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ABSTRACT

An autonomous catamaran, based on a modified Prindle-19 day-sailing catamaran and fitted with
several sensors and actuators was built to test the viability of GPS-based system identification for
precision control. Using an electric trolling motor for propulsion, and lead ballast to match all-up
weight, several system identification passes were performed to excite system modes and model the
dynamic response. The identification process used the Observer Kalman IDentification (OKID) method
for identifying a linear time invariant plant model and associated pseudo-Kalman filter. System
identification input was generated using a human pilot driving the catamaran on roughly straight line
passes. A fourth order discrete time model was generated from the data, and showed excellent
prediction results. Using these models, linear quadratic Gaussian (LQG) controllers were designed and
tested with the electric trolling motor. These controllers demonstrated excellent line-tracking
performance, with error standard deviations of less than 0.15 m. The wing-sail propulsion system was
fitted, and these same controllers re-tested with the wing providing all propulsive thrust. Line-following
performance and disturbance rejection were excellent, with the cross-track error standard deviations of

approximately 0.30 m, in spite of wind speed variations of over 50% of nominal value.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The Atlantis project set out to design an autonomous marine
surface vessel. The Atlantis, pictured in Fig. 1, based on a modified
Prindle-19 catamaran, uses a rigid wind sail for propulsion, along
with GPS for localization and several other sensors and actuators.
Functionally, the Atlantis is the marine equivalent of an un-
manned aerial vehicle, and would serve similar purposes. The
Atlantis has been able to demonstrate an advance in control
precision of a wind-propelled marine vehicle from typical
commercial autopilot accuracy of ~100 m to an accuracy of better
than 1m. This quantitative improvement enables new applica-
tions, including unmanned station-keeping for navigation or
communication purposes, autonomous ‘“dock-to-dock” capabil-
ities, emergency return unmanned functions, and many others
still to be developed.

The main goal of the Atlantis project is precise control. That is,
to minimize the deviation from a desired path in the presence of
disturbances such as wind, current, and waves. Precise control is
achieved through the development of a predictive mathematical
model. Control is predicated on having an accurate plant model
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which maps input to output. The controller must be able to
predict the trajectory of the plant, and compensate accordingly.
Unmodelled dynamics of the catamaran, combined with wind-
water-wing interaction make precise control difficult. Note that
even in straightforward propulsion systems, disturbances and
non-linearities can be difficult to model (Smogeli, Serensen, &
Minsaas, 2008). System identification techniques are used to
extract the required plant model from experimental data.

The wind-propulsion system is a rigid wing-sail mounted
vertically on bearings to allow free rotation in azimuth about a
stub-mast. Aerodynamic torque about the stub-mast is trimmed
using a “flying tail” mounted on booms joined to the wing. This
arrangement allows the wing sail to automatically attain the
optimum angle to the wind, and weather vane into gusts without
inducing large heeling moments. For a given set of tail and flap
angles, the wing sail will fly at a constant angle of attack, o, to the
relative wind (for a complete treatment of the wing-sail
aerodynamics, see Elkaim & Boyce, 2007). Modern airfoil design
allows for an increased lift-drag (L/D) ratio over a conventional
sail, thus providing increased thrust while reducing the over-
turning moment.

The system architecture is based on distributed sensing and
actuation, with a high-speed digital serial bus (CAN bus)
connecting the various modules together. Sensors are sampled
at 100Hz, and a central guidance navigation and control (GNC)
computer performs the estimation and control tasks at 5Hz.
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Fig. 1. The Atlantis, based on a Prindle-19 Catamaran, with a self-trimming wing
sail.

This bandwidth has been demonstrated to be capable of precise
control of the catamaran. The distributed architecture is both
more robust and less expensive than systems that employ a high-
speed, and often analog, star-configuration topology with cen-
tralized sensor interpretation and actuation. For system architec-
ture details, see Elkaim (2001, 2006).

2. Observer/Kalman IDentification theory

There are a great many ways to approach system identification
(generating a mathematical model from input/output data). This
generated model is then used to predict the system response for
arbitrary inputs and as a basis for control design. The system
identification algorithm uses input/output data from a rich stream
to produce a differential or difference equation of the system
response. The models generated by the system identification
techniques are most often used in feedback control systems and
aid in the design of estimators and controllers.

An important advantage of the experimental approach is that
does not require the tedious and often imperfect modelling of the
physical system. This is especially true if questionable assump-
tions are made to reduce model complexity. This can also be a
disadvantage as, depending on the scheme, any intuition into
system behaviour is lost. Without this engineering intuition, it is
difficult to view the internal system description and understand
which physical parameters are being modelled. As such, any
additional knowledge about physical parameter validity cannot be
utilized.

Several mathematical methods have been developed for
system identification. Ljung (1999) provides an excellent intro-
duction to the subject, including the various methodologies that
have been developed. Broadly, the methods split into either
frequency- or time-domain-based, and tend to be grouped into
single input single output (SISO) or multiple input multiple output
(MIMO) solutions. Neural networks have also been used for
identification purposes (van de Ven, Johansen, Serensen, Flanagan,
& Toal, 2007). Recently, a large body of state-space techniques
have been aggregated into the subspace methods (Overschee &
d’Moor, 1996). These techniques in general perform well, though
one of their deficiencies is that the subspace methods often
produce a biased state estimate. Rather than minimize the error of
the output data, they minimize the model error. The minimization
of the output error is non-linear, whereas the modelling error can
be reduced to a simple quadratic minimization.

Another time domain technique is the Observer Kalman filter
[Dentification (OKID) algorithm developed at NASA Langley to
model large flexible space structures. The original algorithm was
developed and extended by Dr. Juang and his students to include
residual whitening and several advances in the model realization
algorithms (Juang, Cooper, & Wright, 1988; Phan, Horta, Juang, &
Longman, 1995). The OKID algorithm minimizes the error in the
observer, which will converge to the true Kalman filter for the
data set used if the true world process is corrupted by zero-mean
white noise.

The OKID method is utilized in this work, using only input/
output data to construct a discrete-time state-space realization of
the plant. The OKID identification method has several pertinent
advantages for this application. It has previously been applied for
identification of autonomous underwater vehicles (AUVs), see
Tiano, Sutton, Lozowicki, and Naeem (2007). First, it assumes that
the system in question is a discrete linear time-invariant (LTI)
state-space system. Second, it requires only input and output data
to formulate the model (no a priori knowledge of the plant is
needed). Third, the OKID method produces a pseudo-Kalman state
estimator, which is very useful for control applications. Lastly, the
modal balanced realization of the system model means that any
residual truncation errors will necessarily be small. Thus, even in
the case of model order error, the results of that error will be
minimized.

2.1. OKID theory

The OKID formulation begins with the standard state-space
difference equation for a discrete time, LTI system:

Xiq1 = Axy + Buy

Yk = Cxp + Duy (1)

where k is the index time variable, x is the state vector and has the
dimension of [n x 1], y is the output vector and has the dimension
of [m x 1], u is the input vector and has the dimension of [r x 1].
The [n x n] matrix, A, is referred to as the state transition matrix,
the [n x r] matrix, B, is called the input matrix, the [m x n] matrix,
C, is the output matrix, and [m x r] matrix, D, is the direct feed
through (or pass through) matrix. The triplet, [A,B,C], is not
unique, but can be transformed through any similarity transfor-
mation (i.e., the outputs are unique, but the internal states are
not). This can be seen with a simple substitution:

x2Tz (2)

where z is an alternate state vector related to x through an
invertible transformation matrix, T. When substituted into Eq. (1),
this results in the same set of equations written as

Tks1 = T ATz + T7'Buy

Yk = CTZk + Dllk (3)

Thus, the triplet [A,B,C] through a similarity transformation
becomes [T~'AT, T~!B, CT]. If the system is initially at rest, and a
unit pulse is applied to all inputs at time zero, i.e.,

xo = |0]

up = 1]

w,=10], Vk#0 (4)
The output of the system in Eq. (1) to this unit pulse is

Yo=D

y1=CB
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y2 = CAB
y; = CA’B
Ve = CAkle (5)

which are defined as the Markov parameters of the system, and
are invariant under a similarity transformation. For arbitrary
input, the response of the system from rest is

k
Xk = ZAlilBuk,,'
i=1

k
¥ = CA"'Bu_; + D (6)
i=1
The response reverts to the Markov parameters of the system
when driven by a unit pulse from rest. These Markov parameters
are assembled into the generalized Hankel matrix. Properties of
the Hankel matrix are used to determine the system model order.
The generalized Hankel matrix is

Yk Yi+1 Yi+p-1
Yir1  Yir2 Yi+p
Hk-1)=| . A : (7
Yira—1  Yita yk+oc+[i—2

The Hankel matrix can be decomposed into the observability
matrix, a state transition matrix, and the controllability matrix;
thus the Hankel matrix (in a noise-free case) will always have rank
n, where n is the system order:

C
CA

Hk—1)= | CA> |A“1[B AB A%B ... AP! B (8)

cart

This decomposition is at the centre of the OKID process. The
system order can be determined from the rank of the generalized
Hankel matrix of the Markov parameters. With real data, however,
noise will corrupt the rank deficiency of the Hankel matrix and
the Hankel matrix will always be full rank. Thus, the Hankel
matrix is truncated using a singular value decomposition (SVD) at
an order that sufficiently describes the system. In practice, the
singular values of the Hankel matrix are plotted with a sudden
drop that indicating the model order. This sudden decrease or
“cliff” is the hallmark of the transition between real and noise
modes of the system, and is often missing from real data.

This truncated Hankel matrix is then used to reconstruct the
triplet [A,B,C] in a balanced realization that ensures that the
controllability and observability Grammians are equal. This is
referred to as the Eigensystem Realization Algorithm (ERA); a
modified version of this algorithm that includes data correlation is
used to identify the Atlantis (Juang, 1994).

Given the Markov parameters, it is possible to determine the
order of the system and generate a balanced model that is
adequate for control. In real systems, however, the system pulse
response cannot be obtained by simply perturbing the system
with a unit pulse input. A pulse with enough power to excite all
modes would likely saturate the actuators or respond in a non-
linear fashion. The pulse response of the system is instead
reconstructed from a continuous stream of rich system input
and output data. The input/output data do not produce enough

equations to solve for all of the Markov parameters. If the system
were asymptotically stable, such that A* = 0 for some k, then the
number of unknowns would be reduced.

Taking Eq. (1) and adding zero, in the form of (+Gy, — Gyy):

X1 = Ax + Buy + Gy — Gy,

Yk = Cxp + Duy (9)
By substituting for y,, the equations are rewritten as

X1 = [A+ GClxy + [B + GDluy, — Gy, (10)

Xpy1 = Axy + Boy

»i = Cxy + Doy (11)
where
A=[A+G(] (12)
B=[B+GD -] (13)
D=[D 0] (14)
and

ui 15
we= (15)

Thus the output at step k can be written as
Y = Duk + Cka—l + -4 CAp—]kaip —+ C/_\”Bxk,p (16)

Aggregating the terms into matrix form, Eq. (16) can be rewritten
as

J=YV4+CA'X +¢ (17)

where  is the collection of output data, Y is the matrix of observer
Markov parameters, V is the stack of input and output data, X is
the state, and ¢ is the mismodelling noise:

V=Wps1 Yps2 VI (18)
Y=[D CB CAB --- CA*'B] (19)
Up1 Upya - U
Vo Vpy1 o0 Vi
V= |Y-1 Y% - Vi (20)
Vi vy c Vip

In a noise-free case, the observer state transition matrix, A, can
be made deadbeat stable and AP will be zero for time-steps greater
than the system order, n. In the presence of noise, A corresponds
to a pseudo-Kalman filter. In either case, it is asymptotically
stable, and there will be a value of p such that the quantity AP is
negligible. p is chosen such that CAPX is negligible, and the
Markov parameters are estimated from Eq. (17) using least
squares:

Y = yvTvvT! (21)
which minimizes the error term, ¢'¢ (the difference between the
output with A” neglected and the measured values). The Markov

parameters are computed and separated out using the ERA/DC
algorithm (Juang, 1994; Juang et al., 1988; Phan et al., 1995).
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3. Kinematic model

A plant model of the Atlantis is required for simulation and
control. While several good modelling techniques exist to model a
powered boat travelling through water (Fossen, 1994), they
remain somewhat complicated and not easily analysed; the
situation is even more complicated for sailing catamarans.
Previous work (Bradfield, 1970) has developed models of hull
drag and the thrust equations based on several parameters of the
sails, hulls, and wind effects. These efforts produce the equations
of motion suitable for light wind conditions. In order to reduce the
model order and obtain a model that would have sufficient fidelity
for active control, a simplified model structure is explored.

In order to formulate the equations of motion, the Atlantis is
assumed to be travelling in a straight line (assumed to be
coincident with the x-axis) at a constant velocity, V. The distance
along that line is X. The perpendicular distance to the line is Y, the
cross-track error, and the angle that the centreline of the Atlantis
makes with the x-axis is the angular error, i (Fig. 2).

The local path coordinate frame can always be rotated to have
the x-axis aligned to the desired path of the Atlantis. The
assumption of constant velocity is not appropriate as the velocity
is a function of the wind speed, which, of course, cannot be
controlled and is highly variable.

The first model is a simple kinematic model that assumes that
the rudders cannot move sideways through water (i.e., the flow is
tangent to the rudders). This places a kinematic constraint upon
the vessel motion of: tand =Ly/V,. Using a small angle
linearization produces the following continuous time state-space
equations:

vyl [0 Vx “/3 Y1 [o
Y| =10 0 TX Wl +1|0|u (22)

where Y is the cross-track error (m), ¥ is the azimuth error (rad),
and o is the angle of the rudders with respect to the hull
centreline (rad). The distance, L, is from the boat centre of mass to
the centre of pressure of the rudders (m), and the input, u, is the
slew rate of the rudders (rad/s).

These simplified equations of motion are insufficient to control
the boat to great precision, but generate intuition for the system
identification process. Eq. (22), when cast into transfer function
form, becomes a triple integrator, and as such, cannot be
stabilized by simple proportional control. Closer inspection of
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Fig. 2. The basic formulation of motion for the Atlantis on the water.

Eq. (22) reveals that the errors in azimuth and cross-track
integrate not with time, but rather with distance travelled
forward. If the boat is sitting still then no amount of rudder
deflection will cause the azimuth to change; likewise, at high
velocity only very small inputs are required to turn through a
considerable angle.

This simple kinematic model is based on prior work by the
author on a GPS-guided farm tractor done at Stanford University
(Elkaim, O’Connor, & Parkinson, 1997). In this work, it was shown
that even with the poor model, the tractor is able to perform line-
tracking tasks with very high precision. Furthermore, using an
extended Kalman filter to perform parameter identification,
values for the critical parameters of V, and L can be obtained in
an “on-the-fly” estimation fashion. Extensions of this work
presented in Rekow (2001) show that “on-the-fly” estimation
can be greatly simplified by using an extension of the least mean
squares (LMS) algorithm to estimate the parameters in real-time.
This technique has been validated experimentally.

Using the kinematic model, a linear quadratic regulator (LQR)
controller was designed using the full state feedback of the
measured state of azimuth, rudder angle, and cross-track error.
Brysons rule was used to formulate the Q and R matrices, and all
cross-coupling terms were assumed to be zero. That is,

1
—_ 0 0
Vhax
0 —1 0
Q= . (23)
0 o0 ZL
5max
and
1
R=— (24)

The controller was designed such that a maximum rudder
deflection rate (~25°/s) would match the maximum cross-track
error of 0.1 m. That is, for this specific controller, y,.,, = 0.1,
Vmax = 00, Omax = 0.44, and umax = 0.44. The resulting controller
designed with L =3.62m and Vy =2m/s places no penalty on
heading error, but balances the rudder slew rate vs. cross-track
error, while limiting the amount of rudder angle. The gain matrix,
K, is

K =[4.36 10.34 3.39] (25)

That is, the feedback control u (rad/s) is generated by multiplying
—K * x, where x is the state consisting of cross-track error, y (m),
heading error, y (rad), and rudder angle, ¢ (rad). An entire series of
these controllers in which y,,.,, the maximum cross-track error,
was varied from 0.01 to 1.0m were designed and tested
experimentally (Section 6 describes the control design methodol-
ogy in more detail).

These controllers were tested with a trolling motor and results
found to be satisfactory as long as the speed, V,, remains below
Vdesign, the design speed of the controller. As soon as V>V esign,
the Atlantis started to hunt, eventually going unstable. When V
was very substantially less than the design velocity, Vg, the
response was sluggish and suffered from large (though bounded)
cross-track errors. An integral state was added, but this only
further destabilized the system. As the problem was not one of
steady-state error, the integral control did not improve the
situation.

Fig. 3 shows the root locus of the kinematic model with the full
state feedback LQR controller as a function of V, (the along-track
velocity). The design velocity, Vgeign, is 1.0m/s and the model is
assumed perfect and noiseless. As the along-track velocity, Vy, is
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Root locus of Kinematic Model vs. Vx
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Fig. 3. Root locus plot of the closed-loop kinematic model using a fixed-velocity
LQR controller as a function of the along-track velocity.

LQR gains of kinematic controller vs. Velocity
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Fig. 4. LQR gains for kinematic model vs. velocity.

increased, the damping is reduced, until, at Vy =4.1m/s, the
system goes unstable. This is the best case scenario—when other
errors are introduced (such as mismodelling, external distur-
bances, sensor noise, etc.) the results are predictably worse. This is
evidenced by the poor performance of the kinematic controller in
all of the off design points.

4. Velocity invariance

In Section 3, it was shown that the simple kinematic model
yields poor performance as soon as V, increases above the design
point, Vgesign. In order to address this shortcoming, an attempt was
made to formulate a control algorithm that automatically
compensates for the varying velocity. Several methods for varying
the control gains as a function of velocity are possible.

Fig. 4 shows the gains for the LQR controller as a function of
Vdesign. The observed gains on the rudder angle appear to be
independent of velocity, but the gains on the azimuth and the
cross-track error are strong functions of velocity. The gains are not
simple linear or even exponential relationships to velocity, but a

gain-scheduled controller could be made to interpolate the gains
based on the measured velocity at the current moment.

As previously stated, the kinematic model in Eq. (22) shows
that the azimuth and cross-track error do not integrate with time,
but rather with distance travelled on the line. This is exactly the
cause of the instability with increasing velocity present in the
simple kinematic model. By introducing two new variables:

o Y

¥ = v (26)
and

~ l//

V= vy (27)

and substituting them back into Eq. (22), the equations of motion
of the kinematic model can be rewritten in the following velocity
invariant form

01

Y ‘13? 0
Jl=100 f||d|+]|0]u (28)
0 0 0 0fLo 1

The state transition matrix no longer has any terms relating to
V. This formulation allows one single controller to be designed
with the sensor input to that controller is scaled by the velocity
before the control gains are applied. This has the effect of
automatically reducing the sensitivity at high forward velocities
and increasing the sensitivity at low velocities. In practice, a lower
bound of 1.0 m/s is used on the velocity measurement, due to the
presence of noise.

This velocity invariant formulation was used with great
success on the GPS guided farm tractor (Elkaim et al., 1997).
A similar technique was used on the Atlantis. This methodology of
velocity invariance is fine for the simple kinematic model and
addresses the concerns of the instability with increasing velocity.
Functionally, it means that a single controller is designed, and that
the inputs are scaled before injection into the controller. It does
not, however, address any of the issues of mismodelling or sensor
noise. In practice, with the trolling motor, the velocity invariant
kinematic model performs well in calm waters but starts to
oscillate badly in waves. Furthermore, the controller performance
(as measured by y,,.,) has to be relaxed in order for the closed-
loop system to remain stable.

Of course, the kinematic model (even the velocity invariant
one), completely ignores the dynamics of the vehicle and, to a
certain extent, violates the laws of physics—a change in rudder
angle produces an instantaneous change in the yaw rate. Other
forces, such as coriolis forces, are not included. This model will get
worse and worse as the velocity increases. To the control system,
however, this mismodelling appears simply as another distur-
bance to be rejected. At low speed, this is within the capabilities of
the controller, but as the velocity increases, these disturbances
become larger and the control system simply cannot keep up.

Using the input pre-scaling, however, it is possible to normal-
ize any set of input data by the velocity and thus identify the
velocity invariant system. Data collected for system identification
are pre-scaled by velocity (with a lower bound of 1.0 m/s) before
applying the system identification techniques. This allows the
best velocity invariant model to be identified by the algorithm and
contributes to the robustness of the controller.

5. Atlantis system identification

In order to use the OKID method to generate the system model,
high quality data are required; inputs into the system with enough
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power to persistently excite the system modes along with the
cleanest sensor data available. Due to the time constraints of the
project, the wing was under construction when the off-line
identification data were required. Without the wing, little choice
was left but to use a trolling motor as the primary source of
propulsion of the Atlantis, and to attempt to simulate the wing-
sail propulsion system by rotating the trolling motor to point off
the boat centreline, and increases the motor drive voltages. The
Atlantis was ballasted with an additional 75kg (in the form of
additional batteries) equivalent to the weight of the wing. These
changes were so that the collected data on the identification
passes would be representative of the dynamics of wing
propulsion. The Atlantis in this configuration in pictured in Fig. 5.

:5"'*:1' e —

Fig. 5. The Atlantis on an unmanned trajectory being controlled by the identified
LQG controller.

In order to gather data to perform a proper system identifica-
tion of the Atlantis, a series of open-loop line-following tests were
conducted in which a human driver, through the GNC computer,
caused the rudders to either slew left or right at the maximum
slew rate (25°/s) or to remain still in order to track a roughly
straight line. This “pseudo”-random input was designed to apply
the maximum power through the controls and produce a rich
output that would contain information from all modes of interest.

5.1. Typical identification pass

Every attempt was made to fully exercise the dynamics of the
Atlantis in order that the system identification algorithm could
model the full range of expected responses. Typically, Atlantis
lined up at one end of the harbour and started on a straight pass
towards a marker at the other end of the harbour. During the pass,
the rudders were continually slewed to port and starboard at their
maximum rate. A nominally straight line was intended by the
human pilot, but excursions in cross-track of several meters did
occur.

Eventually, the procedure for gathering the identification data
was perfected and a large number of passes were aggregated at
different velocities in order to perform the final system identifica-
tion. Fig. 6 shows a typical pass, with the rudder slew rate on the
bottom, and the rudder angle, azimuth angle, and cross-track
deviation above. This pass was over 700 m long and had azimuth
excursions as high as 45° from the intended path.

5.2. OKID results

The system identification experiments resulted in several large
data files from the pseudo-random input and all of the sensor

SysID pass #3
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Fig. 6. Data from a typical system identification pass.
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Modal Singular Values (MSV)
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Fig. 7. Hankel singular values and modal singular values for the system identification of the Atlantis catamaran.

outputs. These files were merged together and the data normal-
ized by the velocity as discussed in Section 4. Both the velocity-
normalized and the non-normalized data were used in the
identification process, but the velocity-normalized data produced
much better performing controllers, and are therefore presented
in this work.

The OKID method requires an upper bound on the possible
system order. This is done to reduce the computation time and
also to define the blocks of input and output that will be used. For
the Atlantis, the maximum system order, p, was chosen to be 80.
While it is conceivable that the true system order could be greater
than 80 modes (indeed, most real systems have infinite modes), as
an engineering approximation, 80 was deemed more than
adequate.

Fig. 7 shows the Hankel singular values and the modal singular
values of the OKID process on the Atlantis. On the real system, the
transitions between the real modes and the noise modes are
smooth. However, the first four singular values of the Hankel
matrix do stand out, and this is confirmed by the modal singular
values which demonstrate that even if the higher modes are used,
they are virtually indistinguishable from noise.

The Atlantis input-to-output model is assumed to be a fourth
order. Since the kinematic model is a third order system, some
speculation is given to what the physical interpretation for the
fourth mode should be. It would seem that the fourth mode is a
lag term between the actuation of the rudder and the time that
the Atlantis begins to rotate about her centre of mass. This
remains the best guess as to the fourth state. In truth, this is
difficult to decipher because the balanced realization form of the
state-space model gives no physical intuition. A similarity
transformation based on the pseudo-inverse of the output matrix
is used to try to discern exactly what the states are in terms of the
outputs. The similarity transformation results in the output
matrix, C, being the identity matrix. If the number of states are
equal to the number of outputs, this maps the states directly into
the outputs. Unfortunately, in this case the number of states is
greater than the number of outputs, and thus the information is
not terribly useful.

5.3. Data reconstruction

The fourth order model performed well as shown by the
matching the output not only of the cross-track error, but
simultaneously of the azimuth error and of the rudder angle as
well. This, of course, is because the OKID method is perfectly
suited to MIMO systems as well as the traditional SISO systems.
By definition, the model that it generates will match the outputs
(all of them), in a least squares sense.
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Fig. 8. The OKID data reconstruction of a system identification pass outputs from
the identified model.

Fig. 8 shows that the model generated was also quite adequate
at predicting Atlantis response to a known input. These particular
data were from a system identification pass which had not been
used in the identification process. These data were reserved to
validate the OKID by tracking the output of the actual system.
Perfect tracking may not, in fact, be desirable. Consider the case
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Fig. 9. OKID data reconstruction errors.

where a sensor has high frequency noise on its output—generating
a model that tracks the noise perfectly is not helpful from a control
standpoint. Although the high frequency sensor noise might be
observable, it is certainly not controllable.

Fig. 8 shows the reconstruction of the Atlantis system
identification data for approximately 30s. The actual trace goes
on much longer, but the detail is lost as the horizontal axis is
stretched out. Obviously, with the addition of the observer, the
agreement with the data will be much greater. This is due to the
filtering sensor noise, but also because the Atlantis itself is a fairly
slow moving object; the sampling rate of the control system
(200ms) is such that the motion of the catamaran during one
sample interval is quite small.

Fig. 9 shows the errors from the data in Fig. 8. As can be seen,
the errors are quite small. Standard deviations are ~0.1 m for the
cross-track mismodelling error, 1.5° in azimuth, and 3—4° in
rudder angle mismodelling error. Again, this is the open-loop
model of the catamaran. These errors will become much smaller
once the observer is added to the loop (since the error will then be
adjusted by the data from the previous outputs).

It is interesting to note that any identified model will be the
controllable and observable subset of the true mode. This is due to
the rather simple fact that if it cannot be measured, then it cannot

be seen by the algorithm. That is, if the sensor cannot sense (or
observe) some state, then as far as the identification algorithm is
concerned, it does not exist. Likewise, the same is true of
controllability. If the input cannot push on a certain part or mode
of the system, then the identification algorithm is also blind to
that mode.

6. Atlantis controller design

The Atlantis has been identified to the extent that a
controllable and observable model capable of predicting the short
term behaviour of the Atlantis (while under trolling motor
propulsion) was developed. In addition, the pseudo-Kalman filter
that is the best state estimator/observer has also been obtained
from the OKID method.

The OKID data-based observer will be used to construct a
linear quadratic Gaussian (LQG) controller for the Atlantis. That is,
an LQR controller is constructed using the identified model (with
the assumption that there is access to the full state), and the state
is then estimated from the output data using the observer
generated from the OKID algorithm. There are several advantages
in using the LQG control from the identified data over other
methods. Firstly, the identified model is, in some least squares
sense, the best mathematical representation of the system. As
such, the controller design can be much more aggressive knowing
that the mismodelling is minimized. Secondly, one of the main
difficulties in designing Kalman filter estimators is generating
appropriate process and measurement noise covariances; the
OKID method already provides the Kalman gain directly. Lastly, an
LQR controller can only act on the measured states, and thus
forces more sensors onto the system to adequately measure all of
the states.

In terms of disadvantages, the LQG controller does not have
any of the guaranteed stability margins, robustness, nor simplicity
that the LQR controller possesses. Thus, simulation and experi-
mentation are required in order to develop confidence in the
control implementation.

The last step in the process is to design the controller and close
the loop. The control method used throughout this project is the
standard LQR controller coupled with the identified state
estimator that resulted from the OKID algorithm used for
identification. The LQR controller is one that minimizes the cost
function, J, in Eq. (29), with the terms Y.z, ¥max» Omax, and Umax
being design parameters. The general controller methodology is to
treat this essentially as an output regulator with the cross-track
error as the only output of concern (i.e., /. = 00 and dmax = 00):

1
0 0
Yihax
o 1
1
= el 0 0 ¢ T{—] 29
J=2 |+ Vo | @9)
0 0 -

max

The solution to the LQR minimization is a gain matrix, K, such
that # = —Kx. Eq. (29) uses Brysons rule to penalize the control at
the same time as penalizing cross-track error, heading error, and
rudder displacement. There are several excellent techniques to
generate the gain matrix, K, such that J is minimized (Stengel,
1994).

6.1. Controller implementation

The implementation of identified controller and estimator is
fairly straightforward. From the OKID methodology, the linear
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system matrices [A, B, C, D] and the estimator G are extracted. The
control gain matrix, K is extracted from the LQR design (with the
cost function in Eq. (29)). Abstractly, the controller is simply a
mathematical function that maps (with memory), a sequence of
system outputs to a set of control inputs. In this specific case, the
first step is to normalize the cross-track error and heading error by
the velocity (with a lower bound of 1m/s to prevent noise
amplification) as shown in Eq. (28).

Given that this implementation includes an estimator, the
initial estimate of the state is set to 0 (note that there are several
methods for attempting to find a better initial estimate for the
state, such as taking the pseudo-inverse of the C matrix and
multiplying it by the current measured outputs). The initial
control, u, is also set to 0.

At any given time-step, the control is calculated from the
current state estimate:

u=—[KI& (30)

and then the estimator is propagated forward one step in time
given the current control and measured system outputs:

X, =[A+ GCX_ + [B+ GDJu — [Gly (31)

where X, is the future state estimate, X_ is the previous estimate,
u is the actuator command, and y is the speed normalized sensor
readings.

Note that the control portion of the propagation [B + GD] could
be implicity brought into the X term, but in this case was not due
to saturation limits imposed by the actuator hardware.

Once the gains are computed, a file is generated that is
uploaded to the Atlantis GNC computer. A family of controllers
is designed at once and tested experimentally to determine which
is the best. Fig. 10 shows the pole-zero map for the open and
closed-loop kinematic model as well as the open- and closed-loop
identified model (estimator poles are not shown because they are
much faster than the controller).

Pole zero map
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Fig. 10. Pole-zero map of the closed-loop identified system, as well as the
kinematic open- and closed-loop poles.

7. Experimental results

The Atlantis controllers were validated experimentally in order
to demonstrate the applicability of system identification for rapid,
robust control design.

7.1. Trolling motor tests

While the wing sail was still under construction, the system
identification and controller tasks had already been completed. In
order to test out the controllers, a MinKota electric trolling motor
was used to simulate the presence of the wing sail and wind by
mounting the trolling motor at the sailboat centre of gravity (CG),
and turning the trolling motor such that its direction of thrust was
canted off the centreline by more than 40° (Fig. 5).

The trolling motor is at the centre of the boat, and the lead
batteries provide the ballast. The boat was run unmanned, with
the GNC computer providing all navigation and control functions.
Of note is the fact that the anemometer is located at the front
wooden cross-beam. This is only a temporary location, and
moving the sensors physical location is very easy due to the
CAN bus architecture employed on the Atlantis (Elkaim, 2006).

Fig. 11 shows a typical autonomous pass while under computer
control. Note that the computer regulates the path to the line, but
that the turn is performed open loop with a feed-forward
command. To the scale pictured in Fig. 11, the recorded position
data show very little cross-track error. This run includes changing
currents, wind, and waves which were all injecting disturbances
into the system. Fig. 12 shows a close look at the errors in the first
part of the path shown in Fig. 11. The statistics show that the
mean, y, was less than 3 cm, and the standard deviation, g, was
less than 10 cm.

The azimuth shows a —20° bias for most of the path length of
the run pictured in Fig. 11 which is due to current. This can be
verified by the velocity plot at the bottom of Fig. 11, where the top
line is the hull-speed sensor, and the smooth lower line is GPS
velocity. The difference in these two is current, and it can be seen
in spite of the high frequency noise of the hull-speed sensor (due
to the placement behind the centreboards).
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Fig. 11. The trajectory as recorded by a differential GPS receiver while under
computer control.
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Fig. 12. Close up of the first section pictured in Fig. 11, showing very precise control while under trolling motor propulsion and autonomous control.
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Fig. 13. Satellite photograph of harbour where the Atlantis was sailed under computer control, showing human control (white) and computer control (black).
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7.2. Wing-sail tests

Further tests validated that the closed-loop controllers were
robust and capable of precise line following with the increased
disturbances due to the wing-sail propulsion. No modifications
were made to the controllers, and the tests were run on a day with
6 m/s of wind (with gusts up to 10 m/s range).

Qualitatively, the wing-sail performed even better than
anticipated. With the tail centred, there was no tendency for the
Atlantis to heel what-so-ever, and the absence of aeroelastic
instability (sail luffing) made the entire event quiet and pleasant.
Upon turning the trailing edge of the tail in the direction of
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Fig. 14. Automatic control under wing-sail propulsion; control system is active
between “start” and “end” labels.

desired travel, the Atlantis smoothly accelerated to speed and
quietly continued on her course. Large gusts simply caused
Atlantis’ wing to quickly stall and, with only a slight shudder,
reposition at the new angle of attack (as evidenced by the yarn
tufts on the wing surface).

Fig. 13 shows a satellite picture of the harbour where testing
was performed. The white dots are from a previous year, when the
Atlantis was conventionally sailed with a sloop rig, and was sailed
by a human pilot. The black dots indicate the various closed-loop
control passes from the recent tests. Note that the white trace has
a curving, “human,” look to it, whereas the black trace looks like
machine control. Qualitatively, the computer control simply looks
unnatural.

Fig. 14 is, once again, a closer look at an overhead view of a set
of computer controlled paths. As with the trolling motor, the
control system is active on the lines in between each “start” and
“end” pair, while the turns were performed open loop. Fig. 15
presents a close-up of the first path of the regulated control, and
looks at the cross-track error, azimuth error, and velocities. Note
that the dark line in the top of the velocity graph is the wind
speed, and can be seen to vary well over 50% of nominal.

The mean of the cross-track error is less than 3 cm, and the
standard deviation is less than 30 cm, note that this is the sailboat
technical error (STE, the sailing analog of flight technical error,
that is the difference between the measured position and the
reference position). Previous characterization of the coast-guard
differential GPS receiver indicated that the navigation sensor error
(NSE) is approximately 36 cm, thus the total system error (TSE) is
less than 1 m (Elkaim, 2001).

Fig. 16 presents the aggregate of all controlled sailing runs
overlaid, along with bounds indicating +1 m. The differences in
path length have to do with the location of the shore, and the
desire not to run aground. Depending on the path chosen, longer
or shorter distances were traversed. The control system perfor-
mance always remains within the 1m bound. As a basis for
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Closed Loop Line Following Performance
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Fig. 16. Aggregate plot of computer controlled sailing passes, with lines at +1m
bounds, overlaid on top of one another.

comparison, the specifications for the top-of-the-line AutoHelm
autopilot indicate a cross-track accuracy of 0.05 nautical miles, or
92.6 m.

8. Conclusions

It has been demonstrated that with the combined advances in
GPS technology, and the advent of low-cost sensors, an unmanned
sailboat can be built that can navigate with unprecedented levels
of accuracy. By utilizing a novel wing-sail propulsion system, the
difficulties of actuating a sail have been overcome, and high
authority control can be realized. With the trolling motor
providing thrust, the identification-based controllers showed very
good performance, with a mean of less than 3 cm, and a standard
deviation in cross track error of approximately 10 cm. With the
wing-sail propulsion, the identified controllers demonstrated
sailboat technical error (STE) in line following less than 0.3 m
was achieved, in challenging conditions. Combined with a
navigation sensor error (NSE) of 0.36 m, this yields a total system
error (TSE) of less than 1 m.

Within the system identification and control design issues
exists a rather large caveat: the assumption that the Atlantis
powered by the trolling motor is sufficiently similar to the Atlantis
under wing-sail propulsion such that a control system designed
for one will work well with the other.

There was, in fact, little basis for this assumption.

There simply was not enough time to wait for the wing to be
finished before designing the control system and performing the
open-loop system identification tasks. Nor was there enough time
or funds for the project to delay while the very last bit of
performance could be eked out of the system through the
exploration of other control topologies. Instead, it was thought
that the best strategy would be one that got the Atlantis
navigating on its own as soon as possible, even without knowing
if there might be more sophisticated control design techniques. In
addition, the trolling configuration was deemed much less

probable to capsize the catamaran or injure the crew, resulting
in a lower risk for development and testing. At a minimum, the
non-control engineering issues (such as sign errors in the code
that performed control) could be discovered without destroying
expensive and irreplaceable hardware.

But most importantly, the assumption proved valid and the
controller design indeed worked quite well.

The dynamics of the wing sail are so benign that the catamaran
hardly heeled. Thus the dynamics were quite well matched from
the trolling motor to the sailing tasks. Interestingly enough, the
trolling motor was never able to bring the Atlantis up to the
speeds at which she sailed. What is remarkable about this is that
the identified model/estimator/regulator combination proved
sufficiently robust that it performed very well completely outside
the range of parameters over which it had been designed.
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