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INTRODUCTION

Attitude is the term used to describe a rigid body’s
orientation in three-dimensional space. In a more
general sense, it is the description of the relative
orientation of two coordinate frames. In vehicle
guidance, navigation, and control (GNC) applications
near Earth’s surface (e.g., applications involving
airplanes, marine vessels, etc.) the two coordinate
frames of interest are sometimes referred to as the
body and navigation reference frames. The body
frame is rigidly attached to and moves with the
vehicle. The navigation frame is normally a locally
level (or tangent) coordinate frame. That is, it has
an origin attached to Earth’s surface and located
directly below the vehicle’s current position. Its
x-y-z axes are lined-up with North, East, and Down
(along the local vertical) directions, respectively.
Attitude determination systems are used to measure or
estimate the relative orientation of these two frames.
The information generated by attitude determination
systems is indispensable in many GNC applications.
A few examples of applications requiring attitude
information include pilot-in-the-loop control of
manned aircraft, accurate payload pointing on remote
sensing platforms, and autonomous navigation and
guidance of uninhabited aerial, ground, and marine
vehicles.
The recent interest in high performance, micro

aerial vehicles (MAVs) has necessitated the design
of compact, accurate, and inexpensive attitude
determination systems. MAVs are designed to be
disposable and are very small in size and weight
(largest dimensions no greater than 15 cm) [1, 2].
At these scales, the avionics and sensor payloads
can represent a significant fraction of the overall
vehicle dimension and weight. To address this
need, many inexpensive rate-gyro based attitude
determination systems have been developed [3—5].
However, inexpensive and miniature solid-state rate
gyros (< $1000 per axis) tend to be low-performance
sensors which have outputs subject to wideband
noise and rate instabilities on the order of 10 to
100±/hr [6, 7]. In order to determine attitude, the
rate gyro outputs must be integrated to give attitude
and this leads to unbounded attitude errors. Thus,
successful implementation of an attitude determination
system that relies solely on rate gyros requires the
use of sensors with exceptionally accurate and stable
outputs. These types of gyros would have output
errors less than 0:1±/hr and tend to be 1) prohibitively
expensive, 2) have high power consumption, and/or
3) be physically too large for many miniature vehicle
applications.
An alternative to relying on accurate and expensive

rate gyros is to devise a system which fuses miniature,
low-performance (and low-cost and low-power) gyros
with a gyro-free aiding system using a complementary
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Fig. 1. Complementary filter for blending information from
aiding system (like the one discussed in this paper) with rate
gyros. Dashed box encloses system generating drift-free attitude

but perhaps noisy attitude solution.

filter architecture as shown in Fig. 1. The gyro-free
aiding system provides either one of two types of
information. It can provide 1) a noisy but unbiased
direct attitude measurement periodically (i.e., a low
bandwidth attitude update), or 2) it can provide
indirect measurements from which attitude can be
extracted using an observer. The aiding system’s
measurements are used to arrest error growth due the
integration of the gyro biases and also to estimate
these gyro biases in real time. A few examples of
aiding system which provide direct measurements
include multi-antenna GPS attitude determination
systems [9], accelerometer- or inclinometer-based
leveling systems [7] and the novel pseudoattitude
system described in [10]. An example of aiding
systems providing indirect attitude measurements is
a system, shown in Fig. 2, which uses an extended
Kalman filter (EKF) to extract attitude information
from GPS position estimates.
All of the above mentioned aiding systems

have drawbacks which make them unsuitable for
MAV applications. For example, multi-antenna GPS
attitude determination systems require separation
distances between antennas which are too large
(> 16 cm) for use on MAVs [11]. Accelerometer- or

Fig. 2. An EKF architecture for blending INS with GPS information. GPS position solution provides indirect attitude aiding
information.

inclinometer-based systems provide useful attitude
information only when the vehicle is in unaccelerated
flight [7]. EKF-based systems which extract attitude
information indirectly from GPS position estimates
suffer from conditional observability problems, and
they cannot guarantee bounded attitude errors unless
the vehicle follows a prescribed acceleration history.
In certain scenarios the required acceleration history
may be beyond the maneuvering capabilities of small
MAVs.
The purpose of this paper is to present an

algorithm and system design for a gyro-free attitude
determination system suitable for MAV applications.
It is an extension of ideas first presented in [8]
and addresses all the shortcomings of the above
mentioned aiding systems. The hardware and system
architecture addresses the size, weight and power
constraints unique to MAVs while the attitude
determination algorithm and its implementation
address issues encountered when using low-cost (or
performance) inertial sensors. This system derives
attitude without integrating sensor outputs and,
as such, provides a solution which has bounded
errors. In applications where the required bandwidth
is small or output latencies are not problematic
(e.g., postmission data analysis), the algorithm
can be used as a stand-alone attitude solution. In
applications where high bandwidths are required
and latencies are not acceptable, it can be fused
with rate gyros and serve as an aiding system
which continuously calibrates rate gyro biases.
The system developed uses magnetometers,
accelerometers, and GPS (velocity measurements
only) as the primary sensors. The attitude algorithm
is mechanized in terms of quaternions, and the
attitude quaternion is determined using a minimum
variance estimator by processing of two noncollinear
vectors measurements. The two vectors measured are
Earth’s magnetic field and gravitational acceleration
vectors.
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BACKGROUND

Determining attitude from two or more vector
measurements is a problem that has been a subject
of interest for some time [12] and, thus, prior work in
this area is extensive. Over the years, many algorithms
to solve this problem have been developed and
a representative (but not exhaustive) list of such
algorithms are described in [9], [13]—[24]. In general,
these algorithms can be classified into three groups.
The first group consists of deterministic algorithms
such as the ones described in [14]. The second group
consists of algorithms which take a classical least
squares approach to the problem as articulated by
Wahba in [12]. That is, given a set of vectors ~uni
for i= 1, : : : ,N known in the n coordinate frame
and measurements of these vectors denoted ~ubi for
i= 1, : : : ,N in the b coordinate frame, find the n

to b transformation matrix
n!b
C (q) (or the attitude

quaternion q) which minimizes the following cost
function J:

J =
1
2

NX
i=1

μ
~ubi ¡

n!b
C (q)~uni

¶Tμ
~ubi ¡

n!b
C (q)~uni

¶
(1)

subject to the constraint:

kqk= 1: (2)

A batch solution to this constrained least squares
problem was given in [17] while a recursive one was
presented in [18]. The third group of algorithms takes
a filtering approach to the problem. In this approach,
the attitude determination problem is cast in the
form of an observer or filter. Specific examples of
this approach are given in [19] (Euler angle filter),
[21] (direction cosine matrix filter), [22] (Rodrigues
parameter filter), and [20], [23] (quaternion filters).
While the classical approaches to the problem

provide an exact solution, they cannot easily
accommodate a dynamic model or sensor errors
into their formulation. On the other hand, while
the filtering approach allows accommodation of
dynamic models and sensor errors, the solutions
they provide are not necessarily optimal because
they are derived from a linearization of the nonlinear
attitude equations. An algorithm which combines
both approaches in a Kalman filtering framework was
developed in [24].
The contributions of this paper are twofold. First,

it adds another algorithm for attitude determination
from two-vector observation to the literature. The
algorithm developed in this paper belongs to the third
group of two-vector attitude algorithms described
above; it is an EKF solution to the nonlinear equation
relating attitude parameters to vector measurements.
The algorithm is fundamentally similar to the one

developed in [20] but instead of an additive quaternion
update it uses a multiplicative one along the lines
of [16], [25], and [26]. More importantly, however,
we show that the choice of the coordinate frame
in which to linearize the attitude equations has a
significant bearing on implementation of the attitude
filter in MAV applications. For example, it is shown
that one particular linearization scheme results in
a time-invariant EKF measurement equation which
can be directly integrated into the psi angle INS/GPS
filter mechanization architecture [27]. This means that
this attitude determination system and algorithm can
be easily incorporated into an INS/GPS fusion filter
like the one depicted in Fig. 2. This helps to address
the issues of condition observability which plagues
these systems especially in MAV application where
low-cost/performance inertial sensors are used.
The second contribution of this paper is that

it demonstrates the design and operation of a
vector matching attitude determination system
suitable for use in small MAVs. The two vectors
used are measured Earth’s magnetic field vector
~h, and a synthetic Earth’s gravitational field
vector ~g. The synthetic vector is constructed by
subtracting specific force measurements provided
by a triad accelerometer from a GPS-derived
vehicle acceleration vector. The acceleration
measurement from GPS is derived by numerically
differentiating GPS velocity estimate from a wide
area augmentation system (WAAS) corrected
signal. We show that the acceleration signal derived
by differentiating the WAAS-corrected GPS
velocity is normally a surprisingly clean and usable
measurement.
The remainder of the paper is organized as

follows: First, the general attitude determination
problem is posed and the measurement equation
relating vector observations to attitude errors is
derived. Next, we present the design of estimators
to solve the attitude equations. Following this,
the stability, convergence, and estimation error
characteristics of the attitude algorithm are verified
in simulation for both the static and dynamic cases.
Extended Kalman filtering and implementation
issues of the algorithm are discussed next. The
hardware description of the system follows, then a
presentation of experimental results and validation of
the attitude determination algorithm and systems using
postprocessed flight test data. Finally, conclusions and
a summary close the paper.

MEASUREMENT EQUATION DERIVATION

Attitude determination from two vector
measurements requires knowledge of the components
of two noncollinear, non-zero vectors in two separate
coordinate frames. Let us denote these two vectors
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as ~u and ~v. The superscript “b” and “n” are used to
denote body frame or navigation frame resolution of
these vectors, respectively. For example, ~ub represents
the vector ~u with its components expressed (or
coordinatized) in the body frame. First, the relations
involving the vector ~u are derived. The relations
involving ~v are a repeat of those derived for ~u.
The transformation which maps the vector ~u

expressed in the body frame to its resolution in the
navigation frame is

~ub =
n!b
C (q)~un: (3)

The navigation-to-body frame transformation matrix
n!b
C (q) is a function of the attitude quaternion q and
can be expressed as

n!b
C (q) =2641¡ 2(q2

2 + q3
2) 2(q1q2 + q3q0) 2(q1q3¡ q2q0)

2(q1q2¡ q3q0) 1¡ 2(q12 + q32) 2(q2q3 + q0q1)

2(q1q3 + q2q0) 2(q2q3¡ q1q0) 1¡ 2(q12 + q22)

375 :
(4)

In this paper we adopt the following notation
convention for the attitude quaternion [28]:

q=
·
q0

~q

¸
: (5)

It is composed of a scalar component q0 defined as

q0 = cos
μ
©

2

¶
(6)

and a vector component given by

~q= sin
μ
©

2

¶
ê=

264q1q2
q3

375 : (7)

The angle © is the rotation angle from Euler’s or

Chales’ theorem [29] and ê is the eigenvector of
n!b
C

corresponding to the eigenvalue of unity. Alternately,
(3) can be written in terms of quaternions as
follows:

ub = q¤−un−q (8)

where − represents quaternion multiplication and q¤ is
the complementary rotation of the quaternion q and is
defined as

q¤ = [q0 ¡~q]T: (9)

Quaternion multiplication is defined as follows:

r− s=
·

s0r0¡~rT~s
~r£~s+ r3~s+ s3~r

¸
: (10)

The quaternion equivalent of ~u is denoted u and is
equal to [0 ~uT]T.

The attitude determination algorithm developed
in this paper is fundamentally a linearization of (3)
or its quaternion equivalent given by (8). Given an
initial guess of the attitude along with body and
navigation frame measurements of two vectors the
algorithm computes the difference between the true
attitude and this initial guess. The difference is used
to correct the initial guess, and the process is repeated
until convergence is achieved. Even though the final
attitude determination algorithm will be in terms of
quaternions, we derive the equations starting from
(3), because this approach provides more insight and
allows the use of matrix algebra in lieu of quaternion
math.
The difference between the assumed attitude

(or initial guess of attitude) and the true attitude is

captured in a transformation matrix error (
n!b
±C ), or

equivalently the quaternion error qe. Both the matrix
and quaternion errors represent the error between
the coordinate frame chosen for linearization and
the actual or true orientation of that frame. In this
regard, there are two choices for the coordinate
frames about which to linearize: the body frame
or the navigation frame. The equations for the two
linearization schemes are derived separately.

Linearization in the Navigation Frame

Let us define qe to be the small rotation error
between the estimated attitude q̂ and the true attitude
q. Throughout this paper we use carets above
variables to denote that they are estimated quantities.
The error quaternion is small but non-zero. It is
non-zero because errors in the various sensors result
in attitude errors. The relationship is expressed in
terms of quaternion multiplication as follows:

q= q̂−qe: (11)

That is, the estimated attitude is rotated a small
amount further in order to arrive at the true
attitude quaternion (the definition of quaternion
multiplication). Since the error quaternion qe is
assumed to represent a small rotation, it can be
approximated as [29]

qe =
·
1

~qe

¸
: (12)

An alternative way to view the relation between
the estimated and actual attitude is using the
transformation (or direction cosine) matrix. Since
the error quaternion qe is nothing more than a

perturbation to the direction cosine matrix
n!b
C (q), we

can write
n!b
±C (q)

¢
=
n!b
C (qe): (13)
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Noting that the vector components of qe are small, the
perturbation to the transformation matrix in (4) can be
rewritten as

n!b
C (qe) =

264 1 2qe3 ¡2qe2
¡2qe3 1 2qe1
2qe2 ¡2qe1 1

375 (14)

where

~qe = [qe1 qe2 qe3]
T: (15)

Let the n0 coordinate frame be the computed (and,
thus, erroneous) navigation frame while n represents
the actual true navigation frame. The superscript b
represents the body frame. Using these definitions we
write the n to b transformation matrix as

n!b
C =

n0!b
C

n!n0
C (16)

=
n0!b
C

n!b
±C (17)

=
n0!b
C

n!b
C (qe) (18)

where
n!b
±C =

n0!n
C =

n!b
C (qe): (19)

This implies that these matrices can be written in
terms of small rotations about the navigation frame’s
coordinate axes. These rotation errors are denoted as
²N (rotation about the north axis), ²E (rotation about
the east axis) and ²D (rotation about the down/vertical
axis). In terms of these angles the attitude error matrix
can be written as

n!b
C (qe) =

264 1 ²D ¡²E
¡²D 1 ²N

²E ¡²N 1

375 : (20)

These attitude errors are similar to the so-called
psi-angle error models used in error analysis of
inertial navigation systems [27] and they are also
used as accuracy metrics later in the paper. Since
n!b
C (qe) represents a small rotation between the n

0 and

n frames, using (14) it can be written as

n!b
C (qe) = I3£3¡ 2[~qe£] (21)

where I3£3 is the three-by-three identity matrix and
[~qe£] is a skew-symmetric matrix composed of the
entries of ~qe. That is,

[~qe£] =

264 0 qe3 ¡qe2
¡qe3 0 qe1

qe2 ¡qe1 0

375 : (22)

Substituting this back into (3) leads to

~ub =
n!b
C ~un (23)

=
n0!b
C

n!n0
C ~un (24)

=
n0!b
C [I3£3¡ 2[~qe£]]~un: (25)

Recalling that ˆ is used to denote estimated quantities

and that
n0!b
C =

ˆn!b
C , the previous equation can be

premultiplied by
b!n0
C to yield

b!n0
C ~ub = [I3£3¡ 2[~qe£]]~un (26)

~̂u
n
= ~un¡2[~un£]~qe (27)

using the well-known identity that ~a£~b =¡~b£~a. Let
us define ±~un =¡~un~̂un. Using this definition leads to
the following:

±~un =¡2[~un£]~qe: (28)

If the above derivation is repeated for the second
vector, ~v, and the equations for both ~u and ~v are put
together, the following linear measurement equation is
obtained ·

±~un

±~vn

¸
=
·¡2[~un£]
¡2[~vn£]

¸
~qe: (29)

This equation can be used in an estimator or observer
to determine attitude. The design of two such
estimators is discussed later in the paper after we
present an alternate body frame linearization of the
attitude equations.

Linearization in the Body Frame

The procedure for linearization of the attitude
equations in the body frame is similar to that for the
navigation frame, above. The major difference is that
the derivation starts by expanding the following

b!n
C =

b0!n
C

b!b0
C (30)

=
ˆb!n
C

b!n
C (qe): (31)

Note that now the b0 coordinate frame is the computed
body frame while b is the true body frame. Similar to
what was done earlier, note the following equivalence
of notations:

b!n
±C =

b!b0
C =

b!n
C (qe): (32)

These matrices represent the error in the body to
navigation frame transformation matrix and now
b!n
C (qe) represents a small rotation between the b

0 and
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b frames. It can be written as
b!n
C (qe) = I3£3¡ 2[~qe£]: (33)

Even though the above equation for
b!n
C (qe) looks

identical to the expression for
n!b
C (qe) given by (21),

there is a subtle, albeit significant difference: in
(21) and (33), the quaternion q (and its error qe)
are not the same. The quaternions in (33) are the
complements of the quaternions in (21). Equation (33)
can be used to write the b to n transformation as

b!n
C =

ˆb!n
C [I3£3¡ 2[~qe£]]: (34)

This relationship is used to write the transformation of
~ub to ~un in the following manner:

~un =
b!n
C ~ub (35)

=
ˆb!n
C [I3£3¡2[~qe£]]~ub: (36)

Premultiplying both sides by
ˆn!b
C and rearranging

leads to

±~ub =¡~̂ub~ub (37)

=¡2[~̂ub£]~qe: (38)

Once again, repeating the above derivation for the
second vector, ~v, and assembling the equations for
both ~u and ~v yields the following measurement
equation: ·

±~ub

±~vb

¸
=
·¡2[~ub£]
¡2[~vb£]

¸
~qe: (39)

ATTITUDE ESTIMATOR DESIGN

Either (29) or (39) can be used in an estimator to
solve the attitude determination problem. To do this
we note that both (29) and (39) can be written as

~z =H~qe (40)

where ~z is the observation vector and H is the
observation (or measurement) matrix. Assuming
linearization in the navigation frame ((29)), then the
observation vector ~z becomes

~z =
·
±~un

±~vn

¸
(41)

and the observation matrix H becomes

H =
·¡2[~un]£
¡2[~vn]£

¸
: (42)

We present two minimum variance solutions to
the attitude determination problem. The first is an

iterated least squares solution and the second is an
EKF implementation. The two vectors (~u and ~v), the
way they are measured, and the error models for the
measurement of these vectors is the same for both
estimators. Thus, before discussing the details of the
two estimators, we present details of the vectors used
in the physical system, how they are measured, and
error models for the vector measurements.

Vector Measurement Models

The physical implementation of this MAV attitude
determination system uses Earth’s magnetic field and
gravitational acceleration vectors as the two vector
observations. The vector ~un in the algorithm above is
defined to be equal to Earth’s magnetic field vector
in the navigation frame ~hn. This vector is a function
of geographic location and can be computed easily
using the International Geomagnetic Reference Field
(IGRF) model [30]. Similarly, ~vn is defined to be
equal to Earth’s gravitational acceleration vector
in the navigation frame ~gn. It is also a function of
geographic location and can be computed using a
model such as the World Geodetic System 1984
(WGS-84) gravity model [31]. In the implementation
here, the values of ~hn and ~gn computed using [30] and
[31] are assumed to be exact.
The vector ~ub is defined to be the body frame

measurement of Earth’s magnetic field vector and
is measured by a triad of magnetometers. This
measurement is modeled as

~̂h
b

(tk) = ~h
b(tk) +~nh(tk): (43)

The caret above the vector on the left hand side of the
equation indicates a measured quantity. The measured
field value is equal to the true value (i.e., measurement
that would be made by an error-free magnetometer
triad) corrupted by an additive error. We assume
that the magnetometers have been calibrated so that
correlated sensor errors such as null-shift or Markov
biases have been removed. Thus, it is reasonable to
assume that the remaining sensor error term nh can be
modeled as a white noise sequence with covariance Rh
given as

Rh = Ef~nh(tj)~nTh (tk)g=
½
¾2hI3£3 j = k

03£3 j 6= k (44)

where ¾2h is the noise power.
The vector ~vb is defined to be the body frame

measurement of Earth’s gravitational acceleration. In
a nonaccelerating vehicle, a triad of accelerometers
would provide a direct measurement of this vector.
However, accelerometers are fundamentally sensors
for measuring specific force and not accelerations.
The output of an accelerometer ~f is related to the
gravitational acceleration vector ~g and the vehicle’s
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acceleration vector ~a by the following relation:

~fb =~ab ¡~gb (45)

where the superscript b indicates body frame
expression of the vectors. Thus,

~gb =~ab ¡ ~fb ´~vb: (46)

When the vehicle is not accelerating (~ab = 0),
the accelerometers provide a direct measure of
¡~gb. However, when the vehicle is accelerating,
a correction equal to ~ab must be made to the
accelerometer readings.
The output error model for the acceleormeters

has the same form as the output error model for the
magnetometers:

~̂f
b

(tk) = ~f
b(tk) +~nf(tk): (47)

The sampling noise term ~nf is also assumed to be a
white noise sequence with covariance Rf given by

Rf = Ef~nf(tj)~nTf(tk)g=
½
¾2fI3£3 j = k

0 j 6= k (48)

where ¾2f is the noise power. The error model for ~a
and the magnitude of its covariance depends on how ~a
is computed. In the implementation discussed here, ~ab

is determined by using the measured vehicle velocity
_̂x in the following difference equation:

~ab(tk) =
1
¢t
( _~x
b
(tk)¡ _~x

b
(tk¡1)) (49)

where ¢t= tk ¡ tk¡1. The measurements of _~x comes
from GPS. GPS provides a measurement of the
vehicle’s velocity in the navigation frame and not the

body frame. That is, it provides _~x
n
and not _~x

b
. This

is not a problem, however, because linearization in

the navigation frame only requires that we use ~̂v
b
to

compute ~̂v
n
. Thus,

~̂v
n ´ ~̂gn = (

ˆn!b
C )T~̂g

b
(50)

= ~̂a
n¡ (

ˆn!b
C )T~fb: (51)

In the equation above

~̂a
n
(tk) =

1
¢t
(
_̂
~x
n

(tk)¡
_̂
~x
n

(tk¡1)): (52)

We model the velocity measurements as

_̂
~x= _~x

n

GPS =
_~x
n
+~n _x: (53)

Since, in this work, we are using differentially
corrected GPS (corrections provided by the WAAS)
it is reasonable to assume that most of the correlated
velocity errors have been removed and what remains
is essentially wideband noise. Therefore, the velocity
error ~n _x is modeled as an uncorrelated white noise

sequence where the covariance of ~n _x (denoted R _x) is
given by

R _x = Ef~n _x(tj)~nT_x (tk)g=

8>>>><>>>>:

264
¾2_xN 0 0

0 ¾2_xE 0

0 0 ¾2_xD

375 j = k

03£3 j 6= k
(54)

where the subscripts N, E, and D refer to the noise
power in the North, East, and Down directions,
respectively. Thus, Ra which is the covariance of ~̂a

n

is given by

Ra = Ef~n _x(tj)~nT_x (tk)g=
8<:

2
¢t2

R _xI3£3 j = k

03£3 j 6= k,
:

(55)

The covariance matrices Rh, Rf , and Ra are used in
computing error bounds on the attitude estimate later
in the paper.

Iterated Least Squares Estimator

The iterated least squares solution does not
leverage a priori information about the vehicle’s
attitude. Instead, at each time step it performs a global
search for the attitude quaternion. The iterated least
squares algorithm is used in the simulation studies
evaluating the convergence characteristics of the
attitude algorithms developed in this paper. Given
the above error models and assuming linearization in
the navigation frame ((29)), the iterated least squares
solution is implemented as follows.

1) Initialize the attitude quaternion as q̂=
[1 0 0 0]T, and the attitude error quaternion as
q̂e = [1 0 0 0]

T.
2) Use q̂ to map the body measurement of ~u

and ~v to the navigation frame. That is, compute
ûn = q̂− ûb − q̂¤ and likewise for v̂n = q̂− v̂b − q̂¤.
3) Formulate the errors ±~̂u

n
= ~un¡ ~̂un and ±~̂vn =

~vn¡ ~̂vn.
4) Form H ((29)) and take its pseudoinverse:

[HT H]¡1HT =H†.
5) Estimate the quaternion error,

~̂qe =H
†

"
±~̂u
n

±~̂v
n

#
:

6) Update the quaternion estimate as follows:
q̂= q̂−qe.
7) Normalize the updated quaternion estimate in

the following way: q̂+ = q̂+=kq̂+k.
8) Return to step (2) and repeat until convergence

is achieved.
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Note that step 6 represents an incremental rotation
towards the correct solution, as represented by
quaternion multiplication. This is different from the
algorithm in [20] where an incremental update to the
quaternion error is added to the prior estimate.
Given the algorithm developed above, the

following two questions are of interest: 1)
How accurate is the attitude estimate and what
factors influence the accuracy? 2) Does the
algorithm converge, and what are its convergence
characteristics? To qualitatively answer the first
question, we develop a covariance expression for the
attitude estimate and simulation studies are used to
quantitatively answer both accuracy and convergence
issues.
The quality of the attitude estimate generated

by this algorithm is captured in the state covariance
matrix P defined as

P = Ef~qe~qTe g= EfH†~z~zTH†Tg: (56)

For linearization in the navigation frame H† is
independent of q̂ (or qe). Thus, (56) can be written
as

P =H†Ef~z~zTgH†T =H†RH†T (57)

where Rz is the covariance of the navigation frame
measurement of ~u and ~v. The magnitude of its
entries depends on the quality of the magnetometers,
accelerometers and GPS velocity measurements

used to construct the two vectors ~̂g
n
and ~̂h

n

. It also
depends on the attitude of the body frame relative to
the navigation frame. From (44), (48), (51), and (55)
it can be shown that Rz is given by

Rz =

2664(
ˆn!b
C )Rn(

ˆn!b
C )T 03£3

03£3 Ra+(
ˆn!b
C )Rf(

ˆn!b
C )T

3775 : (58)
The square root of the diagonal entries of P are the
standard deviations of the quaternion estimates. It is
more intuitive to describe attitude errors in terms of
the small rotation angles about the navigation frame
axes, rather than quaternions. From (20), the variances
of these rotation angles are approximated by

¾2²N = 4P11 (59)

¾2²E = 4P22 (60)

¾2²D = 4P33: (61)

Note that this interpretation of attitude errors is only
valid for linearization in the navigation frame. If the
linearization is carried out in the body frame, the
physical meaning or interpretation of the entries in
the covariance matrix (Pii) will be different.

Extended Kalman Filter Solution

The EKF approach is more efficient than the
iterated least squares solution because it leverages
prior attitude information. Unlike the iterated least
squares soltuion which performs a global search
at each time step, the EKF just refines the attitude
solution from the previous time step using the most
current vector observations. As such, it is better suited
for real-time applications.
In order to implement the EKF, equations

accounting for the dynamics must be included in the
formulation. If angular rate information is available
(from rate gyros), a dynamic model for ~qe based on
the kinematics of the attitude problem can be included
[7]. The dynamic model for ~̂qe can be written in the
standard state space form for dynamics systems as
follows:

_̂
~qe = F~̂qe+G~w: (62)

The matrix F is the system dynamic matrix. The
vector ~w is the process noise vector which models
uncertainties in the dynamic model for ~̂qe and the
rate gyros used. It is a white noise sequence with
covariance Rw. The matrix G is the process noise
mapping matrix. The structures of F and G depend
on the frame used for the linearization (navigation
or body) and the types of rate gyros used. Given the
dynamic model in (62) and assuming navigation frame
linearization of the measurement equation, the EKF
attitude estimator is implemented as follows.

1) At time step tk¡1 sample gyros to propagate q̂.
2) Propagate the state covariance forward in time

using the following:

P¡k =©P+k¡1©
T+Cd: (63)

P¡k¡1 is the a priori state error covariance, © is the
discrete equivalent of F, and Cd is the discrete
equivalent GRwG

T.
3) Use the vector observation of Earth’s magnetic

and gravity fields to construct ~z, H, and Rz.
4) Compute the Kalman gain matrix L=

P¡k H
T(HP¡k H

T+Rz)
¡1.

5) Compute ~̂qe = L~z.
6) Similar to the iterated least squares approach,

update q̂ using q̂e and normalize.
7) Update the state error covariance by P+k =

(I3£3¡LH)P¡k .
8) Return to step 1 and repeat.

The dynamic model given in (62) can be
augmented to include sensor errors as well. In this
instance, the elements of the process noise mapping
matrix G may include parameters for shaping filters
which map the white noise sequence ~w into correlated
sensor errors. More details on this and, in general,
on how to incorporate rate gyros into an attitude
estimator are given in [7] and [25]. We, therefore,
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forgo further discussion of these details and instead
focus on a gyro-free implementation of the EKF
estimator.
The gyro-free form of the EKF estimator can be

implemented if the frequency content of the vehicle’s
attitude dynamics is smaller than the frequency at
which the vector observation are being made. In this
instance, the time evolution of the quaternion error
~qe between vector observations can be modeled as a
time-correlated random process. A mathematically
tractable random process that is suited for this case
would be that of an exponentially correlated (or first
order Gauss-Markov) process. Noting that using such
a random process is nothing more than a mathematical
restatement of the fact that the vehicle’s attitude does
not change appreciably between vector observations,
we can write the dynamics and process noise mapping
matrices as

F =¡1
¿
I3£3 (64)

G =¡¿F (65)

where ¿ is the correlation time for the quaternion
error ~qe. The correlation time ¿ and the process noise
covariance matrix Rw are parameters that can be
used to tune the response of this gyro-free dynamic
model. In the simulation studies that follow and the
experimental validation we present the performance of
this gyro-free EKF implementation.
It should be noted that practical considerations

will require that the algorithm for the gyro-free
implementation described above be modified when
used in real-time applications. Specifically, the
algorithm will have to be modified to deal with issues
such as sensor data dropouts, latencies in transmission
of the data from the sensor to the processing computer
and asynchronous measurements of Earth’s magnetic
and gravity field vectors. In the simulation and
experimental data (postprocessed) that are presented
next, all these issues had to be considered.
If the attitude solution is used in applications

where solution latency is not an issue (e.g.,
postmission data analysis), then the issues of sensor
data latency and asynchronism can be dealt with by
intelligent data processing. Data dropouts, however,
require some knowledge of the vehicle’s dynamics to
propagate the attitude solution during the intervals of
missing sensor data. All three of these issues can be
dealt with successfully by incorporating rate gyros to
provide data at a higher rate than the Earth magnetic
and gravity field measurements [7, 25].

ALGORITHM PERFORMANCE

A series of simulations are used to evaluate the
performance of the attitude estimators developed
above. A vehicle equipped with a WAAS capable

GPS receiver, a triad of magnetometers, and a triad
of accelerometers, is simulated. In the first series of
simulations we assume the vehicle is static and located
at the Minneapolis—St.Paul International Airport, USA
(N44:9± latitude, E93:2± longitude and 256 m above
mean sea level). At this location, ~hn and ~gn are given
by [30, 31]

~hn = [0:1770 0:0075 0:5525]T Gauss (66)

~gn = [0 0 9:8069]T m/s2: (67)

These vectors are assumed to be exact and the error
in the attitude estimation is introduced primarily by
the sensor used to measure these vectors. This is a
reasonable assumption since we are dealing with MAV
applications where low-cost sensors will be used. In
the second set of simulations we assume the vehicle
is maneuvering in the vicinity of the Minneapolis—St.
Paul International Airport.

Static Simulations

The static simulations consist of one million
Monte-Carlo runs. The objective of these is to analyze
the convergence and accuracy performance of the
attitude algorithm. For each Monte Carlo run, an Euler
angle triad was picked randomly from a uniformly
distributed population that spanned the 3-2-1 Euler
angle space. The starting yaw angle Ã came from a
uniform population between §180±, the pitch angle
μ from a uniform population between §80±, and
the roll angle Á from a uniform population between
§180±. The pitch angle was limited to §80± in order
to avoid the well-known Euler angle singularity
at μ =§90±. This does not mean that the attitude
algorithm has a singularity; the attitude algorithm is,
in fact, singularity free. Since we are, however, using
Euler angles for generating and visualizing simulation
data, a pitch angle μ =§90± would introduce
unnecessary complications. Once the Euler angle
triad was picked, the body-fixed sensor measurements
corresponding to this attitude were generated. These
body-fixed measurements were corrupted with
appropriate levels of sensor wideband noise. For
the magnetometer measurements, the measurement
noise ¾h was 1 milli-Gauss and for the accelerometer
measurements, ¾f was 1 milli-g. These are reasonable
error magnitude for inexpensive magnetometers and
accelerometers [6]. Since the vehicle is known to be
static, the GPS derived acceleration measurements
were not used in the attitude solution. That is, Ra
is set equal to zero. For each Monte Carlo run the
algorithm is always initialized with a starting guess for
q̂ of [1 0 0 0]T which corresponds to a 3-2-1 Euler
angle triad of (Ã,μ,Á) = (0,0,0). The algorithm was
given 10 iterations to converge.
The overall convergence characteristics of the

algorithm are very good; convergence is rapid and
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Fig. 3. Quaternion convergence history.

Fig. 4. Histogram of attitude errors for 1,000,000 Monte Carlo runs.

assured. The rapid convergence is shown in Fig. 3.
This figure is a time history for the attitude quaternion
components (as a function of iteration) during one of
the Monte Carlo runs. As can be seen, the algorithm
converges the correct solution in less than five
iterations. Note that the assumed initial condition of
q̂= [1 0 0 0]T (which is equivalent to the 3-2-1 Euler
angle triad of (Ã,μ,Á) = (0,0,0) is not always close
to the initial guess. Thus, although the formulation
of this solution methodology assumed a small qe, the
algorithm never diverged in all of the 1 million Monte
Carlo runs.
The accuracy characteristics of the algorithm

are captured in Fig. 4 which shows a histogram of

attitude errors for all one million Monte Carlo runs.

These errors are computed from the product
n!b
C

b!n0
C

(a rearrangement of (16)) where
n!b
C is computed

from the known true attitude and
b!n0
C is computed

using the attitude estimates generated by the algorithm
after 10 iterations. The 1 ¾ standard deviation for
all the angles is less than 1 deg. From Fig. 4 it is
apparent that ²D is the largest error. This is a result
of the degree of observability of certain angles from
the vectors selected; it is not an inherent limitation
of the algorithm itself. When Earth’s gravitational
acceleration vector is one of the vectors used for
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Fig. 5. Time history for true and estimated (EKF implementation) attitude. Dynamic simulation.

the solution of the attitude problem, errors about the
down axis (²D) are not observable from this vector.
That is, using measurements of only the gravitational
acceleration, heading information cannot be extracted.
All information about ²D comes from the magnetic
field vector ~h. The other two error angles, on the
other hand, are observable from both vectors and the
estimation algorithm uses this redundant information.

Dynamic Simulations

The EKF formulation of the attitude algorithm is
tested on a simulation of the same vehicle in motion.
The vehicle is simulated performing maneuvers
that include accelerations and attitude changes. The
magnetometer and accelerometer triad error statistics
are the same as was used in the static simulation. The
values used in the covariance matrix R _x (which is
used to compute Ra) are based on work in [33] which
characterized the WAAS velocity errors velocity, and
is set to be:

R _x =

264(0:037)
2 0 0

0 (0:042)2 0

0 0 (0:098)2

375 m/s2:
(68)

The time constant for the quaternion error
correlation was set to 1 s (i.e., ¿ = 1). The process
noise covariance matrix was varied to adjust
the performance of the attitude estimator. More
specifically, Rw was set equal to

Rw = ®I3£3: (69)

The parameter ® was used at the tuning parameter.
With ® set to a small number (low process noise),
the estimator places less importance on the vector
observations. To place more importance on the vector

observations, the value of ® is increased (high process
noise).
Figs. 5—9 show the results for the dynamic

simulations. Fig. 5 shows the true attitude history
and the performance of the EKF formulation with
the process noise matrix set high (®= 0:08727). This
value was established by trial and error and it is up to
the designer of the estimator to select an ® value that
is appropriate. Fig. 6 shows the error in the attitude
estimate or error transient for the first 10 s. It is clear
that that the attitude errors (or residuals) converge to
zero very quickly. Fig. 7 shows the errors 100 s into
the simulation. That attitude residual is noisy and
is time varying. The magnitude of the noise on the
residuals is larger than the static case. This is due
to the GPS derived acceleration signal used in the
dynamic case and it should be noted that this is the
measurement that introduces most of the noise into
the attitude solution. The time-varying nature of the
errors is due to the lag in the attitude solution. That
is, the dynamic model used in the EKF formulation
assumes a correlation time for the quaternion errors
but that does not necessarily reflect the actual attitude
dynamics of the vehicle.
The noise on the residuals can be reduced by

using a smaller process noise matrix. Figs. 8 and 9
show the performance of the EKF estimator when
®= 1:5708£ 10¡3. From these two figures we see
that the wideband noise on the attitude residual is
reduced. However, this comes at the expense of
introducing a larger lag into the attitude solution.
This lag manifests itself as correlated component in
the attitude residual as shown in Fig. 9. If rate gyros
were used to capture the true attitude dynamics, then
this lag can be eliminated. In this case, the attitude
estimator will also provide a means by which the gyro
errors can be estimated and, thus, result in an overall
higher performance attitude determination system [7].
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Fig. 6. Initial transient of attitude error history for simulation shown in Fig. 5. High process noise (®= 0:08727).

Fig. 7. Steady state attitude error history for simulation shown in Fig. 5. High process noise (®= 0:08727).

EXPERIMENTAL VALIDATION

Experimental validation of the algorithm was
accomplished by postprocessing data collected from
a WAAS enabled GPS receiver, a magnetometer
triad and an accelerometer triad flown on a general
aviation test aircraft. A general aviation test aircraft
and not an MAV was used because the test aircraft
was large enough to carry several high-quality
sensors that were used as a truth references. The truth
reference for attitude was a Honeywell HG-1150
navigation-grade inertial reference unit (IRU) (1 nm/hr
drift). The attitude accuracy of this system was
approximately 0.05 deg in pitch and roll and 0.1 deg
in yaw. The body-fixed accelerometer measurements

(~̂g
b
) were obtained from inexpensive solid state

accelerometers in a Crossbow DMU-FOG. The local
level acceleration ~a was computed by differencing
velocities derived from GPS augmented by the
WAAS. A low-cost magnetometer triad (Honeywell
HMR 2300) was used to measure the Earth’s magnetic

field vector in the body frame ~̂h
b

. The magnetometer
required calibration for misalignment errors, hard and
soft iron errors (bias), and scale factors errors. This
was done after the flight using the algorithm discussed
in [32]. The data from all the sensors was time-tagged
and recorded at 1 Hz for subsequent processing.
A 10 min portion of the flight test trajectory

is shown in Fig. 10. From the trajectory it can be
seen that the aircraft experienced accelerations and
decelerations (several turns) as well as attitude
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Fig. 8. Initial transient of attitude error history for simulation shown in Fig. 5. Low process noise (®= 1:5708£ 10¡3).

Fig. 9. Steady state attitude error history for simulation shown in Fig. 5. Low process noise (®= 1:5708£ 10¡3). Oscillations of errors
are due to lag in attitude solution.

changes about all three axes. The 3-2-1 Euler angle
history corresponding to this segment of flight is
shown in Fig. 11. The true attitude trajectory was
recorded by the high quality Honeywell IRU. The
attitude solution determined by EKF implementation
of the attitude algorithm is plotted along with the
true attitude in Fig. 11. As can be seen the EKF
implementation generated an attitude solution that
was generally in agreement with the truth reference.
For this flight, the means and standard deviations
for the attitude errors (computed by taking the
difference between the EKF solution and truth
reference) are summarized in Table I in the row
labeled “Nominal.” This is the nominal performance
of the EKF implementation of this estimator. There
are a couple of points (between minutes 21 and 22

as well as between minutes 29 and 30) where the
EKF solution appears to diverge. This divergence
is due to the fact that the GPS derived acceleration
becomes very noisy. This occurs in prolonged steep
turns and results in the computed ~gn being larger
than its true value. This can be seen by examining the
time history plot for the computed normalized gravity
vector (~̂g

n
=k~̂gnk). The norm of this vector should

always be unity but it is seen to exceed this value at
the points where the attitude algorithm generates an
estimate with large errors. If a gyro triad is included
in this estimation scheme, it can easily coast through
these momentary error spikes. If we remove the error
spikes from the error statistics, we get the accuracies
reported in Table I in the row labeled “Best.” Since
the attitude solution described above was generated
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Fig. 10. Trajectory of test aircraft.

Fig. 11. Attitute history for postprocessed flight data.

in postprocess, sensor data latency or asynchronism
was not an issue. In a real-time system where these
are issues, the inclusion of rate gyros will also help
mitigate their negative effects.
Incorporating rate gyros into the system

architecture has another additional benefit.
Considering the frequency content of the attitude
history shown in Fig. 11, the trajectory shown in
Fig. 10 is clearly benign. Maneuvers encountered

in MAV operations will be more severe in that they
will contain higher dynamics or frequency content.
Thus, in real-time MAV applications, the gyro-free
implementation of this algorithm may not be ideal.
The effect of severe attitude dynamics can be dealt
with by incorporating rate gyros into the system
architecture. Architectures which fuse rate gyros with
an aiding system are not new ([7] and [25]) and can
be found in many commercially available systems
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Fig. 12. Magnitude of ~g computed from accelerometer outputs and differentiation of GPS velocity.

TABLE I
Attitude Error Statistics from Flight Test Data

(Nominal and Best Performance)

Performance ¾Ã (deg) ¾μ (deg) ¾Á (deg)

Nominal 18.2 5.04 5.48
Best 5.46 1.38 0.739

aimed at MAV or low-cost unmanned aerial vehicle
(UAV) applications. However, most of these systems
use an aiding which is based on accelerometer
measurements only. Such systems perform poorly in
prolonged accelerated maneuvers such as the turns
shown between t= 24 min and t= 29 min of Fig. 11.
Thus, using the algorithm developed in this paper
as an aiding system for a triad of rate gyros will
provide an attitude determination system capable of
dealing with the high dynamics as well as maneuvers
with prolonged accelerations encountered in many
missions for which MAVs are being considered (e.g.,
surveillance).

CONCLUSIONS

In this work, we developed an algorithm and
system for attitude determination from vector
observation suitable for MAV applications. As
we have shown it is particulary suited for MAV
applications because it can be implemented using
small, inexpensive sensors having low power
consumption. The sensor used in the implementation
presented were a WAAS enabled GPS receiver, a
magnetometer triad, and an accelerometer triad.
Simulation and flight test results show that the
algorithm and system yield an attitude solution
with errors approximately 5 deg (1 ¾) in yaw and
1 deg (1 ¾) in roll and pitch. Since it is a gyro-free

implementation, the attitude errors do not grow with
time.
The largest source of error was shown to be the

noise from the GPS derived acceleration. However,
the effect of this noise can be easily mitigated by
incorporating rate gyros into the attitude estimation
algorithm. Incorporating rate gyros can also help deal
with issues of data dropout, latency and asynchronism.
The rate gyros provide a dynamic model which allows
coasting through the time periods of missing data.
They also allow propagating the attitude solution
forward in time until the latent or asynchronous Earth
magnetic and gravity field vector measurements are
processed. A framework for incorporating rate gyros
was briefly discussed in this paper but is discussed
in more detail in other published works such as [7]
and [25]. Another possible method for mitigating
the above noted errors would be to use other vector
observations such as velocity measurements (from
Doppler radars) or visual line of sight vectors to
objects obtained from cameras.

ACKNOWLEDGMENTS

The work in this paper is the result of research
sponsored by the Intelligent Transportation System
(ITS) Institute at the University of Minnesota. The
initial part of this research was conducted and the
flight test data used to validate the algorithm’s
performance was obtained from research sponsored
by the Federal Aviation Adminstration (FAA) Satellite
Program Office under Grant 95-G-005. The authors
gratefully acknowledge the FAA, the Principal
Investigator of this project (Dr. Per Enge, Stanford
University) and Co-Principal Investigators (Dr. J.
David Powell and Dr. Bradford Parkinson both
Stanford University) for support and sharing the flight
test data.

1026 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 44, NO. 3 JULY 2008

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 28, 2008 at 19:35 from IEEE Xplore.  Restrictions apply.



REFERENCES

[1] McMichael, J. M., and Francis, M. S.
Micro air vehicles-Toward a new dimension in flight.
Defense Advanced Research Projects Agency (DARPA)
Briefing, http://euler.aero.iitb.ac.in/docs/MAV/www.
darpa.mil/tto/MAV/mavauvsi.html.

[2] Office of the Secretary of Defense
Unmanned aircraft systems roadmap 2005—2030.
Dec. 2002, http://www.acq.osd.mil/usd/uavroadmap.pdf.

[3] Microbotics Inc.
MIDG II specifications.
Microbotics Inc., Hampton, VA, Aug. 2005.

[4] Xsens Technologies
MT9 inertial 3D motion tracker specification sheet.
Xsens Technologies, B.V., Enschede, Netherlands, 2005.

[5] Cloud Cap Technology
Crista inertial measurement unit, interface/operation
document.
Cloud Cap Technology Inc., Hood River, OR, Feb. 2008.

[6] Gebre-Egziabher, D.
Design and performance analysis of a low-cost aided-dead
reckoning navigation system.
Ph.D. dissertation, Dept. of Aeronautics and Astronautics,
Stanford University, Stanford, CA, Dec. 2001, 68—90.

[7] Gebre-Egziabher, D., Hayward, R. C., and Powell, J. D.
Design of Multi-sensor attitude determination systems.
IEEE Transactions on Aerospace and Electronic Systems,
40, 2 (2004), 627—643.

[8] Gebre-Egziabher, D., Elkaim, G. H., Powell, J. D., and
Parkinson, B. W.
A gyro-free quaternion based attitude determination
system suitable for implementation using low-cost
sensors.
In Proceedings of the IEEE PLANS 2002, San Diego, CA,
2002, 185—192.

[9] Cohen, C. E.
Attitude determination using GPS.
Ph.D. dissertation, Dept. of Aeronautics and Astronautics,
Stanford University, Stanford, CA, 1992.

[10] Kornfeld, R., Hansman, R. J., and Deyst, J.
Single antenna GPS-based aircraft attitude determination.
Navigation: Journal of the Institute of Navigation, 45, 1
(Spring 1998), 51—60.

[11] Gebre-Egziabher, D., Hayward, R. C., and Powell, J. D.
A low cost GPS/inertial attitude heading reference system
(AHRS) for general aviation applications.
In Proceeding of the IEEE PLANS 1998. Rancho Mirage,
CA, Apr. 21—23, 1998, 518—525.

[12] Wahba, G.
A least squares estimate of spacecraft attitude.
SIAM, Review, 7, 3 (1965), 409.

[13] Wahba, G.
Problem 65-1 (solution).
SIAM, Review, 8 (1966), 384—386.

[14] Black, H. D.
A passive system for determining the attitude of a
satellite.
AIAA Journal, 2, 7 (1964), 1350—1351.

[15] Lerner, G. M.
Three-axis attitude determination.
In J. R. Werts and D. Reidel (Eds.), Spacecraft Attitude
Determination and Control, D. Reidel Publishing Co.,
Dordrecht, Netherlands, 1978, 420—428.

[16] Thompson, I. C., and Quasius, G. R.
Attitude determination for the P80-1 satellite (AIAA
paper 80-001).
In Proceedings of AAS Guidance and Control Conference,
Keystone, CO, 1980.

[17] Shuster, M. D. and Oh, S. D.
Three-axis attitude determination from vector
observations.
Journal of the Astronautical Sciences, 48, 1 (1981), 70—77.

[18] Bar-Itzhack, I. Y.
REQUEST: A recursive QUEST algorithm for sequential
attitude determination.
Journal of Guidance, Control and Dynamics, 19, 5 (1996),
1034—1038.

[19] Bar-Itzhack, I. Y., and Idan, M.
Recursive attitude determination from vector
observations: Euler angle estimation.
AIAA Journal of Guidance, Control and Dynamics,
AES-10, 2 (1987), 152—157.

[20] Bar-Itzhack, I. Y., and Oshman, Y.
Attitude determination from vector observations:
Quaternion estimation.
IEEE Transactions on Aerospace and Electronic Systems,
21, 1 (1985), 128—136.

[21] Bar-Itzhack, I. Y. and Reiner, J.
Recursive attitude determination from vector
observations: Direction cosine matrix identification.
AIAA Journal of Guidance, Control and Dynamics, 7, 1
(1984), 51—56.

[22] Idan, M.
Estimation of Rodrigues parameters from vector
observations.
IEEE Transaction on Aerospace and Electronic Systems,
32, 2 (1996), 578—585.

[23] Choukroun, D., Bar-Itzhack, I. Y., and Oshman, Y.
Novel quaternion Kalman filter.
IEEE Transaction on Aerospace and Electronic Systems,
42, 1 (2006), 174—190.

[24] Psiaki, M. L.
Attitude-determination filtering via extended quaternion
estimation.
Journal of Guidance, Control and Dynamics, 23, 2 (2000),
206—214.

[25] Creamer, G.
Spacecraft attitude determination using gyros and
quaternion measurements.
The Journal of Astronautical Sciences, 44, 3 (1996),
357—371.

[26] Lefferts, E. J., Markley, F. L., and Shuster, M. D.
Kalman filtering for spacecraft attitude estimation.
AIAA Journal of Guidance, Control and Dynamics, 5, 5
(1982), 417—429.

[27] Siouris, G. M.
Aerospace Avionics Systems: A Modern Synthesis.
San Diego, CA: Academic Press, 1993, 231—241.

[28] Kuipers, J. B.
Quaternions and Rotation Sequences.
Princeton, NJ: Princeton University Press, 2002.

[29] Baruh, H.
Analytical Dynamics.
New York: McGraw-Hill, 1999.

[30] Barton, C. E.
International geomagnetic reference field: The seventh
generation.
Journal of Geomagnetisim and Geoelectricity, 49, 2 (1997),
123—148.

[31] National Geospastial Intelligence Agency
Department of Defense World Geodetic System 1984, Its
Definition and Relationships With Local Geodetic Systems.
NIMA Technical Report TR8350.2, 3rd ed., July 4, 1997.

GEBRE-EGZIABHER & ELKAIM: MAV ATTITUDE DETERMINATION BY VECTOR MATCHING 1027

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 28, 2008 at 19:35 from IEEE Xplore.  Restrictions apply.



[32] Gebre-Egziabher, D., Elakaim, G. H., Powell, J. D., and
Parkinson, B. W.
Calibration of strapdown magnetometers in magnetic field
domain.
Journal of Aerospace Engineering, 19, 2 (Apr. 2006),
87—102.

Demoz Gebre-Egziabher holds a Ph.D. in aeronautics and astronautics from
Stanford University.
He is an Assistant Professor of Aerospace Engineering and Mechanics at the

University of Minnesota, Twin Cities Campus, Minneapolis, MN. His research
is in the areas navigation, guidance and control with a particular emphasis on
application of estimation theory to avionics sensor fusion and system integration
issues.

Gabriel Hugh Elkaim received his B.S. degree in mechanical/aerospace
engineering from Princeton University, Princeton, NJ, in 1990, and the M.S.
and Ph.D. Degrees from Stanford University, Stanford, CA, in aeronautics and
astronautics, in 1995 and 2002, respectively.
In 2003, he joined the faculty of the Jack Baskin School of Engineering,

at the UC Santa Cruz where he is an assistant professor in the Computer
Engineering Department. His research interests include control systems, sensor
fusion, GPS, system identification, and autonomous vehicle systems. His research
focuses on intelligent autonomous vehicles, with an emphasis on robust guidance,
navigation, and control strategies. Specifically, he has founded the Autonomous
Systems Lab at UC Santa Cruz, and is currently developing an autonomous
wing-sailed marine surface vehicle and off-road autonomous ground vehicles.

[33] Houck, S., and Powell, J. D.
Visual cruise formation flying dynamics.
AIAA Atmospheric Flight Mechanics Conference,
Denver, CO, Aug. 14—17, 2000, Collection of
Technical Papers (A00-39676 10-08), AIAA Paper
AIAA-2000-4316.

1028 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 44, NO. 3 JULY 2008

Authorized licensed use limited to: Univ of Calif Santa Cruz. Downloaded on October 28, 2008 at 19:35 from IEEE Xplore.  Restrictions apply.


