Containment Modeling of Content Management
Systems

Dorrit H. Gordon and E. James Whitehead Jr.

Department of Computer Science
Baskin School of Engineering
University of California, Santa Cruz
Santa Cruz, California 95064

{dgordon, ejw}@soe.ucsc.edu

Abstract. Containment models are a specialized form of entity-relation-
ship model in which the only allowed form of relationship is a ‘contains’
relationship. This paper builds on the authors’ previous work on con-
tainment modeling by clarifying the graphical notation and increasing
the expressiveness of the model in a way that expands the technique to
systems outside the hypertext domain. Examples from the hypertext,
hypertext versioning, and configuration management domains illustrate
the cross-domain applicability of this technique.

1 Introduction

The past 35 years have witnessed the emergence of a broad class of systems
to manage digital content. Under the banners of Hypertext, Software Config-
uration Management (SCM), Document Management, VLSI Computer Aided
Design (CAD), and Media Asset Management, theses systems have been devel-
oped to address the distinctive requirements of each community. Despite the
many differences among the systems in these domains, a current of commonality
runs through them all: each of these systems provide a repository that contains
all content, and within this repository content can have associated metadata,
and can be aggregated together into collections. These systems commonly offer
change control functionality: facilities for versioning content, collections, and sets
of these. The systems provide multi-person write access and hence have capabili-
ties for group work, ranging from per-object concurrency control to multi-object
collaborative workspaces.

To date, it has been difficult to explore the commonality among these dis-
parate systems since there is no easy way to compare their data models. In
our previous work, we introduced a novel modeling technique that focuses on
expressing the containment relationships between entities in hypertext systems
[11,12]. This containment modeling technique has been used to describe the data
models of a broad range of hypertext systems, including monolithic (open) hy-
perbase, linkbase, and hypertext versioning [9], as well as the Dexter reference
model [6] and the Web with WebDAV extensions [13]. When applied to hypertext

2 D. Gordon and J. Whitehead

systems, containment modeling provides several benefits, including the ability
to concisely represent complex data models, and easily cross-compare the data
models of multiple systems. It provided a data modeling language that could be
used to describe and reason about sets of hypertext systems, rather than single
systems.

In this paper, we expand the descriptive scope of containment data modeling
to encompass both Software Configuration Management systems, and Aquanet,
the first spatial hypertext system. Aquanet represents a class of hypertext sys-
tems not previously modeled. In the process of modeling these systems, we make
multiple refinements to containment data modeling to adequately capture the nu-
ances of each system. Together, these refinements form the primary contribution
of this work: extending the scope of containment modeling to handle systems
outside the hypertext domain. In so doing, we demonstrate that containment
data modeling is cross-domain, capable of modeling content management sys-
tems in general, not just hypertext systems. Furthermore, by modeling multiple
SCM, hypertext, and hypertext versioning systems in one place, in a consistent
notation, we are able to perform a cross-domain comparison of the data models
of these systems.

In the remainder of the paper, we provide a description of the enhanced con-
tainment data modeling technique, including the semantics of containment, and
a graphical notation for their visual representation. We validate containment
data modeling by using it to model five hypertext systems representative of the
monolithic, spatial, and hyperbase systems, along with three SCM systems, and
one hypertext versioning system. Together, these models highlight the contain-
ment model’s ability to represent complex data models of a range of content
management systems. After each set of models, the paper discusses observed
similarities and differences among the systems. We conclude with a brief look at
future directions for this research.

2 Containment Modeling

Containment modeling is a specialized form of entity-relationship modeling
wherein the model is composed of two primitives: entities and relationships.
Each primitive has a number of properties associated with it. A complete con-
tainment model identifies a value for each property of each primitive. Unlike
general entity-relationship models, the type of relationships is not open-ended,
but is instead restricted only to varying types of referential and inclusive con-
tainment.

2.1 Entity Properties
Entities represent significant abstractions in the data models of content man-

agement systems. For example, when modeling hypertext systems, entities rep-
resent abstractions such as works, anchors, and links, while in configuration

Containment Modeling 3

management systems, they represent abstractions such as versioned objects and
workspaces. The properties of entities are:

Entity Type. Entities may be either containers or atomic objects. Any entity
which can contain other entities is a container. Any entity which cannot container
other entities is an atomic object. Any entity which is contained in a container
may be referred to as a containee of that container.

Container Type. There are two sub-types of container: ‘and’ and ‘xor’. Unless
otherwise specified, a container is generic (i.e. neither ‘and’ nor ‘xor’). ‘And’
containers must contain two or more possible containee types and must contain at
least one representative of each; ‘xor’ containers must have two or more possible
containee types and may contain representatives of no more than one of them.

Total Containees. A range describing the total number of containees that
may belong to a container. A lower bound of zero indicates that the container
may be empty.

Total Containers. A range describing the total number of containers to which
this entity may belong. A lower bound of zero indicates that the entity is not
required to belong to any of the containers defined in the model. Note that for
models in this paper, it is assumed that all elements reside in some type of file
system, database, or other structure external to the system being modeled.

Cycles. Many systems allow containers to contain other containers of the
same type. For example, in a standard UNIX filesystem, directories can contain
other directories. This property indicates whether a container can contain itself
(either directly or by a sequence of relationships). Unless otherwise specified this
paper assumes that cycles are allowed (where existing containment relationships
make them possible).

Ordering. The ordering property indicates whether there is an order between
different containee types (ordering of multiple containees of the same type is
captured as a relationship property). For example, a full name contains a first
name, zero or more middle names, and a last name. The ordering property on the
full name container indicates that the first name goes before the middle names
which go before the last name. The importance of the ordering of the middle
names with respect to one another is captured by the ordering property on the
relationship connecting full name to middle name.

Constraints. The constraints property allows us to express other restrictions
on the containment properties of an entity. Two kinds of constraints currently
identified are mutual exclusion and mutual inclusion.

A mutual exclusion constraint on a container indicates that it may contain
one or the other, but not both, of a pair of possible containees. This occurs in
configuration management systems where a special entity (the versioned object)
exists to hold versions of an object. In this case, an instance of a versioned object
holds versions of only one object type, although there may be several objects
which are versioned in this way.

A mutual inclusion constraint on a container indicates that it must contain
both (or neither) of a pair of possible containees. For example, in a system which
maintains metadata about its contents, it might be possible to create an empty

4 D. Gordon and J. Whitehead

repository, but it would be impossible to create an item in the repository with-
out creating metadata and it would be impossible to create metadata without
creating an item.

These constraints have been described as they apply to containers. They may
also apply to entities with respect to their containers. That is, there may be a
mutual exclusion constraint on an entity which indicates that if it belongs to
one container, it may not belong to another.

The mutual inclusion constraint can also be broken down so that it is uni-
directional. For example, a graph can contain nodes without containing edges,
but it cannot contain edges without containing nodes.

2.2 Relationship Properties

Containment Type. Containment may be either inclusive or referential. Where in-
clusive containment exists, the containee is physically stored within the spaced
allocated for the container. This occurs, for example, when an abstraction is
used to represent actual content (as opposed to structure) in the system. Ref-
erential containment indicates that the containee is stored independently of the
container.

Reference Location. The references which connect containers and their con-
tainees are usually stored on the container; but on some occasions they are
stored on the containee, or even on both container and containee. This property
indicates where the references are stored.

Membership. The membership property indicates how many instances of a
particular container type an entity may belong to. If the lower bound on the
value is zero, then the entity is permitted, but not required, to belong to the
container indicated by the relationship.

Cardinality. The cardinality property indicates how many instances of a par-
ticular containee a container may contain. If the lower bound on the value is
zero, then the container is permitted, but not, required, to contain instances of
the containee indicated by the relationship.

Ordering. The ordering property indicates whether there is an ordering be-
tween instances of a particular entity type within the container indicated by the
relationship. FOR example, full names contain zero or more middle names. Mid-
dle names are ordered in the full name container. Mary Jane Elizabeth Smith is
not equivalent to Mary Elizabeth Jane Smith. We could imagine entering every-
one’s middle names into a drawing for a prize. The collection of entries (assuming
no one’s cheating) would be unordered.

Containee Type. This property is unique to versioning systems. It distin-
guishes between relationships where the container contains multiple versions of
a single containee, single versions of multiple containees, or multiple versions
of multiple containees. This only becomes important when the cardinality of
the relationship is greater than one. It is important because many configuration
management systems have examples of two or more of these cases.

As an example of the first case, some configuration management systems use
an abstraction of an object to contain all the version of that object. There might

Containment Modeling 5

be many objects in the system, but each abstraction contains version of only one
object.

As an example of the second case, configuration management systems all
have some mechanism for selecting the specific version of a number of objects to
include in a release.

As an example of the third case, some configuration management systems al-
low users to construct spaces with any contents they desire (potentially including
multiple objects and multiple versions of those objects).

2.3 Graphical Notation

Entities and Their Properties Entities are represented as nodes of the con-
tainment model graph. The following legend shows the representation of entity
properties on the graph.

. atomic
Entity Type: object
o'-.‘
) LY
Container Type:] xor :
A U
* Sae ’

‘a’ represents the lower bound and ‘b’
represents the upper bound. When the

(a..b) upper bound is unlimited, replace ‘b’
with ‘n’.

Total Containees:

See above. Also note that the notation
may appear anywhere around the

Total Containers: perimeter of the entity.

(a.b)

The cycles, ordering and constraints
properties are described in annotations
to the diagram. See below for further
details.

Other Properties: !

Fig. 1. Entity Legend

Unless otherwise specified, it is assumed that, where possible, cycles are per-
mitted. If cycles are not permitted, the statement no_cycles appears in a con-
tainer’s annotations.

6 D. Gordon and J. Whitehead

If there is an ordering among different containee types in a container, the
ordering is described by an ordering statement. Ordering statements have the
following syntax: order(containee 1, containee 2, ..., containee n). The con-
tainees are listed in order. Only those containees involved in a partial ordering
are listed. If there are multiple partial orderings, the annotation contains one
ordering statement per partial ordering.

Constraints are defined using predicate logic. The most common predicate is
contains(container, containee). A mutual exclusion constraint would appear as
follows: contains(container, containee 1) <» —contains(container, containee 2).

Relationships and Their Properties Relationships are indicated by directed
edges between pairs of entity nodes in the containment model graph. In the
following legend, visual elements that represent the source end of an edge are
shown on the left ends of lines. Visual elements that represent the sink end of
an edge appear at the right ends of lines.

inclusive

Containment Type: i
,,,,,,,,,,,,, referential

Ordering: —Jp» unordered
P ordered
_— on container
Reference Location: o— on containee
®H— on both
Membership: X..y
Cardinality: X..y

Fig. 2. Relationship Legend

In models of versioning systems the containee type is just in front of the
cardinality, followed by a colon. A ‘V’ is used for version, an ‘O’ for object, and
a ‘VO’ for both. For example, if the container may contain one or more versions
of a containee, the containee type and cardinality would be noted on the diagram
as, “V:1..n.”

Why Not UML? It is possible to draw a containment model using the standard
Unified Modeling Language (UML) notation, so why have we chosen to develop a
different notation? There are two reasons: readability and utility. Figure 3 shows
two different versions of the same simple containment model: one drawn using
UML, the other drawn with the notation presented in this paper. The UML di-
agram has considerably more elements than the diagram that uses our notation,
because relationship properties beyond cardinality and membership must be de-
scribed using UML’s annotation mechanism. Applied to a more complex model,
UML notation produces a cluttered, overly complex diagram that is difficult to
read, and which may be too large to print or display conveniently.

Containment Modeling 7

«container»
Stack
{contained by = 0,
contains = 1.}

containment type = inclusion 1 ~container

storage location = on container = — — — — |
ordering = unordered 1 _containee

«containers
{contained by = 1..*, !
contains = 0.}

-containee

1 ~container
containment type = inclusion containment type = inclusion
storage location = on container [~ — — — — — — — | storage location = on container

ordering = unordered ordering = unordered

0.* -containee

«container»
Link
{contained by = 1,
contains = 1}

-container

o

Fig. 3. UML and non-UML representation of the HyperCard [1] containment model.

The UML representation is also less useful than a representation using the
notation we have developed. By describing as many properties as possible graph-
ically, we enable the user to quickly and easily compare models of different
systems. The visual representation allows users to quickly and easily spot the
similarities and differences between systems. In the UML notation, a user would
need to laboriously compare the annotations on each relationship to determine
whether patterns existed.

Although we do not believe the standard UML notation is sufficient for con-
tainment modeling, it would be possible to frame the notation described here as
a UML extension. The stereotyping mechanism in UML allows the creation of
new types of objects and allows the assignment of unique visual representations
for those types.

2.4 Changes to Containment Modeling

In this paper, we have improved upon the containment modeling technique pre-
viously described in [12], in two ways. First, the graphical representation now
shows each axis of variability in the model as a single axis of variability in the
diagram. For example, ordering is shown by having either one arrowhead (un-
ordered) or two (ordered); previously, a circle at the tail of a containment rela-
tionship showed ordering. This frees the circle to be used exclusively to represent
the location of the reference identifier in the referential containment.

Second, we chose to eliminate inheritance and storage relationships from the
modeling system in [12]. Inheritance was only used occasionally, and then only
to reduce clutter on diagrams. When appropriate, it can be represented by a
separate inheritance hierarchy, such as a UML structure diagram. Storage rela-
tionships were mainly used to relate the system to the external structure (such

8 D. Gordon and J. Whitehead

as a file system) where it resided. A gain, this may be valuable information, but
is not truly a part of the containment structure of the system. We have simplified
the containment modeling technique so that it is limited to relationships that
are entirely within the system.

2.5 A Brief Note about Cycles

Upon initial examination, it may seem that simply identifying any container
as allowing or disallowing cycles would be sufficient. In some circumstances,
however, it is not. For example with ClearCase [7], as in many file systems,
directories may contain other directories. This relationship may be cyclic; that
is, a directory may, by reference contain another directory. There is nothing
to prevent the second directory from also containing the first. On the other
hand, some SCM systems express versioning by creating a linear ordering of
objects, where each object points to (contains by reference) its successor (or
predecessor). This requires the self-referential containment relationship to by
acyclic. For SCM systems which version directories this produces a contradiction.
The self-containment relationship which indicates that one directory can contain
another may be cyclic. The self-containment relationship which represents the
linear ordering of versions must be acyclic. Our current cycle property will not
accommodate this situation. We leave to future work the development of a richer
cycle property (or set of properties) to allow us to correctly model this case.

3 Containment Model Examples

3.1 Hypertext and Hyperbase Systems

Containment modeling allows us to see at a glance the similarities and differences
between various systems in a domain. An examination of Figure 4 shows that
all hypertext systems center around three main constructs: collections or groups
of objects, objects, and connections between objects. We have all used the Web
and recognize these general characteristics of hypertext systems. Containment
modeling illustrated them clearly.

It also enables us to recognize differences. A key difference between hypertext
systems lies in their treatment of links. The Web and HyperCard both embed
a set of links in the content of each object as with the “<A href=" construct
of HTML. many hypertext systems, however, do not use embedded links: Note-
Cards, Aquanet, and HyperDisco, for example. Among these systems, though,
there is a variation in what the links contain. Links in NoteCards and Aquanet
referentially point to a content object, while in HyperDisco, links contain lists
of “to” and “from” endpoints. An endpoint is an abstraction that contains an
anchor and either a node or a composite. While not a complete survey of data
models for linking, it seems reasonable that, having modeled the containment
structures of multiple hypertext systems, we could analyze these structures to
develop a design space of anchoring and linking.

Containment Modeling 9

Aquanet Hyperdisco
(0.n) All Entities in
HyperDisco
©
©
1
0o.n 1
M 1 4
Relation (1.n) on
R R P e— Tonst
- Trigger ©nm
1 o Attribute | (1)
1
G Primiive (e— 0.n
End- 0. Anchor
) point? f----m--—— 4 Anchor List (1)
0.n) J0n 0.1 (0.n)
(.n)
WWW/WebDAV Hypercard
©
Notecards
Notefile! !
©.n)
1.n
1 1
————— (1.n)
i 1
0.n
(1)| Property (1) ! !
NoteCard |a--------~ !
2 0.n 3 on

(1.n) ™

Fig. 4. Containment models of selected hypertext systems: Aquanet [8], HyperCard [1],
NoteCards [10], WWW /WebDAV [13], and HyperDisco [14]. Constraints on the dia-
gram are 1 (NoteCards): contains(Notefile, Link) — contains(Notefile, NoteCard), and
2 (HyperDisco): contains(Endpoint, Node) <> —contains(Endpoint, Composite) and
contains(Endpoint, Node) \/ contains(Endpoint, Composite) — contains(Endpoint,
Anchor)

10 D. Gordon and J. Whitehead

In addition to comparing analogous features of a system, containment mod-
eling can show us overall system characteristics. For example, the containment
models in Figure 4 show that both HyperDisco and WWW /WebDAV maintain
some metadata. The HyperDisco metadata system is quite extensive. An entity in
the system may have attributes associated with it. In addition, links have a par-
ticular piece of metadata, a trigger, associated with them. The WWW /WebDAV
metadata is less extensive. It is limited to properties on resources. None of the
other systems show evidence of metadata collection in their containment models.

As with any model, we must recognize that the information drawn from con-
tainment models has its limitations. For example the containment models for
Aquanet, HyperCard, and NoteCards show no evidence of metadata. That does
not mean that these systems cannot support metadata collection. Any of them
could, at a policy level, be used to maintain metadata simply by requiring any-
one who adds a new resource to the system to link it to a metadata resource.
Similarly, while the containment models for WWW /WebDAV and HyperDisco
both illustrate explicit metadata systems, neither system can force users to apply
metadata appropriately. For example, keyword searches on the Web often pro-
duce totally irrelevant information — because website owners frequently pack
their site’s keywords with irrelevant words to generate more hits from search
engines.

3.2 Configuration Management Systems

As we saw with hypertext systems, containment modeling allows us to look for
similarities and differences among systems within a domain.

By examining the models of SCM systems, we can see a fundamental struc-
tural difference between PIE and the others. Both ClearCase and Adele depend
on collecting all versions of a given item into a single container that represents
the abstract notion of each item, independent of a specific revision or variant. In
ClearCase this container is the “versioned object,” while in Adele it is the “in-
terface,” which contains a set of branches representing versions and variants of
that interface. The versioned object abstraction is a key enabler for automated
assistance in constructing configurations. It allows the system to recognize when
two different items in the system represent the same abstraction at different
points in time (versions) or space (variants). Versions are recognized because
they belong to the same versioned objects. Management of varian and Adele.
In ClearCase, variants are explicitly tagged with metadata and are contained
within a versioned object. In Adele variants belong to different branches, but to
the same interface.

PIE has no analogous structure. This key difference gives PIE users extraor-
dinary flexibility in how they can manipulate and organize their environments,
but at the expense of automated support for establishing and maintaining con-
figurations. The more rigorous structure in the other SCM systems provides
them with the information necessary to automatically select items to include in
a configuration based on higher-level parameters set by the users.

©)

Adele

Relation
-ship
@

o.n

2

Any
object in
Adele

Atribute

)

Account-
ing Data

Config
Spec.

M

Interface

(1.n)

Sub-
Object
Locator

Config-
uration
(1.n)

Revision
@)

(0]

Derived
Object

(1)

Branch
Label

Version
Label

Attribute

[}

[0}

Containment Modeling

Cover

data
element

PIE

1. no_cycles

m

Attribute

Source
Element

Fig.5. Containment models of selected configuration management (Adele
ClearCase [7], and PIE [3]) and hypertext versioning systems (CoVer [5][4]).

11

12 D. Gordon and J. Whitehead

3.3 Cross-Domain Comparisons

In addition to intra-domain analysis, containment modeling can be used to com-
pare systems across domains. We can examine SCM systems and hypertext sys-
tems to identify patterns that are common to both. We can also readily identify
elements that distinguish the two kinds of systems.

The containment model of CoVer is interesting because it combines aspects
of both hypertext systems and SCM systems. Across the center of the model we
see a core structure that is common to hypertext systems: a collection of objects
and the links that connect them.

At the top and bottom of the model we see structures that are similar to
those found in SCM systems. The mob container holds all the versions of a
particular object, analogous to the versioned object container in ClearCase. The
task container may hold any combination of versions and objects. It fills the
workspace niche (called a ‘view’ in ClearCase).

The SCM containment models show us that designers of SCM systems have
also drawn from the hypertext world. All three systems modeled here have link
structures. The links even exhibit a similar range of traits to the links we saw
in hypertext systems. Some are embedded within specific kinds of entities (as in
ClearCase and PIE), and others are independent (as in Adele). In none of the
systems are links treated as independently versionable objects.

CoVer is unusual in its treatment of links. We saw examples of independent
links in both hypertext and configuration management systems. The independent
link entity in CoVer is unusual because it is versioned independently. None of
the SCM systems treat links as explicitly versionable. They are versionable in
ClearCase and PIE only because they are embedded in other entities that are
versioned. Adele does no allow versioning of links at all.

We have seen how containment modeling can highlight similarities between
systems in different domains. It can also help determine what makes the domains
different. We saw that both hypertext and SCM systems have collections of nodes
and the links between them. Hypertext systems stop there. They have three main
elements: collections, nodes, and links. While some hypertext systems have more
than three entities in their models, the additional entities are either parts of the
link implementation, or are entities that represent actual data or metadata. SCM
systems, on the other hand, all have at least on more layer. Each SCM system
has at least one entity that collects collections. In fact, these meta-collections are
roughly parallel to the hypertext collections. The lower level collections (those
that collect nodes) are the versioning mechanisms. In ClearCase and Adele the
role of these collections is clear: they contain the individual versions of a single,
conceptual entity. in PTE and CoVer their role is less explicit since these low-level
collections can actually contain any nodes, irrespective of the nodes’ relationships
to one another. In all four systems, however, these low-level collections are,
themselves, collected to construct a complete picture of the system’s content.

Containment Modeling 13

4 Conclusion

Each system within the SCM and hypertext domains can be viewed as an explo-
ration of a specific point within a multi-faceted space of design choices. Many
SCM and hypertext systems have been developed over the past 30 years, pro-
viding the raw data that can be analyzed to develop a description of the key
decision points in the common design space of content management systems.

The containment modeling technique presented in this paper permits the
data models of content management systems to be graphically represented and
compared to reveal their commonalities and differences. Containment modeling
was applied to a set of nine hypertext, SCM, and hypertext versioning systems,
the first time such a broad set of these systems has been compared. Containment
modeling can thus be viewed as a meta-modeling technique, in that it provides
a mechanism capable of representing the data models of systems in multiple
domains.

We intend to use this work as the basis for a thorough domain analysis of
content management systems. Containment modeling will allow us to investi-
gate systems in the Hypertext, SCM, Document Management, and VLST CAD
domains, and to identify the key structural components of each. It will help
us to distinguish between truly different structures and those that differ only
marginally, or only due to terminological differences.

Beyond modeling, we intend to develop a system that can automatically gen-
erate content management systems. Given a precise, machine-readable descrip-
tion of a containment model the generator will automatically create a reposi-
tory consistent with that specification. Automatic generation will provide future
researchers and systems builders with a powerful tool for the rapid creation
of content management repositories, and the exploration of more complex and
powerful data models.

Furthermore, by using the same tool to automatically generate a broad range
of content management systems, it will reinforce the commonalities among con-
tent management systems.

Acknowledgments

We would like to thank Jim Jones for his generous editing assistance, and Uffe
Wiil for clarification of the HyperDisco containment model. Additionally, we
thank Jessica Rubart for her detailed thoughts on how to express containment
modeling in UML (not all of which were explored in this paper), David Millard
for his feedback from using containment modeling to represent the data model of
the Open Hypermedia Protocol, and GuoZheng Ge for his detailed review of the
PIE containment model. Ongoing work in containment modeling is supported
by National Science Foundation grant CAREER CCR-0133991.

14 D. Gordon and J. Whitehead
References
1. Apple Computer, HyperCard Script Language Guide. Reading, MA: Addison-

10.

11.

12.

13.

14.

Wesley, 1988.

J. Estublier and R. Casallas, “The Adele Configuration Manager,” in Configuration
Management, W.F. Tichy, Ed. Chicester: John Wiley & Sons, 1994, pp. 99-133.
I.P. Goldstein and D.P. Bobrow, “A Layered Approach to Software Design,” in In-
teractive Programming Environments, D.R. Barstow, H.E. Shrobe, and E. Sande-
wall, Eds. New York, NY: McGraw-Hill, 1984, pp. 387-413.

A. Haake, “Under CoVer: The Implementation of a Contextual Version Server for
Hypertext Applications,” Proc. Sizth ACM Conference on Hypertext (ECHT’94),
Edinburgh, Scotland, Sept. 18-23, 1994, pp. 81-93.

A. Haake and J. Haake, “Take CoVer: Exploiting Version Support in Cooperative
Systems,” Proc. InterCHI’93 - Human Factors in Computer Systems, Amsterdam,
Netherlands, April, 1993, pp. 406-413.

F. Halasz and M. Schwartz, “The Dexter Hypertext Reference Model,” Commu-
nications of the ACM, vol. 37, no. 2 (1994), pp. 30-39.

D. Leblang, “The CM Challenge: Configuration Management that Works,” in Con-
figuration Management, W.F. Tichy, Ed. New York: Wiley, 1994, pp. 1-38.

C.C. Marshall, F.G. Halasz, R.A. Rogers, and W.C. Janssen, Jr., “Aquanet: a
hypertext tool to hold your knowledge in place,” Proc. Third ACM Conference on
Hypertext (Hypertezt’91), San Antonio, Texas, Dec. 15-18, 1991, pp. 261-275.

K. Osterbye and U.K. Wiil, “The Flag Taxonomy of Open Hypermedia Systems,”
Proc. Seventh ACM Conference on Hypertext (Hypertert’96), Washington, DC,
March 16-20, 1996, pp. 129-139.

R. Trigg, L. Suchman, and F. Halasz, “Supporting Collaboration in NoteCards,”
Proc. Computer Supported Cooperative Work (CSCW’86), Austin, Texas, Dec. 3-5,
1986, pp. 147-153.

E.J. Whitehead, Jr., “Design Spaces for Link and Structure Versioning,” Proc. Hy-
pertext 2001, The Twelfth ACM Conference on Hypertext and Hypermedia, Arhus,
Denmark, August 14-18, 2001, pp. 195-205.

E.J. Whitehead, Jr., “Uniform Comparison of Data Models Using Containment
Modeling,” Proc. Hypertext 2002, The Thirteenth ACM Conference on Hypertext
and Hypermedia, College Park, MD, June 11-15, 2002, pp. 182-191.

E.J. Whitehead, Jr., and Y.Y. Goland, “WebDAV: A Network Protocol for Re-
mote Collaborative Authoring on the Web,” Proc. Sizth European Conference on
Computer Supported Cooperative Work, Copenhagen, Denmark, Sept. 12-16, 1999,
pp. 291-310.

U.K. Wiil and J.J. Leggett, “The HyperDisco Approach to Open Hypermedia Sys-
tems,” Proc. Seventh ACM Conference on Hypertext (Hypertert’96), Washington,
DC, March 16-20, 1996, pp. 140-148.

