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Abstract— Understanding the behavior of marine mammals
is quite limited by the observation technology used. Surface
tracking using either geolocation or Argos satellite tags have
shown that these mammals range much farther than previously
thought. Relatively simple time/depth recorders (TDR’s) have
shown dives to depths of over 1000 meters for durations of
over one hour. To further the understanding of these aquatic
creatures, a smaller and more capable tag is being developed
that can be deployed for longer durations and with more
sensing capabilities. This tag utilizes a sensor suite consisting
of temperature, depth, speed, salinity, three axes of magnetic
field, three axes of acceleration, and GPS.

The three-axis magnetometers and three-axis accelerometers
are used to reconstruct the full attitude quaternion of the
creature. Fusing this attitude measurement with water speed,
and both initial and final position estimates from GPS, a full
three dimensional underwater trajectory can be reconstructed
(distributing the error from the return surface as an estimate
of the ocean currents). This paper looks at three types of dead
reckoning filters used to process this data via simulation: (1)
pure open loop integration, (2) “scaled” integration that feeds
back measured depth, and (3) a Kalman filter used to estimate
the position of the creature, with a correction term from the
measured depth (pressure). Comparison of these three navigation
filters on simulated data for a 20 minute dive shows that the
Kalman filter works best, in terms of position drift, though at
the cost of high frequency noise in the trajectory. At the end of a 2
Km path, it shows a total offset error of approximately two meters
(or 0.1% drift). The scaled filter is the worst, demonstrating
instability at certain points, and the open loop integration yields
a position estimate that is off approximately 5 meters at the end
of the dive.

I. INTRODUCTION

This paper descibes in detail the development of a low-
cost, small, and capable dead reckoning sensor used to acquire
data on diving sea mammals (pictured in Fig. 1). This work
is a direct extension of the previous work found in [9], and
as such, will have largely the same background, hardware,
and software descriptions. These sections are included in this
paper for completeness, and the work diverges in the section
on Navigation Filtering (Section IV) where the work of this
paper is formally treated and discussed.

Marine mammals are inherently difficult to study. The
cetaceans (whales, dolphins, and porpoises) are totally aquatic
and even the amphibious pinnipeds (seals and sea lions) spend
most of their lives at sea. Biologists can only catch a glimpse

Fig. 1. The Prototype Pinniped Sensor Tag. This tag is designed to be
attached to the skin of marine mammals and record their velocity, orientation,
and depth, along with the environmental salinity and temperature.

of them as they surface and so have turned to technological
solutions to study these animals at sea. The most extensively
studied is the northern elephant seal, Mirounga angustirostris,
with much of this work performed at the elephant seal rookery
at Año Nuevo State Reserve, 65 kilometers north of Monterey.

In the early 1980s time-depth-recorders (TDRs), which
record changes in water pressure over time, were first attached
to elephant seals. Instruments were deployed on seals by
gluing them to the seal’s pelage just prior to their departure
on a foraging trip and were recovered 2.5 - 8 months later
when the seals returned to the rookery. The initial results
revealed dives that were incredibly long, phenomenally deep
and continuous 24 hours a day, day after day, week after
week [2]. Mean dive duration of adult females was 22.1
minutes followed by a surface interval of 2.3 minutes [3].
One female in a 10 hour period made 10 dives, 7 of which
exceeded an hour, with the longest lasting 97 minutes, and
each of these dives was followed by a surface interval of 3
minutes or less. Modal dive depths ranged from 350 to 600 m
with a maximum depth exceeding 1600 m.

By adding a photocell to the TDRs, locations could be
calculated by determining the day length, which revealed
latitude, and the offset of the times of sunrise and sunset



from the place where they were originally tagged, which
revealed longitude [15]. This method is accurate to within
approximately 100 km.

For elephant seals, this system of geolocation was adequate
to describe their long-range movements throughout the north-
eastern Pacific. It showed that they undertake two complete
foraging migrations each year [7] and that the sexes segregate
on their foraging migrations and employ different foraging
strategies [4]. Adult males forage off the continental shelf,
especially along the Aleutian Islands, and pursue benthic fish,
rays, skates, and cephalopods. Females move well offshore
and into the pelagic zone where they forage in the upper 1000
m of the water column. Their daily pattern of diving - deep
in the day and shallower at night - tracks the diurnal vertical
migration of the community of organisms known as the deep
scattering layer upon which they feed.

Improvements in the ability to track the seal’s move-
ments occurred in the mid 1990s with the development of
transmitters, which could be detected by the polar orbiting
Service Argos/NOAA satellites. When a satellite was above
the horizon and a seal equipped with an Argos transmitter
surfaced, an uplink occurred and location could be calculated.
The more uplinks which occurred in a single surfacing, the
greater the accuracy of the location, and since the number
of uplinks per fix is known, a location quality (LQ) could be
determined. Because elephant seals are underwater about 90%
of the time they are at sea, most seals only had one to four
“good” locations a day and over 90% of these were Argos LQ
0, A, or B. These range from an accuracy of 9 km ± 16 km
for LQ 0 hits to 48 km ± 71 km for LQ B hits [4], which
is a considerable improvement over geolocation. Additional
advantages of the Argos tags is that they can be tracked in
near-real time and approximate locations of mortality can be
determined if the transmitter stops transmitting and the seal is
never seen again or if the transmitter appears to be moving as
if on a ship and the seal is never seen again.

Additional sensors added to the TDRs in the 1990s included
thermisters, velocity meters, hydrophones, video cameras and
heart rate monitors. Suddenly biologists were data rich as
the number of instrumented elephant seals soared past 200
(a sub-adult bull with one of these modern tags attached is
pictured in Fig. 2). The range of insights into the biology
of these seals was fascinating. The data revealed that the
seals, while diving, were employing a variety of behavioral [1]
and physiological [22] ’tricks’ enabling them to have a lower
metabolic rate than when sleeping on the beach!

But biologists are constantly impatient for technological
advances to occur, and they can construct the most Rube
Goldburg contraptions in their attempts to learn more about
their animals. Two areas where improvements were sought
were in the accuracy and frequency of surface locations and
the ability to record the 3-dimensional movements of the
seal between its surfacing locations. Several MAP tags that
married a GPS receiver to a TDR, a velocity meter, and
a 3-dimensional digital compass were constructed. It was
conceptually successful [17], but was a 14-pound behemoth

Fig. 2. A sub-adult bull Elephant Seal with a modern data recorder affixed
to its head. This is a modern time depth recorder (TDR) which transmits data
back through the Argos satellite. This tag is approximately 4 times as large
as the prototype MAMMARK tag.

requiring 12 d-cell batteries to power it and was only deployed
on one translocated seal [18], which never returned to Año
Nuevo.

Tags were getting increasingly larger and more expensive.
Only the best-funded researchers could afford to deploy the
newer tags and even they were limited in how many they
could afford to deploy because of costs ranging from several
thousands to tens of thousands of dollars. Clearly, there was
a need for a newly designed tag with the capabilities of the
MAP tag while shrinking its size and cost. It will be mounted
on top of the seal’s head so that when the seal surfaces,
the GPS antenna will rapidly shed water and have maximum
exposure to the sky. The tag needs to contain at least two
external environment sensors, temperature and salinity, which
will allow identification of water masses. The electronics will
need to be potted to protect them from salt water and to allow
them to withstand up to 3000 psi of pressure. To minimize
disturbance and work for the seal, the cross-sectional area of
the new tag should be less than 5% of the cross-sectional
area of a seal’s head. To be affordable and deployable in
large numbers it needs to be marketed for $500-700. The new
MAMMARK tag fulfills these requirements.

The new work in this paper is the development and testing
of a dead reckoning filter to reconstruct the trajectory of



the diving pinniped. We simulate two distinct trajectories
(a spiraling dive down and a long traversing dive) and use
these trajectories to derive the outputs of the sensors on the
MAMMARK tag. These sensor outputs are then corrupted
with noise and used as the inputs to the dead reckoning filter
which reconstructs both the attitude and position of the animal.
Certain assumptions are made about the nature of the diving
animal: it moves only in the direction that it is pointed, and that
the currents are ignored. The current drift will be mitigated by
the GPS measurements at both ends of the dive, and based on
the very large drag associated with moving through the water,
it is unlikely that the pinnepeds spend much time swimming
at large angles of attack or sideslip.

The paper is organized as follows: Section I presents the
background and motivations for developing the MAMMARK
tag, Section II details the physical design of the prototype,
Section III explains the software structure used to run the tag,
with special emphasis on power conservation. The section on
Navigation Filtering, Section IV, is itself separated into five
subsections. These are, Subsection IV-A, which details the at-
titude estimation algorithm (based on two vector observations
and a quaternion based solution to Wahba’s problem [21]).
Subsection IV-B, which addresses calibration issues for the
sensors that comprise the MAMMARK tag. Subsection IV-
C, which goes into the mathematical construction of the
dead reckoning filter. Subsection IV-D, which elaborates on
the Kalman filter implementation in order to feed back the
measured (and noisy) depth back into the position domain
in the optimal way. And finally, Subsection IV-F presents
the simulation data and trajectory reconstruction. Lastly, we
present conclusions in Section V and outline the future work
in Section VI.

II. MAMMARK HARDWARE

Fig. 1 shows the physical prototype MAMMARK tag,
and Fig. 3 shows a block diagram of the major hardware
subsystems that make up the MAMMARK marine tag.

The core of the hardware is a TI MSP430 ultra-low power
microcontroller [20]. The microcontroller includes several on-
chip peripherals: SPI controllers, serial communication, clock
control, watchdog mechanisms, DMA controllers, timers, and
a small amount of program flash memory and several KB of
RAM space.

As all of the sensors are analog in nature, the main interface
between the microcontroller and the sensors is the analog-to-
digital converter (ADC) subsystem. While the MSP430 has
an onboard ADC capable of converting analog signals with
12 bits of precision, it was felt that this was not sufficiently
precise to achieve the desired performance. Thus, an external
16 bit ADC is attached via one of the SPI channels. In
order to sample all of the various sensors, this single ADC
is multiplexed between each of the sensors; that is, one sensor
at a time is converted, the value stored in RAM and then the
next sensor converted.

There are two different kinds of sensors attached to the
central microcontroller: differential and single-ended. Addi-

Fig. 3. System Block Diagram for Tag Hardware. The system block diagram
shows the subsystem structure of the prototype MAMMARK hardware. The
system has been designed to be small and very low power in order to record
data in-situ for long duration on very limited battery power.

tionally, each of the sensors requires a different amplification
to maximize the sensitivity of the sensor. Thus, two different
operational amplifiers (op-amps) are used, one differential and
one single-ended for each of the corresponding type of sensors.
The gains for each of these op-amps are under microprocessor
control, and thus each sensor can be optimized separately for
maximum dynamic range in order to get the best reading from
the signal of interest.

The differential sensors include the magnetometers (three
axes), depth (pressure) transducer, and water velocity (mea-
sured using a two-axis strain gauge). The single-ended sensors
include the accelerometers (three axes), salinity, temperature
(both of the water and of the microcontroller), and battery
voltage. These sensors are used to reconstruct the three di-
mensional trajectory (both in position and velocity domains),
as well as salinity and temperature profiles.

In order to collect enough data for useful analysis, these
sensors must be periodically sampled, filtered, corrected for
calibration parameters, and stored for post-processing. De-
pending on the rate at which we are sampling each of the
sensors, the amount of data collected can become very large
(currently, the prototype limits the maximum sampling rate
to 20Hz for all sensors). This is, however, an arbitrary limit
imposed by the software. If, after experimentation, it is found
that higher data rates are required, this can be changed without
modifying the hardware.

Additionally, the most important aspect of the MAMMARK
tag is the low-power nature of the system. In order to be of
use in the field, the MAMMARK must collect and store the
sensor data until the animal in question returns to a place
where the tag can be recovered (provisions are in place for
remote data retrieval, however, the limited bandwidth of the
RF link would make this a very slow process). Thus, the main
function of the software is to manage the power consumption
of the hardware such that data can be collected for very long
duration. It is expected that data collection for up to a year
will be accomplished with a single lithium-ion cell. This will
be discussed in more depth in the software section.



Clearly, the MAMMARK cannot store all of the data in
RAM, as the very limited storage capability available on the
microcontroller would not be sufficient for more than a few
minutes of data. Furthermore, volatile memory storage runs
the risk of data loss on failure. Instead, the main storage
is provided by flash memory (either a Secure Digital or
Multi-Media Card) connected to the SPI bus. This sub-system
provides secure long term storage of up to 4 gigabytes. As the
sensors provide data, it is aggregated in RAM until a certain
block size is attained, at which point it is written to the flash
memory subsystem. It is estimated that this storage will be
sufficient for a significant period of time even at high sensing
rates (even sampling continuously at 20Hz on all sensors the
MAMMARK has over 20 days of storage capacity).

As previously stated, one of the key performance criteria
for the device is long life and given its battery powered
nature, power conservation is critical. Most sub-systems are
kept in a low or powered-off state whenever possible. The
power draw of each subsystem is balanced against the required
time for power-up and stabilization for high quality sensor
readings. The hardware includes power circuits that allow
each individual sensor to be powered or de-powered as overall
system requirements necessitate. In terms of the power budget,
the sensor components are some of the most power hungry,
and thus great care is taken when sequencing the power up in
order to minimize overall power consumption.

Other subsystems include external communications, a
Global Positioning System (GPS) module, RF Beeper, and
the previously described mass storage module. Each module
has provisions to be individually powered to minimize over-
all consumption. The hardware also includes provisions for
recharging the battery via an external solar cell, which would
of course only be active when the animal is at the surface.

Locating the tag after the animal returns to the beach and
possibly molts is the function of the RF beeper. The RF beeper
sends out a signal that allows the location to be determined
using directional antennas on the receivers, and possibly will
include a simple encoding of the latitude and longitude from
GPS. Note that this will only be powered when the tag detects
that it is on surface (this is relatively easy using both the
depth gauge and salinity sensors). Once the tag is located,
communications with the tag can occur either via a directly
connected cradle or via radio on the 900 MHz ISM Band.
The RF communication is done using an off-the-shelf RF
communications solution (the Radiotronix Wi.232DTS) [19].
Within the tag and base communication module, provisions are
made in the design to enable communications with numerous
tags at speeds up to 115Kbps on multiple channels.

Given the large amount of data that will need to be trans-
ferred, and the power required to transfer that data over the RF
link, it is definitely considered a backup option to physically
recovering the tag itself. The foreseeable scenarios for RF only
communication are, for instance, when the tag is attached to
a large male on the beach who is too aggressive to approach
(tranquilizers for the large bulls are sometimes lethal, and all
efforts will be made to leave the animals unharmed). Smaller

animals can be restrained using physical means that allow the
tag to be removed.

III. MAMMARK SOFTWARE

The software running on the TI MSP430 is responsible
for managing the communication, sensor, storage, and power
subsystems. In order to make the MAMMARK useful, the
software must carefully manage the sequencing and power
consumption. Fig. 4 shows a simplified block diagram of the
MAMMARK software system.

Fig. 4. The Block Diagram of System Software. The software to run the
MAMMARK tag is divided into several subsystems and implemented as a
hierarchical state machine in order to produce robust performance over long
duration.

The system is broken into two main parts, Events and Tasks.
Events are handled by event handlers; these are essentially
messages passed between the handlers and can result in a
task being awoken. Tasks themselves are implemented as
simple one-shot, run-to-completion threads. This results in a
structure where events cause event handlers to execute; the
event handlers are assumed to be atomic (that is, they cannot
be interrupted). They can execute in either an interrupt or non-
interrupt context, depending on the specific event. An example
of an event is the “data available event” generated by the
sensor system. This event causes the “Data Collector” task
to execute and the new data collected. When enough data is
collected (this status itself is an event), this will trigger another
task which will write the accumulated data to the flash data
storage card via the SD/MMC driver.

The core of the MAMMARK tag (and its reason for
existing) is the sensor system. The software that manages
the sensors performs several tasks: scheduling, sequencing,
reading, etc. Lists of sensors are maintained which determine
the rate that each sensor should be sampled. These lists are
analyzed by the “Sensor Control” task and a current operating
sensor sequence is determined. The “Sensor Sequencer” in
combination with the “Sensor Driver” implements data col-
lection. This is done in a general way such that new sensors
can be added as they become available.

Sensor drivers are responsible for the actual interaction with
each physical sensor, including the application of power, any
pre-conditioning required, and the associated timing. The sen-
sor sequencer is driven primarily using time events provided



by the Timer subsystem. This system also provides events as
needed to the “Tasker,” itself responsible for overall thread
sequencing.

Event Control provides for rendezvous between event pro-
ducers and consumers. Entities interested in receiving events
inform Event Control. When an event is signaled, Event
Control determines what entities are interested and delivers the
event. Event Control, in cooperation and coordination with the
Tasker, is responsible for the mechanism where tasks waiting
for an event are put to sleep and run when the corresponding
event triggers them. The Tasker provides an implementation
of a simple one-shot tasking system, which is consistent with
the run-to-completion paradigm used within the software for
the MAMMARK tag.

As previously noted in the hardware section, mass storage is
provided by a SD/MMC card providing up to 4 Gigabytes of
storage. The size of memory available is increasing and cost
of these cards is decreasing, making them a “future-proof”
technology. It also contributes to the low cost of the overall
system. Data is generated via the sensor subsystem, collected
by the “Data Collector” into blocks as required by the mass
storage system and then written via the SD driver.

The lowest level of hardware implementing the data path
to the SD card is shared with the serial communications
hardware. This complicates the software as several hardware
subsystems communicate through the same bus. Access to
this hardware is controlled via the USART1 mutex module;
mechanisms implemented via this module exist for a driver
to request the hardware, wait until it is made available (if
busy), and then proceed with its assigned task. As such
access to both the serial (UART) hardware and mass storage
(SPI) is quantized and this is reflected in the design of other
subsystems interfacing through this hardware.

The GPS subsystem is one such serial user. When the GPS
subsystem is active, the GPS communication module collects
data packets from the GPS and hands these to the GPS engine.
The GPS engine implements the actual state machine that
generates appropriate GPS events for use by the rest of the
system. This includes an “ignore GPS” state while the tag is
submerged.

The other major user of the serial hardware is “Generic
Communications.” This module, coupled with “Communica-
tion Control,” provides a generic packetized multi-port serial
interface to the external world. Provisions are made for both
local (via a physical cradle) and remote communications (via
the Wi.232 RF module).

The Debug task is used for monitoring and controlling inter-
nal state of the tag, especially while testing and developing the
tag. The Monitor task is used for monitoring normal operation
of the tag, and collecting data to determine any malfunction
for later analysis and repair.

The Tag Control task is used for controlling exactly what
kinds of data the tag is collecting as well as uploading
collected data to a host. It interacts with Sensor Control to
establish sensor sequences. Note that some of these power-up
sequences are not obvious, and require complicated staging in

order to minimize the power and maximize the performance
of the sensors.

The last major piece of the system is the “Sanity” module;
this module is responsible for monitoring the health of the
system and forcing a restart in case of problems. As the system
may operate unattended for up to a year at a time, the intent is
to increase the likelihood of valid data being written to storage,
even in the case of some component failure. The Sanity
module includes but is not limited to the hardware watchdog
and oscillator monitors, which monitor low level tag hardware
function. If a failure restart is needed, the Sanity module is
also responsible for marking any data structures to allow for
detection of the event and subsequent resynchronization of the
data stream.

IV. NAVIGATION FILTERING

The MAMMARK tag differs from previous Time Depth
Recorders (TDRs) both in the low-power and low-cost aspect,
but more importantly in its ability to reconstruct the three
dimensional trajectory of the tagged animal. This section
explores the mathematical methods used for the navigation
filtering on the MAMMARK tag. Note that these algorithms
need not run in real time, as the raw sensor measurements
are recorded, and thus the attitude and position reconstruction
occurs once the tag has been recovered.

The MAMMARK tag is able to reconstruct the pinniped
attitude (three dimensional orientation) by using the body-
fixed measurements of Earth’s magnetic field, along with the
body-fixed measurements of gravity. By combining these two
measurements, and with their known values in the navigation
frame, sufficient information is available to determine the tag
attitude precisely (within the limits of sensor noise). This is
known as Wahba’s problem, and the particular method used
in this work to solve it is elaborated next, in Subsection IV-A.

Once the attitude is determined, the body measured velocity
(with respect to the water) is rotated into the navigation
frame and then integrated once to give position. This is a
classical dead reckoning filter. The details of which are given
in Subsection IV-C. Of course, integrating a noisy sensor
measurement results in a linear error growth, and further the
errors in attitude result in an error in projecting the velocity
from the body frame to the navigation frame.

In order to get the best estimate of attitude possible, the
magnetometers and accelerometers are calibrated using a two-
step non-linear calibration algorithm that does not require
any external truth reference (other than knowledge of the
total magnitude of the magnetic and gravitation fields). The
calibration techniques are detailed in Subsection IV-B.

Lastly, a direct measurement of depth (via the pressure
sensor) is available. In this work, we use this measurement
as a feedback signal in order to improve the estimate of
position. This is done using a conventional Kalman filter. The
formulation of the Kalman filter, as well as the justification for
both the process and measurement noise matrices are detailed
in Subsection IV-D.



Lastly, two trajectories for a diving seal are simulated in
order to validate the various filtering models as well as the
attitude algorithms. True errors are available as in these cases
the true trajectory is known. The details of the simulations are
detailed in Subsection IV-F.

A. Attitude Estimation

Attitude estimation is the process of determining the three
dimensional orientation of an object based on some set of
noisy measurements such as to minimize the estimation error.
Within attitude estimation are two related issues: the first is
the parametrization of attitude, and the second is the actual
estimation filter. There are several different parameterizations
of attitude, each with its own advantages and disadvantages.
Briefly, the most common are the Direction Cosine Matrix
(DCM), Euler Angles, Rodrigues Parameters, and Quaternions.
Note that an excellent treatment of each of these appears
in [16].

The Direction Cosine Matrix is the rotation matrix that
rotates a vector (or transforms it) from one coordinate frame
to the other. It is a 3×3 matrix that is orthonormal (that is, its
transpose and its inverse are the same). It is called the direction
cosine matrix because Rij = cos(αij). While there are 9
numbers making up the DCM, only three are independent, the
other 6 are constrained by the orthonomality of the matrix.

Euler angles are the classic aircraft angles, usually described
as yaw, pitch, and roll (the [3−1−2] Euler angle set), though
these are certainly not the only set of possible Euler angles.
The advantage of Euler angles is that only three parameters
are required, however, the construction of the rotation matrix
requires the evaluation of transcendental functions, which can
be costly in computational terms depending on the platform.
Another advantage of the Euler angles is that they are im-
mediately intuitive to a human observer, whereas none of the
other parameterizations are. However, a disadvantage of Euler
angles is the singularity that occurs when pitch, θ, reaches
90◦ and the remaining angles become poorly defined. This
is the so-called “gimbal lock” problem, which is much less
of an issue with strapdown attitude systems than it was with
mechanical gimbals.

The Rodrigues parameters (also known as the Gibbs vector),
is defined as p = atan(φ/2), where a is the unit vector
about which the rotation occurs, and φ is the angle of rotation.
Note that the Rodrigues parameters also have a mathematical
singularity (which is, in fact, common to all three-parameter
attitude parameterizations, see [5]).

Lastly, Quaternions are a four parameter representation
of attitude, and thus do not suffer from the mathematical
singularity. Quaternions represent rotation as a hyper complex
number, that is the three dimensional analog of a complex
number. The Quaternion is defined as:

q =
[

q0|�q
]

(1)

where
q0 = cos(φ/2) (2)

and

�q = asin(φ/2) (3)

Note that all of the transformations and conversions with
Quaternions are accomplished with simple multiplies and
additions.

In this work, we specifically solve for attitude in the
Quaternion domain, by solving Wahba’s problem for the
measurements of Earth’s magnetic and gravitational fields.
The basic formulation of attitude determination from two or
more non-collinear, non-zero vectors measured in the body
frame and known in the navigation frame is referred to as
Wahba’s problem, based on her 1966 formulation [21]. While
there exist a variety of solutions for Wahba’s probelm (see
for instance, [6]), our solution is based on a linearization
of the attitude estimation problem in the navigation frame
(as opposed to the body frame). The great advantage of
this formulation is that it results in a linear time invariant
measurement equation, easily solvable by either an iterated
least squares or Kalman filter solution.

While the complete treatment of this attitude estimation
algorithm is beyond the scope of this work, see [8], [11],
[12]. It is important to note that in this application, the two
vector quantities being measured are Earth’s magnetic and
gravitational fields. Note, the on-board accelerometers do not,
however, measure only the gravitational acceleration. Rather,
the accelerometers measure the quantity �g − �a, the specific
force on the accelerometers. We assume that large pinnipeds
do not maneuver at a large fraction of �g, and thus the error in
the accelerometer measurement is in fact very small.

The basic steps of the attitude filter are as follows (again,
see [8], [11], [12] for details):

1) Initialize the attitude quaternion estimate to:

q̂ =
[

1 0 0 0
]T

(4)

and the error quaternion to

qe =
[

1 0 0 0
]T

(5)

2) Use the attitude estimate, q̂, to map the mea-
sured magnetic field to the navigation frame.
That is:

ĥn = q̂ ⊗ hb ⊗ q̂∗ (6)

where ⊗ is quaternion multiplication and q̂∗ is
the quaternion complement of q̂.

3) Map the accelerometer measurements to the
navigation frame as above.

4) Formulate the errors in the navigation from
by subtracting the estimated values from the
known ones:

δĥn = �hn − ĥn (7)

and

δân = �an − ân (8)



5) Formulate the measurement matrix directly
from the body measured quantities:

H =

[
−2

[
�hb×

]
−2

[
�ab×]

]
(9)

6) Solve the Normal equations (i.e. by using the
Moore-Penrose pseudo-inverse):

H† =
[
HT H

]−1
HT (10)

and use it to compute the new error quaternion.
7) The new error quaternion is computed from:

qe = αH†
[

δĥn

δân

]
(11)

where α is a smoothing parameter chosen
between 0 and 1.

8) Update the quaternion estimate using quater-
nion multiplication:

q̂ (+) = q̂(−) ⊗ qe (12)

note that this is rotating q̂ by the small correc-
tion qe.

9) Repeat from step 2 until converged. Also note
that the previous value for q̂ can be used to
initialize the algoritm the next time through.

This algorithm has been extensively tested using Monte-
Carlo simulations and has shown to be quite stable and robust
to wide band noise on the measured inputs. Fig. 5 shows
the attitude errors from the simulated trajectories detailed
in Subsection IV-F. Note that these errors are such that
the standard deviation (1 − σ) of the error in heading is
approximately 1.6◦ and the corresponding errors in pitch and
roll are 0.8◦ and 0.4◦, respectively.
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Fig. 5. Histogram of Simulated Attitude Errors (in degrees). Simulation of
the attitude algorithm running on a diving seal shows excellent agreement with
the true attitude. The pitch and roll histograms show error standard deviations
of less than 1◦ and the yaw shows less than 2◦.

B. Sensor Calibration

As shown above, in Fig. 5, measurement errors in the
three axis magnetometers and accelerometers directly affect
the attitude estimate. As will be discussed in Subsection (IV-C,
Dead Reckoning, attitude errors corrupt the position solution
as well.

Given that the accelerometer and magnetometer measure-
ments make up an integral part of the trajectory reconstruction
algorithms, care must be taken in calibration of these sensors

to minimize the errors that are accumulated during the Dead
Reckoning integration process.

In this work, we use a technique for calibrating the ac-
celerometers and magnetometers directly from rotation using
a two-step algorithm described in [10], [13]. The algorithm
stems from the observation that when rotating the perfect
sensor around through all angles, then the measurements
plotted would trace out a circle for a 2D sensor, and a sphere
for a 3D sensor.

The basic measurement equation for a given axis on a sensor
is:

hmeas =
1
sf

htrue + b + ωn (13)

where hmeas is the measured output, htrue is the true
measurement, b is the bias or offset, and ωn is the wide band
noise on the sensor. In the two axis case, when the body fixed
sensor is rotated around a circle, its components should be
such that when plotted they have a center point of (0,0) and
a radius of the value of the magnitude of the magnetic field.
Bias errors will cause the circle to be shifted off of the origin,
and scale factor errors will distort the circle into an ellipse.

The algorithm for calibration is a non-linear two step
algorithm which first does a least squares estimation of a set of
parameters which are then manipulated algebraically to extract
the scale factor and bias errors. Note than non-orthogonality
of the measurement axes will cause a distortion to the ellipse
as well, and this can also be accounted for. The center of the
ellipse is the bias error for both axes, and the semi-major and
semi-minor axes of the ellipse are the scale factors.
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Fig. 6. Two-step Estimation Algorithm on Simulated Data. The red solid
line is the true data, the blue solid line is the scaled (scale factor) data, and
the green solid line includes the bias offsets. The green dots are the sampled
points that are then used in the algorithm to reconstruct the red dots (true
sampled points).

The same analysis is true for the 3D case, except that an
ellipsoid is generated, rather than an ellipse. It the case of the
3D sensor, care must be take to traverse enough of the surface



of the ellipsoid to have good observability of the parameters.
Again, note that the only thing required for the algorithm to
work is a knowledge of the true magnitude of the magnetic
field, and motion of the sensor.

Fig. 6 shows the 2D version of the algorithm working
on simulated data. Here, no attempt is made to model non-
orthogonal axes, and a significant portion of the circle is
traversed in order to ensure good parameter estimation. The
red solid line is the true data, the blue solid line is the scaled
(scale factor) data, and the green solid line includes the bias
offsets. The green dots are the sampled points that are then
used in the algorithm to reconstruct the red dots (true sampled
points).
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Fig. 7. Reconstruction of the Magnetic Field from Experimental Measure-
ments. Before and after calibration measurements of the total magnetic field
strength, as measured using a Honeywell HMC2300 sensor (similar to what
is being deployed on the MAMMARK tag).

Fig. 7 shows the reconstruction of the magnitude of the
magnetic field before and after the calibration algorithm. Note
that this is on actual experimental data, and clearly the effects
of the errors can be seen. This data is from a Honeywell
HMC2300 integrated 3D magnetic field sensor, which uses
the same sensing technology as the MAMMARK tag. It is
not, however, taken from the tag itself. More details can be
found in [8].

The other sensors are calibrated in a more conventional
manner, taking data in a flume for the Velocity sensor, and
using a calibrated pressure chamber for the depth sensor.

C. Dead Reckoning

The essence of the trajectory reconstruction is a dead
reckoning filter that is used to keep track of the pinniped
position. Dead Reckoning is a type of navigation scheme that
propagates the position with a growing error over time. Thus,
without periodic updates from some external measurement
source, the solution will eventually grow without bound.

Dead Reckoning originates from the sailing world, and was
basically the process by which the ships kept track of their

positions. Speed was determined usually by timing a marker
in the water (often an actual log) as it went by the ship, and
plotting that velocity along the current heading to determine
the new position. Of course, this could not account for surface
currents, and without a celestial fix or a citing to a known
landmark to reset the position, the errors could grow quite
large.
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Fig. 8. Reconstruction of the spiral dive trajectory of a seal. The trajectory
of a simulated diving seal is reconstructed from the measurements, suitably
corrupted with wide band noise, using a Dead Reckoning Kalman filter.
Position errors at the end of the run are within 4 meters after a path length
of over a kilometer.

In the case of the MAMMARK tag, we use dead reckoning
to propagate the position of the pinniped from its last known
position (as determined by GPS when at the surface) to
the time when the animal surfaces again. Having previously
described the methodology for determining attitude from the
sensor measurements, the body measured water velocity is



rotated into the navigation frame:

V n = q̂ ⊗

 V b

x

V b
y

0


 ⊗ q̂∗ (14)

There is no component of body measured velocity in the z-
direction, as the sensor is a 2 axis device. Due to high water
density and large induced drag from the low aspect ratio of
the pinnipeds, it is expected that the animals will swim with
little or no angle of attack.

The coordinate frame for integrating the velocity into posi-
tion is a simple North-East-Down coordinate frame, with the
origin placed at the last known GPS position. In this coordinate
frame, the equations are linear, and can be expressed as:

ẋ =


 0 0 0

0 0 0
0 0 0


 x +


 1 0 0

0 1 0
0 0 1


 �V n (15)

where x is the vector [N, E, D]T . The navigation frame
velocity is the rate of change the navigation frame positions.
Implemented in a discrete time system, these equations change
to:

xk+1 =


 1 0 0

0 1 0
0 0 1


xk +


 ∆ts 0 0

0 ∆ts 0
0 0 ∆ts


 �V n (16)

where ∆ts is the time step between measurement updates in
the attitude and velocity. What can be seen from Eq. 14 and
Eq. 16 is that attitude errors corrupt the input to the integration
(even if there were no noise on the velocity sensor) and cause
the position error to grow.

D. Kalman Filter

In order to bound the position error growth from the dead
reckoning filter, periodic position fixes are required. This,
however, can be problematic as the pinnipeds dive very deep
and surface for only a very brief amount of time (experimental
results will demonstrate whether or not our GPS has time to
lock on and track before the animal dives again).

We do, however, have a (noisy) measurement of depth that
can be used to limit the error not just in z, but it can also
be used to limit the error growth in the horizontal dimensions
as well. This can be done both informally, and formally. The
informal method is referred to as the “scaled” filter, and is
the result of comparing the dead reckoning depth with the
measured pressure depth. The position update (in all three
axes) is scaled to match the measured depth.

xk+1 = xk +
(

zpres − zk

∆tsV n
z

)
∆ts�V n (17)

It is immediately obvious that this solution becomes numer-
ically unstable when the z-velocity measurement is close to
zero.

A more formal approach is to use the Kalman filter to feed
back the measured depth into the equations. The measurement
equation is very simple in this case:

H =
[

0 0 1
]
x (18)

Measurement of the depth is directly available. In order to
implement a Kalman filter, the process noise and measurement
noise must be defined. That is, the relative measures of trust
in the process model as related to the measurements. In the
case of Eq. 16, it must be noted that the attitude errors come
in to the equation where process noise would normally enter.
Additionally, an error in attitude causes the velocity vector to
be mis-rotated, thus causing cross-correlation between input
states (this is all a way of saying the the process noise matrix
in not diagonal). Also note, the depth measurement will be
very noisy compared to the attitude errors due to the much
larger dynamic range required of the depth sensor.

The Kalman filter implementation is the standard one taken
from [14], and is a time varying filter (though in practice the
gains very quickly converge to steady state). The process noise
covariance matrix is converted to its discrete time equivalent,
and the time propagation of the state and covariance estimate
is given by:

x̂k+1 = Φx̂k + ∆Ts · V̂ n

Pk+1 = ΦPkΦT + Cd

(19)

where Φ is the identity matrix and Cd is the discrete equivalent
process noise matrix. Note that this formulation does not
require uniform sampling times for the sensors, and can easily
handle variable length update steps. When a new measurement
of depth is available, the update part of the Kalman filter is
performed:

L = PHT
[
HPHT + Rv

]−1

x̂+ = x̂− + L (zpres − x̂z)
P+ = [Φ − LH] P−

(20)

Where Rv is the sensor noise variance and L is the resulting
estimator gain. By varying the ratios of Cd to Rv , more
emphasis can be given to the depth measurement or less as
required. Again, due to the injection of the attitude errors into
the process noise, the off diagonal elements of Cd are non-
zero, meaning that some of the error in the z-axis is used to
alter to x and y axes.

E. Simulation Results

In order to evaluate the different schemes for propagating
the attitude and position of the MAMMARK tag for trajectory
reconstruction, a simulation was set up in MATLAB in order to
validate the different schemes. Two different dive trajectories
were modelled: (1) a spiraling dive to 600 meters depth and
spiraling ascent back to the surface, and (2) a long straight
dive to 600 meters and back up with three 90◦ turns. Both
simulations ran for a total dive length of 20 minutes.

The simulation begins at a known position in LLA co-
ordinates and first matches the velocity and attitude to the
trajectory, such that the noise free navigation frame values are
computed. Using the noise free attitude previously computed,
the true values of Earth’s magnetic field and gravity are
computed in the body frame, and then corrupted with wide-
band noise at the appropriate levels (5 mg’s for the accelerom-
eters and 1 mGauss for the magnetometers). Additionally, the
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Fig. 9. Simulated diving trajectory and reconstruction vs. time. The red solid
line is the true trajectory, the green line is the noise free sensor reconstruction,
the blue is a straight dead reckoning filter, the magenta is the scaled solution,
and the black line is the Kalman filtered data.

velocity sensor is also corrupted with wide-band noise (0.05
m/sec) and the depth measurement is corrupted (1.5 meters of
noise). Lastly, the coordinates are all converted from LLA to
NED with the origin at the starting point.

F. Simulation Results
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Fig. 10. Simulated spiral diving trajectory reconstruction errors vs. time.
This shows errors in the North, East, and Down, as well as total errors in
distance.

These corrupted measurements are fed to the various al-
gorithms: Dead Reckoning, Scaled, and Kalman filter. In
addition, a noise free case is also computed (which shows
what would result with perfect sensors). Note that the noise
free case still results in errors due to the fact that the velocity
sensor is only 2D. The performance of the attitude estimation
has already been shown in Fig. 5, and has been shown to have
normally distributed errors of less than 1◦ in pitch and roll and
approximately twice that in yaw (1-σ < 2◦).

Method Run North [%] East [%] Down [%] RSS [%]
DR open loop Spiral 0.13 0.15 0.1 0.13

Square 0.18 0.1 0.03 0.29
DR “scaled” Spiral 0.6 0.1 0.1 0.6

Square 1 0.26 0.1 0.9
DR Kalman Spiral 0.1 0.2 0.01 0.06

Square 0.16 0.13 0.01 0.26

TABLE I

TRAJECTORY RECONSTRUCTION ERRORS

The overall trajectory reconstruction on the simulated data
is excellent, with the worse method (scaled) showing errors of
approximately 10 meters accumulated after a distance of over
1.5 km and 20 minutes of integration. The open loop dead
reckoning filter shows an accumulated error of approximately
2 meters, and the Kalman filter approximately 1.5 meters.
While the overall performance of the Kalman filter is the
best, it achieves this result by integrating the very noise depth
measurement into the solution, and thus trades off smoothness
for accuracy. Fig. 8 shows the reconstruction of the spiral
trajectory using the Kalman filter.

The specific performance on the other trajectory is different,
but the trends are the same. The results are summarized in
Table I, and the reconstruction of the second trajectory is
pictured in Fig. 11. Note that the scaled method has problems
at the bottom of the trajectory where the z-velocity changes
sign and thus goes through 0, even though the scaled solution
was ignored at that point.

V. CONCLUSION

Current understanding of the life cycle of the pinnipeds is
limited by a lack of knowledge due to limited observation
of the animals in the wild. In this work, we have detailed
the progress on the prototype marine mammal marking tag,
the MAMMARK. The main features of the tag are low-cost,
long duration, and large storage capability. The MAMMARK
is capable of operating at depths of 2000 meters, and to
survive a two ton seal smashing it upon the rocks. Low-
cost is achieved by using commercial off-the-shelf technology,
utilizing low-cost MEMs sensors developed for the automotive
market. Low-power is achieved by using a modern low-power
microcontroller, and using it to power cycle most of the sensor
and communication subsystems in order to last over a year on
a small battery pack.

This ruthless power management, however, complicates the
software and hardware structure as several of the sensors
must be allowed to stabilize before the ADC can convert the
values. Additionally, certain sensors, such as the magnetome-
ters, require pre-sampling conditioning in order to eradicate
permanent bias errors (in the case of the magnetometers, a
set/reset pulse must be performed to demagnetize the sensing
element). A simple, yet robust, software structure has been
designed to maximize the longevity of the sensor, while at the
same time giving good sensing performance.

Based on the sensor data, pre- and post-calibration may
be possible. The magnetometers and the accelerometers are
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Fig. 11. Reconstruction of the square dive trajectory of a seal. The trajectory
of a simulated diving seal is reconstructed from the measurements, suitably
corrupted with wide band noise, using a Dead Reckoning Kalman filter.
Position errors at the end of the run are within 4 meters after a path length
of over a kilometer.

calibrated using a two-step process that requires only the
motion of the sensor and the knowledge of the magnitude
of the total gravitation (9.81 m/s2) and the magnetic field
(0.52 Gauss). Pre-calibration is accomplished by rotating the
sensor through a diverse set of angles; post calibration will
be accomplished if the animal has moved through a diverse
enough set of angles. Other sensors such as depth and velocity
are pre-calibrated in a conventional manner.

Simulation studies of two trajectories for a diving seal were
performed, and three dead reckoning filters were tested to
check robustness and performance. The simple dead reckoning
open loop integration performed very well, and was made
much worse by attempts to scale its output to correspond
to noisy depth measurements. The dead reckoning Kalman
filter performed best of all of both trajectories, showing
most improvement in the depth measurement, and sacrificing
smoothness for improved position estimates. All filters showed
an error drift that ranged from 0.1% to 1% of the distance tra-
versed, and should be more than sufficient for oceanographic
study.

The prototype MAMMARK tag has been built, and cur-
rently testing and calibration is underway. The MAMMARK
tag, when deployed, will represent a significant step forward
for in-situ sensing capabilities for marine biologists. In addi-
tion to the large storage capacity, high precision sensing, and
long-life, the MAMMARK tag will have a significantly lower
cost than traditional Time/Depth Recorders (TDR’s) enabling
large scale deployments.
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Fig. 12. Simulated square diving trajectory reconstruction errors vs. time.
This shows errors in the North, East, and Down, as well as total errors in
distance.

VI. FUTURE WORK

Current work is focused on the development of the prototype
MAMMARK tag, and as such, leaves significant detail for
future work. The current state of the tag is as a laboratory
prototype. The major blocks of work for the future of this tag
are:

1) Finish and test tag software
2) Calibrate sensors
3) Lab testing of finished tag
4) Field deployment in controlled environment
5) Field deployment for returning juvenile pinniped pups
6) Full deployment
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