Galil controllers, are Ethernet enabled, while others, such as the

LiDAR and GPS unit, have USB, Firewire or serial ports, and are adapted to communicate

on the network.

I.B. Software Hierarchy

The Overbot uses a single Pentium class processor for all onboard computations. The ma-

chine runs the QNX real time operating system to run the custom software that controls

the vehicle. The software is divided into several process threads, each serving a different

task. Together, the threads define a hierarchy with the sensor information input at the top,

and actuator commands output at the bottom (Figure 2). Each thread, referred to as a

server, generally only communicates with the threads above and below it, building a level of

abstraction that assumes the input data is both recent and accurate.

The highest level of the software hierarchy is the GPSINS Server, which communicates
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Figure 2. The software threads on the Overbot form a hierarchy to command movements based on sensor
inputs.



with the Novatel GPS receiver to determine the vehicle’s position. With the addition of

the Omnistar High Performance subscription, the position measurements are accurate to

decimeter levels. The GPSINS Server also interfaces to the Crossbow AHRS 400CB-200

roll, pitch, yaw and angular rate estimator. The Crossbow unit internally calculates Kalman

filtered angles at a rate of 60hz. Together, the GPS receiver and AHRS provide the position

and orientation of the vehicle.

The computer vision techniques employed by the Overbot are implemented in the Map

Server. The laser range finder is used as the primary tool to monitor the environment

and detect obstacles. Distance information is measured for discrete angular increments

within the vision plane of the range finder. When compared to the vehicle’s position and

orientation, and the tilt angle of the range finder, these measurements represent points in

the physical environment. Over time, as the range finder scans over the ground, these points

are aggregated to represent surfaces and ultimately define obstacles. All such obstacles are

projected onto the surface of the Earth to create a two dimensional, discretized map.

The Steer Server acts as the path planning control for the vehicle. Using the information

provided by the GPSINS Server, the Steer Server plots a path to the desired destination.

Obstacle information is included and trajectories are planned to avoid these obstacles as well

as the imposed corridor constraints. The resulting path is evaluated and fed forward to the

Move Server.

The majority of the vehicle dynamics and error checking occur inside the Move Server.

Desired distance, max speed and curvature are commanded from the Steer Server. In general,

the Move Server attempts to keep the vehicle moving as fast as possible while obeying the max

speed limitation. Simple vehicle dynamics are computed with the orientation information

calculated above. These dynamics limit the vehicle’s speed for the given curvature and

terrain. Final speed, gearing and curvature decisions are made and send to the Speed and

Direction Servers.

The main purpose of the Speed Server is to interface with the hardware motion controllers.

The Speed Server has control over the throttle, brakes and gear selection. Commands are

accepted from the Move Server and converted to actuator position to change the speed,

acceleration and gearing.

The steering counterpart to the Speed Server is the Direction Server. The software acts

as a translation between the the Move Server commands and the instructions sent to the

hardware controller. The Ranger’s steering box is actuated by a servo motor and the resulting

motion is captured through the use of an optical encoder.



II. PATH PLANNING

As described previously, the Overbot is designed to follow GPS waypoints. These points

define a nominal straight line path for the vehicle to follow. Each point must be traversed in

order, while maintaining a maximum radius from the nominal path. This distance defines

a corridor about the path, constraining the space the vehicle is allowed to occupy. Vision

sensors on the vehicle continually scan and map obstacles into a bitmap stored on the vehicle.

At discrete time steps, a trajectory is generated through the defined corridor and obstacle

map using the vehicle’s current position and orientation. Two path planning techniques

implemented on this vehicle are briefly described below. More detail about these algorithms

is available in previous work [7] [5].

II.A. Arc Based Paths

The Overbot’s original path planning technique follows a goal based approach [7]. Paths are

generated relative to a GPS reference frame, with East and North axes. A goal point, W GPS
Goal

is computed, and the resulting path is defined as the circular arc through W GPS
Goal and vehicle’s

current position, W GPS
V , and constrained to be tangent to the vehicle’s current heading, θV .

For any given planning step, the vehicle’s position and orientation are fixed. Therefore the

path is uniquely defined by the goal point. Relocating W GPS
Goal alters the path length, as well

as the curvature.

For each arc generated, a wedge is defined about the arc with a width equal to that of the

vehicle. For the path to be valid, the entire wedge must be clear of obstacles. If a suitable

wedge is not found, the goal point is moved until a clear path is found. Moving W GPS
Goal

closer to W GPS
V results in a smaller wedge and becomes more likely to be clear of obstacles.

The wedge is evaluated by pixelizing arcs within the wedge using Bresenham’s algorithm [2].

Each point is compared to the obstacle map to determine wether an obstacle collision will

occur.

The simplicity of this algorithm limits the running time required to compute a trajectory.

Running time is important in a real time system to ensure that events happen when necessary.

However, the restriction of using a singular circular arc limits the ability to maneuver in

complex environments. To guarantee obstacle free paths, the path length will be reduced

and may not plan a complete route through the obstacle field. As a result, this approach

often fails to traverse environments with numerous obstacles.
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II.B. Spline Based Paths

A second approach is implemented to overcome the shortcomings of the arc based solution

[5] [1]. For this algorithm, the resulting trajectory is represented by cubic splines. Splines

are piecewise polynomial functions. For use as trajectories, the spline is constrained to be

continuous through its second derivative to guarantee the continuity of the path, heading

and steering angle.

To overcome the short sightedness of the arc based method, paths are planned through

three consecutive waypoints, ie two path segments. Paths further than three consecutive

points are generally beyond the range of the sensor inputs and are not considered. By using

three points, a rotation is guaranteed that will result in the needed monotonicity to calculate

a spline path [5]. The rotation defines a new reference frame and allows a cubic spline to be

interpolated through the given waypoints.

To validate the path, the spline is mapped back into the GPS reference frame. The

path is discretized to the resolution of the obstacle map and each pixel evaluated. For this

implementation, each obstacle detected by the vision sensors is inflated when stored in the

map. Enlarging the obstacles compensates for the width of the vehicle, and only the path of

the center of the vehicle must be evaluated. Obstacle collisions and corridor violations are

recorded and isolated into individual violations.

The curve is manipulated to bend around a given collision. A new point is introduced into

the cubic interpolation in the vicinity of the violation [5]. A new spline is generated through

the new control point. By introducing additional points, the curve can be manipulating to

avoid the obstacle or stay within the defined corridor. The process is repeated, with the

new curve being evaluated within the obstacle map. The curve is iteratively refined until a

collision free trajectory is found (Figure 4).

This method uses more complex curves than the arc based approach, but still guarantees

properties required to be traversable by a ground vehicle. Additionally, this approach is able

to consider longer paths and consider multiple obstacles. As a consequence, the validation

of longer paths requires more running time than the previously described algorithm [3].

The spline based method requires more time, but generates more usable paths in typical

applications.

III. CONTROL

Control techniques must be implemented to track the paths generated by the path plan-

ning algorithms described above. The path acts as a feed forward term and the vehicle

attempts to match its steering angle to the curvature of the path. This open loop method



−5 0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

East (m)

N
o
rt

h
 (

m
)

Figure 4. Smooth curves (blue) are iteratively generated, bending around obstacles until a collision free path
(red) is found.



requires commands to be followed exactly as it has no method of compensating for sensor or

actuator error. More advanced methods are typically used to track the vehicle’s movement

to the desired behavior and adjust for any errors.

The actual position of the vehicle, ξV , is projected in front of the vehicle to a point ξCarrot.

This point introduces lead into the system to compensate for lag inherent in the actuators.

ξCarrot is projected onto the curve, f , at ξProj where ξCarrot lies on a line normal to f at

ξProj. The projected point, ξProj, exists for any continuous function, but may not be unique.

However, the maximum distance between any two projected points is 2 ∗ dist(ξCarrot, ξProj).

For well behaved systems, dist(ξCarrot, ξProj) is minimal and the possible solutions are roughly

equivalent. For this controller, ξProj is calculated as the point of f closest to ξCarrot (Figure

5).

The curvature cff of f is evaluated at ξProj and issued as a steering command for strict

feed forward control. In addition, feedback can be used to better track the curve by com-

paring the relative values of ξV and ξProj. The cross track error, YError, is defined as the

distance between ξCarrot and ξProj and the heading error, θError as the difference between

θV and the heading of f at ξProj (Figure 5). iError represents the integral of the cross track

error over distance. Feedback gains can be calculated such that the commanded curvature

is

cCommand = cff + ky ∗ YError + kθ ∗ θError + ki ∗ iError

The feedback control was developed and tested in two separate environments. The con-

troller was first adapted to the vehicle and tested on a straight line course of approximately

80m. These tests attempted to remove the errors inherent in the open loop implementation

of the arc based path planning algorithm. When the spline based approach was implemented,

the controller was retested and adjusted for complex curves.

III.A. Straight Line Control

A series of tests were conducted on an 80m, straight path over level, unpaved ground without

obstacles. The vehicle used the arc based path planning described above to generate paths

twice per second in a receding horizon fashion. Errors calculations were made every 100ms

and used to adjust the commanded steering curvature. Open loop, PD and PID controllers

were tested, each completint the course 10 times. Performance was evaluated by measuring

the crosstrack error of the vehicle relative to the straight line path defined for the vehicle.

The initial and final segments of each test were truncated to include only the middle 50m

section of the test. The removed sections are not indicative of actual performance as they

include the effects of the conversion time of the internal GPS algorithms and transient effects
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Figure 5. The actual vehicle position is projected onto the curve to calculate the curvature, cross track error
and heading error.



associated with the various controllers.

The cross track error was calculated as the length of the line normal to the path and

passing through the vehicle position, which is unique for a straight line path.

errort = sin(ΨPath − ΨV (t)) ∗ dist(WP, Post),

where ΨPath is the heading along the path, ΨV (t) is the angle between the initial point of the

path and the position of the vehicle at time t, WP is the initial point of the path, and Post

is the position of the vehicle at time t. These results are analyzed below and presented in

Table 1.

Controller Cross track Error(cm) Standard Deviation(cm)

Open Loop 114.5 25.4

PD Control 62.3 7.3

PID Control 14.8 10.3

Table 1. The use of feedback control on the Overbot decreases the vehicle’s cross track error.

III.A.1. Open Loop Control Results

The open loop control commands steering angles based on the curvature of the computed

trajectory. This approach is subject to actuator errors and biases. As no feedback terms

were calculated for this test, new paths were generated every 100ms, as opposed to every

500ms, as used for the other tests. By default, the arc based path planner starts the goal

point on the straight line path. As a result, as the crosstrack error grows, the curvature of

paths returning to the straight line path increases, eventually canceling the effects of steering

biases. This effect results in the vehicle tracking parallel, but offset, to the straight line path.

The effects of these errors can be seen in test results, presented in Figure 6. A misalign-

ment in steering causes the vehicle to be offset from its nominal path in one direction. Once

significantly off course, the adjustment of the path planning results in a fairly parallel path,

as can be seen in the graph. The results indicate an average cross track error of 114.5cm

and a standard deviation of 25.4cm.

III.A.2. Proportional and Derivative Control Results

With the open loop results as a baseline, a second controller was tested that included feed-

back of the error terms defined above. The cross track and heading errors were included

proportionally into the steering control along with the original feed forward term to create



define the control law

cCommand = cff + ky ∗ YError + kθ ∗ θError

The results presented in Figure 6 demonstrate this controller’s ability to correct for some

of the errors introduced by the vehicle dynamics. The control techniques actively track the

nominal path and demonstrates a smaller average cross track error of 62.4 cm. The error

that still exists as a constant offset in the cross track is due to a steering bias in the vehicle.

This problem can be further diminished by the introduction of integral control. In addition

to reducing the offset, the use of the PD controller also reduced the standard deviation to

7.4 cm, approximately two and half times better than the purely open loop control.

III.A.3. Proportional, Integral and Derivative Control

To eliminate the remaining crosstrack error, an additional error term was included in the

feedback calculations. An integral error was computed as the area between the actual path

and the ideal curve. This term was included in the control in the same way as the proportional

and derivative terms to create a new control law

cCommand = cff + ky ∗ YError + kθ ∗ θError + ki ∗ iError

The use of an integral gain tends to reduce overall error at the expense of increasing

standard deviation. While the results show an average crosstrack error of 14.8 cm and

standard deviation of 10.3 cm and correlate well with these expectations, the cross track

error was not eliminated. In analyzing the data, other errors were found to be reducing

performance in addition to the steering bias. Inaccuracies in the heading sensors, when

included in the derivative gain, kθ, and when magnified by the projection, ξProj, resulted in

similar bias issues.

III.B. Control for Complex Curves

A new test route was laid out to evaluate the newly implemented spline based path planning

algorithm. The course followed a 600m rutted dirt road with a right turn approximately

halfway through. The course spanned a hillside and various sections of the route were

inclined, both up and down, as well as pitched side to side. The final 200m of this course

represents a continual incline, climbing approximately 30m.
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Figure 6. Cross track errors were recorded for each of the controllers tested. The error for each run is plotted
over a band denoting the average ± standard deviation for each controller, blue showing open loop, red showing
PD control and green showing PID control.

III.B.1. Controller Variations

The controllers used for the straight line tests were found to be unstable on the complex

curves required to navigate this course. A variety of controllers were developed using different

error terms, gains and projection lengths. A PD controller was selected for simplicity and

to avoid windup time required to make an integral term useful.

For each controller tested, the use of the projected point, ξProj, resulted in oscillatory

behavior. Because of noise in heading measurements, the accuracy of ξProj is unreliable.

Errors in the heading are magnified by the projection and corrupt the crosstrack error, used

for proportional feedback. As a result, the projection was not used and all errors were

calculated based on the vehicle’s measured position, ξV .

As a further refinement, the replanning step was reduced from 500ms to 1s. Error calcu-

lations and feedback correction were still computed every 100ms. Due to that fact that paths

are continually replanned from the vehicle’s present position, resulting in no crosstrack or

heading error, increasing the time between path generation made it easier to see the effects

of the feedback control. A final set of control gains were selected empirically for the best

performance. This controller was found to be suitable for both path planning techniques

described in this work.



III.B.2. Successful Paths

Initial tests were conducted on the previously mentioned course without the presence of

obstacles. The feedback controller was refined to more accurately track the curves involved

in this course as described above. Both the original arc-based approach, and the new spline

method presented here were tested. Each were able to consistently complete the defined

course. This test demonstrates the functionality of the algorithm within the context of the

vehicle and confirms the satisfiability of the corridor constraint.

The completion of the multiple waypoint course also indicates the successful implemen-

tation of the receding horizon control. Log files from the vehicle confirm the replanning of

paths as the vehicle progressed through the course. In general, the new paths were very

similar to previous routes but were able to compensate for errors in vehicle control or GPS

drift. In the absence of obstacles, both algorithms performed nearly identical to one another.

It should be noted that the modified controller gains greatly increased the performance of

the arc-based approach. This method is now empirically more stable and more consistent

than in prior experiments.

A virtual environment was constructed with 10 randomly placed obstacles used as a

simulated environment for the Overbot. Again, both methods were run through the entire

course. The spline-based algorithm was able to successfully find clear paths around the new

obstacles and traverse the course. The test data, shown in Figure 7, show paths adapting to

obstacles and maneuvering around them.

An additional test was run on an environment containing 20 obstacles. Due to various

issues, discussed in other work [4], the test was only run up to the main turn, approximately

300m. The results continue to verify the success of the algorithm on the vehicle. For this

course, the obstacles were denser than previously tested. The vehicle maneuvered around

these obstacles, even when avoiding one collision would normally have led the vehicle toward

another. This test demonstrates the algorithm’s ability to wind paths between obstacles.

Again the vehicle traverses the course while satisfying the corridor constraint and the avoiding

obstacles, demonstrating the success of the path planning and the control.

IV. CONCLUSION

The Overbot, once a DARPA Grand Challenge entry, is now a capable test platform for

autonomous vehicle research. The vehicle is actuated by a series of motors and controllers.

Vision and positioning devices are outfitted on the vehicle for navigation and sensing. A

pentium class PC runs custom software to monitor the environment, plan trajectories and

actuate the vehicle.
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Two different path planning techniques are discussed, one based on singular circular arcs,

the other on cubic splines. Both methods are implemented on the Overbot and validated

on an offroad course. Feedback control is developed for the vehicle and tested on various

environments. The vehicle control is improved dramatically and able to follow complex

curves.

V. FUTURE WORK

Further work will improve the spline based algorithm and eliminate issues resulting from

extended running times. The algorithm could also be expanded to include time information

be used for dynamic obstacles. For control purposes, bounds will be imposed on the curvature

of the resulting paths [4].

Additionally, improvements to the vehicle as a testbed platform will aid in future devel-

opment of control algorithms, sensor suites and actuators. The Overbot will be adapted to

be more modular and more easily reconfigurable. The flexibility of the ethernet communi-

cation allows for easy addition of new hardware, but the software structure of the vehicle

is heavily coupled. The architecture will be redesigned to allow easier substitution of new

software, drivers and controllers.
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