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ABSTRACT

An autonomous surface vehicle, based on a Prindle-19
catamaran and substituting a self-trimming vertical wing for
the sail, was developed to demonstrate precision guidance
and control. This vehicle, the Atlantis, was demonstrated
to track straight line segments to better than 0.3 meters
(1 − σ) when already trimmed for sail along the segment,
using LQG control based on an identified plant using the
Observer Kalman Identification (OKID) methods. In this
work, a way-point guidance system is tested experimentally
in addition to a novelH∞ subspace direct controller that is
designed based on measured time series data for both the
inputs and the actuator outputs. In previous simulations the
Model Free SubspaceH∞ controller has demonstrated simi-
lar performance levels to LQG methods while using the same
identification data, but without requiring a model structure.
Results from experimental trials have proven less successful,
motivating an analysis of the controller’s implementation and
possible problems.

INTRODUCTION

The Atlantis, an autonomous wind-propelled catamaran,
has previously demonstrated an accuracy better than 0.3

meters (1− σ) for line following applications when already
trimmed for sail [2]. Atlantis’ guidance and control archi-
tecture has since been extended allowing precision way-
point guided marine navigation [3]. This paper continues
previous research efforts in directH∞ control synthesis
[3] and includes experimental validation of the segmented
control as well as experimental results from theH∞ direct
control design. For completeness, the derivation of theH∞
direct control is included.

The connection between system identification experiment
design and the designer’s control objectives must be taken
into consideration when using experimental data in the
control design process [6]. With this connection in mind, a
direct control technique, “model free subspaceH∞ control”
was applied to the Atlantis attempting to provide control
design that was directly correlated to experimental system
identification data in a model free fashion.

That is, normal system identification techniques require
first building a mathematical model of the plant (hence the
name: system identification). Using this model, a controller
is designed and tested, and then the process is repeated until
satisfactory performance is obtained. In a model free tech-
nique (often referred to as direct controller design), the con-
troller is created directly from experimental data, avoiding an
explicit model formation step. The model free subspaceH∞
control methodology utilizes subspace prediction methods
directly coupled withH∞ performance specifications.

The navigation guidance system demonstrated allows the
Atlantis to perform precision, wind-propelled marine naviga-
tion where Autonomous Surface Vehicle (ASV) capabilities
are required [11]. The key components of the Atlantis are
discussed in the next section, including the realtime control
system developed for segmented trajectory traversal. Next, an
overview of model free subspaceH∞ control is presented.
Experimental results for both PID and MFSH∞ controllers
are presented in the following section. A discussion of the
failures of theH∞ controller are highlighted next, and finally
a conclusion is provided in the last section.

THE ATLANTIS

SYSTEM OVERVIEW

The Atlantis, pictured in Fig. 1, is an unmanned, au-
tonomous, GPS-guided, wing-sailed sailboat. The Atlantis
has demonstrated advanced precision control of a wind-
propelled marine vehicle to an accuracy of better than one
meter. The prototype is based on a modified Prindle-19 light
catamaran.



Fig. 1. Atlantis with wing-sail, January 2001.

The wind-propulsion system is a rigid wing-sail mounted
vertically on bearings to allow free rotation in azimuth about
a stub-mast. Aerodynamic torque about the stub-mast is
trimmed using a flying tail mounted on booms joined to the
wing. This arrangement allows the wing-sail to automatically
attain the optimum angle to the wind, and weather vane
into gusts without inducing large heeling moments. Modern
airfoil design allows for an increased lift to drag ratio (L/D)
over a conventional sail, thus providing increased thrust
while reducing the overturning moment.

The system architecture is based on distributed sensing and
actuation, with a high-speed digital serial bus connecting the
various modules together. Sensors are sampled at 100Hz.,
and a central guidance navigation and control (GNC) com-
puter performs the estimation and control tasks at 5Hz. This
bandwidth has been demonstrated to be capable of precise
control of the catamaran.

The MIDG II Inertial Navigation System manufactured by
Microrobics, Inc. provides position and attitude readings at
a maximum of 50 Hz. This sensor system uses differential
GPS (DGPS) for position and velocity measurements and
includes a 3-axis rate gyro, 3-axis accelerometer, and 3-axis
magnetometer.

PREVIOUS LINE FOLLOWING CONTROL
RESULTS

In order to validate the performance of the controllers
and all up system, closed loop control experiments were
performed in Redwood City Harbor, California, on January
27, 2001. These tests were intended to verify that the closed
loop controllers were capable of precise line following with
the increased disturbances due to the wing-sail propulsion.
System identification for the controller design was obtained
previously using a trolling motor as the propulsion system,
in place of the wing-sail which was still under construction.

No modifications were made to the LQR controller design,
and the tests were run on a day with approximately 10 knots
(or 5 m/s) of wind, with gusts up to the 16 knot (or 8 m/s)
range.

Upon analyzing the data, it was demonstrated that the
Atlantis was capable of sailing to within 25 degrees of the
true wind direction. Figure 2 presents a close-up of the first
path of regulated control, and looks at the crosstrack error,
azimuth error, and velocities while tracking a line. Note that
the dark line in the top of the boat speed graph is the wind
speed, and can be seen to vary well over 50% of nominal.

Fig. 2. Sailing path errors.

The mean of the crosstrack error is less than 3 cm., and
the standard deviation is less than 30 cm., note that this
is the Sailboat Technical Error (STE, the sailing analog of
Flight Technical Error) defined as the difference between the
position estimated by the GNC computer and the desired
sailboat position. Previous characterization of the coast-guard
differential GPS receiver indicated that the Navigation Sensor
Error (NSE) is approximately 36 cm., thus the Total System
Error (TSE) is less than 1 meter.

REALTIME CONTROL SYSTEM

The real time control system that generates trajectory and
controller updates is implemented using an object oriented
programming design, allowing a modular implementation
for all sensor subsystems and actuator controllers. A set of
interfaces was defined for each control subsystem, allowing
the independent development of each module. This serialized
approach allows the implementation of different rudder con-
trollers without any changes to the central guidance system.
For each sensor and actuator subsystem, a simulated module
was also developed, providing Hardware-in-the-Loop testing
capabilities from one central testing system. Fig. 3 provides
a high level mapping of the major realtime control system
objects.

To monitor system performance and update guidance sys-
tem parameters after deployment from the dock, a graphical
user interface (GUI) was developed to access all relevant



Fig. 3. Hierarchical layout of realtime control system.

realtime control system variables. On-site access to the state
and performance of each subsystem through the convenient
windowed user interface provided quick verification and
monitoring capabilities that was exploited throughout devel-
opment and testing.

The programming language C] was used for the develop-
ment of the different control system classes and GUI. Using
C] provided accelerated development and debugging capa-
bilities throughout the project, while also allowing existing
C++ applications to be included within the same program.

MODEL FREE SUBSPACE H∞ CONTROL

INTRODUCTION

Subspace system identification methods have recently be-
come popular for the identification of linear time invariant
(LTI) systems. Initially, experimental data is used to derive
a least squares optimal predictor. The predictor can then be
used to derive a state space model of the dynamic system.
This derivation of the state space model from the predictor
can be thought of as plant model order reduction. Instead
of using this reduced order model for control design, model
free control performs the control design directly from the
subspace predictor, avoiding the formal model formation step
in the design process.

Model free subspaceH∞ control exploits this subspace
prediction method to provide a directH∞ control design
technique. A single, integrated algorithm computes theH∞-
optimal controller and provides an estimate of the closed loop
performance. For a more thorough discussion of subspace
prediction and the model free subspaceH∞ controller see
[15], [16].

Fig. 4 provides an overview of the model free subspace
H∞ control design procedure. Open loop experimental data
is initially used to calculate a high order predictor. System
performance specifications are defined using the weighting
functionsW1 andW2. The predictor and control parameters
are then combined to form the controller.

The model free subspace basedH∞ control law utilizes
a finite horizon cost function and is implemented with a
“receding horizon” procedure. In this form, the control law

Fig. 4. Model free subspaceH∞ control design.

is a member of a general class of controllers known as
predictive control. Using a future horizon of lengthi, at the
time k the optimal controluopt is calculated. The control
at time k is then implemented and datayk and rk are
collected. The “horizon” is then shifted one step into the
future and the procedure is repeated. The Atlantis uses a
simple LTI discrete time system to express the receding
horizon controller implementation. Standard model order
reduction tools can then be applied to the LTI discrete time
system if appropriate.

The reduction of the system identification step allows for
an adaptive controller implementation that can adjust its
performance specification as new closed loop input-output
data is obtained. This adaptive implementation [17] will
not be explored in this paper, although its existence offers
substantial motivation for the application of these model free
techniques.

As expected, the receding horizon controller implementa-
tion is derived from theH∞ performance specification and
the subspace predictor. The control design procedure can
however, be viewed as a “black box” requiring the following
steps:

1) Collect experimental data.
2) Selecti,j, and weighting functionsW1,W2.
3) Computeγmin and reselectW1,W2 if necessary (ide-

ally γmin ≤ 1). Finalize the choice ofW1, W2 and
chooseγ > γmin.

4) Compute and implement the finali(m + l) + nw1 +
nw2 order LTI control law and apply controller order
reduction if necessary.

The following subsections outline the key elements of this
novel control design technique. An in depth analysis ofH∞
control, including its advantages overH2 techniques, can be
found in [8].

SUBSPACE PREDICTION

Consider data of lengthn from a MIMO plant whereuk ∈
Rm andyk ∈ Rl, m are the number of inputs, andl are the
number of outputs. A subspace predictor can be generated
from this data by choosing a specific prediction horizon,i,
that is larger than the expected order of the LTI plant. This



prediction horizon is then used to break the data set into
j prediction problems, wherej = n − 2i + 1 and j � i.
Thesej prediction problems are then used to generate the
least squares optimal predictorLw ∈ Ril×i(l+m) and Lu ∈
Ril×im.

Using k as the present time index, we can then useLw

andLu to predict future outputs given past experimental data
and future inputs

 ŷk

...
ŷk+i−1

 = Lw



uk−i

...
uk−1

yk−i

...
yk−1


+ Lu

 uk

...
uk+i−1

 (1)

The derivation ofLw and Lu is reasonably straight for-
ward. First, we define block Hankel matrices from the data
using the subscript “p” to represent “past” data and “f” to
represent the corresponding “future” data

Up ,


u0 u1 . . . uj−1

u1 u2 . . . uj

...
... . . .

...
ui−1 ui . . . ui+j−2

 ∈ Rim×j (2)

Uf ,


ui ui+1 . . . ui+j−1

ui+1 ui+2 . . . ui+j

...
... . . .

...
u2i−1 u2i . . . u2i+j−2

 ∈ Rim×j (3)

Yp ,


y0 y1 . . . yj−1

y1 y2 . . . yj

...
... . . .

...
yi−1 yi . . . yi+j−2

 ∈ Ril×j (4)

Yf ,


yi yi+1 . . . yi+j−1

yi+1 yi+2 . . . yi+j

...
... . . .

...
y2i−1 y2i . . . y2i+j−2

 ∈ Ril×j (5)

All past data can then be combined as

Wp ,

[
Up

Yp

]
(6)

Obtaining the best linear least squares predictor ofYp

given Wp and Uf can be formed as the Frobenius norm
minimization

min
Lw,Lu

∥∥∥∥Yf −
[
Lw Lu

] [Wp

Uf

]∥∥∥∥2

F

(7)

The solution to this optimization problem is now given
by the orthogonal projection of the row space ofYf into the
row space spanned byWp andUf . This orthogonal projection
solution to (7) is given as

Ŷf = Yf

/[
Wp

Uf

]
(8)

, Yf

[
Wp

Uf

]T
([

Wp

Uf

] [
Wp

Uf

]T
)† [

Wp

Uf

]
(9)

where† denotes the Moore-Penrose or pseudoinverse. There-
fore [

Lw Lu

]
= Yf

[
Wp

Uf

]T
([

Wp

Uf

] [
Wp

Uf

]T
)†

(10)

MODEL FREE SUBSPACE H∞ CONTROL

The subspace predictor of the previous subsection will
now be utilized to derive a finite-horizon, model free, sub-
space based,H∞-optimal feedback controller. AnH∞ mixed
sensitivity criteria is used to specify the desired minimum
control performance and desired maximum control usage.
Assuming a discrete time output unity feedback structure
the specification used is∥∥∥∥[W1S

W2Q

]∥∥∥∥
∞
≤ γ (11)

where

S = (I + PK)−1 = Ger (12)

Q = K(I + PK)−1 = Gur (13)

for some plantP and controllerK, and W1 and W2 are
weighting functions chosen to provide the desired system
performance. SmallS up to a desired cutoff frequency
corresponds to each output tracking its reference well in
the frequencies of interest. Limiting the magnitude ofQ,
especially at high frequencies, limits the control effort used.

The time-domain discrete-time expression for the specifi-
cation in (11) is formulated as follows:

z ,

[
zw1

zw2

]
=
[
w1 ∗ e
w2 ∗ u

]
=
[
w1 ∗ (r − y)

w2 ∗ u

]
(14)

where w1 and w2 are the respective discrete impulse re-
sponses of the discrete time weighting functionsW1 and
W2. Using (14), the finite-horizon problem of (11) can be
written as

sup
r

J(γ) ≤ 0, whereJ(γ) =
i−1∑
t=0

(zT
t zt − γ2rT

t rt) (15)

and the system is assumed to be at rest att = 0. The length
of the horizon,i, has been selected to be identical to the
prediction horizon in the previous subsection, so (1) can be
used to calculateJ(γ). Using J(γ) from (15), the central
finite-horizonH∞ controller satisfies

min
u

sup
r

J(γ) ≤0 (16)

whenever the system is at rest att = 0.



SUBSPACE BASED FINITE-HORIZON H∞
CONTROL

Given the generalized plant of Fig. 5, the level-γ H∞
control design problem is to choose a controlu such that
the finite-horizonH∞ gain from r to z is of magnitudeγ.
This subsection derives the condition onγ that ensures that
the problem is feasible, and computes the central solution
for this H∞ control problem.

Fig. 5. Generalized plant forH∞ control design.

If measurements of the plant inputu, plant outputy, and
referencer are available for times{k− i, . . . , k− 2, k− 1},
then the strictly causal, finite-horizon, model free, subspace
based, level-γ, centralH∞ control for times{k, . . . , k+i−1}
is

uopt = −(LT
u Q̃1Lu + Q2)−1· (LT

u Q̃1Lw)T(
−LT

u (γ−2Q̃1 + I)HT
1 Γ1

)T

(HT
2 Γ2)T


T wp

xw1

xw2


k

(17)

Q̃1 = (Q−1
1 − γ−2I)−1 (18)

provided that

γ > γmin ,
√

λ[(Q−1
1 + LuQ−1

2 LT
u )−1] (19)

where the discrete LTI weighting filtersW1 and W2 have
the minimal state space representation

(xw1)k+1 = Aw1(xw1)k + Bw1(rk − yk) (20)

(zw1)k = Cw1(xw1)k + Dw1(rk − yk) (21)

(xw2)k+1 = Aw2(xw2)k + Bw2(uk) (22)

(zw2)k = Cw2(xw2)k + Dw2(rk − yk) (23)

The lower triangular Toeplitz matricesH1 and H2 are
formed from the Markov parameters of the discrete weight-
ing filters W1 andW2

H1 ,


Dw1 . . . 0 . . . 0

Cw1Bw1 . . . 0 . . . 0
Cw1Aw1Bw1 . . . Dw1 . . . 0

...
...

...
...

Cw1A
i−2
w1

Bw1 . . . Cw1A
i−4
w1

Bw1 . . . Dw1


(24)

H2 ,


pDw2 . . . 0 . . . 0

Cw2Bw2 . . . 0 . . . 0
Cw2Aw2Bw2 . . . Dw2 . . . 0

...
...

...
...

Cw2A
i−2
w2

Bw2 . . . Cw2A
i−4
w2

Bw2 . . . Dw2


(25)

and

Q1 , HT
1 H1 , Q2 , HT

2 H2 (26)

The extended observability matrices that contain the weight-
ing filter impulse responses are defined as

Γ1 ,


Cw1

Cw1Aw1

...
Cw1A

i−1
w1

 , Γ2 ,


Cw2

Cw2Aw2

...
Cw2A

i−1
w2

 (27)

and vector of past plant inputs and outputs is defined as

(wp)k ,



uk−i

...
uk−1

yk−i

...
yk−i


. (28)

MFSH∞ PREDICTIVE CONTROL

The final step of the control design procedure, the receding
horizon implementation, is expressed as the following MIMO
LTI discrete time system :




up

yp

xw1

xw1


k+1

=



[
Sm

k1

] [
0
k2

] [
0
k3

] [
0
k4

]
0

[
Sl

0

]
0 0

0 0 Aw1 0
Bw2k1 Bw2k2 Bw2k3 Aw2 + Bw2k4




up

yp

xw1

xw1


k

+


0 0

0
[
0
Il

]
Bw1 Bw1

0 0


[
r
y

]
k

(29)

uk =
[
k1 k2 k3 k4

] 
up

yp

xw1

xw2


k

(30)

whereuk ∈ Rm, rk ∈ Rl, yk ∈ Rl, m are the number of
plant inputs, andl are the number of plant outputs.Im andIl

are defined asm×m andl× l identity matrices respectively,

Sm =


0 Im 0 . . . 0
0 0 Im . . . 0
...

...
...

... 0
0 0 0 . . . Im

 ∈ R(i−1)m×im (31)

Sl =


0 Il 0 . . . 0
0 0 Il . . . 0
...

...
...

... 0
0 0 0 . . . Il

 ∈ R(i−1)l×il (32)

and[
k1 k2

]
=
{
−(LT

u Q̃1Lu + Q2)−1LT
u Q̃1Lw

}
1:m,:

(33)

k3 =
{

(LT
u Q̃1Lu + Q2)−1LT

u (γ−2Q̃1 + I)HT
1 Γ1

}
1:m,:

(34)

k4 =
{
−(LT

u Q̃1Lu + Q2)−1HT
2 Γ2

}
1:m,:

(35)

where{•}1:m,: means extract the firstm rows of the matrix
•, and k1 ∈ Rm×im, k2 ∈ Rm×il, k3 ∈ Rm×nw1 , k4 ∈
Rm×nw2 .

EXPERIMENTAL SETUP

A series of experimental trials were run from August 31
through September 18, 2006 at the Santa Cruz harbor, testing
the extensions to Atlantis’ guidance and control system
previously developed in [3] and [1]. The full wing sail
propulsion unit was substituted with an electric trolling motor
in this initial testing phase, with the assumption that guidance
and control system performance should be independent of the
propulsion unit used.

Initial testing was performed to validate the segmented
trajectory guidance system specified in [3]. A PID controller
was used to track line and arc segments inside the Santa Cruz
harbor and fully test the integration of the real time control
system with sensor and actuator subsystems. Further testing
focused on the implementation of the model free subspace
H∞ controller developed in [1].

PID RESULTS

The Atlantis’ guidance system uses a series of GPS way-
points for input, and then transforms those way-points into
a series of line segments connected by arcs of a constant
radius as trajectories for navigation. This way-point guidance
system can be used by any way-point planning algorithm, and
future work will focus on the implementation of algorithms
designed for obstacle avoidance and optimal navigation
through flows.

On August 31, 2006 a PID controller was used to monitor
heading errors (Ψ) and crosstrack deviations (Y ). The exact
gains developed in simulations [3] were used and provided
excellent results for traversal along interconnected line and
arc segments within the harbor. Figures 6 and 7 show the
path and attitude of the Atlantis for a given set of way-points
and the corresponding error signals for that path. Notice that
initially a drive-to-line controller was used to lock on to the
first segment. After acquisition of the first line segment, the
mean crosstrack error for the segments was 0.08 meters with
a standard deviation of 0.21 meters.

MODEL FREE SUBSPACE H∞ RESULTS

In addition to the stable performance exhibited by PID
control, previous simulation work has shown that different
linear optimal control techniques, specifically model free
subspaceH∞ control, can provide a significant improvement
in performance, especially in the presence of unknown wind
and water disturbances. Unfortunately, extensive testing of
these MFSH∞ techniques in the field were unsuccessful.
Multiple factors most likely hindered this direct control
design technique, which will be discussed in the following
section. This section will outline one set of controller pa-
rameters used during experimental testing.

As discussed in the Subspace Prediction subsection, the
subspace predictor is generated using experimental input-
output data of lengthn. A prediction horizon,i, is then
chosen that breaks the data set intoj prediction problems,
where j = n − 2i + 1. To ensure an accurate predictor is
created for a LTI model,i was chosen to be at least twice
as large the expected plant order.

Multiple system identification trials were performed to
gather open-loop system identification data. The data used to
generate the subspace predictor is shown in Fig. 8. The boat
uses rudder slew rate (δ̇) as the input signal and has three
output signals: cross-track (Y ), azimuth (Ψ), and effective
rudder angle (δ).

Although the Atlantis is a nonlinear system, the first sec-
tion outlines how LQG techniques are effective for precision
control when small azimuth and cross-track deviations are



Fig. 6. Segmented trajectories (red) and boat position and attitude (blue).
Axes in meters.

maintained. A variety of predictors were generated at differ-
ent orders and verified with various system identification data
trials. The best prediction horizon was obtained by choosing
a predictor withi = 20. Fig. 9 shows the predictor performs
very well at predicting rudder angle (δ), however provided a
poor prediction in the crosstrack (Y ) and heading error (Ψ).

For comparison, reconstruction of previous simulated
work is plotted in Fig. 10.

As shown in the Model Free SubspaceH∞ Control

Fig. 7. Errors from segmented trajectory traversal.

Fig. 8. System identification data created by controlling the slew rate of the
Atlantis with a pseudo-random binary sequence stabilized around predefined
heading and rudder angle limits.

Fig. 9. The subspace predictor reconstruction of an experimental system
identification pass comparing measured outputs to predicted values.

subsection,W1 and W2 are weighting functions chosen
to provide the desired system performance for the mixed



Fig. 10. A subspace predictor reconstruction of a simulated system
identification pass comparing measured outputs to predicted values.

sensitivity criteria given in (11). It is important to note that
increasing either the DC gain or bandwidth ofW1 will
make the controller more aggressive. This will force the
controller to track higher error signal frequencies making
the response faster, but less damped. DecreasingW2 will
permit greater control usage, which is typically not desirable
at high frequencies. However, ifW1 is increased, requesting
higher performance, butW2 is not sufficiently decreased, to
provide more control usage, the problem will become over
constrained. These over lapping constraints will be reflected
by γopt increasing over the nominal value of one.W1 and
W2 were then selected with these performance tradeoffs in
mind.

Fig. 11. Sample control specification used.

Fig. 11 shows the inverse of each weighting function
chosen for one of the more successful experimental con-
troller tests. IdenticalW1 functions were used to specify
the performance requirements forΨ, and δ. As shown, the
design cutoff frequency is around 0.35 rad/sec (20 Hz). It is
desirable that all three outputs stay nominally around zero
to provide a more linear response of the system, therefore

6 dB of rejection at DC was chosen forY and 20 dB of
rejection at DC was chosen forΨ andδ. The control usage
function,W2, which effects the slew rate of the rudders was
then selected to penalize control usage at higher frequencies.

Variations of the previous controller parameters were used
to generate multiple MFSH∞ controllers. Performance var-
ied from severe underdamping resulting in large overshoots,
to control instability. Fig. 12 and 13 show the results of one
poorly damped trial run. Although weighting filter values
were varied, an acceptable controller was not obtained.

Fig. 12. Segmented trajectories (red) and boat position and attitude (blue).
Note boat eventually looses stability and switched to manual control. Axes
in meters.

MFSH∞ FAILURE ANALYSIS

A detailed analysis of the model free subspaceH∞
controller field test data suggests that multiple problems may
have compromised the performance of this direct control
technique. This subsection will look at several issues, and
provide suggestions for various adjustments to overcome
these issues.

As shown in Fig. 8, the predictor did not function nearly
as well as it had in comparable catamaran simulations, show-
ing a breakdown after approximately 4 seconds (whereas
simulations showed acceptable performance for over 100



Fig. 13. Errors from segmented trajectory traversal.

seconds). Previous studies had shown that the direct control
H∞ design is very sensitive to nonlinearities in the system.
In our current system identification passes, the rudder slew
rate was changed every 200 msec, which exacerbated the
nonlinearities in the actuator system (compliance in the
gear/chain, backlash in the shaft coupling, etc.). Furthermore,
the rapid changes in rudder angle keep the boat in a very
nonlinear region before the forces have time to stabilize and
set, allowing a steady state rotation rate of the hulls.

We contrast this with the previous system identification
efforts, which used a human to drive the input slew rate to
the system. With this technique, the slew rate was varied
much slower, and the heading rate allowed to reach steady
state before the next input was injected. The high frequency
chatter on the rudder slew rate imposed by the computer
control is felt to have pulled the response out of the linear
region, and thus caused the predictor to fail.

One important element ofH∞ controllers is that they are
frequency agnostic, meaning they will increase controller
bandwidth as high as possible if better performance can
be obtained in these higher frequencies. The bode plot
showing the frequency response ofδ(jω)

Y (jω) for one controller
is provided in Fig. 14. Although weighting filters were
used to penalize performance and control usage at higher
frequencies, the MFSH∞ controller shows a propensity for
high frequency excitation, which is not desirable for systems
with tight linearization constraints.

CONCLUSIONS

A control architecture for an autonomous sailboat using
a way-point navigation system has been tested, including a
model free subspaceH∞ controller. This guidance system is
capable of precision way-point navigation to an accuracy of
better than 0.35 meters(1−σ) under PID control. Although
the MFSH∞ demonstrated very impressive trajectory follow-
ing performance in previous simulations, its implementation
left much to be desired. It is felt that the driving frequency
of the injected input was too high, and forced the system out
of the linear realm, while at the same time, the weighting

Fig. 14. Bode plot of MFSH∞ controller used in experimental trials.

functions for control design may be less than optimal. While
theH∞ techniques are part of the robust control family, they
remain very sensitive to nonlinearities, which can destroy
their performance very quickly.

Other future work will include a way-point generation
methodology that will avoid stationary obstacles and also
optimally determine trajectories given only a destination
point and weather data forecasts to predict future wind
and wave activity. This added navigation system combined
with will create a wind-propelled ASV capable of robust
navigation.
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