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ABSTRACT 
Containment data models are a subset of entity relationship 
models in which the allowed relationships are either a type of 
containment, storage, or inheritance. This paper describes 
containment relationships, and containment data models, applying 
them to model a broad range of monolithic, link server, and 
hyperbase systems, as well as the Dexter reference model, and the 
WWW with WebDAV extensions. A key quality of containment 
data models is their ability to model systems uniformly, allowing 
a broad range of systems to be compared consistently.  

Categories and Subject Descriptors 
H.2.1 [Database Management]: Logical design – data models; 
H.2.3 [Database Management]: Languages – data description 
languages;  H.3.4 [Information Storage and Retrieval]: Systems 
and Software 

General Terms 
Design, Theory 

Keywords 
Containment data modeling. Hypertext data models.  

1. INTRODUCTION 
In our daily lives, we use containers all the time. Students use 
backpacks or bags to carry their books, and travelers use suitcases 
to carry their clothes. When shopping, we place our purchases 
into a basket or cart, and then carry home the goods in a shopping 
bag. If we drove to the store, these bags are placed in the trunk of 
our car, making nested containers: goods in bag in trunk in car. In 
all of these examples, the item is physically contained within the 
container, and can only belong to one container at a time. 

Unlike physical items, objects in a computer have the quality of 
easy duplication at low to trivial cost, and this means that 
computer containment is not zero-sum: the same object can 
belong to multiple containers. The ease of object duplication 
afforded by computers dramatically increases the utility of 

containing objects using references, and holding the same object 
in multiple containers.  

Computer containers fill many roles, providing organization of 
large collections of objects into smaller units, a form of 
modularization [8], and information hiding via encapsulation 
[15,29]. Containers can also be used to model compound 
documents, for example, the combination of some text and image 
objects to model a document containing figures. Dexter 
composites exemplify this use [17]. Just as with physical 
containers, computer containers are used to transport items, 
examples including ZIP files, and the MIME multipart/related 
packaging of documents in electronic mail [21]. 

It is not surprising that containers frequently appear in computer 
information systems as a mechanism for grouping and organizing 
data items. What is surprising is the lack of emphasis on modeling 
these commonly occurring containment relationships. Ideally, we 
would like to model the containment properties of hypertext 
systems with a mechanism that has the following properties: 

�� Uniformity: model containment properties of systems using a 
minimal set of abstractions with constant meaning. Instead of 
providing a normative definition of hypertext concepts, and 
then mapping system abstractions into these concepts (a la 
Dexter [17]), ideally we want to use atomic entities to build 
up models of each system’s hypertext concepts. 

�� Utility: easily answer basic hypermedia data model questions 
such as, “are links to whole works, or to a subregion in a 
work (i.e., is there a notion of anchoring?)”, “are links 
separate from, or part of documents”, and “is there some 
notion of composite?” 

�� Support Analysis: be able to examine systems to tease out 
different design spaces employed in each system’s data 
model. 

�� Graphic formalism: Communicate to a wide range of parties, 
inside and outside of hypermedia community, with small 
time needed to learn graphic representation, and with most 
people having an intuitive understanding of the formalism. 
Allow commonality among systems to be visually evident. 

�� Concise format: Be able to fit the containment models of 
multiple systems onto a single page or screen. This allows 
more rapid comparison of system data models. 

�� Cross-discipline: Can be used to model the containment 
properties of other types of information systems, such as 
Software Configuration Management and Document 
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Management systems, and compare them to hypertext 
systems. 

Previous work by the author introduced the concept of 
containment data modeling, using it to describe the design spaces 
for link and structure versioning that occur in hypertext 
versioning systems [34]. The present paper significantly extends 
this prior work by expanding the treatment of containment data 
modeling. It then proceeds to give containment data models of a 
wide range of hypertext systems, including examples of 
monolithic, link server, hyperbase, open hyperbase, and hypertext 
versioning systems, as well as the Dexter model [17], and 
WWW/WebDAV [35]. Common features visible in the data 
models of each class of systems, and across all systems, will be 
discussed. 

2. CONTAINMENT DATA MODELING 
Modeling systems in a uniform way requires that the modeling 
mechanism contain system-neutral basic modeling blocks. For 
example, the links in the Dexter hypertext reference model [17] 
could not be used as the basic modeling block for representing 
links in all hypertext systems, since Dexter links embody specific 
design choices (links contain two endpoints, where each endpoint 
holds a component identifier and an anchor identifier, in the 
context of a data model where the anchor is an attribute of the 
component) that are not present in other systems. Neither KMS 
[2] nor NoteCards [31] has a first-class anchor concept, and 
mapping their links onto Dexter links requires creating pseudo-
anchors that are not present in the original system.  

Ideally we want to create data models using non-hypertextual 
entities that can be mapped onto hypertext system abstractions in 
a direct and unforced way. To achieve this goal, extended entity-
relationship models [7], an important member of the class of 
semantic data models [26,19], are the basic modeling method 
used for containment data modeling of hypertext systems. Since 
the notion of an entity carries with it relatively few assumptions, it 
carries relatively few biases into the model. This generality of the 
entity concept is what leads containment data modeling to have 
the property of uniformity when modeling hypertext systems. 

A desire to avoid model bias motivates the choice of modeling 
entities using each system’s specific terminology. It is possible to 
choose an abstract term such as “work” for the documents or 
media that are linked together, and then map onto it similar terms 
like document, node, component, and resource. This modeling 
move would privilege the chosen definition of work, and thus 
hide the differences in meaning inherent in the different terms. It 
would also make it more difficult to check the correctness of a 
model, since the correspondence between model entities and 
entities in the original source(s) is no longer one to one. However, 
using a single set of terms might improve modeling uniformity, 
and ease detection of patterns within the data models. For the 
present audience of hypertext researchers, we choose to model 
systems using their original terms; for future, more general 
audiences we will likely reverse the decision. 

Entity-relationship modeling was chosen over alternatives such as 
object-oriented modeling [6] due to its emphasis on static 
relationships, and the fact that it does not involve modeling 
behavioral aspects of systems entities, such as methods and their 
parameters. Introducing methods and their parameters into the 
model acts, in this case, only to obscure the key containment and 

storage relationships. In the past, semantic data modeling using an 
enhanced entity-relationship model was successfully employed in 
developing the HB1/SP1 system [28]. 

The essential elements of entity-relationship data models are 
entities, and relationships [26,19]. Entities signify abstractions, 
such as works (documents), anchors, links, and container types. 
Typed relationships exist between the entities, and this type is 
either predefined, such as the “is-a” (inheritance) relationship, or 
is defined by a specific model. Containment relationships are an 
example of these. Graphical representations of entity-relationship 
data models can be made using the intuitive notion that entities 
correspond to nodes in a graph, while the relationships correspond 
to arcs. This is the same intuition that underlies viewing a 
hypertext as a graph, with works as nodes, and links as 
relationships. 

With any modeling mechanism, some elements are emphasized, 
while others are abstracted away. Containment data modeling 
emphasizes containment and storage relationships among 
hypertext data model entities. Other important aspects of the 
internals hypertext systems are not visible in these models, 
including such items as scripting, search functionality, and 
message passing. These additional aspects can be depicted in 
other kinds of diagrams, requiring multiple diagrams to capture all 
facets of a particular system.  

2.1 Modeling Primitives 
2.1.1 Entities 
A typical entity-relationship (E-R) model uses entities to model 
data items. In the traditional use of entity-relationship modeling 
for databases, entities contain a series of attributes, and these 
attributes are basic data types, such as integers, floating point 
numbers, and strings. For example, an address entity would be 
represented as containing street, city, and zip code string 
attributes. When modeling hypertext systems, entities represent 
abstractions such as works, anchors, and links. While the concrete 
representation of anchors and links is similar in granularity to 
typical entities used in database modeling, the concrete 
representation of works is much larger, and can be organized 
according to one of many different internal formats, such as a 
word processing, spreadsheet, or bitmap image organization. 
Objects, which represent works, anchors, and links, typically take 
one of three organizations: all data, data plus properties, and all 
properties. The data plus properties and all properties 
organizations are examples of data aggregation, where the object 
is composed of one or more properties, and, in the case of the data 
plus properties organization, a data item representing the contents. 
Departing from typical E-R diagramming convention, this 
aggregation of data items is not modeled by having the properties 
and contents be modeled as attributes. Instead, properties and 
contents are modeled as entities, and an inclusion containment 
relationship binds them to their parent entity. 

Entities are also used to model high-level architectural elements, 
such as a file system. These high-level architectural elements are 
used when modeling storage relationships, and this use of entities 
to represent architectural elements is a departure from the typical 
database modeling use of E-R diagrams. Placing architectural 
elements and data model elements in the same diagram combines 
together two concerns that are usually separated. Architecture 
diagrams usually only contain architectural elements, and do not 



address data modeling issues, while data models only contain data 
items, and do not address architectural issues. By combining 
them, storage control choices much clearer. For example, the 
defining difference between link server and hyperbase systems is 
control over storage, with hyperbase systems preferentially 
providing storage for works and link server systems delegating 
this storage to the filesystem instead. By making storage 
relationships explicit, the difference between open hyperbase and 
link server systems is more visible. 

Entity-relationship models have entities composed of attributes. 
This has two drawbacks. One is that it privileges the entity, at the 
expense of the attribute, rather than treating abstractions 
uniformly. Since entities have an inclusion containment 
relationship with attributes, entities are treated as the primary data 
item, the thing that is described by the secondary items, the 
attributes. Second, it creates a special category for the aggregation 
relationship between entities and attributes, rather than treating it 
as just one point in a larger design space of containment. We 
prefer to treat entities and attributes the same, calling both 
entities, and then explicitly model the containment relationship 
between them. Hence, when creating data models for hypertext 
systems, data aggregation will be represented using inclusion 
containment relationships with the characteristics of single 
containment, single membership, and no ordering. 

In the graphical representations of data models, a rectangle will be 
used to represent an entity defined by a hypertext system. An 
unboxed textual label represents other entities that exist outside 
the hypertext system, such as a file, or filesystem. 

2.1.2 Relationships 
There are three relationship types used when creating data models 
of hypertext systems: containment, inheritance, and storage. In 
graphical representations, an arrow-tipped line represents a 
relationship. Relationships are directional, and exist in both 
directions. So, for example, a container entity “contains” other 
entities, which are “contained by” the container. 

The containment relationship is used to represent sets of entities. 
Containers have two main aspects, described below (and also 
presented in [34]). 

Abstract properties of the container: Qualities of the container 
that are mathematic set properties, rather than properties of a 
specific computer representation, these being: 

�� Containment: For a given entity, the number of containers 
that can hold it. Choices are: (a) single containment, an entity 
belongs to just one containment set, or (b) multiple 
containment, an entity belongs to multiple containment sets, 

�� Membership: For a given container, the number of times it 
can contain a given entity.  Choices are: (a) single 
membership, an entity can belong to a containment set only 
once, or (b) multiple membership, an entity can belong to a 
containment set multiple times, in which case the 
containment set is a bag, or multiset, 

�� Ordering: The persistent ordering of a container. Choices 
are: (a) ordered, the entities within the containment set have 
a fixed successive arrangement, or (b) unordered, the entities 
have no prescribed arrangement, (c) indexed, the 
arrangement is determined by a specification based on entity 
values or metadata, (d) grouped, subsets of members are 

ordered, but between subsets there is no ordering (e.g., 
{{a,b},{c,d,e}} or {{c,d,e},{a,b}}). 

Containment type: How containment relationships are 
represented: (a) inclusion, or (b) referential (both described 
below). 

Broadly, there are two ways to represent that a container contains 
a particular entity. The container can physically include the 
contained item, or it can use an identifier as a reference to its 
members. The former case is known as inclusion containment, the 
latter, referential. Whenever two entities have a containment 
relationship between them, this relationship can be represented 
using references, following the permutations of identifier storage: 
the identifier can be stored on the container, on the containee, or 
on both. Additionally, identifier storage can be delegated to a 
separate entity, a first-class relationship. However, since the first-
class relationship is itself a container, the same permutations of 
identifier storage apply between the container and one endpoint of 
the relationship, and between the containee and the other 
endpoint. Typically the first-class relationship holds identifiers for 
both the container and containee. 

Containment relationships have cardinality, depicted as numbers 
or the letters M and N (more than one, or many) on the 
relationship, expressing the number of entity instances that can 
exist at each end of the relationship. Note that the number at the 
container end of the containment relationship must agree with 
whether it is single containment or multiple containment. Since 
single containment indicates the entity can only be contained by a 
single collection, it must be represented by a “1”, while multiple 
containment is represented by M or N, reflecting that the object 
can belong to multiple containers. 

The inheritance, or “is-a”, relationship is used only to avoid visual 
clutter due to the duplication of similar entities in the data model. 
Recapitulating the complete inheritance hierarchy is not a goal, 
since this is better accomplished by a separate diagram focused on 
inheritance relationships. Entities inherit all of the relationships of 
their parent, thus avoiding the need to duplicate all of these 
relationships on each child. Following the graphical convention 
given in [19], inheritance relationships are graphically represented 
using a thick double line. 

The storage relationship represents that a specific architectural 
element provides physical storage for an entity. Storage can be 
viewed as a specialized form of inclusion containment 
relationship, where the containing entity is outside the set defined 
by a specific hypertext system. For example, in the Intermedia 
system, the filesystem provides storage for hypertext webs, and 
for documents [38]. It is useful to model this fact, since webs are 
stored separate from linked documents, and hence it is possible to 
have multiple webs over the same set of documents. Storage 
relationships are only used when the storage of entities is split 
among multiple architectural elements, as in a link server system, 
where objects are stored separate from the links between them. 
When only a single architectural element stores all entities, as in 
most hyperbase systems, storage relationships are omitted for 
clarity. The graphical depiction of a storage relationship is a thick 
solid line. 

Figure 1 (below) provides the key for the graphical notation used 
in containment data model diagrams. Solid lines represent 
inclusion containment, and dotted lines represent referential 
containment. A single circle at the head of a relationship modifies 



the relationship to indicate it is ordered, and a second circle 
indicates multiple membership. It is only in the data models of 
hypertext versioning systems that multiple membership and 
ordered referential containment are encountered. 

2.2 Advanced Containment 
The aspects of containment described in the previous section 
cover the majority of containment relationships, as is termed basic 
static containment. However, some systems provide advanced 
containment functionality, such as constraints on the containment 
relationships, and dynamic containment, which allows included 
objects to be determined by a computational process. This 
advanced containment capability is described below. 

2.2.1 Containment Constraints 
Some containers offer additional capabilities that extend the 
containment design space. These are: 

Type of contained objects: Especially in systems that support a 
wide variety of object types, containers may limit, or explicitly 
state the type of objects that can be contained. For example, in the 
Hypermedia Version Control Framework [18], the association set 
is a container that can only contain associations, and in Aquanet 
[22], schema relations are containers that may restrict the type of 
contained objects. This issue is noted as the “Type” aspect of 
composite design in [13], p. 84. Containment data models 
represent this constraint by having containment arcs to all of the 
allowed entities.  

Number of contained objects: Containers may have a fixed size, 
or an upper bound on their size. For example, Aquanet schema 
relations can have a fixed number of contained items, such as 
when modeling an argument relation (see Figure 2 of [22]), which 
has two slots for statements, and one slot for rationale. When only 
one kind of entity is contained, such as when a link contains only 
two anchors, the containment relation’s cardinality can express 
the number of contained objects. But, if the constraint is of the 
sort, “two instances of the following three entities”, then this must 
be expressed in a text description associated with the diagram. 

Typing of the container: the previous two capabilities, 
specifying the number and type of contained objects, can be 
viewed as two kinds of constraints that would be given in the 
definition of a specific container type. Aquanet schemas 
essentially define new container types with each new relation, and 
DHM [11] provides several container subclasses, such as the 
GuidedTourComposite and TableTopComposite. Specific 
container types can express a wide range of structures, as noted in 
[13], p. 84-85. Compound documents can also be expressed using 
a container type that provides viewing and editing semantics for 
the contained objects that allows the container to behave like a 
single document, instead of a set of independent objects. 
Subtyping is represented using inheritance relationships in data 
model diagrams. 

2.2.2 Dynamic Containment 
For all containment types except for inclusion, a container can be 
viewed as a mapping from the set of all objects to the set of all 
containers. For single containment, this mapping is M:1, where M 
is the number of objects, while for multiple containment, this 
mapping is M:N, where N is the number of collections. With 
static containment, the set of members is explicitly listed. For 

dynamic containment, the mapping from objects to collections is 
generated by a function. 

Queries are by far the most common functions used to 
dynamically create containers. DHM [11], the Hypermedia 
Version Control Framework [18], and CoVer [14] are all 
examples of systems that support the population of containers 
from query results. There are two ways dynamic containment can 
be employed: 

Query results specify the endpoint of one containment 
relationship: In this approach, each containment relationship can 
have a query associated with it, and this query typically is 
designed to return a single result, the endpoint. Thus the query 
determines a single element of the container. This approach is 
frequently employed to pick out a single revision from all the 
revisions of an object by scoping the query to just a single 
versioned object, and by selecting a query predicate that returns 
just a single revision. When scoped to a single revision history, 
the query predicate is termed a revision selection rule. The 
Hypermedia Version Control Framework supports arbitrary 
queries for endpoint selection [18]. 

Auld Leaky [32] provides another example of querying for 
endpoints, in this case, for the source of a link. The set of links 
that emanate from a specific node is determined dynamically by 
querying the link database for all links that have a matching 
context specification. Here “context” is a set of attribute-value 
pairs, representing the state of the reader, character, or plot during 
the process of reading a hypertext.  

Query results specify the membership of a collection: Here the 
results of a query comprise the entire contents of the collection. In 
DHM [11], one system that supports this kind of containment, 
these containers are called virtual composites.  

 containment (unordered inclusion) 
(inclusion, single containment, single membership, 
unordered) 

containment (by reference) 
(multiple containment, single membership, 
unordered, containment relationship on container) 

stores 

inheritance 

containment (ordered inclusion) 
(inclusion, single containment, single membership, 
ordered) 

containment (by reference, ordered, multiple 
membership) 
(multiple containment, multiple membership, ordered, 
containment relationship on container) 

containment (by reference, ordered) 
(multiple containment, single membership, ordered, 
containment relationship on container) 

Figure 1 - Key to the graphical notation for relationships in 
containment data model diagrams. 



2.3 Relationship Abstraction Layers 
At its most abstract, a container has an undifferentiated contains 
relationship between itself and its containees. The abstraction 
layer holding this undifferentiated contains relationship is termed 
the abstract relationship layer, since it provides an abstract 
depiction of the contains relationship, providing only the type of 
the relationships, omitting all other details concerning its specific 
properties. Entities in this layer are abstraction signifiers, 
indicating that they have distinct intellectual identity as 
abstractions, irrespective of whether their eventual concrete 
representation has independent identity. The abstract relationship 
layer is shown at the top of Figure 2. 

Precisely specifying the characteristics of the relationships in the 
abstract relationship layer results in a more detailed depiction in 
the explicit relationship layer. Containment relationships at this 
layer have fully specified their containment, membership, and 
ordering properties, along with whether they are using inclusion 
or referential containment. Similar to the abstract relationship 
layer, entities in the explicit relationship layer are abstraction 
signifiers, and may not have distinct identity in the concrete 
representation layer. No refinement of entities occurs between the 
abstract and explicit relationship layers – only the relationships 
are refined. The explicit relationship layer is shown in the middle 
of Figure 2, which depicts two possible ways to refine the 
contains relationship in the abstract relationship layer into 
explicitly defined containment relationships. 

In the concrete representation layer, abstract entities and 
relationships have been reified into specific data structures and 
chunks of state. Similarly, there are many possible computer data 
structures that can be used to represent a specific container as 
concrete data items [1]. Examples include arrays, linked lists, 
hashed lists, comma-separated text strings, and various types of 
trees, to name just a few. These data structures all support the 
operations of creating a set (or bag—all the following operations 
apply to bags too), inserting a member in a set, listing the 
members of a set, deleting a member from a set, and deleting a set. 
Ordered sets add position information to the insert operation, and 
additionally add an operation to order some members of the set. 
Other set operations are also possible, such as union, intersection, 
difference, etc., but are less frequently used by containers. 

Repositories such as databases and filesystems can be used to 
realize the concrete representation. These systems themselves are 
complex, and often have several layers of abstraction within their 
implementation. Figure 2 shows one possible concrete 
representation, out of the universe of possible representations, for 
each of the examples in the explicit relationship layer. The 
inclusion containment example is reified as a file that internally 
has a linked list of data chunks, which are each a sequence of 
bytes. The referential containment example is represented using a 
container data item that holds within it a linked list of identifiers 
to contained data items. The internal structure of contained data 
items is unconstrained. Both the container and containee data 
items have identifiers. 

3. HYPERTEXT SYSTEM DATA MODELS 
Having fleshed out the details of containment data modeling, we 
now examine the fidelity and generality of this technique by 
modeling a broad set of systems spanning the categories of 
monolithic, link server, and (open) hyperbase, and including the 

Dexter reference model and the WWW with WebDAV 
extensions. We use the Flag model’s [24] assignment of systems 
to categories. Altogether, these figures comprise a significant 
survey of existing hypertext system data models. 

3.1 Monolithic Hypertext Systems 
A representative set of monolithic hypertext systems are shown in 
Figure 3, which models the NoteCards [31], KMS [2], Intermedia 
[38], HyperCard [4] and StorySpace 1 systems [5]. In this 
diagram, the modeled entities directly correspond to those of each 
system. So, while the notion of a NoteCards “notecard”, a KMS 
“frame”, and a HyperCard “card” are all similar (they are “card 
shark” systems), each system’s data model uses the system-
specific term for the card-like entity, instead of a more abstract 
term. Each system is modeled directly, without any additional 
mapping needed beyond assigning system abstractions to entities. 

The KMS and HyperCard systems both have links that are 
embedded within a frame/card. These embedded links do not have 
distinct identifiers for each link, and hence their identity is not 
separable from their containing frame/card. Nevertheless, despite 
not having separate identity, these links do play a conceptually 
distinct role in the behavior of each system; they are essential to 
their “hypertext-ness”. Thus, the links are modeled as distinct 
entities, ones that have an ordered inclusion containment 
relationship with their parent frame/card. Each link is modeled as 
a container, one that contains just a single member. 

 

container 

contained entity 

contains 

Abstract Relationship Layer 

Explicit Relationship Layer 

Example #1: Inclusion Example #2: Referential 

container 

contained entity 

contains – single containment, 
single membership, unordered, 
inclusion 

container 

contained entity 

contains – multiple containment, 
single membership, ordered, 
containment relationship on 
container 

Concrete Representation Layer 

A file with a linked list of content chunks 
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members using a linked list of identifiers 
of contained data items. 
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item 

Data 
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Figure 2 – A container at three different layers of abstraction. An 
abstract containment relation (abstract relationship layer) is 
refined into one example each of inclusion and referential 
containment. The explicit relationship layer fully details the 
containment relation, specifying containment, membership, 
ordering, and containment type. For the inclusion and referential 
examples, the concrete representation layer shows an example 
reification of the containers as persistent data items. 
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Figure 3 – Data models of selected monolithic hypertext systems: NoteCards [31], KMS [2], Intermedia [38], HyperCard [4], and 
StorySpace 1 [5].  
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Figure 4 – Data models of selected hyperbase systems: Sepia [30], HyperDisco [37], and HURL (SP3/HB3) [18]. All entities are stored by 
the hypertext system, hence storage relationships are not explicitly shown. 



The specific concrete representation of these link containers is a 
single identifier that specifies the link destination (the member of 
the link container), embedded within its parent frame/card. 

The NoteCards model demonstrates the use of inheritance 
relationships to describe how browser, filebox, sketch, and 
tabletop cards are all specializations of the base notecard entity. 
Despite using inheritance relationships, this diagram does not give 
a complete inheritance hierarchy, instead focusing on only those 
cases where inheritance relationships reduce diagram clutter, and 
make the inter-entity relationships more clear. For example, it is 
also possible to model this system without inheritance 
relationships, but this would entail adding four more inclusion 
containment relationships between the notefile and all of the 
notecard types, and four additional referential containment arcs 
between the link and the notecard types. The diagram would be 
more cluttered, and make the NoteCards data model appear more 
complex. 

The StorySpace 1 and NoteCards models show how containment 
data models can highlight similarities between system data 
models, since both models have a single file that inclusively 
contains nodes and links that otherwise act as first-class objects in 
the model. StorySpace can be viewed as a refinement of the 
NoteCards data model, adding the notion of guard fields and 
anchors (spans) to its links. 

3.2 Hyperbase and Open Hyperbase Systems 
Selected (open) hyperbase systems are shown in Figure 4, which 
gives containment data models of Sepia [30], HyperDisco [37], 
and HURL (SP3/HB3) [18]. Hyperform [36] is not modeled 
because it is a toolkit, with no normative data model of hypertext 
concepts. DeVise Hypermedia (DHM) [12] is not modeled, since 
a research goal of this system was to use the Dexter reference 
model as its internal data model, and Dexter is modeled 
separately, in Figure 6 (below). The containment data models of 
hypertext versioning systems, many of which are extended 
hyperbase systems, are discussed generally in previous work by 
the author [34], and are not repeated here.  

In the hyperbase systems modeled, all hypertext entities contain a 
set of attributes, modeled as an inclusion containment relationship 
between object and attributes. Instead of adding significant 
additional clutter to the diagrams by showing every entity 
containing its set of attributes, a modeling convention is used that 
allows properties of all entities to be described in one place, just 
to the right of the main data model diagram. Object-oriented 
modeling would depict this as a base object, from which all other 
object types are inherited. This type of modeling could have been 
used as well, but at the cost of adding an additional inheritance 
arc for each hypertext system entity. This would add clutter to the 
diagram, defeating the purpose of factoring out the commonality 
of each entity containing a set of attributes. 

The HURL data model (also the data model for SP3/HB3 [20]) 
clearly stands out as unique among all system data models. While 
the “bridge” is somewhat similar to Chimera’s “view” concept, 
the notion of “side” is unique, as is its definition of association. 
Having three separate paths from an association to a persistent 
selection is also unique. Containment data modeling, by concisely 
depicting the HURL data model in context with other systems, 
makes it possible to quickly identify the unique aspects of this 
data model. It also suggests additional avenues of research, such 
as examining how other system data models would behave if 
entities like sides and bridges were introduced. 

3.3 Link Server Systems 
Link server systems are shown in Figure 5 (below), which depicts 
the data models of Sun’s Link Service [25], Microcosm [9], 
Multicard [27], and Chimera [3]. Since the goal of link server 
systems is to provide third-party links among a set of documents, 
these systems often have an entity that represents, inside the link 
server system, a particular external object. This external object 
signifier is modeled as a container that contains a single member, 
the external object. The containment type is always referential, 
since the concrete representation of the container is an identifier 
of the external object (often a filename).  The same modeling step 
is used for Chimera’s viewer, which is a single-member container 
referentially containing an application program. 

Link servers highlight the utility of the storage relationship. By 
explicitly adding the filesystem as an entity to the model, it is 
possible to represent which entities are under the control of the 
link server system, and which are in its external environment. The 
storage relationship shows that the externally linked objects are 
stored by the local filesystem (and hence outside the control of the 
link server system). Entities inside the link server system are 
inside a link database, which itself is stored by the filesystem. 
Inside the link database, the link server system controls all 
entities. 

The data model diagram allows cross-system comparisons. The 
data models of Sun’s Link Server and Microcosm are less 
complex than those of Chimera and Multicard. Chimera and 
Multicard both have additional grouping mechanisms, due to the 
presence of a self-containing container in their data models, 
namely the Chimera hyperweb, and the Multicard group. 
Chimera’s hyperweb only contains anchors and links (in addition 
to other hyperwebs), and hence is directly comparable to 
Intermedia’s “Web”, whereas the Multicard group can only 
contain nodes (in addition to other groups), and hence is similar 
to Dexter and HyperDisco composites, and WebDAV collections. 
Modeling a broad range of hypertext systems using containment 
modeling makes these kinds of cross-system comparisons much 
less difficult. 



3.4 Dexter Reference Model 
Figure 6 shows the Dexter hypertext reference model [16,17]. 
This diagram highlights several advantages to containment data 
modeling. First, the diagram collects in one place a number of 
facts that are spread throughout the text in [17] and the formal 
model in [16], allowing far more rapid understanding of much of 
the Dexter model than from the labor-intensive study of the 
primary sources (an observation that applies to other system data 
models as well).  

The fact that Dexter can be modeled using containment data 
modeling means the modeling mechanism has good uniformity, 
able to represent both hypertext systems and cross-system 
reference models. It also paints a picture of the Dexter reference 
model as one member of a family of hypertext data models, 
embodying its own specific design choices and tradeoffs. Hence, 
containment modeling allows the Dexter model to be directly 
compared with its peers, the data models of other hypertext 
systems. Consider Dexter links, which contain two endpoints, 
where each endpoint contains a document and an anchor, which 
must be inclusively contained by the document. These links are 
very similar to those in HyperDisco, but are otherwise quite 
different from other hypertext systems, where a link typically 
contains either an anchor, or a document, but not both. Dexter 
composites are similar to HyperDisco composites, WebDAV 
collections, and MultiCard groups which all only contain 
documents, in addition to self-containment. 
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Figure 5 – Data models of selected link server systems: Sun’s Link Service [25], Microcosm [9], Multicard [27], and Chimera [3]. All 
Multicard entities are stored within the Multicard persistent storage platform (not shown for clarity). 
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Figure 6 – Data model of the Dexter hypertext reference model 
[16,17]. 



3.5 WWW/WebDAV 
Figure 7 shows the containment data model of the WWW, with 
WebDAV extensions for remote collaborative authoring [35]. 
WebDAV adds to the base Web data model entities for 
containment, and for properties (attributes). As is the case for the 
Dexter model, the WebDAV containment model allows the Web’s 
data model to be compared, in a uniform way, with other 
hypertext data models. While the Web is often treated as a special 
case among hypertext systems, due to its ubiquity and impact, 
from a data model perspective the Web is not unique. It can be 
grouped among the data models of hyperbase systems without 
seeming too far out of place. 

The Web has a data model for links that is directly comparable to 
the KMS and HyperCard models, since all three have the pattern 
of a document inclusively containing links, which in turn 
referentially contain a single document. The primary different 
between the links is the form of identifier used in the concrete 
representation, with the Web using the Internet scale URL. 
Indeed, the similarity between KMS and the base Web data model 
(Figure 7 without containers or properties) is striking, begging the 
question of how history may have been different had KMS 
developed a protocol like HTTP, rather than depending on a 
network file system, and its scalability limitations. 

4. CONCLUSION 
Containment data modeling provides a modeling mechanism 
capable of uniformly representing the data models of a wide range 
of existing hypertext systems. Containment data modeling has 
been validated by presenting the models of 14 existing hypertext 
systems and reference models, the broadest survey to date of these 
models.  

The uniformity of containment modeling is highlighted by the 
ability to decompose and model both Dexter and the WWW in the 
same way as other systems, allowing them to be compared with 
each other and with other systems using a consistent model. The 

understanding of Dexter and the WWW that emerges from this 
process shows them to be non-distinguished peers with other 
hypertext systems, carrying their own design choices and 
tradeoffs, but otherwise with no special distinction to their data 
models. 

Containment data modeling provides a new technique useful in 
comparing hypertext system data models. By concisely 
representing system data models, and then grouping thems 
together, it is possible to quickly see similarities and differences 
among systems, including patterns for handling composites, 
anchors, and links. 

Since containment data modeling focuses on modeling the static 
aspects of system data models, it is complementary to 
architecture-focused models, such as Flag [24], and formal 
models of system semantics, such as the FOHM model [23], or 
Trellis’ Petri-nets [10]. While containment data models are a 
powerful and useful modeling technique, they alone do not give a 
complete picture of a hypertext system, and should be used in 
conjunction with other modeling techniques, providing multiple 
views of distinct aspects of each system. 

Containment data models show significant promise for modeling 
systems in other domains, such as Software Configuration 
Management and Document Management. In our future work, we 
look forward to extending this technique to these additional 
classes of systems, enabling us to perform substantive cross-
domain comparison of information management systems. 
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