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Abstract— An autonomous surface vehicle, based on a Prindle-
19 catamaran and substituting a self-trimming vertical wing
for the sail, was developed to demonstrate precision guidance
and control. This vehicle, the Atlantis, was demonstrated to
track straight line segments to better than 0.3 meters (one σ)
when already trimmed to sail along a segment, using a Linear
Quadratic Gaussian (LQG) controller based on an identified
plant using the Observer Kalman Identification (OKID) methods.
In this work, a novel controller based on model free subspace
H∞ control is shown to achieve similar performance levels
without building an actual model of the system. These new
control methods were tested and implemented on a nonlinear
simulation of the catamaran which included realistic wind and
current models. The model free control architecture was applied
to the simulated catamaran and using Monte Carlo simulations,
demonstrated very robust tracking traversal while maintaining
a cross-track error of less than one meter throughout the path.

I. INTRODUCTION

The Atlantis, an autonomous wind-propelled catamaran, has
previously demonstrated an accuracy better than 0.3 meters
(one σ) for line following applications when already trimmed
for sail [1]. Atlantis’ guidance and control architecture has
since been extended allowing precision way-point guided
marine navigation [2]. This paper discusses a new extension
to Atlantis’ control architecture, the addition of a novel direct
control design methodology that provides the control response
necessary for precision navigation in the presence of unknown
wind and water current disturbances.

The connection between system identification experiment
design and the designer’s control objectives must be taken into
consideration when using experimental data in the control de-
sign process [5]. With this connection in mind, a direct control
technique, “model free subspace H∞ control” is applied to the
Atlantis providing control design that is directly correlated
to experimental system identification data in a model free
fashion.

That is, normal system identification techniques require
first building a mathematical model of the plant (hence the
name: system identification). Using this model, a controller
is designed and tested, and then the process is repeated until
satisfactory performance is obtained. In a model free technique
(often referred to as direct controller design), the controller is

created directly from experimental data, avoiding an explicit
model formation step.

The model free subspace H∞ control methodology utilizes
subspace prediction methods directly coupled with H∞ per-
formance specifications. The controller provides the Atlantis
with precision control capabilities while requiring minimal
controller parameter tuning throughout the design process.
This H∞-optimal feedback controller coupled with a way-
point navigation guidance system will allow the Atlantis to
perform precision, wind-propelled marine navigation where
Autonomous Surface Vehicle (ASV) capabilities are required
[10].

Current results are obtained through Monte Carlo simu-
lations using a nonlinear model of the Atlantis, including
realistic wind and water current disturbances. Experimental
results of Atlantis’ guidance and control system are expected
by the end of the year.

The key components of the Atlantis are discussed in Section
II, including previous results of precise line following control.
Next, an overview of model free subspace H∞ control is
presented in Section III, followed by a discussion of the
design parameters chosen for the Atlantis in Section IV.
A comparison of LQG and H∞ controllers generated from
experimental data is provided in Section V. The segmented
trajectories (consisting of arcs and lines) used to connect way-
points are outlined in Section VI. Monte Carlo simulation
results are presented in Section VII and finally a conclusion
is provided in Section VIII.

II. THE ATLANTIS

A. System Overview

The Atlantis, pictured in Fig. 1, is an unmanned, au-
tonomous, GPS-guided, wing-sailed sailboat. The Atlantis has
demonstrated advanced precision control of a wind-propelled
marine vehicle to an accuracy of better than one meter. The
prototype is based on a modified Prindle-19 light catamaran.

The wind-propulsion system is a rigid wing-sail mounted
vertically on bearings to allow free rotation in azimuth about a
stub-mast. Aerodynamic torque about the stub-mast is trimmed
using a flying tail mounted on booms joined to the wing.



Fig. 1. Atlantis with wing-sail, January 2001.

This arrangement allows the wing-sail to automatically at-
tain the optimum angle to the wind, and weather vane into
gusts without inducing large heeling moments. Modern airfoil
design allows for an increased lift to drag ratio (L/D) over
a conventional sail, thus providing increased thrust while
reducing the overturning moment.

The system architecture is based on distributed sensing and
actuation, with a high-speed digital serial bus connecting the
various modules together. Sensors are sampled at 100Hz., and
a central guidance navigation and control (GNC) computer
performs the estimation and control tasks at 5Hz. This band-
width has been demonstrated to be capable of precise control
of the catamaran.

The sensor system uses differential GPS (DGPS) for po-
sition and velocity measurements, augmented by a low-cost
attitude system based on accelerometer- and magnetometer-
triads. Accurate attitude and determination is required to create
a synthetic position sensor that is located at the center-of-
gravity (CG) of the boat, rather than at the GPS antenna
location.

Previous experimental trials recorded sensor and actuator
data intended to excite all system modes. A system model
was assembled using Observer Kalman System Identification
(OKID) techniques [6]. An LQG controller was designed using
the OKID model, using an estimator based on the observed
noise statistics. Experimental tests were run to sail on a precise
track through the water, in the presence of currents, wind, and
waves.

B. Previous Line Following Control Results

In order to validate the performance of the controllers and
all up system, closed loop control experiments were performed
in Redwood City Harbor, California, on January 27, 2001.
These tests were intended to verify that the closed loop

controllers were capable of precise line following with the
increased disturbances due to the wing-sail propulsion. System
identification for the controller design was obtained previously
using a trolling motor as the propulsion system, in place of the
wing-sail which was still under construction. No modifications
were made to the LQR controller design, and the tests were
run on a day with approximately 10 knots (or 5 m/s) of wind,
with gusts up to the 16 knot (or 8 m/s) range.

Upon analyzing the data, it was demonstrated that the
Atlantis was capable of sailing to within 25 degrees of the
true wind direction. Fig. 2 presents a close-up of the first path
of regulated control, and looks at the cross-track error (Y ),
azimuth error (Ψ), and velocities (V ). Note that the dark line
in the top of the velocity graph is the wind speed, and can be
seen to vary well over 50% of nominal.

Fig. 2. Sailing path errors.

The mean of the cross-track error is less than 3 cm., and
the standard deviation is less than 30 cm., note that this is the
Sailboat Technical Error (STE, the sailing analog of Flight
Technical Error). Previous characterization of the coast-guard
differential GPS receiver indicated that the Navigation Sensor
Error (NSE) is approximately 36 cm., thus the Total System
Error (TSE) is less than 1 meter

TSE = STE + NSE. (1)

III. MODEL FREE SUBSPACE H∞ CONTROL

A. Introduction

Subspace system identification methods have recently be-
come popular for the identification of linear time invariant
(LTI) systems. Initially, experimental data is used to derive
a least squares optimal predictor. The predictor can then be
used to derive a state space model of the dynamic system.
This derivation of the state space model from the predictor
can be thought of as plant model order reduction. Instead of
using this reduced order model for control design, model free
control performs the control design directly from the subspace



predictor, avoiding the formal model formation step in the
design process.

Model free subspace H∞ control exploits this subspace
prediction method to provide a direct H∞ control design
technique. A single, integrated algorithm computes the H∞-
optimal controller and provides an estimate of the closed loop
performance. For a more thorough discussion of subspace
prediction and the model free subspace H∞ controller see
[14], [15].

Fig. 3 provides an overview of the model free subspace
H∞ control design procedure. Open loop experimental data
is initially used to calculate a high order predictor. System
performance specifications are defined using the weighting
functions W1 and W2. The predictor and control parameters
are then combined to form the controller.

Fig. 3. Model free subspace H∞ control design.

The model free subspace based H∞ control law utilizes
a finite horizon cost function and is implemented with a
“receding horizon” procedure. In this form, the control law is
a member of a general class of controllers known as predictive
control. Using a future horizon of length i, at the time k the
optimal control uopt is calculated. The control at time k is then
implemented and data yk and rk are collected. The “horizon”
is then shifted one step into the future and the procedure is
repeated. The Atlantis uses a simple LTI discrete time system
to express the receding horizon controller implementation.
Standard model order reduction tools can then be applied to
the LTI discrete time system if appropriate.

The reduction of the system identification step allows for
an adaptive controller implementation that can adjust its per-
formance specification as new closed loop input-output data
is obtained. This adaptive implementation [16] will not be
explored in this paper, although its existence offers substantial
motivation for the application of these model free techniques.

As expected, the receding horizon controller implementation
is derived from the H∞ performance specification and the
subspace predictor. The control design procedure can however,
be viewed as a “black box” requiring the following steps:

1) Collect experimental data.
2) Select i,j, and weighting functions W1,W2.
3) Compute γmin and reselect W1,W2 if necessary (ideally

γmin ≤ 1). Finalize the choice of W1, W2 and choose
γ > γmin.

4) Compute and implement the final i(m + l) + nw1 +
nw2 order LTI control law and apply controller order
reduction if necessary.

The following subsections outline the key elements of this
novel control design technique. An in depth analysis of H∞
control, including its advantages over H2 techniques, can be
found in [7].

B. Subspace Prediction

Consider data of length n from a MIMO plant where uk ∈
Rm and yk ∈ Rl, m are the number of inputs, and l are
the number of outputs. A subspace predictor can be generated
from this data by choosing a specific prediction horizon, i,
that is larger than the expected order of the LTI plant. This
prediction horizon is then used to break the data set into j
prediction problems, where j = n−2i+1 and j � i. These j
prediction problems are then used to generate the least squares
optimal predictor Lw ∈ Ril×i(l+m) and Lu ∈ Ril×im.

Using k as the present time index, we can then use Lw and
Lu to predict future outputs given past experimental data and
future inputs

 ŷk

...
ŷk+i−1

 = Lw



uk−i

...
uk−1

yk−i

...
yk−1


+ Lu

 uk

...
uk+i−1

 (2)

The derivation of Lw and Lu is reasonably straight forward.
First, we define block Hankel matrices from the data using the
subscript “p” to represent “past” data and “f” to represent the
corresponding “future” data

Up ,


u0 u1 . . . uj−1

u1 u2 . . . uj

...
... . . .

...
ui−1 ui . . . ui+j−2

 ∈ Rim×j (3)

Uf ,


ui ui+1 . . . ui+j−1

ui+1 ui+2 . . . ui+j

...
... . . .

...
u2i−1 u2i . . . u2i+j−2

 ∈ Rim×j (4)

Yp ,


y0 y1 . . . yj−1

y1 y2 . . . yj

...
... . . .

...
yi−1 yi . . . yi+j−2

 ∈ Ril×j (5)

Yf ,


yi yi+1 . . . yi+j−1

yi+1 yi+2 . . . yi+j

...
... . . .

...
y2i−1 y2i . . . y2i+j−2

 ∈ Ril×j (6)



All past data can then be combined as

Wp ,

[
Up

Yp

]
(7)

Obtaining the best linear least squares predictor of Yp given
Wp and Uf can be formed as the Frobenius norm minimization

min
Lw,Lu

∥∥∥∥Yf −
[
Lw Lu

] [Wp

Uf

]∥∥∥∥2

F

(8)

The solution to this optimization problem is now given by
the orthogonal projection of the row space of Yf into the
row space spanned by Wp and Uf . This orthogonal projection
solution to (8) is given as

Ŷf = Yf

/[
Wp

Uf

]
(9)

, Yf

[
Wp

Uf

]T
([

Wp

Uf

] [
Wp

Uf

]T
)† [

Wp

Uf

]
(10)

where † denotes the Moore-Penrose or pseudoinverse. There-
fore [

Lw Lu

]
= Yf

[
Wp

Uf

]T
([

Wp

Uf

] [
Wp

Uf

]T
)†

(11)

C. Model Free Subspace H∞ Control

The subspace predictor of the previous subsection will now
be utilized to derive a finite-horizon, model free, subspace
based, H∞-optimal feedback controller. An H∞ mixed sensi-
tivity criteria is used to specify the desired minimum control
performance and desired maximum control usage. Assuming a
discrete time output unity feedback structure the specification
used is ∥∥∥∥[W1S

W2Q

]∥∥∥∥
∞
≤ γ (12)

where

S = (I + PK)−1 = Ger (13)

Q = K(I + PK)−1 = Gur (14)

for some plant P and controller K, and W1 and W2 are
weighting functions chosen to provide the desired system
performance. Small S up to a desired cutoff frequency cor-
responds to each output tracking its reference well in the fre-
quencies of interest. Limiting the magnitude of Q, especially
at high frequencies, limits the control effort used.

The time-domain discrete-time expression for the specifica-
tion in (12) is formulated as follows:

z ,

[
zw1

zw2

]
=
[
w1 ∗ e
w2 ∗ u

]
=
[
w1 ∗ (r − y)

w2 ∗ u

]
(15)

where w1 and w2 are the respective discrete impulse responses
of the discrete time weighting functions W1 and W2. Using
(15), the finite-horizon problem of (12) can be written as

sup
r

J(γ) ≤ 0, where J(γ) =
i−1∑
t=0

(zT
t zt − γ2rT

t rt) (16)

and the system is assumed to be at rest at t = 0. The length
of the horizon, i, has been selected to be identical to the
prediction horizon in the previous subsection, so (2) can be
used to calculate J(γ). Using J(γ) from (16), the central
finite-horizon H∞ controller satisfies

min
u

sup
r

J(γ) ≤0 (17)

whenever the system is at rest at t = 0.

D. Subspace Based finite-horizon H∞ Control

Given the generalized plant of Fig. 4, the level-γ H∞
control design problem is to choose a control u such that
the finite-horizon H∞ gain from r to z is of magnitude γ.
This subsection derives the condition on γ that ensures that
the problem is feasible, and computes the central solution for
this H∞ control problem.

Fig. 4. Generalized plant for H∞ control design.

If measurements of the plant input u, plant output y, and
reference r are available for times {k−i, . . . , k−2, k−1}, then
the strictly causal, finite-horizon, model free, subspace based,
level-γ, central H∞ control for times {k, . . . , k + i− 1} is

uopt = −(LT
u Q̃1Lu + Q2)−1· (LT

u Q̃1Lw)T(
−LT

u (γ−2Q̃1 + I)HT
1 Γ1

)T

(HT
2 Γ2)T


T wp

xw1

xw2


k

(18)

Q̃1 = (Q−1
1 − γ−2I)−1 (19)

provided that

γ > γmin ,
√

λ[(Q−1
1 + LuQ−1

2 LT
u )−1] (20)



where the discrete LTI weighting filters W1 and W2 have the
minimal state space representation

(xw1)k+1 = Aw1(xw1)k + Bw1(rk − yk) (21)
(zw1)k = Cw1(xw1)k + Dw1(rk − yk) (22)

(xw2)k+1 = Aw2(xw2)k + Bw2(uk) (23)
(zw2)k = Cw2(xw2)k + Dw2(rk − yk) (24)

The lower triangular Toeplitz matrices H1 and H2 are
formed from the Markov parameters of the discrete weighting
filters W1 and W2

H1 ,


Dw1 . . . 0 . . . 0

Cw1Bw1 . . . 0 . . . 0
Cw1Aw1Bw1 . . . Dw1 . . . 0

...
...

. . .
...

Cw1A
i−2
w1

Bw1 . . . Cw1A
i−4
w1

Bw1 . . . Dw1


(25)

H2 ,


pDw2 . . . 0 . . . 0

Cw2Bw2 . . . 0 . . . 0
Cw2Aw2Bw2 . . . Dw2 . . . 0

...
...

. . .
...

Cw2A
i−2
w2

Bw2 . . . Cw2A
i−4
w2

Bw2 . . . Dw2


(26)

and

Q1 , HT
1 H1 , Q2 , HT

2 H2 (27)

The extended observability matrices that contain the weighting
filter impulse responses are defined as

Γ1 ,


Cw1

Cw1Aw1

...
Cw1A

i−1
w1

 , Γ2 ,


Cw2

Cw2Aw2

...
Cw2A

i−1
w2

 (28)

and vector of past plant inputs and outputs is defined as

(wp)k ,



uk−i

...
uk−1

yk−i

...
yk−i


. (29)

E. MFSH∞ Predictive Control

The final step of the control design procedure, the receding
horizon implementation, is expressed as the following MIMO
LTI discrete time system :


up

yp

xw1

xw1


k+1

=



[
Sm

k1

] [
0
k2

] [
0
k3

] [
0
k4

]
0

[
Sl

0

]
0 0

0 0 Aw1 0
Bw2k1 Bw2k2 Bw2k3 Aw2 + Bw2k4




up

yp

xw1

xw1


k

+


0 0

0
[
0
Il

]
Bw1 Bw1

0 0


[
r
y

]
k

(30)

uk =
[
k1 k2 k3 k4

] 
up

yp

xw1

xw2


k

(31)

where uk ∈ Rm, rk ∈ Rl, yk ∈ Rl, m are the number of plant
inputs, and l are the number of plant outputs. Im and Il are
defined as m×m and l × l identity matrices respectively,

Sm =


0 Im 0 . . . 0
0 0 Im . . . 0
...

...
...

. . . 0
0 0 0 . . . Im

 ∈ R(i−1)m×im (32)

Sl =


0 Il 0 . . . 0
0 0 Il . . . 0
...

...
...

. . . 0
0 0 0 . . . Il

 ∈ R(i−1)l×il (33)

and[
k1 k2

]
=
{
−(LT

u Q̃1Lu + Q2)−1LT
u Q̃1Lw

}
1:m,:

(34)

k3 =
{

(LT
u Q̃1Lu + Q2)−1LT

u (γ−2Q̃1 + I)HT
1 Γ1

}
1:m,:

(35)

k4 =
{
−(LT

u Q̃1Lu + Q2)−1HT
2 Γ2

}
1:m,:

(36)

where {•}1:m,: means extract the first m rows of the matrix •,
and k1 ∈ Rm×im, k2 ∈ Rm×il, k3 ∈ Rm×nw1 , k4 ∈ Rm×nw2 .

IV. ATLANTIS CONTROLLER DESIGN PARAMETERS

A. Subspace Prediction Horizon

As discussed in Section III, the subspace predictor is
generated using experimental input-output data of length n.
A prediction horizon, i, is then chosen that breaks the data set
into j prediction problems, where j = n−2i+1. To ensure an
accurate predictor is created for a LTI model, i will be chosen
to be at least twice as large the expected plant order.

The simulated system identification data used to generate
the subspace predictor is shown in Fig. 5. The boat uses rudder



slew rate (δ̇) as the input signal and has three output signals:
cross-track (Y ), azimuth (Ψ), and effective rudder angle (δ).

Fig. 5. Simulated open loop system identification data created by controlling
the slew rate of the Atlantis with a pseudo-random binary sequence.

Although the Atlantis is a nonlinear system, Section II
shows that LQG techniques are effective for precision control
when small azimuth and cross-track deviations are maintained.
To generate a more accurate predictor a high order prediction
horizon was used by choosing i = 100. Fig. 6 shows the
predictor generated is adequate at predicting Atlantis’ response
to a known input. This particular data was from a simulated
system identification pass similar to that shown in Fig. 5,
however, this data was not used in generating the subspace
predictor.

Fig. 6. The subspace predictor reconstruction of a simulated system
identification pass comparing measured outputs to predicted values.

B. Mixed Sensitivity Cost Function

As shown in Section III, W1 and W2 are weighting functions
chosen to provide the desired system performance for the
mixed sensitivity criteria given in (12). It is important to
note that increasing either the DC gain or bandwidth of W1

will make the controller more aggressive. This will force
the controller to track higher error signal frequencies making
the response faster, but less damped. Decreasing W2 will
permit greater control usage, which is typically not desirable
at high frequencies. However, if W1 is increased, requesting
higher performance, but W2 is not sufficiently decreased, to
provide more control usage, the problem will become over
constrained. These over lapping constraints will be reflected
by γopt increasing over the nominal value of one. W1 and W2

were then selected with these performance tradeoffs in mind.

Fig. 7. Control Specification for Atlantis. Note all three control inputs use
the identical cost function W−1

1 .

Fig. 7 shows the inverse of each weighting function chosen
for the Atlantis. Identical W1 functions were used to specify
the performance requirements for Y , Ψ, and δ. As shown, the
design cutoff frequency is around 0.9 rad/sec (0.14 Hz). It is
desirable that all three outputs stay nominally around zero to
provide a more linear response of the system, therefore 6 dB of
rejection at DC was chosen. The control usage function, W2,
which effects the slew rate of the rudders was then selected
to provide sufficient control usage to meet the performance
specifications while staying within the limitations of the rudder
actuator system.

A value of γ was selected that would provide fairly ag-
gressive closed loop response while allowing some margin to
maintain stability. The smallest achievable γ value, γmin, was
calculated to be 1.81 based on the previously described predic-
tor and weighting functions. We then chose γ = (1.5)γmin =
2.71 which is later shown to meet our controller requirements.

C. Model Order Reduction

Initially, a high order predictor was used to provide as
much information as possible for the controller design. The
controller generated using the high order subspace predictor
therefore also had a substantially high order. Fig. 8 shows the
Hankel singular values of the controller generated from the
subspace predictor, weighting functions, and γ value.

The first five singular values of the Hankel matrix stand
out, therefore it is assumed the controller can be reduced



to a fifth order system. A balanced realization was then
used to truncate the controller at the desired order. This
assumption was verified by simulating controllers of various
orders. Results showed that keeping modes higher than five
did not noticeably effect system performance.

Fig. 8. Hankel Singular Value plot of initial controller design. Note the drop
off in the singular values after the fifth one, indicating a system of order five.

V. COMPARISON OF LQG AND MFSH∞ CONTROLLERS

Two unique controllers developed from experimental system
identification data similar to Fig. 5 are now compared. The
first controller uses the OKID method to generate a LTI model
of the plant. As previously described in Section II, an LQG
controller was created from the OKID model. The model free
subspace H∞ controller described in Section III was then
applied using the same system identification data and the
design parameters discussed in Section IV.

A mapping of the poles for both controllers is shown in
Fig. 9. From this, we can see that the model free subspace
H∞ controller has a bandwidth at significantly higher fre-
quency then the LQG controller. This is expected, because the
MFSH∞ controller is frequency agnostic and will move up in
frequency to achieve higher performance routinely. In terms of
damping, the MFSH∞ controller appears to be less damped
than the LQG, which again is consistent with the formulation.

A bode plot showing the frequency response of δ(jω)
Y (jω) for

both controllers is provided in Fig. 10. The MFSH∞ controller
shows a DC gain of -25dB, which corresponds with the
specifications as shown in Fig. 7, and again shows a propensity
for higher frequency excitation than the LQG.

VI. SEGMENTED TRAJECTORY GENERATION USING ARCS
AND LINES

The way-point navigation system uses a series of user
defined way-points as reference points for navigation. The
Atlantis could simply use these way-points as heading ref-
erences, however large cross-track errors would be produced
during way-point transitions and certain references may be
unreachable because of the wind direction. A segmented

Fig. 9. Mapping of poles for LQG (red) and MFSH∞ (blue) controllers
created from experimental system identification data.

Fig. 10. Bode plot of LQG (red) and MFSH∞ (blue) controllers created
from experimental system identification data.

trajectory of lines connected by arcs of a constant radius is
used to provide achievable trajectory paths.

Arc segments are added between line segments such that
the line segments are tangent to the arc where they meet,
providing a smooth transition point between segments. Fig.
11 demonstrates how way-point inputs are transformed to line
and arc segments. In practice, segments will be created in real-
time as way-points are achieved allowing for tacking scenarios
to be applied when necessary.

When the Atlantis transitions from tracking a line segment
to an arc, a feedforward component providing the proper
nominal rudder angle is added to the rudder control signal. The
separate closed loop line following controller then stabilizes



Fig. 11. User defined way-points (top) transformed into arc and line segments
(bottom).

the system around this nominal rudder angle for a given
turning radius. The feedforward term is removed once the arc
is traversed and the new line segment is being tracked.

VII. SIMULATION RESULTS

A nonlinear model of the Atlantis which includes wind
and wave disturbances was previously developed in [2]. This
model, combined with the way-point navigation system de-
scribed in Section VI was then used in Monte Carlo sim-
ulations to compare three different controllers designed for
precise trajectory tracking in the presence of environmental
disturbances. Each controller monitors azimuth (Ψ), cross-
track (Y ), and rudder position (δ) to adjust the rudder slew
rate (δ̇). The first controller simulated is the PID controller
described in [2]. Next the LQG controller developed in [1]
was simulated. Finally, the model free subspace H∞ controller
developed in Section IV was tested.

The set of way-points shown in Fig. 12 were selected and
Monte Carlo simulations were run for 100,000 seconds for
each of the three different controllers, with random wind
and water disturbance conditions provided for each trial. The
results obtained are shown in Table I, the model free subspace
H∞ controller obtained the smallest combination of total aver-
age cross-track error and cross-track error standard deviation.
Fig. 13 shows the resulting cross-track and azimuth error data
from an average simulated run. Monte Carlo simulation results
show the Atlantis having an average cross-track error of 8 cm
with a standard deviation of 65 cm when using the model free
subspace H∞ controller.

Fig. 12. Control architecture applied to wing-sailed vehicle simulated with
water current and wave disturbances.

Fig. 13. Azimuth and cross-track error for wing-sailed surface vehicle
simulation.

TABLE I
SIMULATION RESULTS.

PID LQG MFSH∞
Lines Total Lines Total Lines Total

Y (cm) 20 27 1 8 2 8
Yσ(cm) 49 59 61 75 56 65
Y + Yσ(cm) 69 86 62 84 58 73

Analysis of the simulation results shows that all three
controllers perform comparably for straight line segments.
However, the disturbances introduced by the addition of arc
segments produced greater errors for the PID and LQG con-
trollers. The MFSH∞ controller performed more than 10%
better than the other controllers within the complete segmented
trajectory guidance system, even though considerably less
tuning of control parameters was necessary for the MFSH∞
controller.



VIII. CONCLUSIONS

A control architecture for an autonomous sailboat using a
way-point navigation system was simulated using a model
free subspace H∞ controller and shown capable of providing
robust and reliable guidance under realistic wind and water
disturbance models. This architecture was applied to a sim-
plified model of the Atlantis, a wing-sail propelled catamaran
previously shown capable of line following accuracy better
than 0.3 meters. Simulations modeling similar experimental
conditions previously encountered show that precision control
is possible for way-point navigation requiring segmented tra-
jectory following of arcs and lines and real-time way-point
management to prevent unreachable points of sail.

Simulations show the sailboat can be controlled to better
than one meter of accuracy, providing similar performance
to previous experimental results using an LQG controller.
However, a key difference is the model free subspace H∞
controller reduces the complexity of the control design process
by eliminating the standard model formation step. This direct
control design methodology has also been demonstrated to
perform exceptionally well when used in an adaptive controller
implementation. Application of this adaptive control technique
will be the focus of future precision control research for the
Atlantis. Experimental validation is expected within the next
year.

Other future work will include a way-point generation
methodology that will avoid stationary obstacles and also opti-
mally determine trajectories given only a destination point and
weather data forecasts to predict future wind and wave activity.
This added guidance system combined with advancements in
Atlantis sensors and actuators will create a wind-propelled
ASV capable of robust navigation.
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