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Abstract— This paper presents a preliminary framework
for generating spatially deconflicted paths for multiple UAVs
using Bézier curves. The critical issue addressed is that of
guaranteeing that all the paths lie inside a pre-defined airspace
volume. Its is shown that Bézier curves reperesent a natural tool
for meeting this requirement. The paper reviews the essential
properties of the Bézier curves that are used to guarantee spatial
deconfliction between the UAV paths as well as airspace volume
contsraints. The generated curves are not only non-overlapping
but separated by a minimum distance chosen prior to flight. It is
then shown that the path generation problem can be formulated
as a constrained optimization problem over a finite optimization
set and solved using standard MATLAB optimization tools.
Simulation results are presented along with its discussion. The
paper includes an analysis of numerical solutions obtained as
well as discussion of future work.

I. INTRODUCTION

Current civilian applications for UAV’s include border
surveillance, whale and other marine mammal tracking,
forest fire detection and monitoring, power-line verification,
and search and rescue missions in disaster areas [8].

As these flying vehicles start to be more widely adopted,
and missions become more demanding, the use of multiple
vehicles is a natural evolution from single-vehicle systems.

When flying multiple UAVs in a given airspace, one has
two options regarding their arrangement: either fly them in
formation, or have them fly independently within a con-
strained section of the available airspace not to interfere
with each other. Deciding which of these two options works
best is solely dependent on the actual state of the mission.
In any given task, one might switch from independent to
formation flying and vice versa. For instance, multiple UAVs
monitoring sectors of a forest fire independently might be
required to converge to an area to search in formation for a
fallen firefighter.

Making such a transition presents several challenges. First
there is no a-priori information on the state of each vehicle
when the transition is required. Second, the vehicles must
move into (or out of) formation in such a way that their
paths are spatially deconflicted. And third, if moving into
formation, they must arrive at a given location simultane-
ously.

The work presented in this paper addresses precisely those
transitions. Bézier curves are used to generate a set of
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feasible paths and selecting an optimal one based on airspace
constraints. By using Bézier curves, the paths are guaranteed
to stay in a bounded airspace as long as the curve’s control
points remain inside of that airspace.

This paper builds on the results obtained earlier. In partic-
ular, in [5] Yakimenko, et.al. extended the work presented in
[6] for autonomous shipboard landing of UAVs and applied
it to schedule sequential recovery of UAVs using direct
method[12] to select a suboptimal solution. This idea was
further extended in [4] using fifth order polynomials for near
real-time generation of sub-optimal solutions. Using Bézier
curves to represent flight paths has several advantages:
• The airspace boundaries constraints are satisfied by

construction.
• The implementation is recursive but numerically effi-

cient.
• The minimum number of control points is determined

by the number of boundary conditions of the problem.
Bézier curves have previously been used for path planning

but in different context. For example in [9] the authors used
3rd order Bézier curves to generate reference path points (for
automated guided vehicles), and then for creating trajectories
along these path points using splines. In [7] Bézier curves
are used for path planning of planetary exploration rovers.
Although this is inherently a 3D problem (due to planet’s
topography), planar Bézier curves (2D) are projected onto
the digital elevation map to simplify the optimization prob-
lem and guarantee path-wheel contact. This treatment [7]
addresses obstacle avoidance, but for obvious reasons these
obstacles are assumed to be static.

The novelty of the work presented in this paper is in uti-
lizing Bézier curves to formulate a constrained optimization
problem that results in spatially deconflicted flight paths for
multiple UAVs that lie inside a pre-specified airspace. We
obtain this by using a straightforward algebraic framework
that takes advantage of some of the properties of Bézier
curves discussed.

The rest of the paper is organized as follows: Section II
presents a brief review of Bézier curves and de Casteljau’s
algorithm. Section III formally sets up the problem and
presents the framework for the independent-to-formation
flight transition. Section IV describes the simulation setup
and finally results of extensive MATLAB simulations are
presented in Section V.

II. BÉZIER CURVES

Bézier curves are named after the French engineer Pierre
Bézier, who developed them in the late 50’s to facilitate the
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design of automobile bodies. Today Bézier curves are widely
used in computer graphics and computer aided design [10] .

Bézier curves (figure 1) are completely described by a set
of coordinates called the control points. The polygon that is
formed by joining sequential control points is known as the
control polygon. The n-th degree Bézier curve is described
by:

P (τ) =
n∑
i=0

Bni (τ)Pi, (1)

where τ is a dimensionless parameter, Bni (τ) are the blend-
ing functions and are generally described by the Bernstein
polynomials,

Bni (τ) =
(
n

i

)(
τf − τ
τf − τ0

)n−i(
τ − τ0
τf − τ0

)i
, i = 0, 1...n,

(2)
and Pi are the control points.
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Fig. 1. Fourth Order Bézier Curve

These curves have the following characteristics:
• A curve of degree n has n+ 1 control points.
• It starts exactly in the first control point P0 and finishes

exactly in the last control point Pn.
• It is tangent to the control polygon at the first and last

control points.
• The shape is solely determined by the location of the

control points.
• The curve lies within a convex hull determined by the

control points.

A. Bézier Curve Derivative: The Hodograph

The derivative of a Bézier curve is generally known as
the hodograph of the curve and it is solely determined by its
control points [10]. The hodograph of an n-th degree Bézier
curve is just another Bézier curve of degree n − 1 whose
control points are given by:

Di =
n

τf − τ0
(Pi+1 − Pi), (3)

for i = 0, 1, . . . , n−1. Higher order derivatives can be simply
obtained by getting the hodograph of the hodograph.

B. The de Casteljau Algorithm

Named after Paul de Casteljau, a French mathematician
who devised this numerical construct algorithm in 1959,
the de Casteljau algorithm formally describes a recursive
relation to divide a Bézier curve Pτ0→τf

(τ) in two segments
Pτ0→τ1(τ) and Pτ1→τf

(τ) [1]. Apart from dividing the curve
in two segments, De Casteljau’s algorithm has two more
practical applications. First, it can be used to sequentially
divide a curve until the control polygon converges with it,
which is used when computing separation between curves.
Second, De Casteljau’s algorithm is used to compute the
coordinates of any point along the curve, given any parameter
value τ1, since P (τ1) = P0,n.

Let Pτ0→τf
(τ) be defined by the control points

{P0,0, P1,0, P2,0 . . . , Pn,0}. The resulting segments obtained
after applying de Casteljau’s algorithm will be defined by
the following sets of control points (figure 2):

Pτ0→τ1(τ) = {P0,0, P0,1, P0,2 . . . , P0,n}
Pτ1→τf

(τ) = {P0,n, P1,n−1, P2,n−2 . . . , Pn,0} (4)

where the Pi,js are given by:

Pi,j = (1− λ)Pi,j−1 + λPi+1,j−1, (5)

for j = 1, 2, . . . , n, i = 0, 1, . . . , n− j and

λ =
τ1 − τ0
τf − τ0

. (6)
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Fig. 2. Bézier Curve Divided Using de Casteljau’s Algorithm

III. THE SPATIALLY DECONFLICTED PATHS PROBLEM

This section describes the general framework for generat-
ing spatially deconflicted paths for multiple UAVs. First it
introduces the notation and setup for one vehicle (subsection
III-A), then extends it to multiple vehicles in subsection III-
B and finally presents the complete problem formulation and
objective function to use in path deconfliction algorithm. It
is important to note that in the following subsections, the
problem is described in terms of 4th order Bézier curves

1214



and the drawings are presented in 2D only for the sake of
clarity, However, nothing presented herein limits either the
order of the Bézier curve, or its applicability to non-planar
trajectories, as it will be demonstrated in section IV.

A. One-Vehicle Bézier Path

Let P0, P4, v0, vf be the initial and final position and
velocities of the vehicle. Let Pc(τ) be the Bézier path that
takes the vehicle from P0 to P4.

Furthermore, let the control point P1 lie along a line
in the same direction than the initial velocity vector v0

and the control point P3 lies along a line with the same
direction as the finial velocity vector vf (figure 3) and τ be
a dimensionless parameter of the curve.
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Fig. 3. One vehicle path description based on initial and final position and
velocities using Bézier curves

From the above description it is clear that if one needs
to modify the shape of Pc(τ) (without changing initial nor
final conditions) one has (n − 3) × 3 degrees of freedom:
P2, . . . , Pn−2 to move around and reshape the path. It is
also clear, that even though this paper does not deal with the
inverse dynamics of the problem, the curve reshaping can not
be made arbitrarily since the vehicle moving along Pc(τ)
has flight dynamics limitations (maximum and minimum
speed, acceleration, turn rate and such) that it can achieve.
To guarantee that the generated paths are feasible for the
UAV dynamics, a restriction on the first and second order
derivatives of the path are imposed to limit the rate of change
of the curve.

fmin ≤ ‖P ′c(τ)‖ ≤ fmax
‖P ′′c (τ)‖ ≤ smax. (7)

Finally, Let R be the radius of a sphere bounding the per-
missible airspace. Then, assuming that P0, P1 and Pn, Pn−1
are located inside the airspace, one must place the rest of the
control points inside the convex hull given by the sphere :

‖Pi − Pct‖ ≤ R ∀i = 2 . . . n− 2, (8)

where Pct is the location of the center of such sphere.

B. Multiple-Vehicles Bézier Path Deconfliction

The framework presented for one vehicle in the previous
section can be extended to multiple vehicles with two addi-
tional constraints: the generated paths must have a minimum
separation Emin among them; and the vehicles must use the
shortest possible path from P0 to P4. For the minimal path,
one can use a cost function that penalizes excessive lengths,
as proposed in [3]:

J =
∫ τf

τ0

kF (τ)dτ. (9)

For the minimal separation, since there is no closed form
of determining the closest point of approach of a Bézier
curve to a given point, then a numerical solution can be used.
For this, the Bézier curve is iteratively subdivided using de
Casteljau’s algorithm until the distance d = ‖P0 − P4‖ for
each segment, is smaller than the minimum separation Emin.
This has two effects, as shown in figure 4: First, it makes
the control polygon converge to the actual curve after a small
number of iterations (typically less than 50); and second, it
provides a set of sample points (not equally spaced) that can
be used as key points to perform exhaustive search against
those of the other paths to find the closest distance Di,j ,
between paths i and j correspondingly.

Control PolygonControl Polygon
Bezier CurveBezier Curve
Key PointsKey Points

Fig. 4. Curve Poligonization using de Casteljau’s Algorithm

C. Complete Problem Formulation

Let Ξi be the vector of optimization parameters given
by: P2, . . . , Pn−2 for i = 1, . . . ,m where m represents the
number of UAVs and n the Bézier curve’s order. Then the
spatially deconflicted paths can be obtained by solving the
following non-linear, constrained minimization problem:

F =

 min
Ξi=1,...,m

J =
m∑
i=1

Ji subject to (7) and (8)

Di,j ≥ Emin ∀i 6= j, i, j = 1, . . . ,m.
(10)
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IV. SIMULATION SETUP

Several Matlab scripts were written to set up a simulation
scenario that takes three UAVs ( labeled UAV1, UAV2 and
UAV3) from arbitrary starting locations and solves (10). This
task brings UAVs into a randomly selected final position
and heading 150 m apart in formation using 5th order
Bézier paths; the order of the curves was incremented to
5 in order to allow the additional degree of freedom to
solve spatial separation (minimal distance) constraint. Table
I shows details of the initialization that were passed into
Matlab’s Optimization Toolbox for non-linear constrained
minimization by using fmincon [11] function.

TABLE I
SIMULATION INITIALIZATION AND CONSTRAINTS VALUES

Initial Conditions
Position Random within a 5 Km radius.

Orientation Random

Final Conditions
Position Random for UAV1; 150 m spaced in x direction

for UAV2 and UAV3.
Orientation Random for UAV1; UAV2 and UAV3 identical

to UAV1.

Constraints
fmin 10
fmax 40
smax 0.8
Emin 60 m

Optimization Vector Ξ Initialization
τ 400 s

P2, P3 As described in section IV-A

A. Control Points Initialization

Four of the n+ 1 control points are explicitly determined
by the initial and final conditions of the problem (see Section
III-A). But care must be taken in choosing the initial location
of the rest of the control points, for this case P2 and P3,
before passing Ξ to the optimization function. Since it is
known that the path will travel in some way from P1 to P4

then it results as an obvious choice to try to place them
in the vicinity of that “must-follow” path. For the initial
location of P2 and P − 3, two approaches were used. The
first consisted in placing P2 and P3 equally spaced along the
line P1P4. This approach worked well but sacrificed some of
the flexibility of using a higher order Bézier path, by having
effectively four of the six control points in a line at the start
of the problem. The second approach, which was used to
produce all the results presented in the following section,
was to place the control points 45◦ off the line P1P4.

V. RESULTS

The results presented in this section correspond to 252
independent simulation runs with different initial and final
conditions as described in section IV. Of these runs, 12.4%
failed to converge and are therfore discarded from the data
presented in figure 5.

As expected, the number of iterations and cost function
evaluations performed by the constrained minimization func-
tion is heavily dependent on the initial conditions. But for
those that converged, it did so by using between 150 and
300 iterations and four to ten function evaluations (figure 5).
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Fig. 5. Number of Iterations and Function Evaluations for Multiple
Simulations

When comparing the results from [4] with those obtained
here, although the same problem is addressed in both and
final results are very similar (figure 6), the Bézier method
has the advantage of guaranteeing the boundedness of the
created flight paths by simply limiting the location of the
control points.

For each run the proposed flight paths where plotted.
Figure 7 presents the generated spatially deconflicted Bézier
paths of a typical simulation run in Matlab. Another question
that was raised during the initial testing was how much is the
algorithm really modifying the flight path form the starting
conditions. Figure 8 shows a set of spatially deconflicted
Bézier flight path and shows for each flight path the initial
and final location of the control points and consequently the
change in the shape of the path.

VI. CONCLUSIONS AND FUTURE WORK

This paper presented a preliminary framework for genera-
tion of spatially deconflicted paths for multiple UAVs using
Bézier curves. It has demonstrated that a key advantage in
using Bézier curves lies in guaranteeing that the resulting
flight paths lie inside a bounded airspace by construction.
Results also show good convergence properties and an ac-
ceptable computational load. This leads us to believe that
performance will improve when the algorithm is translated
form Matlab’s interpreted language to C. However, further
study is required to determine for which initial conditions
the algorithm fails to converge.

The next step will be to incorporate inverse dynamics into
the simulation and then to migrate code to C for hardware in
the loop simulation. Furthermore, work is already underway
at UCSC’s Autonomous Systems Lab to incorporate parts
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Fig. 8. Spatially Deconflicted Flight Paths and Displacement Performed by the Minimizations
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Fig. 6. Comparing Results from the Polynomial Method Presented in [4]
and Bézier Paths. Top: Bézier method. Bottom: Polynomial Method (after
[4] )
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of the work presented here into its autonomous ground
vehicle: The Overbot [2]. Ground tests with the Overbot are
scheduled for the end of the year with following flight tests.
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