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Abstract 

ADAPTIVE BUG PREDICTION BY ANALYZING PROJECT 
HISTORY 

 
by 
 

Sunghun Kim 
 

 

Finding and fixing software bugs is difficult, and many developers put 

significant effort into finding and fixing them. A project’s software change history 

records the change that introduces a bug and the change that subsequently fixes it. 

This bug-introducing and bug-fix experience can be used to predict future bugs. 

This dissertation presents two bug prediction algorithms that adaptively analyze a 

project’s change history: bug cache and change classification. 

The basic assumption of the bug cache approach is that the bugs do not occur 

in isolation, but rather in a burst of several related bugs. The bug cache exploits 

this locality by caching locations that are likely to have bugs. By consulting the 

bug cache, a developer can detect locations likely to be fault prone. This is useful 

for prioritizing verification and validation resources on the most bug prone files, 

functions, or methods. An evaluation of seven open source projects with more than 
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200,000 revisions shows that the bug cache selects 10% of the source code files; 

these files account for 73%-95% of future bugs. 

The change classification approach learns from previous buggy change 

patterns using two machine learning algorithms, Naïve Bayes and Support Vector 

Machine. After training on buggy change patterns, it predicts new unknown 

changes as either buggy or clean. As soon as changes are made, developers can use 

the predicted information to inspect the new changes, which are an average of 20 

lines of code. After training on 12 open source projects, the change classification 

approach can, on average, classify buggy changes with 78% accuracy and 65% 

buggy change recall.  

By leveraging project history and learning the unique bug patterns of each 

project, both approaches can be used to find locations of bugs. This information 

can be used to increase software quality and reduce software development cost.  
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1 Introduction 

In 1945, a moth became trapped between the points of a relay in the Mark II 

Aiken Relay Calculator, causing the computer to perform incorrectly; this was the 

first computer bug [25]. Today, despite tremendous advances in computer 

hardware and software technologies there are still many latent bugs in software.  

Software bugs can cause a range of problems, ranging from minor glitches to 

loss of life or significant material loss [18]. For example, in 1962 a flight control 

software bug caused a rocket to divert from its intended path on launch, which led 

mission control to destroy the rocket over the Atlantic Ocean [18]. In 1996, due to 

a software bug, the European Space Agency's US $1 billion prototype Ariane 5 

rocket was destroyed right after launch [1]. In 1985, the Therac-25 radiation 

therapy device malfunctioned and delivered lethal radiation doses. This was due to 

a software bug. In 1988, more than 2,000 computers were infected by the first 

computer worm, which was made possible because of a buffer overflow bug in the 

Berkeley Unix finger daemon program [18].   

The process of finding and removing bugs is called debugging, a frequent, 

tedious, and time-consuming task for software developers. In some cases, 
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developers spend more time debugging than writing new source code [1, 66]. 

Many bugs are not discovered even after an intensive debugging process, with 

unpredictable and sometimes serious consequences. Current software development 

practice involves a process of triage on existing uncovered bugs, fixing those of 

highest priority, with large test suites designed to discover latent bugs. A typical 

software application ships with multiple known bugs, and hence debugging is a 

perpetual process.  

The goal of this research is to help developers in the debugging process, 

thereby raising software quality and hopefully lowering the cost of software 

development and maintenance. To meet this goal, this work proposes algorithms to 

locate or predict latent bugs in functions, files, and changes by mining project 

history data. 

The traditional debugging process includes code review, using debugging 

tools such as GDB [15], regression testing, unit testing, and code review again. 

Locating and predicting a bug is helpful to developers since it can narrow down 

the debugging scope. For example, instead of running all test cases and verifying 

correctness for the entire software project, using the techniques in this dissertation, 

developers receive lists of likely buggy files, methods, or changes. This reduces 

the scope of software that needs to be examined for bugs down to a single file, 

method, or change. This allows the developer to run just a small set of test cases 

that are related to the buggy locations.  
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The key insight behind this dissertation is learning from software evolution 

history. Most software uses software configuration management (SCM) systems to 

manage and record the evolution of a software project. Recorded evolution data 

includes change history, change log messages, bug occurrences, and bug-fixes. 

Since each project’s evolution data includes years of bug-fix experiences, they can 

be a good resource for predicting bugs, by learning from previous mistakes. 

Currently, evolution data is not fully leveraged for predicting bugs. The two 

approaches described herein use software evolution data for future bug prediction. 

There are two types of bugs: horizontal and vertical. Horizontal bugs are 

general, and occur across all software projects. Vertical bugs are project-specific, 

and are only found in a single project. For example, consider the null-

dereferencing bug example in Figure 1-1. This code pattern is a bug, no matter 

where it is found, and hence it exemplifies the class of horizontal bugs. 

 

if (bar==null) { 
  System.out.println(bar.foo); 
} 

Figure 1-1. Example null dereferencing bug. 

 

In contrast, consider two bug-fix examples from the JEdit project, shown in 

Figure 1-2. In two separate revisions of the same file, use of the ‘setSelectText()’ 

method is considered to be a bug. The corresponding fix is to use the ‘insertTab()’ 
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method. This bug pattern is very project specific, since it only occurs in the JEdit 

project. Such vertical bugs can only be obtained by analyzing the project’s 

evolution history.  

To locate such project specific bugs, a bug prediction model must be project 

dependent and should be able to learn project specific bug patterns or properties. 

Such prediction algorithms are called “adaptive” or “dynamic.” Even though 

adaptive prediction models may differ from project to project, the algorithms 

remain reusable across all projects, and can yield high predictive accuracy.    

JEditTextArea.java at transaction 86  
- setSelectedText("\t"); 
+ insertTab(); 
JEditTextArea.java at transaction 114 

- setSelectedText("\t");     
+ insertTab(); 

Figure 1-2. Repeated bug-fix examples in JEdit. The ‘–’ and highlighted code indicates buggy 
code and ‘+ ’indicates the corresponding fix.  

 

Recent work by Nagappan, Ball, and Zeller also indicates that there is no 

single prediction model that can act as the best defect predictor across projects [47]. 

As in this dissertation, they observe that a bug prediction model must be trained to 

grab the unique bug patterns and properties of a specific project.   

This dissertation introduces two new bug prediction algorithms: bug cache 

and change classification. These are adaptive and dynamic bug prediction 
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algorithms that learn from a given project’s software evolution history to 

maximize their predictive power. 

The bug cache algorithm identifies those files or functions in a software 

project that are most likely to have future bugs. The basic assumption of the bug 

cache is that the occurrence of bugs is not random, but rather local. For example, if 

a bug occurs in a file or function, this file or function will have another bug soon. 

Based on the bug localities, the bug cache approach sets a cache for bug prediction. 

If a bug occurs in a software entity, the bug cache approach loads the entity into 

the cache on the assumption the entity will have another bug in the near future. 

The bug cache algorithm predicts future bugs using the list of entities in the cache. 

If a future bug occurs in an entity in the list, the prediction was correct. Otherwise, 

the prediction was wrong.  

The bug cache is an online learning style approach, in that it maintains the list 

of the cache based on the prediction results. If the bug prediction is wrong, it is 

penalized by reconstructing the cache. If the prediction is correct, it is rewarded by 

keeping the cache as-is. The bug cache can predict about 70%~95% of future bugs 

at the file level of granularity using 10% cache size. This indicates that developers 

can focus their debugging efforts on 10% of software files to find 70~95% of the 

latent bugs.  

The change classification approach predicts bugs in changes. It learns a 

prediction model by mining features from previous buggy and clean changes. 
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Using the prediction model, it classifies new unknown changes as either buggy or 

clean. Two machine learning algorithms, Naïve Bayes and Support Vector 

Machine, are used to train prediction models. The training data for the classifier is 

obtained from a project’s software evolution history. After training a classification 

model, it can classify changes with 70-93% accuracy.  

To evaluate the two approaches, change, bug, and bug-fix history data is 

mined from 12 open source projects. By mining change logs, bug-fix changes can 

be identified. Next, the bug-fix changes and revision history are used to identify 

when bug(s) were introduced into the system which is called a bug-introducing 

change. Bug-introducing changes are used in training and evaluation of the bug 

cache and bug classification approaches. 

The remainder of the dissertation starts by introducing a software 

development model and terms used throughout this dissertation (Chapter 2). The 

method of data extraction from software history is explained in Chapter 3. The two 

bug prediction approaches, bug cache (Chapter 4) and change classification 

(Chapter 5) are presented along with their prediction performance and discussion. 

The limitations of the approaches are discussed in Chapter 6. This dissertation 

ends with related work (Chapter 7) and conclusions (Chapter 8). 
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2 Terminology  

This chapter describes a common software development process model in 

terms of the life cycle of a bug, and also defines terms used in this dissertation. 

2.1 Fine-Grain software development processes 

 

Figure 2-1. Two workspaces and Software Configuration Management (SCM)  

 

File changes are usually stored and managed by software configuration 

management (SCM) systems. For the open source systems we analyzed, the SCM 

system used is either CVS [4] or Subversion [3]. Each developer has their own 
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isolated working space called a workspace as shown in Figure 2-1. For CVS and 

Subversion, the workspace is a directory on the developers’ local workstation. 

From the SCM systems, developers check out source code into their own 

workspace. Developers usually change files in their workspace and when they 

want to store their changes in the SCM system, they submit their changes using the 

commit command. Changes made in workspaces are not visible to other developers 

until changes are committed to the SCM system, and then each developer updates 

their local workspace from the SCM system to apply changes from others.  

  
Figure 2-2. Example of a project evolution 

 

When developers commit changes, they can commit more than one file 

change at the same time. A group of changes at the same time is called a revision 

or transaction. Suppose there is an evolving software project that consists of three 

files, A, B, and C, as shown in Figure 2-2. At revision 1, all three files are created 
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and at revision 2, files A and B are changed. Each file modification is called a 

change.  

At revision 2 in Figure 2-2, two files have been committed. All of the files 

changed in the same commit comprise a transaction. The changed files in the same 

transaction are called co-changed files. Each transaction has one change log 

message written by the developer who committed the change. The change log 

message is used to describe the nature of the changes in the commit, such as 

“Fixed bug #352”, as shown in Figure 2-2.  

During the development process, developers or users can notice some 

abnormality in the behavior of the software. These abnormal behaviors are often 

reported by users and developers, and are typically recorded in a bug tracking 

system such as Bugzilla [61], or on a mailing list. The developers of the software 

decide if the reported abnormality is a real bug or not. If it is a real bug, developers 

then try to locate the bug by code inspection, running test cases, static analysis, etc. 

After locating the bug, developers try to find solutions to correct the bug, called 

fixes. They implement the fix by changing the files that have code related to the 

bug. When committing a fix, most developers leave a message in the change log 

indicating that the updated code includes a fix. The revision associated with a fix 

commit is called a fix revision. All file changes in a fix revision are also fix 

changes. For example, revision 4 in Figure 2-2 is a fix revision, and the file change 

to B in revision 4 is a fix change. 
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Figure 2-3. Three kinds of changes and hunks. 

A fix change consists of two files, which are an old file revision that has a bug 

and a new file revision that has a bug fixed. There are three types of file changes: 

modification, addition, and deletion, as shown in Figure 2-3. A group of 

contiguous changed lines between two files is called a hunk. If it is a fix change, 

the hunks in the old file are called bug hunks and in the new file are called fix 

hunks. The bug hunk contains buggy code since, by removing or replacing the 

hunk, the bug was fixed. By tracing the origins of each line in the bug hunk, the 

moments of bug creation are revealed [32, 58]. The change that initially created a 

bug is called a bug-introducing change. 

The life cycle of a bug is as follows: A bug is created during the development 

process in a bug-introducing change. Due to the presence of the bug, the software 
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has abnormal behavior that causes users or developers to notice the existence of 

the bug. Developers locate the bug and then fix it by changing files related to the 

bug. If we assume the developers fixed the bug correctly, the bug dies.  

Traditionally, bugs are identified in software by examining the output from 

software execution, performing software inspections, or running static analysis 

tools. The method for bug identification used in this dissertation is somewhat 

different. Developers are assumed to have been using these traditional methods for 

bug identification throughout a project’s evolution, and have been fixing the buggy 

code. Based on this assumption, the fixed source code includes bug(s).  

2.2 Terms 

In this chapter, terms used in this dissertation are defined.  

Bug tracking system: Since the appearance of bugs is a serious problem in 

software, software projects manage lists of bugs and track their status. A bug 

tracking system stores and manages all bug status and information such as the 

module where a bug occurred, when a bug was found, the severity of a bug, 

comments describing a bug’s effect on the software, instructions on replicating a 

bug, who reported the bug, and whether the bug has been fixed yet.  
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File change (change): Software development proceeds by changing files that 

are usually stored in an SCM system. A file change is an instance of a file 

modification stored in an SCM system.  

Version: During software evolution, files are changing and have many 

instances. The term version is used to identify different instances of the same file 

after a change. For example, ‘foo’ file version 1 and ‘foo’ file version 2 indicate 

two different instances of the ‘foo’ file after changes.  

Commit: Submitting changes to an SCM system is defined as a commit. A 

commit often includes more than one file change. Developers usually write a 

change log message when they commit.  

Change log: When developers perform a commit, they write a brief message 

that describes the purpose of the change, including which files are being modified 

and why. Change log messages can be analyzed to characterize the type of change 

that was made, such as a bug-fix change. 

Revision (Transaction): Groups of file changes in one commit are called a 

revision or transaction. Usually revisions are in chronological order. For example, 

revision 1 is a prior change group to revision 2. Some SCM systems, such as CVS, 

use the term ‘revision’ to represent an individual file change. For example, in CVS 

each changed file in one transaction has different revisions. The term ‘revision’ is 

used to represent a group of changes in one commit in other SCM systems such as 
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Subversion. In this dissertation, a revision or a transaction is a group of file 

changes in one commit.    

Bug (defect): A bug is zero or more lines of source code whose inclusion (or 

omission) causes anomalous software behavior. The term defect and fault are also 

widely used to describe anomalous software behavior [20, 66]. The term bug has 

slightly different meanings when it is used in different domains or used by 

different researchers. In this dissertation, the term bug describes the actual source 

lines that cause anomalous software behavior. The following sentence shows the 

context and meaning of the term bug used in this dissertation: 

“A bug in line #39 in Foo.c causes this application to hang.” 

Fix: When developers locate bugs, they are required to repair the bug to 

remove the anomalous software behavior. Developers remove buggy source code 

and replace it with correct code. The act of removing bug(s) is called a fix, 

typically enacted by changing buggy source code. 

Fix change: A change that includes more than one fix is called a fix change. 

Since a fix change removes buggy code and replaces it with correct code, the 

removed code is considered to be buggy code.  

Bug-introducing change (buggy change): The change that initially 

introduces a bug is called a bug-introducing change. 
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Change delta: In a file change, the changed lines are called the change delta. 

The deleted lines in the old file are called the deleted delta, and added lines in the 

new file are called the added delta. 

Hunk: In a file change, contiguous line changes in a single file are called a 

hunk, as shown in Figure 2-3. A file change delta may include more than one hunk, 

since the changed lines in a delta may be sparse. 

Bug hunk: If a change is a fix, the deleted or modified part of source code in 

the old file is considered buggy and is called a bug hunk. 

Fix hunk: If a change is a fix, the added or modified part of source code in the 

new file is considered to be a fix and is called a fix hunk. 

Feature (factor): In this dissertation, a feature means a property of a software 

change and is used for classifying changes. For example, the author, commit date, 

and a keyword in the deleted delta are features of changes. In the software 

engineering literature, the term feature usually means a distinct software 

functionality, but in the machine learning literature, a feature is a factor or 

properties of instances in a training or testing corpus [2].   

Feature engineering: A collection of techniques to select good (predictive) 

features and extract them from change instances. 



 

 -15 - 
 

Corpus: The collection of data used to train and test prediction models. In this 

dissertation, a corpus consists of a series of instances, where each instance 

corresponds to a project revision. Each instance has an associated set of features. 
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3 Making a Corpus from Software History 

The proposed bug prediction models in this dissertation are based on software 

history mining that involves the extraction of useful information from software 

evolution data as stored in a project’s SCM repository. The collection of extracted 

data is called a corpus following machine learning naming conventions. The 

corpus is also used to evaluate the bug prediction models. To extract raw data from 

SCM systems such as CVS [4]  or Subversion (SVN) [3], the extractor must 

understand the system’s data model and interface.  

The Kenyon infrastructure [6] and APFEL [12] (Columba, Eclipse, and 

Mozilla for the bug cache) is used to extract raw data from SCM systems including 

change instances, source code, change logs, authors, and change times.  Kenyon is 

a data extraction, preprocessing, and storage backend designed to facilitate 

software evolution research. Kenyon was developed at UC Santa Cruz by Jennifer 

Bevan.  

Processing the raw data falls into two folds: labeling change instances and 

extracting useful features from extracted instances. The labeling process identifies 

each change instance as a fix, bug-introducing, or normal change. The feature 
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extracting process tries to determine useful patterns in fix or bug-introducing 

changes, so the patterns can be applied for bug prediction.  

This chapter explains the process of data extraction from an SCM repository 

and making a corpus from the extracted data. 

3.1 Systems Analyzed 

For this dissertation, 12 open source projects, listed in Table 3-1, are used. 

These projects are chosen due to ease of access to the full source code, bug reports, 

and entire project history.  

Table 3-1. 12 open source projects analyzed. 

Project Language Software type SCM
Apache HTTP 1.3 (A1) C HTTP server SVN 
Bugzilla (BUG) Perl Bug tracker CVS 
Columba (COL) Java Mail client CVS 
Gaim (GAI) C/C++ Instant messenger CVS 
GForge (GFO) PHP Collaborative development CVS 
Jedit (JED) Java Editor CVS 
Mozilla (MOZ) C/C++/JS/XML Web browser CVS 
Eclipse JDT (ECL) Java Java development/IDE CVS 
Plone (PLO) Python Content management SVN 
PostgreSQL (POS) C/C++ DBMS CVS 
Scarab (SCA) Java Bug tracker SVN 
Subversion (SVN) C SCM SVN 
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A more detailed description of each project is described as follows: 

Apache HTTP 1.3 (http://httpd.apache.org/) – Apache HTTP 1.3 is the most 

widely used HTTP server, with more than 70% of the web sites on the Internet 

using Apache [48] in 2006. 

Bugzilla (http://www.bugzilla.org/) – Bugzilla is a bug tracking system used 

by the Mozilla project and other open source and commercial projects.  

Columba (http://www.columbamail.org/drupal/) – Columba is a GUI email 

client.  

Gaim (http://gaim.sourceforge.net/) – Gaim is a multi-protocol instant 

massaging system that supports multiple instant messaging protocols including 

Microsoft Network Messengers, Yahoo Messenger, Jabber, AOL Instant 

Messenger.  

GForge (http://gforge.org/) – GForge is a collaborative development 

environment for software development. Developers can publish their own project 

homepage, mailing list, discussion forum, and issue tracking system using the 

GForge software.  

Jedit (http://www.jedit.org/) – Jedit is a programmer’s text editor that 

supports plug-ins. It is a highly configurable and customizable editor.  

Mozilla (http://www.mozilla.org/) – Mozilla is a Netscape-based open source 

web browser. 
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Eclipse JDT (http://www.eclipse.org/) – Eclipse is a universal and extendable 

integrated development environment (IDE) for software development. JDT is a 

part of Eclipse project that provides Java Development Tools.  

Plone (http://plone.org/) – Plone is an open source content management 

system that helps non-technical users to add, edit, and manage web pages.  

PostgreSQL (http://www.postgresql.org/) – PostgreSQL is a widely used 

database system.  

Scarab (http://scarab.tigris.org/) – Scarab is a Bugzilla-like bug tracking 

system that is highly customizable.  

Subversion (http://subversion.tigris.org/) – A source code version control 

system similar to CVS.   

3.2 Change History Extraction and Transaction Recovery 

Kenyon automatically checks out the source code of each revision and 

extracts change information such as the change log, author, change date, source 

code, change delta, and change metadata. This data is then fed into the feature 

generation process to convert a file change into patterns.  

A commit can include more than one file change and it is important to know 

what files are changed together in one commit. For example, if you want to know 
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how many files are changed in a commit on average, you should know the number 

of file changes in every commit. Information on changed files in a commit, also 

called co-changed files, is widely used in software evolution research [5, 7, 17, 68]. 

Some SCM systems, such as Subversion, keep co-change file information for 

every commit. Unfortunately other SCM systems, such as CVS, do not keep this 

transaction information. CVS only provides versioning at the file level, and does 

not record co-change information between files. In this case, a transaction recovery 

process is necessary before any other analysis of software evolution can take place.  

The basic idea of transaction recovery is that co-changed files are committed 

over a short time span, such as 200 seconds, and have the same author and change 

log message. To recover per-product transactions from CVS archives, individual 

per-file changes are grouped into an individual transaction using the sliding 

window approach introduced in [69]. Two subsequent changes di and di+1 by the 

same author and with the same log message are part of one transaction if they are 

at most 200 seconds apart. This transaction recovery algorithm is implemented in  

Kenyon [6].  

3.3 Identifying Fix Changes 

Fix identification is the first step towards finding out when bugs are 

introduced. There are some heuristic ways to identify fix changes in software 
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history that rely on the change logs left by the developers [10, 13, 58]. If the 

change logs can provide any clue that indicates that this revision is fixing some 

problems, it is then considered a fix revision. Two fix identification algorithms are 

used for this step: searching for special keywords that indicate fixes, such as 

"Fixed" or "Bug" [42], and searching for references to bug reports like “#42233” 

[10, 13, 58]. This heuristic identifies whether an entire revision contains a bug-fix. 

If it does, all files in the revision are marked as fix changes. Manual inspection of 

the change logs for each project is used to identify the keywords that indicate fix 

revisions for each project. The project keywords are shown in Table 3-2. 

Table 3-2. Keywords and reference identifiers used to find fix revisions. * bug id reference is 
a 7-digit number. 

Project Keywords or Phrases 
Apache HTTP 1.3 (A1) Fix, bug, error 
Bugzilla (BUG) Fix, bug, * bug id reference number 
Columba (COL) [bug], [bugfix] 
Gaim (GAI) Patch, fix, bug 
GForge (GFO) Patch, fix, bug 
Jedit (JED) Patch, fix, bug 
Mozilla (MOZ) * bug id reference number 
Eclipse JDT (ECL) * bug id reference number 
Plone (PLO) Patch, fix, bug 
PostgreSQL (POS) Patch, fix, bug 
Scarab (SCA) Patch, fix, bug, issue number 
Subversion (SVN) Fixed issue number  
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3.4 Identifying Bug-introducing Changes    

The bug-introducing change identification algorithm proposed by Śliwerski, 

Zimmermann, and Zeller (SZZ algorithm) [58] is used in this dissertation. After 

identifying bug-fixes, SZZ runs a diff tool to determine what changed in the bug-

fixes. The diff tool returns a list of regions that differ in the two files; each region 

is called a hunk. SZZ observes each hunk in the bug-fix and assumes that the 

deleted or modified source code in each hunk is the location of a bug. Finally, SZZ 

tracks down the origins of the deleted or modified source code in the hunks using 

the built-in annotate feature of SCM systems. The annotate feature computes, for 

each line in the source code, the most recent revision in which the line was 

changed, and the developer who made the change. The discovered origins are 

identified as bug-introducing changes.  

Revision 1 (by kim, bug-introducing) Revision 2 (by ejw) 
1 kim 
1 kim 
1 kim 
1 kim 
1 kim 

1: public void bar() {  
2:   // print report 
3:   if (report == null) {  
4:      println(report);  
5:   } 

2 ejw
1 kim
1 kim
2 ejw
1 kim

1: public void foo() {  
2:   // print report 
3:   if (report == null){ 
4:      println(report.str); 
5:   } 

 
Revision 3 (by kai, bug-fix) 
2 ejw 
1 kim 
3 kai 
1 kim 
1 kim 

1: public void foo() {  
2:   // print report 
3:   if (report != null) { 
4:      println(report);  
5:   } 

 
Figure 3-1. Example bug-fix and source code changes. A null-value checking bug is injected in 
revision 1, and fixed in revision 3.   
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Figure 3-1 shows an example of the history of development of a single 

function over three revisions: 

Revision 1 shows the initial creation of function bar, and the injection of a 

bug into the software, the line ‘if (report == null) {‘ which should be ‘!=’ instead. 

The leftmost column of each revision shows the output of the SCM annotate 

command, identifying the most recent revision and the developer who made the 

revision. Since this is the first revision, all lines were first modified at revision 1 

by the initial developer ‘kim.’ The second column of numbers in revision 1 lists 

line numbers within that revision.  

In the second revision, two changes were made. The function bar was 

renamed to foo, and println has argument ‘report.str’ instead of ‘report.’ As a 

result, the annotate output shows lines 1 and 4 as having been most recently 

modified in revision 2 by ‘ejw.’ 

Revision 3 shows a change, the actual bug-fix, changing line 3 from ‘==’ to 

‘!=’.  

The SZZ algorithm tries to identify the bug-introducing change associated 

with the bug-fix in revision 3. SZZ starts by computing the delta between revisions 

3 and 2, yielding the line 3. SZZ then uses SCM annotate data to determine the 

initial origin of line 3 at revision 2. Finally SZZ identifies the bug-introducing 

change, revision 1, by looking at the annotation for line 3 at revision 2. 
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There are limitations of SZZ, such as false positive identification for 

commenting and formatting changes. These limitations are addressed by ignoring 

comment changes and source code reformatting changes [32]. However, the 

original SZZ [58] is used in this dissertation. 
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4 Bug Cache 

Software quality assurance is inherently a resource-constrained activity. In the 

vast majority of software projects, the time and people available for verification 

and validation are not sufficient to eliminate all bugs before the software is 

released. Any technique that allows software quality engineers to reliably identify 

the most bug prone software functions provides multiple benefits. It allows 

available verification and validation resources to be focused on the functions that 

have the most bugs. If developers have a potential buggy function list, it is 

possible to selectively use time intensive techniques such as software inspections, 

formal methods, and various kinds of static code analysis. It also provides an 

understanding of which functions are likely to be troublesome once a system has 

been released, thereby allowing customer service organizations to plan ahead for 

their presence. 

The software bug cache algorithm is executed over the revision history of a 

software project, yielding a small subset (usually 10%) of the project’s files or 

functions/methods that are the most bug prone. This bug cache has many uses. A 

developer can run through the contained locations, performing a detailed 

examination of each function, and eliminate all bugs that he or she may encounter. 
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He or she can convene a code inspection team, and analyze the code from multiple 

perspectives. In addition, she could perform one or more static code analyses, 

knowing that the time spent wading through false positive results is worthwhile, 

since she will also find bugs. A tester can use the bug cache to develop new test 

cases for bug-prone locations. He can also examine the list to determine classes of 

frequently occurring bugs, tailoring the test cases to catch recurring bug types. 

Two important qualities of software bug prediction algorithms are accuracy 

and granularity. The accuracy is the degree to which the algorithm correctly 

identifies future bugs. The granularity specifies the locality of the prediction. 

Typical bug prediction granularities are the executable binary [46], a module 

(often a directory of source code) [23], or a source code file [50]. For example, a 

directory level of granularity means that predictions will indicate that a bug will 

occur somewhere within a directory of source code. The smaller the granularity, 

the more precise a prediction algorithm must be to achieve a given level of 

accuracy. The most difficult granularity for prediction is the entity level (or below), 

where an “entity” is a function or method, depending on whether the software is 

procedural or object-oriented.   

This chapter presents a bug cache algorithm that is 73%-95% accurate at 

predicting future bugs at the file level of granularity, and 49%-68% accurate at the 

entity level. This accuracy is better than or equivalent to other efforts reported in 

the literature. Moreover, the bug cache is able to achieve this predictive accuracy 
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at the entity and file level of granularity, which permits better allocation of testing 

resources due to the greater precision of the prediction. 

The key insight that drives the bug prediction algorithm is the recognition that 

most bugs are local. Bugs do not occur uniformly in time across the history of a 

function; they are bursty. The hypothesis is that there are bug bursts if a function 

has recently introduced a bug, been changed, been created, or is in near proximity 

to other buggy functions. Specifically, bug occurrences have four different kinds 

of locality:  

Temporal Locality. If an entity introduced a bug recently, it will tend to introduce 

other bugs soon. This is similar to the “most recently fixed” heuristic in [23]. 

Changed-entity Locality. If an entity has been changed recently, it will tend to 

introduce new bugs soon. This is equivalent to the notion of code churn in [46] 

and the “most recently modified” heuristic in [23]. 

New-entity Locality. If an entity has been added recently, it will tend to introduce 

new bugs soon. 

Spatial Locality. If an entity introduced a bug recently, “nearby” entities (in the 

sense of logical coupling [17] described in Section 4.1.4) will introduce bugs 

soon. 

Like Hassan and Holt [23], the notion of a cache was borrowed from 

computer and operating systems research, and applied here for the purpose of bug 
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prediction. However, the algorithm does not use the bug cache in a typical manner, 

to ensure fast access to frequently used data. Instead the algorithm uses the cache 

as a convenient mechanism for holding the current list of the most bug prone 

entities, and for aggregating together multiple heuristics for adding and removing 

entities from the cache. The switch to using a cache involves a subtle, but 

important shift in approach in which there is no need to create massive 

mathematical equations to predict future bugs. Instead the algorithm performs 

cache selection and removal based on entities that meet specific criteria. The 

research goal of the bug cache is to develop algorithms that minimize the size of 

the bug cache while maximizing its predictive accuracy. 

Unlike most existing research on bug prediction, in this study bug-introducing 

changes are used as bug datasets, instead of fixes. A fix tells us where a bug 

occurred (which lines and files), but it does not say when the bug was added. 

However, four of the bug localities depend on accurately identifying when a bug 

occurred, especially for spatial locality. Correct identification of when a bug 

occurred makes it possible to identify nearby logically coupled software at that 

time. A bug-introducing change is the software modification(s) that introduced a 

bug that was later fixed. It tells us when the bug occurred, and hence the 

chronology of events is bug-introducing change(s), bug report, and then fix.  
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This chapter describes algorithms for adding and removing entities from the 

bug cache based on the bug localities, and evaluating these algorithms. The basic 

process is as follows: 

Initialization: 

1. Extract fixes from a project by mining its software history as stored in an SCM 

repository. The techniques described in Chapter 3 are used for this step.  

2. Extract bug-introducing changes at the entity level by analyzing the revision 

history to identify changes to the entity that precede the fix and bug report, as 

described in Chapter 3.  

3. Pre-load the bug cache with the largest entities (by lines of code, or LOC) in 

the initial project revision, creating the initial bug cache state. The reason for 

doing this is the common understanding that long LOC entities are more bug 

prone. 

Cache operation: 

4. Observe the locations of bug-introducing changes at revision n. If a bug occurs 

in an entity that is currently in the bug cache, it is a cache hit. Otherwise it is a 

miss. A cache hit can be viewed as a successful prediction of the bug. If the 

algorithm misses a bug, the algorithm fetches the entity (temporal locality) and 

nearby entities (spatial locality) and brings them into the cache for use in future 

bug predictions starting at revision n+1. 
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5. At revision n, the algorithm pre-fetches entities that have been created (new 

entity locality) and modified (changed-entity locality) between revisions n-1 

and n.  

6. Since the size of the bug cache is fixed, when the algorithm adds an entity, it 

must remove an entity. The algorithm applies a cache replacement policy, such 

as least recently used, to decide which entities should be replaced.  

7. Iterate over steps 4-6 to cover the existing revision history and bug information.  

After following the process, the hit rate is computed by: 

missofhitof
hitofratehit

##
#
+

=  

If the hit rate is close to 1, it means that most future bugs occur in the entities 

contained in the bug cache. 

Previous work on bug detection and prediction falls into one of the following 

categories: identifying a problematic module list by applying software quality 

metrics [23, 27, 28, 50, 51], predicting the bug density of each module by 

analyzing its software change history [20, 46], and detecting bugs by analyzing 

source code using type checking, deadlock detection, or pattern reorganization [14, 

38, 60]. This related work is discussed in detail in Chapter 7. The bug cache 

approach differs from this previous work in that I: 
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Use bug-introducing changes: Most previous research uses bug-fix data to 

predict or validate their predictions. This is a potential source of error since a fix 

gives where but not when information. Previous research was unable to explore 

temporal bug locality since fixes cannot indicate the time a bug was first injected 

into the software. Since bug-introducing changes are used, it is possible to know 

when bugs occurred, and to evaluate temporal bug locality. 

Use the spatial distance (distance among functions using logical coupling in 

co-changes [17], described in Section 4.1.4) of functions as one of the predictors. 

Analysis of the Apache 1.3 project shows that this predictor alone accounts for 

18% of the entities in the cache. 

Aggregate multiple selection algorithms via the cache: The use of a cache 

permits the simultaneous application of several heuristics, and separates the 

concerns of selecting and deselecting bug-prone entities. In addition, the bug cache 

permits selection algorithms to be adaptive to changing conditions. 

Focus on small prediction granularity, at both the entity and file level. This 

level of granularity is more useful in practice since it permits a more focused 

application of software quality resources. 

Use an on-line learning approach: The bug cache approach is similar to on-

line machine learning algorithms [2]. A prediction model (bug cache) is trained 

using 1 to n-1 revision data to predict bugs at revision n. Based on the prediction 
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result, the bug cache approach modifies the prediction model to predict the next 

bug. 

The remainder of this chapter starts by providing a discussion of the four 

kinds of bug localities (Chapter 4.1) and bug cache operations that include pre-

fetching and cache replacement strategies (Chapter 4.2). Following are results 

from operating the bug cache on seven projects at the file and entity level (Chapter 

4.3), along with an analysis of cache replacement policies and sensitivity analysis 

of the four bug localities. Chapter 4.4 provides discussion of these results, and 

Chapter 4.5 summarizes the bug cache approach. 

4.1 Bug Localities 

Software engineering does not yet have a solid model for why programmers 

create software bugs. Programmers do not intentionally set out to create bugs. It is 

likely that some kind of programmer cognitive error causes bugs, such as poor 

understanding of the software being modified, incorrect model of the operational 

environment, or poor comprehension of the requirements. A programmer operating 

with incorrect models or understanding will likely have multiple impacts on the 

code as he makes modifications since his incorrect background information will 

lead him to inject multiple bugs. Hence, when a software bug is found, it is viewed 

as an indication of programmer cognition error, and that this error likely resulted 
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in multiple software bugs. When a bug is found, the entity harboring the bug is 

assumed to have additional bugs that will soon be observed (temporal locality), 

and other entities modified at the same time are strongly suspected (spatial 

locality). Code modification is risky since the programmer must have a correct 

understanding of the code, requirements, and details of the modification request, 

and hence all additions or modifications of entities are also potential bug locations 

(changed entity and new entity localities). The temporal and spatial localities are 

described in more detail below. 

4.1.1 Temporal Locality 

The intuition behind temporal locality is that a software entity with an 

observed bug will soon have more bugs. In a similar vein, an entity that has 

recently been changed will soon have bugs, a correlation noted by several 

researchers [20, 43]. The time when a bug was added into the code (i.e. when the 

bug-introducing change was made) is an important factor that correlates to future 

bug density. If a bug occurred several years ago, and was fixed one year ago, there 

is less of a chance that the old bug can cause a new bug to form. But if a bug was 

introduced a week ago and fixed two days ago, it is much more likely that the bug 

is clustered with other bugs that will soon be observed.  

Temporal locality is different from using the accumulated numbers of changes 

or fixes to predict future bugs. For example, assume there are two software entities 
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with observed bugs (circles) as shown in Figure 4-1. Entity A has three bugs, but 

they are relatively old. Entity B only has two bugs, but they are relatively new. If 

the total number of bugs is used as a future bug predictor, A is more likely to be 

predicted as buggy rather than B. However, since entity A’s bugs are older, it is 

more likely that the manifestations of the original programmer’s error have already 

been found. Hence, even though entity A has more bugs in the past, entity B has a 

greater likelihood of bugs in the near future since entity B’s bugs are fresher.  

 
Figure 4-1.  Observed bugs in two hypothetical software entities. Time progresses from left to 
right. 

Graves’s weighted time damp model is similar in spirit to temporal locality. It 

more heavily weights recent bugs to predict future ones, and this model was the 

best one they observed [20]. The bug cache with temporal locality has the 

advantage of a more simple description than the math-heavy weighted time damp 

model. 

Temporal locality also guides cache removal strategies. If there are no bugs in 

an entity for a long time, the bug cache removes the entity from the cache, and 

assumes there are no further bugs. 
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4.1.2 Changed Entity Locality 

There is a common understanding that if an entity changes often, it may be 

instable and hence introduce bugs [5, 17]. If an entity has been changed recently, 

the bug cache pre-fetches the changed entity into the cache assuming that it will 

tend to introduce new bugs soon. This is equivalent to the notion of code churn in 

[46] and the “most recently modified” heuristic in [23]. 

4.1.3 New Entity Locality 

Similar to the changed entity locality, if an entity has been added recently, the 

bug cache pre-fetches the added entity into the bug cache assuming it will tend to 

introduce new bugs soon. 

4.1.4 Spatial Locality 

If a software entity has a bug, there is a good chance that other nearby entities 

may also have bugs that will soon be observed. 

What are nearby entities? There are several ways to define distance in 

software. One way is using physical distances among entities. For example, the 

entities in the same file or directory could be nearby entities. Another way is using 

logical coupling among software entities [5, 17]. 

Co-change data is used to compute logical coupling between entities. If two 

entities are modified together many times, they have a short distance to each other. 
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This reflects that they are logically “close” to one another. The distance between 

any two entities is computed using the modified graph data structure from CCVisu 

[7]. CCVisu is a tool that extracts a co-change graph from a software repository.  

The bug cache algorithm starts by creating a graph structure among the 

entities changed at a given revision n, creating a node for each entity, and for the 

revision itself. The algorithm creates arcs between the revision node and each 

entity node. As an example, consider revision 1 (R1) where entities E1 and E2 are 

changed together, and revision 2 (R2) where E1, E2 and E3 changed together. 

Figure 4-2 (a) and (b) shows the change graphs for the two revisions.   

 
Figure 4-2. Change graphs and distance between two entities. Circles represent entities, and 
rectangles revisions. 

 

Given the two change graphs shown in Figure 4-2 (b), the distance is computed as 

follows: 

1. Select any two nodes to compute the distance. 
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2. Count the number of the direct revision paths between the two nodes. A direct 

revision path between two nodes, u and v, is a unique path u-r-v, where r is any 

revision node.  

The numbers in Figure 4-2 (c) show the number of direct revision paths from 

E1 to the corresponding nodes, indicating the distance between them. A high 

number means two nodes are “close” (logically coupled), and so E1 and E2 are 

closer than E1 and E3. 

When there is a bug in an entity, the bug cache loads the nearby entities using 

the number of the direct revision paths between entity nodes. The notion of block 

size was adapted from existing cache work to describe how many entities the bug 

cache loads into the cache. A block size of b indicates that the bug cache approach 

loads the top b-1 closest entities (i.e. the ones with the highest path counts) into the 

cache, along with the buggy entity itself. In the analysis of bug caching, the effects 

of different block size values were analyzed. 
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4.2 Operation of the Bug Cache 

This chapter describes the operation of the bug cache in detail.  

4.2.1 Basic Operation 

The bug cache contains a subset of a software project’s files or entities. The 

bug cache approach places no constraints on the size of the cache, and hence it can 

be adjusted based on the resources available to perform intensive verification of 

cache entries. This analysis typically uses a cache size of 10% of the total number 

of files or entities, since it provides a reasonable tradeoff between the cache size 

and resulting accuracy. Larger cache sizes result in greater hit rates (better 

accuracy), but with the bugs spread out over a greater number of files or entities 

(lower precision). 

The bug cache maintains a list of what the bug cache algorithm has chosen as 

the most bug prone software entities. For every revision, the bug cache approach 

examines the list of bugs found there. If a new bug is found in an entity that is 

currently in the bug cache, it is a hit, and hence it has correctly predicted that the 

entity was bug prone. If a bug is not found, it is a miss. In the case of a miss, the 

bug cache algorithm fetches the missed entity into the cache (temporal locality) 

and fetches other entities (spatial locality), depending on the block size and 
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whether any other entities are nearby. This approach is similar to on-line machine 

learning algorithms [2] in that the bug cache learns from the bug distributions (hits 

and misses) and quickly updates its prediction model (list in the cache). 

4.2.2 Pre-fetches 

Multiple pre-fetching techniques are used to improve the hit rate of the bug 

cache. The motivation of pre-fetching is as follows. Assume bug cache does no 

pre-fetching and only loaded entities when a bug was encountered. If there are n 

entities that contain at least one bug, by not pre-fetching, it is guaranteed that there 

will be more than n misses since an entity is only fetched when a bug was found in 

the entity. The entity with the first bug will be automatically missed – compulsory 

miss. To reduce the compulsory miss count, pre-fetching potential buggy entities 

in advance is necessary. There are three kinds of pre-fetch algorithms, described 

below.   

Initial pre-fetch: Initially the bug cache is totally empty, and in the absence 

of pre-fetching, this would lead to many cache misses. To reduce initial-miss, the 

bug cache approach initializes the cache with entities that are likely to have bugs. 

Since at this moment any history information is unavailable, LOC is used as the 

initial predictor since it is one of the best bug predictors in the literature [20, 50]. 

New entity pre-fetch: Between two project revisions it is common that new 

entities are added, and some are deleted. If an entity has been deleted, there is no 
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chance it can have future bugs, so the bug cache approach unloads the deleted 

entity from the cache, if present. When there are new entities, those new entities 

having the largest LOC count (new-entity locality) are pre-fetched. The new entity 

pre-fetch size is controlled by a bug cache option. 

Changed entity pre-fetch: Previous research has used the number of changes 

as a dominant bug predictor. This is incorporated into the bug cache as the notion 

of changed-entity locality. If an entity has been changed, the entity is pre-fetched 

into the cache. The maximum number of changed entity pre-fetches per revision is 

controlled by an option. 

4.2.3 Cache Replacement Policies 

Since the bug cache has limited size, to fetch more software entities into the 

cache, the bug cache approach must unload some entities first. Which entity 

should be unloaded and which one has the least potential for new bugs? 

In memory cache systems, the LRU (Least Recently Used) algorithm replaces 

the data that was used the longest time ago. It is in common use due to its 

simplicity and strong performance. Similarly, this study explores LRU-like 

algorithms to decide which entity should be unloaded.  

Previous research has shown that entities with many changes or prior bugs are 

likely to have additional bugs [20, 23, 50]. Based on these results, this study also 

explores change-weighted and previous-bug-weighted LRU algorithms.  
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Table 4-1. Sample cached entities and their properties. 

 

Least Recently Used (LRU). This algorithm unloads the entity that has the 

least recently found bug (hit). Consider a cache with the entities shown in Table 

4-1. Based on the LRU algorithm, entity 2 will be unloaded, since it is the least 

recently used entity.  

Change count weighted (CHANGE). Previous research used the accumulated 

number of changes as a future bug predictor [20] based on the idea that if an entity 

has been changed many times in the past, it is more likely to have bugs in the 

future. Such entities should be kept in the bug cache as long as possible. The bug 

cache approach compares the accumulated change numbers of each entity in the 

cache, and unloads the entity that has the least amount of change. According to 

this policy, entity 4 in Table 4-1 will be unloaded since it has never been changed.  

Bug count weighted LRU (BUG). This policy is similar to the change count 

weighted LRU. It uses the accumulated count of observed bugs to decide which 

entity should be unloaded, removing the one with the fewest total bugs. The 

intuition here is if an entity has had many bugs, it will likely continue to have bugs. 

Id Last found bug/hit 
(ago) Cumulative changes Cumulative bugs 

1 1 day 8 1 
2 10 days 7 5 
3 9 days 6 7 
4 2 days 5 4 
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Following this policy, entity 1 in Table 4-1 will be unloaded since it has the fewest 

number of bugs. 

4.2.4 Cache Operation 

Bug cache operation involves the combined operation of fetches into the 

cache and a replacement policy. This section provides an extended example to 

illustrate cache operation.  

Suppose there is a software project with three software entities, 1, 2, and 3 (as 

shown in Figure 4-3). A new entity 4 is added at revision 4. Assume that the bug 

cache size is 2 (this is 50% of the size of the hypothetical project in Figure 4-3). 

Initially the bug cache is empty. The initial pre-fetch process loads entities 1 and 2 

into the cache (assuming entities 1 and 2 are the largest entities). Revision 1 has no 

bugs, and hence does not affect the cache.   

At revision 2, entities 1 and 2 are changed and entity 2 has a bug. There is a 

bug cache hit for entity 2 since it has a bug. Since entity 1 is changed, it needs to 

be loaded into the cache. However, it is already in the cache, so there is no cache 

change. The reason for fetching entity 1 is changed from initial pre-fetch (i) to 

changed entity pre-fetch (c).  
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Figure 4-3. Bug cache operation example. The grayed entity indicates a bug entity. The bug 
cache size is 2. Each entity in the bug cache has the reason of each fetched entity: (i) for initial 
fetch, (t) for temporal locality, (c) for changed entity, (s) for spatial locality, and (n) for new entity. 

  

At revision 3, entities 2 and 3 are changed. The bug cache approach tries to 

fetch these changed entities, but the cache is full and some entities need to be 

replaced. Using the LRU cache replacement approach entity 1 is replaced since 

entity 2 has one hit and entity 1 has zero hits. After revision 3, entities 2 and 3 are 

in the bug cache.  

At revision 4, new entity 4 is added into the software. After revision 4, the 

new entity 4 will be fetched into the bug cache by replacing entity 3 in the cache, 

since the hit count of entity 3 (zero) is no greater than the hit count of entity 4 (also 

zero), and entity 4 has been changed more recently.  

Finally, at revision 5, entities 1 and 4 are changed, and entities 1 and 4 have a 

bug. For entity 4, there is a bug cache hit and the entity remains in the bug cache. 

For entity 1, there is a cache miss, so the bug cache attempts to fetch entity 1. By 
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applying LRU, entity 2 is replaced by entity 1. The algorithm then tries to find the 

entities that co-changed with entity 1. Entity 2 was changed with entity 1 at 

revision 2, so entity 2 has co-changed with entity 1. The bug cache tries to load 

entity 2 (spatial locality), but entities 1 and 4 are least recently hit entities. The 

cache remains as-is. After revision 5, entities 2 and 4 are in the bug cache and are 

used for bug prediction in the following revision. 

4.3 Case Study 

The bug caching algorithm has multiple parameters that can be modified, all 

of which affect the hit rate of the algorithm. It is possible to modify the cache size, 

block size, pre-fetch size, and cache replacement policy. To determine which 

combination of parameters yields the best hit rate, a brute force cache analysis that 

iterated through multiple option combinations was performed. The performance of 

different cache replacement strategies was also evaluated, along with the relative 

contributions of each kind of bug locality, the impact of different granularities, and 

the impact of improved techniques for finding bug-introducing changes. Table 4-2 

lists the analyzed projects for the bug cache case study. 
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Table 4-2. Analyzed open source projects for the bug cache. The period shows the analyzed 
project timespan. The number of revisions indicates the number of revisions extracted. The number 
of entities indicates number of functions or methods in the last revision. The number of bugs 
indicates the number of bug-introducing changes extracted by mining the change logs and change 
histories of each project. For the Eclipse project only the core.jdt module is used due to the large 
size of the entire project. Similarly, only the Mozilla/content/ modules are used for the Mozilla 
project. 

Project Period # of 
revisions # of entities # of 

files # of bugs

A1  01/1996 ~ 07/2005 7,747 2,113 154 1,954
SVN 08/2001 ~ 07/2005 6,029 3,693 255 1,566
POS 04/1996 ~ 08/2005 14,650 8659 598 19,902
MOZ 03/1998 ~ 01/2005 109,636 8203 396 52,265
JED 09/2001 ~ 06/2005 1,386 5429 420 3,060
COL 11/2002 ~ 07/2005 2,848 8428 1428 720
ECL 04/2001 ~ 01/ 2005 78,948 33214 3330 15,217
  

4.3.1 Hit Rates 

To compute hit rate, cache options are set up as constants, such as a cache size 

of 10%, block size of 5%, and pre-fetch size of 1% of the total number of 

functions/ methods. For example, Subversion has 3,693 functions. The cache size 

for Subversion is 369, block size is 184, and pre-fetch size is 36. The hit rates of 

file and function/method levels with three cache replacement algorithms are shown 

in Figure 4-4 and Figure 4-5. Numbers in parenthesis in Figure 4-4 and Figure 4-5 

indicate cache size, block size and change/new entity pre-fetch size. File level hit 

rates are 57%-93%, and entity level hit rates are 28%-68% depending on the cache 

replacement algorithm. 
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Figure 4-4. File level hit rates using different cache replacement algorithms. The cache size is 
10%, block size is 5%, and pre-fetch size is 1% of the total number of files. 
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Figure 4-5. Function/method level hit rates using different cache replacement algorithms. The 
cache size is 10%, block size is 5%, and pre-fetch size is 1% of the total number of functions/ 
methods. 

 
Using the same cache size with different sets of cache options, such as cache 

replacement algorithms and block sizes, yields varying hit rates. For the brute 

force analysis of different cache option combinations, the cache size is fixed at 

10% of the total number of entities or files. Other options such as the block size, 
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pre-fetch sizes, and cache replacement algorithms are changed, and the hit rate 

results were observed. Block sizes were varied from 0 to 100% of the cache size 

with a step of 5%. Similarly pre-fetch sizes were varied from 0 to 100% of the 

cache size (step 5%) to determine the best hit rate of each project. An analysis was 

performed at two software granularity levels: file and entity (function/method). 
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Figure 4-6. Hit rate of the file level cache, with cache size set to 10% of all project files. 

 

The best option combinations for each project and the resulting hit rates are 

shown in Figure 4-6 (file level) and Figure 4-7 (entity level). To summarize, the 

best combination of bug cache parameters yields hit rates (predictive accuracy) of 

73-95% at the file level, with typical performance in the low to mid 80s. The most 

directly comparable work is [23], which also uses a caching approach, but at the 

module (directory) level of granularity. The best hit rates in [23] vary from 32% to 

90% for a cache size of 10 modules with typical performance in the upper 40s (the 
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90% hit rate was for only one system, and only was present at very early revisions; 

steady state behavior for the same system was in the mid 50s.)  For a cache size of 

10% of all modules, hit rates in [23] vary from 45%-82% using their best 

performing heuristic, most-frequently-modified. 

Ostrand et al. [50] predicted the bug density of each file in a software project 

using a negative binomial linear regression over various factors. Based on the 

predicted bug density, they ordered the files from most to least bug dense. Using 

this method and selecting the top 20% of the files, they predict 71-93% of future 

bugs. The bug cache approach achieves similar accuracy, but with only 10% of 

project files, which is twice the precision.  
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Figure 4-7. Hit rate of the entity level cache, with cache size set to 10% of all project entities. 
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Using a big block or pre-fetch size does not mean that each cache operation 

replaces all cached entities. For example, the Subversion cache size is 369 and 

block size (co-change entities) is 366. But when the co-changed entities are loaded 

into the cache, the bug cache tries to fetch entities one by one and a cache 

replacement algorithm is used to decide which cached entities should be replaced 

based on the properties of entities in the cache and an entity about to be added. For 

example, even if there are 366 new entities to be added into the cache (the cache 

size is 369) in one cache operation, the bug cache tries to add the 366 entities one 

by one by applying a cache replacement policy. Suppose the BUG cache 

replacement algorithm is used, and all entities in the cache have more than 1 bug. 

If there are 366 new entities to be added, and their bug count is all 0, then there is 

no cache replacement after the cache operation, since entities with 0 bug count 

cannot replace entities whose bug count is 1 or greater. 

As expected, predicting bugs at the smaller grained entity level is more 

difficult than predicting bugs at coarser granularity. Besides the smaller target size, 

one possible reason why the entity level cache has a lower hit rate is that functions 

and methods change their names more frequently than files. Since the 

function/method name and its signature are used as an entity identifier, name 

changes lead to a loss of all previous history. This problem is discussed further in 

Section 4.4.4.  
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The bug cache approach is an on-line learning style of a prediction model, but 

there is still need to adjust cache options to yield optimal performance. The cache 

options yielding the best hit rates vary from project to project. For example, 

Apache 1.3 uses a big block size (127), while JEdit uses a small block size (1). 

This is due to the different distributions of bugs and changes across projects. An 

important implication is that bug prediction algorithms work best when they are 

adapted to a specific project [47]. 

4.3.2 Cache Replacement Policy 

The bug cache approach uses three cache replacement algorithms, LRU, BUG 

and CHANGE. To see which algorithm works best for a given set of cache 

parameters, an analysis was performed using the same values for the cache size, 

block size, and pre-fetch size, varying only the cache replacement algorithm on 

each run.  

Figure 4-4 and Figure 4-5 show the hit rates achieved using different cache 

replacement algorithms. At the file level, the LRU policy is good, working the best 

for 4 out of the 7 projects, with BUG being the best for the remaining 3. At the 

function/method level LRU works best only for the Mozilla project, with BUG 

being the best for the rest. Interestingly, the CHANGE policy works poorly at both 

granularities. This is somewhat contrary to the results in [23], where the most-

frequently-modified heuristic was one of the best bug predictors.  
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4.3.3 Bug Localities 

The four bug localities are the main factors used to load entities into the 

cache; however, are the contributions of the various localities the same? To 

measure the relative predictive strength of each kind of locality, an analysis was 

performed where each entity was marked with the reason for which it was loaded. 

After marking each entity with the reason for which it was loaded, the marks of the 

hit entities were observed. Figure 4-8 shows the ratio of loading reasons for hit 

entities of the Apache 1.3 project. The results show that bugs have strong temporal 

(59%) and spatial (18%) locality, and weak changed entity (4%) and new entity 

(1%) locality. The initial pre-fetch is surprisingly effective, accounting for 18% of 

the total hits. 

One possible explanation for these results is that the existence of a bug is 

really the best predictor for other bugs in the same entity. That is, in most cases the 

effects of programmer’s error are local to a single entity. However, there are 

enough cases where a programmer’s error affects multiple entities, and hence 

spatial locality is useful for predicting them. When no bug data is available, code 

complexity, as represented by LOC, acts as a strong predictor of bugs. It is unclear 

whether changed and new entity locality is better than just randomly selecting 

entities. 
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Figure 4-8. Entity level predictive contributions of initial pre-fetch and bug localities for 
Apache 1.3.  The cache size is 211, block size is 127, pre-fetch size is 24, and BUG was used. 
The hit rate is 59.6%.  

4.3.4 Bug Extraction and Hit Rate 

Bug-fixes are identified by mining the text in SCM change logs [13, 58] using 

keywords as shown in Table 3-2.  Most open source projects do not provide strong 

links between their bug tracking systems and their source code change histories. 

The number of identifiable bugs is decided by the quality of the change logs. For 

example, in the Subversion project, it is possible to recover 46% of existing fixes 

by mining the project change logs, and searching for the fix numbers used by their 

bug tracking system in the SCM commit comments. 

Due to the limitations of mining software change logs, only partial lists of 

fixes and bug-introducing changes were retrieved. Suppose there is a project (like 
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many commercial ones) that has perfect links between source code changes and 

their bug tracking system. This would make it possible to retrieve 100% of the 

fixes and bug-introducing changes from the project. Would this lead to an 

improved hit rate?  

To see how the number of bug-introducing changes affects the hit rate, 

different numbers of fixes were obtained from the same project by using two 

different levels of data mining techniques (using different keywords). Using this 

approach, different numbers of fixes and bug-introducing changes were retrieved 

from the Apache 1.3 project, as shown in Table 4-3.  

Table 4-3. Numbers of fixes and bugs using different levels of change log mining techniques 
from the Apache 1.3 Project. 

Level  Keywords Fixes Bugs 
Level 1 Bugfix, bug 215 463 
Level 2 fix, bug, error 1,094 1,954 

 

Using more strict keywords (level 1) only 251 fixes and 463 bugs were 

identified. Using less strict keywords (level 2) obtained 1,094 fixes and 1,954 bugs 

from the same project. The bug cache performances with various cache sizes using 

the two bug datasets were analyzed. Resulting hit rates are shown in Figure 4-9. 

The level 2 dataset has a better hit rate than level 1, by about 3-7%. This result 

suggests that as the quality of the bug dataset improves and there is a greater 

number of bugs to use with the algorithm, the hit rate improves. In other words, if 

more bugs are identified, the identified bugs have better localities.  
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A good dataset of bug-introducing changes is no guarantee of high hit rates. 

The Columba dataset is of very high quality due to a diligent development team. 

However, its hit rate at the file level is a respectable, but not stunning 83%. Eclipse 

has a greater hit rate (95%) with a lower quality dataset. 
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Figure 4-9. The level 1 and level 2 hit rates of the Apache 1.3 project with various cache sizes. 
The block size is 10% of the cache size, and no pre-fetches. LRU is used. Note that the hit rate 
using 100% cache size is not 100%, since there is no pre-fetch and there are compulsory 
misses – first seen bugs.  

 

4.3.5 Cache Size vs Hit Rate 

It is important to keep cache size small to improve the utility of the cache list. 

If the bug cache is large, the hit rate will improve since a larger fraction of the 
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entire code base is in the cache. As the cache gets larger, its precision drops which 

reduces its utility. What is a reasonable tradeoff between cache size and hit rate?  

Figure 4-9 is a typical graph of cache size vs. hit rate, showing strong initial 

growth that quickly tapers off in a long-tailed asymptote. The cache-based bug 

prediction work in [23] also shows a similar curve. In general, one wants to 

capture as much of the initial period of strong growth as possible, while 

minimizing the size of the cache. There are two approaches. An organization can 

pick a cache size that reflects the available resources for intensive quality 

assurance, and accept the resulting hit rate. Alternately, an organization can pick a 

desired hit rate, and choose a cache size that achieves it. For example, if the 

Apache Software Foundation wanted to maximize their hit rate, they should pick a 

cache size of 30-40%, since in Figure 4-9 it shows that this encompasses the 

majority of hit rate growth. 

4.3.6 Cached Entities (10%) and LOC 

In most of this analysis, a cache size of 10% of project entities is used. For 

example, Apache 1.3 has 2,113 functions so the cache size has been set at 211 

(10% of the total function numbers). However, 10% of functions do not 

necessarily mean the cache holds just 10% of the total lines of code. In fact, the 

higher LOC count is expected, since longer entities would be expected to have 

more bugs just due to size alone. To get a sense of the code contained in the 
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cached entities, cached entity LOC was observed after the final cache operation 

and compared with the total entity LOC. The cached entity LOC varied based on 

the cache options. Figure 4-10 shows cached entity LOC with the best bug cache 

options for each project. 
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Figure 4-10. Cached function LOC/total LOC  

 
Even though only 10% of the total entity numbers are cached, cache entity 

LOC is about 16-33% of the total LOC. Prior research [23, 50] also uses 

percentage of entities such as 20% of files or top 10, but did not measure LOC or 

describe the LOC of entities in the list.   
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4.4 Discussion 

4.4.1 Applications 

Right now, the bug cache operates in a lab environment. However, its 

implementation can be put to use in various ways: 

• A typical application of the bug cache is as follows: Whenever a bug is found 

and fixed, a tool can automatically identify the last change to the original code 

and then update the bug cache from the moment this bug-introducing change 

was applied—that is, from the moment the bug was introduced. A manager or 

developer can then use the list for quality assurance—for example, they can 

test or review the entities in the bug cache with increased priority. 

• While bugs can only become part of the bug cache at the time they are fixed, 

the bug cache still contains suspicious locations based on recent changes. In 

particular, the bug cache would direct resources to newly added or changed 

locations. These locations also have a higher chance of containing bugs. 

• Developers can also directly benefit from the bug cache. If a developer is 

working on entities in the cache list, he or she can be made aware that he or 

she is working on a potentially instable or buggy part of the software. 

All in all, a bug cache will help direct efforts to those entities that are most 

likely to contain bugs and thus increase quality, and reduce effort. 
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4.4.2 Bug Cache Model 

Why does the bug cache model have better predictive power than previous 

prediction models? Most models found in the literature use bug correlated factors 

and developed a model to predict future bugs. Once developed, the model is static, 

and incorporates all previous software change history data and factors. The bug 

cache model is dynamic, and is able to adapt more quickly to recent software 

change history data, since the bug occurrences directly affect the model. For 

example, when a bug occurs and the cache model misses the bug, it loads the 

entity regardless of the cache parameters or cache replacement policy.  

The cache model continually receives feedback (hits and misses) from its 

predictions and adapts its model based on the prediction results. One can view the 

cache as receiving a penalty (fetch entities) for a miss, or a reward (keep entities) 

for a hit. This approach is similar to on-line machine learning algorithms [2]. The 

bug cache learns from the bug distributions of each project. Even though each 

project may have different bug distributions, it can adaptively learn from hits and 

misses and update its prediction model for its next prediction. This adaptive 

approach yields better predictive power. 

The selection of cache options and cache replacement policies affects the 

cache hit rate. A brute force analysis is used to discover the best cache options for 

each project. Note that the cache options for the best hit rates vary due to the 

different bug and change distributions across projects. Despite this variation, is it 
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possible to develop a rule of thumb for a good cache size, block size, and pre-fetch 

size parameters? Based on the observations, about 7-15% of the total number of 

files would be a good cache size. For the function/method level, a block size of 30-

50% and a pre-fetch size of 10-30% of the cache size tend to work well. Projects 

using a bug cache need to periodically optimize their cache options by performing 

a brute force analysis of the various parameters to see which combination yields 

the best hit rate.    

4.4.3 Fixes vs Bug-introducing Changes 

In this study, bug-introducing changes are used—in contrast to most prior 

studies, which use fixes. In fact, fixes are very different from bug-introducing 

changes since a fix is a change that fixes a bug.  

In the bug cache experiments, revision data gathered from revisions 1 to n-1 

are used to predict bugs at revision n but, sometimes bug-introducing changes at 

revision n-1 are identified by a fix that occurred at revision n+x [58]. In practice, 

finding all bug-introducing changes from revision 1 to n-1 at revision n is not 

feasible. Therefore, the set of bug-introducing changes known at revision n and 

time t is smaller than the set of bug-introducing changes at revision n known at a 

later time t+x. This growth in knowledge is due to the fact that at any given 

revision there may be bugs that were introduced, but not yet discovered and fixed.  
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To see how a bug-fix based cache would work, a bug cache analysis was 

performed over the same set of seven projects, applying a brute force technique to 

select the best cache parameters for each project (with cache size 10%, file level) 

using bug-fix (not bug-introducing) data. Results are shown in Figure 4-6. Overall, 

the general trend is a 2-4% drop in accuracy as compared to the hit rates using 

bug-introducing changes shown in Figure 4-11. The Eclipse and Subversion hit 

rates remain almost the same.  
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Figure 4-11. Hit rate of the file level cache using bug-introducing and bug-fix data, with cache 
size set to 10% of all project files.  

 

These results indicate that projects can still achieve strong hit rates even when 

using only bug-fix data (fix-based cache). The reason for this is that fixes also 

have temporal locality, since bug-introducing changes and their fix times are 

correlated. For example, a bug can be fixed after the bug was introduced.  
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Fixes have strong spatial locality, since fix changes are grouped by a revision 

and all fixes in a revision are also co-changes (all changes in a revision are fixes, if 

the revision is a fix revision). Zimmermann et al. shows that there are strong 

association rules in co-changes [70]. A fix-based cache can be used in practice 

since, using the cached entities, it is possible to predict fixes before they happen—

predicted fix changes include bugs before they are fixed. While the bug-

introducing based cache provides theoretical evidence of localities of bug 

occurrences, the fix-based cache can be used for practical use.    

 

4.4.4 Origin Analysis 

For programming languages that allow function/method over-riding, it is 

possible that more than one function/method has the same name in a project. To 

uniquely identify entities, an identifier comprised of its file name, function name, 

and signature is used. One consequence is that when entities change their names or 

signatures, all of their previous history is lost. 

For example, assume the ‘foo’ function evolves as shown in Table 4-4. The 

argument type has been changed in version 2, causing its entity identifier to 

change as well. Suppose the function has bugs in versions 1 and 3, and is not 

initially in the cache. There will be one miss for the bug in version 1, and another 

miss for the bug in version 3 since the function’s identifier was changed at version 
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2, causing it to be dropped. If it is possible to follow signature changes or 

function/method name changes, there would only be one miss for the bug in 

version 1, and the bug in version 3 would be a hit. Ongoing research on origin 

analysis [19, 30] offers hope in this area, since it provides the ability to track a 

single function or method across multiple names and signature changes. Applying 

origin analysis seems very likely to increase the hit rate of the bug cache, 

especially at the entity level.  

Table 4-4. An example evolution of function foo. 

Version 1 2 3 
Function foo(int x) foo(String x) foo(String x) 
Bug Yes No Yes 

4.5 Summary  

If we know that a bug has occurred, it is useful to search its vicinity for further 

bugs. The bug cache model predicts these future bugs with high accuracy: at the 

file level, it can cover about 73-95% of future bugs; at the function/method level, it 

covers 49-68% of future bugs—with a cache size of only 10%. This is a 

significantly better accuracy and lower granularity than found in the previous state 

of the art. The cache can serve as a priority list to test and inspect software 

whenever resources are limited (i.e. always). 

The bug cache is able to adapt more quickly to recent software change history 

data, since the bug occurrences directly affect the model. This is another 
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significant advantage over static models. It is the first approach to use spatial 

locality as a bug predictor, and the combination of the four locality concepts has 

significant advantages. 

4.6 Future Work 

There is still room for improvement. The future work for bug caching will 

concentrate on the following topics. 

• The bug cache approach explored four bug localities. There might be more 

localities, such as special locality based on data dependence or slicing 

information based spatial locality. Identifying more bug localities and 

exploring them will be future work.  

• In this study, option combinations for each project varied due to the various 

bugs or change distributions of each project. Developing self-adaptive 

algorithms for bug cache option finding is another avenue of future study. Such 

algorithms will learn from cache hits and misses and adjust cache options to 

optimize performance. 

• Different levels of software granularity result in different hit rates. The 

hierarchical caches that fetch entities at different granularities such as modules, 

files, and methods may be useful. Depending on its usage, the cache can 

provide different levels of buggy entity lists. 
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• Finally, integrating the bug cache into history-aware programming tools such 

as eROSE [70] is useful. This way, whenever a bug is fixed, the tool can 

automatically suggest future locations to be examined for related bugs. 
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5 Buggy Change Classification 

Assume you are a software developer working on an ongoing software 

product. Whenever you submit a source code change, you may wonder whether 

your change has introduced a new bug. If a tool could tell you that your change is 

buggy, you could inspect your change carefully; otherwise, you would assume that 

your change is error-free. This tool acts to classify your change into one of two 

states: buggy or clean. If such an automatic software change classification tool can 

predict changes with acceptable accuracy, the tool can be used in the software 

development process as follows: make a change, receive feedback from the tool, 

inspect the change, and then make another change.  

This chapter explores the hypothesis that it is possible to develop a prediction 

model with acceptable accuracy using machine learning algorithms and 

information from existing software histories. To test this hypothesis, the file 

change histories were extracted from the software configuration management 

repositories of 12 open source projects, the changes were classified using two 

machine learning classification algorithms, and the classifications were evaluated 

for accuracy. 
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Looking at the history of an individual project file one sees a series of 

revisions separated by changes. Each change either (a) modifies the code or (b) 

modifies the code and introduces a bug. The term, buggy change (b) is used to 

mean a change that caused one or more bug-fixes (fixes). In contrast, if a change 

does not cause any fix, it is a clean change (a). Buggy and clean changes are 

defined as Boolean values that are opposite end-points of the same scale.  

 

Figure 5-1. Example buggy and clean file changes. 

 
Following the process outlined in Chapter 3, every change is labeled as buggy 

or clean in 12 open source projects. Using these labeled changes (instances) and 

two machine learning algorithms, Naïve Bayes [54] and Support Vector Machine 

[26],  a change classifier is trained. Once trained, the classifier is used to “predict” 

future buggy changes. For example, in Figure 5-1, after training a change 

classification model using change data from revisions 1 to n, if there was a new 

and unknown change (i.e. revision n+1), it is possible to classify this change as 
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either buggy or clean using the trained classification model. This act of 

classification has the effect of predicting which changes have bugs. 

An automatic software change classifier has multiple uses. After a new change 

is committed, the classifier can send an alert to the developer if the change has 

been classified as buggy. By integrating the classifier into a software development 

environment (SDE), the SDE can monitor source code changes, and as soon as a 

change is identified as buggy – perhaps even before an SCM commit – developers 

can be notified. The buggy change notification can raise the awareness of 

developers on whether they are creating bugs, so that they can inspect or review 

the change carefully, or possibly adopt a more conservative coding practice. This 

awareness may lead to bug-fixes before a bug has even been reported.  

Machine learning (supervised learning) algorithms learn classification models 

from a training dataset. A training dataset is a set of instances that consists of 

multiple features that have been labeled with their correct class (buggy or clean). 

The trained classification model can classify unknown instances (testing dataset) 

with features but no labels. The training dataset is the set of changes extracted 

from SCM repositories, with each change containing multiple features, and labeled 

as either clean or buggy.  

In the remainder of this chapter, Chapter 5.1 overviews the change 

classification approach. The feature generation and classification algorithms 

(Chapter 5.2) are explained, and then the change classification experimental setup 
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is described, including a description of the corpus and methods used for measuring 

accuracy (Chapter 5.4). Following are results from change classification at the file 

change level (Chapter 5.6), along with informative feature identification. Chapter 

5.7 provides discussion of these results. Chapter 5.8 summarizes the change 

classification approach. 

5.1 Overview of Change Classification Approach 

This chapter provides an overview of the process of creating a corpus, a set of 

labeled instances from the 12 open source projects listed in Table 5-1, how to train 

machine learning classifiers, classification of changes, and evaluation of each 

classifier.  

Table 5-1. Analyzed open source projects. The period shows the change history time spans of the 
analyzed projects. The # of revisions column indicates the number of revisions extracted. For the 
Eclipse project, only the jdt.core module is examined due to the large size of the entire project. 
Similarly, the mozilla/browser/components module is explored for the Mozilla project. 

Project Period # of revisions 
Apache HTTP 1.3 (A1) 10/1996 ~ 10/2005 7,777
Bugzilla (BUG) 08/1998 ~ 10/2005 4,462
Columba (COL) 04/2001 ~ 10/2005 2,841
Gaim (GAI) 03/2000 ~ 10/2005 8,688
GForge (GFO) 08/2001 ~ 10/2005 1,681
Jedit (JED) 09/2001 ~ 11/2005 1,449
Mozilla (MOZ) 04/2002 ~ 10/2005 1,606
Eclipse JDT (ECL) 06/2001 ~ 11/2005 11,117
Plone (PLO) 02/2002 ~ 10/2005 2,226
PostgreSQL (POS) 07/1996 ~ 09/2005 7,622
Scarab (SCA) 12/2000 ~ 10/2005 8,026
Subversion (SVN) 08/2001 ~ 10/2005 7,297
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The Support Vector Machine (SVM) and Naïve Bayes classifiers 

implemented in the Weka Toolkit [65] are used in this study. These two classifiers 

are employed since they are widely used for text classification and have different 

classification characteristics. The discriminative power of each feature is 

compared to find informative features for performing change classification. The 

basic process is as follows: 

Creating a Corpus: 

1. Extract file changes from 12 open source project histories using Kenyon [6]. 

2. Identify the fix changes for each file by mining the project’s revision history, 

as stored in its SCM repository. The techniques described in [13, 58] are used 

for this step.  

3. Identify bug-introducing (or fix-inducing, a term used in [58]) changes at the 

file level by analyzing the revision history and SCM annotation information, as 

described in [58]. All bug-introducing changes are labeled as buggy and the 

other changes are labeled as clean. 

4. Extract features from the file level change information, including the complete 

source code, the lines modified in this change (delta), and change metadata 

such as author and change time. 
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By the end of step 4, a corpus, a set of labeled instances has been created of 

each file change. Each instance is a set of features [2].  

Classification: 

5. Using the corpus, classifiers are trained for each project. 

6. To evaluate classification performance, the 10-fold cross-validation method 

[45] is used. Standard classification evaluation measures of accuracy, recall, 

precision, and F-value are computed. 

Informative Feature Identification: 

7. Subsets of the corpus are created by combining features and performing steps 

5-6 to compare classification performance using different feature combinations.  

8. Using the chi-square test statistic [9], to compute degree of correlation to 

classes, the ranks of each feature care are computed to determine the most 

informative features for change classification. 

Overall, the Support Vector Machine (the best classifier in this study) 

classified file changes as either buggy or clean with 78% accuracy on average 

(ranging by project from 65%-93%) and 65% buggy change recall on average 

(43%-98%).  

The prediction accuracy reported in this chapter is comparable with existing 

research. In the literature, file level bug prediction accuracy using object-oriented 

metrics and machine learning algorithms is approximately 70% [22]. Ostrand et al. 
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can identify the top 20% of the problematic file list, and by using the list they can 

predict bugs with 71-93% accuracy [50]. My research differs from this previous 

bug prediction work in that I: 

Classify changes: Most previous work focuses on finding prediction or 

regression models to identify bug-prone or buggy modules, files, and functions [20, 

46, 49]. The change classification approach has multiple benefits, including 

prompt and fine-grained prediction. It is possible to predict buggy changes at the 

file level as soon as a change is made. It is easier to inspect recent changes than 

those made a long time ago. Prediction is very fine-grained. The prediction 

granularity is individual file changes, comprised of an average of 20 lines of code, 

as compared to the related work that localizes to an entire file, which in the case of 

the corpus, had an average length of 300 lines of code (see Table 5-8).  

Use bug-introducing changes: Most previous research uses bug-fix data 

when making predictions or validating their prediction models. One advantage to 

the change classification approach is that it uses bug-introducing changes, and 

hence it is possible to know when the bugs occurred. Bug-fix data only indicates 

where the bug occurred, not when it was introduced or who introduced it. Only 

bug-introducing changes make it possible to label changes as buggy or clean.  

Use features from source code: Existing research that mines software history 

data to perform bug prediction uses complex metrics [27], accumulates change/bug 

counts [20, 43], or code churn [46]. When selecting predictors, researchers usually 
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do not take advantage of the information provided by the source code text itself, 

and thereby miss a valuable feature. In contrast, every term in the source code—

every variable, method call, operator, constant, comment text and more—are used 

as features to train change classification models.  

Are independent of programming languages: The change classification 

approach is programming language independent, since the bag-of-words method 

[56] is used to extract features from source code changes. The analyzed projects 

span many popular current programming languages, including C/C++, Java, Perl, 

Python, Java Script, PHP, and XML. The change classification approach obtains 

comparable accuracy, buggy change precision, and recall from all the projects 

despite their different programming languages, and even though no semantic 

understanding of the source code is used.  

5.2 Algorithms 

To classify software changes using machine learning algorithms, the first step 

is to train a classification model using buggy and clean change features. Change 

information available from a project’s SCM repository includes multiple feature 

sources such as each change’s log message, source code, change delta, author, and 

commit date. Features, such as author and commit date can be generated directly 

from the change information, but the other features, such as terms in the source 
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code, require further feature generation techniques. A modified bag-of-words 

approach is used to generate features from source code files and change log texts. 

To extract the C/C++/Java source code complexity metrics, the Understand C/C++ 

and Java tools [55] are used (no complexity metrics were generated for PHP, Perl, 

Python and XML source code due to the lack of available tools for computing the 

complexity measures for these languages).  

This chapter discusses feature generation techniques and introduces the 

classification algorithms. 

5.2.1 Feature Generation 

A well known characteristic of machine learning classification algorithms is 

that their accuracy is sensitive to the selection of features [21, 56]. Fortunately, 

humans are not required to provide a list of known good features, since a feature 

selection algorithm can automatically find good features out of a mixed set of 

relevant and irrelevant features [65]. A classifier’s accuracy will not suffer from 

large numbers of features, or redundant features. All possible features are extracted 

from file change information, and fed into a feature identification process to 

determine the important features for change classification [41, 65]. 

A file change involves two source code revisions (an old revision and a new 

revision) and a change delta that records the added code (added delta) and deleted 

code (deleted delta) between the two revisions. A file change has associated 
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metadata, including the change log, author, and commit date. By mining change 

histories, it is possible to derive features such as co-change counts to indicate how 

many files are changed together in a commit, the number of authors, and the 

previous change count of a file. Every term in the source code, change delta, and 

change log text is used as a feature. The detailed feature generation methods are 

described below.  

5.2.2 Feature Generation from Change Metadata 

File change metadata is a good feature source for predicting buggy changes. 

There are 8 features from change metadata: author, commit hour (0, 1, 2, … 23), 

commit day (Sunday, Monday, …, Saturday), cumulative change count, 

cumulative bug count, length of change log, changed LOC (added delta LOC + 

deleted delta LOC), and new revision source code LOC. In other research, 

cumulative bug and change counts are commonly used as bug predictors [20, 43, 

49, 51, 58, 60, 70]. 

5.2.3 Complexity Metrics as Features 

Software complexity metrics are also commonly used to measure software 

quality and identify risky modules [22, 27]. A range of traditional complexity 

metrics of source code is computed using the Understand C/C++ and Java tools 

[55]. As a result, 61 complexity metrics (every complexity metric these tools 
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compute) were extracted for each file including LOC, lines of comments, 

cyclomatic, and max nesting. Since there are two source code files involved in 

each change (old and new revision files), the delta of each complexity metric value 

is available. The complexity metric deltas are an important feature since they 

indicate whether or not a file change increases or decreases in complexity.  The 61 

complexity metric deltas are used as features as well. 

5.2.4 Feature Generation from Change log, Source Code, and File 
names 

Change logs are similar to email or news articles in that they are human 

readable texts. Each word in the change log carries a semantic meaning. Feature 

engineering from texts is a well studied area, with bag-of-words, latent semantic 

analysis (LSA), and vector modeling being widely used approaches [53, 56]. 

Among them, the bag-of-words (BOW) approach, which converts a stream of 

characters (the text) into a bag of words (index terms), is simple and performs 

fairly well in practice [56, 57]. BOW is used to generate features from change logs.   

All words were extracted, except for special characters, and were converted to 

lowercase. The existence (binary) of a word in a document is used as a feature. 

Every term in the source code is used as a feature, including operators, numbers, 

keywords, and comments. To generate features from source code, a modified 

version of BOW, called BOW+, is used to extract all normal terms. BOW+ 

additionally extracts operators, since operators such as “!=”, “++”, and 
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“&&“ are important terms in source code. The BOW+ extraction is used on added 

delta, deleted delta, and new revision source code. 

The directory and file name are converted into features, since they encode 

both module information and some behavioral semantics of the source code. For 

example, the file (from the Columba project), ‘RecieveOptionPanel.java’ in the 

directory, ‘src/mail/core/org/columba/mail/gui/config/account/’ reveals that the 

file received some options using a panel interface, and the directory name shows 

the source code is related to ‘account’, ‘configure’, and ‘graphical user interface’. 

Some researchers perform bug predictions at the module granularity by assuming 

that bug occurrences in files in the same module are correlated [20, 23, 60]. The 

BOW approach is used by removing all special characters, such as slashes, and 

extracting the words from the directories and file name. Directories and file names 

often use Camelcase [63]. For example, ‘RecieveOptionPanel.java’ combines 

‘receive’, ‘option’, and ‘panel’. To extract such words correctly, a case change in a 

directory or file name is considered as a word separator. This method is defined as 

BOW++. Table 5-2 summarizes features generated and used in this study. 
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Table 5-2. Feature groups.  Feature group description, extraction method, and example features. 

Feature Group Description Extraction 
method Example Features 

Added Delta (A) Terms in the added delta source code BOW+ if, while, for, == 
Deleted Delta (D) Terms in the deleted delta source code BOW+ true, 0, <, ++, int 
Directory/file Name (F) Terms in the directory/file names  BOW++ Src, module, java 
Change Log (L) Terms in the change log BOW fix, added, new, 

feature  
New Revision Source 
Code (N) 

Terms in the new revision source code 
file BOW+ if, ||, !=, do, while, 

string, false  
Metadata (M) Change metadata such as time and 

author Direct author: hunkim, 
commit hour: 12  

Complexity Metrics (C) Software complexity metrics of each 
source code UD tools LOC: 34, 

Cyclomatic: 10 

5.3 Classification Algorithms 

There are many text classification algorithms. Naïve Bayes [54] and Support 

Vector Machines [26] are used in this experiment for two reasons: 1) they are 

widely used in text classification applications; and 2) they are very different from 

each other. Naïve Bayes models how documents in each class are generated and 

derives the decision boundary from the generative models of different classes, 

while Support Vector Machine is a discriminative model that directly models the 

decision boundary between classes. 

5.3.1 Naïve Bayes 

Naïve Bayes is a multi-class classification algorithm, where the class labels 

can take several different values [54]. In this study case, two classes, buggy and 

clean, are used. For each change that is represented as a sequence of features, 
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assume its length is independent of its class, and the probability of generating each 

feature is independent of other features in the change. If the change belongs to 

class cj, a multinomial distribution P(wv|cj) is used to model the generation process 

of the feature sequence, where P(wv|cj) is the probability of generating a feature wv 

given class cj. Given a set of training changes with class labels, the maximum 

estimation of P(wv|cj) is the total number of occurrences of features wv in class j 

divided by the total number of feature occurrences in class j. 

Let P(cj) be the probability of a random change belonging to class j.  The 

maximum likelihood estimation of P(cj) is the number of changes in class j divided 

by the total number of changes. 

The probability of a change di=(w1, w2, ..., wN) given its class label cj is: 

P(di|cj)= C(di) P(w1|cj) P(w2|cj) ... P(wN|cj) 

Where C(di) is a value that only depends on di. Using the Bayesian Rule, it is 

possible to estimate the probability that a testing change di belongs to class cj: 
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The most likely class for the change di is the class cj that gives the highest 

value of P(cj|di). 
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5.3.2 Support Vector Machines 

Support Vector Machines were originally designed for binary classification, 

where the class label can take only two different values. A support vector machine 

tries to find the maximum margin hyperplane, a linear decision boundary with 

maximum margin between the boundary and the training examples in class 1 and 

training examples in class 2 [62]. This hyperplane gives the greatest separation 

between the two classes. The task of finding this hyperplane can be converted into 

a constraint minimization task: 

C1||, ,0
max =βββ , NiCxytosubject T

ii ,...,1,)( 0 =≥+ ββ  

Where xi is a vector that represents the training example and each dimension 

of the vector corresponds to the weight of an indexing feature. y is a scalar usually 

used to represent the value: yi=1 if xi belongs to class 1, and yi=-1 if xi belongs to 

class 2. β  is a vector, β0 is a scalar, and (β,β0)  defines the hyperplane. C is called 

the margin: the distance from the hyperplane to either class. The solution can be 

found efficiently, and the Sequential Minimal Optimization (SMO) algorithm 

described in [52] is used. The SMO implementation in the Weka Toolkit was used 

in this study [65]. There are several variations of SVM, and much literature about 

SVM exists. A detailed discussion of SVM is beyond the scope of this dissertation, 

and [26] has more details. 

The performance of the two algorithms is discussed in Chapter 5.7.  
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5.4 Experiment Setup 

5.4.1 Corpus Information 

Since different projects have different durations, file change features from 

revisions 500-1000 (or revisions 500-750 for big projects) are used in this study. 

Revisions 500-1000 are selected, since the change patterns in the first part of a 

project (revisions 1-500) may not be stable. Due to the inherent flux in the start of 

a project, the changes in this period may have many refactorings and abnormal 

changes. In  the literature, some researchers ignore the first part of a project’s 

history to remove potential abnormalities in change patterns [23]. The 

classification results of the first period (revision 1-500) and the second period 

(revision 500-1000) are discussed in Section 5.7.3. 

Using the feature engineering technique described previously, features were 

generated from all file changes in the analyzed range of revisions. Each file change 

is represented as an instance, a set of features. Using the bug-introducing change 

identification algorithm, each instance was labeled as either clean or buggy. Table 

5-3 summarizes the corpus information. 

For example, for Apache 1.3 (A1), 500 revisions which were made between 

10/1996 and 01/1997 were analyzed. During this period, there were 700 total file 

changes, of which 566 were clean and 134 were buggy (19.1%). The count of all 

unique features extracted from these 700 changes is 11,445. 
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Table 5-3. Summary of the corpus information.  * is the average of percentages of buggy 
changes. 

Project Revisions. Period # of 
clean 

changes

# of 
buggy 

changes

% of 
buggy 

changes 

# of 
features

A1 500-1000 10/1996-01/1997 566 134 19.1 11,445
BUG 500-1000 03/2000-08/2001 149 417 73.7 10,148
COL 500-1000 05/2003-09/2003 1,270 530 29.4 17,411
GAI 500-1000 08/2000-03/2001 742 451 37.8 9,281
GFO 500-1000 01/2003-03/2004 339 334 49.6 8,996
JED 500-750 08/2002-03/2003 626 377 37.5 13,879
MOZ 500-1000 08/2003-08/2004 395 169 29.9 13,648
ECL 500-750 10/2001-11/2001 592 67 10.1 16,192
PLO 500-1000 07/2002-02/2003 457 112 19.6 6,127
POS 500-1000 11/1996-02/1997 853 273 24.2 23,247
SCA 500-1000 06/2001-08/2001 358 366 50.5 5,710
SVN 500-1000 01/2002-03/2002 1,925 288 13.0 14,856
Total N/A N/A 8,272 3,518 29.8* 150,940

 

Note that the buggy change percentage of Bugzilla (BUZ) is relatively higher 

than that of other projects. Since Bugzilla is a bug tracking project, the project 

heavily uses Bugzilla to keep the project issues. Since the fix identification 

algorithm used in this dissertation relies on the linkage between log messages and 

bug tracking numbers as shown in Table 3-1, the algorithm identifies many fix 

changes in the Bugzila project. Many identified fixes cause identification of many 

buggy changes. Similarly, Scarab (SCA), another issue tracking system, has higher 

buggy change percentage.     

After they are extracted from changes, features are grouped based on the 

feature sources and analysis is performed to identify important feature groups. The 
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feature groups and the number of features in each group are summarized in Table 

5-4.  

Table 5-4. Feature groups.  The numbers of each feature group are shown. 

Number of features of projects Feature 
Group A1 BUG COL GAI GFO JED MOZ ECL PLO POS SCA SVN

Added Delta (A) 2024 2506 3811 2094 1895 2939 3079 2558 1540 3532 1290 2663
Deleted Delta (D) 1610 1839 3227 1956 1832 2352 2176 2200 1073 2995 836 2117
Directory/File 
 Name (F) 

93 66 559 39 242 377 105 456 221 472 106 195

Change Log (L) 1257 1124 869 1094 3970 431 959 53 2835 1161 650 2474
New Revision 
Source Code (N) 

6330 4604 8814 3967 4481 7649 7320 10794 2671 14956 2697 7276

Metadata (M) 8 8 8 8 8 8 8 8 8 8 8 8
Complexity  
Metrics (C) 

122 0 122 122 0 122 0 122 0 122 0 122

*Total 11445 10148 17411 9281 8996 13879 13648 16192 6127 23247 5710 14856

5.4.2 Feature Selection 

As described in Table 5-3, each project has a large number of features. For 

example, Columba has 17,411 features and PostgreSQL has 23,247 features. There 

are various ways to select important features and reduce the number of features 

without sacrificing or even improving classification accuracy [21, 41]. This study 

tries to identify important feature groups and individual features, so no feature 

selection algorithms are applied.  

5.5 Evaluation Measure 

There are four possible outcomes from using a classifier: classifying a buggy 

change as buggy ( bbn → ), classifying a buggy change as clean ( cbn → ), classifying a 
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clean change as clean ( ccn → ), and classifying a clean change as buggy ( bcn → ). 

The accuracy, recall, precision, and F value measures are widely used to 

evaluate classification results [57, 67]. These measures are used to evaluate the file 

change classifiers, as follows [2, 44, 67]: 

Accuracy = 
nb→b + nc→c

nb→b + nb→c + nc→c + nc→b
  

That is, the number of correctly classified changes over the total number of 

changes.  

Precision (bug), P(b) = 
bcbb

bb

nn
n

→→

→

+
  

This represents the number of correct classifications of the type ( bbn → ) over 

the total number of classifications that resulted in a bug outcome. 

Recall (bug), R(b) = 
cbbb

bb

nn
n

→→

→

+   

This represents the number of correct classifications of the type ( bbn → ) over 

the total number of changes that were actually bugs. 

F-value (bug) = 
)()(

)(*)(*2
bRbP

bRbP
+

  

This is a composite measure of precision and recall. 

Similarly, we can compute clean change recall, precision, and F-value: 
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Precision (clean), P(c) = 
cbcc

cc

nn
n

→→

→

+
  

Recall (clean), R(c) = 
bccc

cc

nn
n

→→

→

+   

F-value (clean) = 
)()(

)(*)(*2
cRcP

cRcP
+

  

5.5.1 Validation Method  

Among the labeled instances in a corpus, some subset must be used as a 

training set or a test set, since this affects classification accuracy. The10-fold 

cross-validation technique [45, 65] is used to handle this problem. 10-fold cross-

validation works as follows: first, we randomly divide a corpus into 10 folds of the 

same size, as shown in Figure 5-2. The first fold is selected as a test set, and the 

others as a training set. A classification algorithm uses the training and test set to 

train and test the model. The method iterates by selecting the 2nd, 3rd, … 10th fold 

as a test set, and the others as a training set. After 10 iterations, accuracy measures 

can be computed by summing up the classification results. 

Test
Set

1 2 3 4 5 6 7 8 9 10

Traning Set

 

Figure 5-2. Operation of the 10-fold cross validation. 
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Training and classification is performed 10 times with each fold tested exactly 

once as a test set. All accuracy measures reported in this chapter are computed 

using 10-fold cross-validation.  

5.6 Results 

This chapter presents change classification results including accuracy, recall, 

precision, and F values. The important feature groups and individual features are 

identified.  

5.6.1 Change Classification Accuracy 

Figure 5-3 shows accuracy and buggy change recall of the 12 projects using 

all features listed in Table 5-3. Change classification accuracy ranges between 

63% and 92%, varying by projects. Buggy change recall ranges between 43% and 

86%. Buggy change precision ranges between 44% and 85%.  
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Figure 5-3. Change classification accuracy, buggy change recall, and buggy change precision 
of the 12 analyzed projects using SVM and all features. 
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Detailed recall, precision, and F values are reported in Table 5-5. The recall 

indicates among all real buggy changes how many can be caught by the change 

classification approach. The precision indicates among the predicted buggy 

changes how many of them are real buggy changes.  

Since this study is the first to classify file changes, there are no directly 

equivalent projects which can be used to compare results. It is only possible to 

evaluate the change classification performance by comparing it with other research 

that has performed bug prediction at the file or module level, despite the fact that 

they are not directly comparable.  

Table 5-5. Change classification accuracy, recall, precision, and F values of 12 open source 
projects. The SVM classification algorithm is used with all features. 

Project Accuracy Bug 
recall 

Bug 
precision

Bug F Clean 
recall 

Clean 
precision 

Clean F

A1 0.809 0.44 0.5 0.468 0.896 0.871 0.883 
BUG 0.784 0.863 0.847 0.855 0.564 0.596 0.579 
COL 0.758 0.581 0.59 0.586 0.831 0.826 0.829 
GAI 0.712 0.632 0.617 0.624 0.761 0.773 0.767 
GFO 0.637 0.599 0.602 0.601 0.669 0.666 0.668 
JED 0.653 0.525 0.540 0.532 0.730 0.719 0.724 
MOZ 0.773 0.574 0.634 0.602 0.858 0.825 0.841 
ECL 0.921 0.612 0.612 0.612 0.956 0.956 0.956 
PLO 0.798 0.482 0.486 0.484 0.875 0.873 0.874 
POS 0.726 0.429 0.435 0.432 0.822 0.818 0.820 
SCA 0.786 0.776 0.796 0.786 0.796 0.777 0.786 
SVN 0.896 0.594 0.6 0.597 0.941 0.939 0.940 

 

Brun and Ernst [8] use a classification algorithm to find fault invariants which 

lead developers to hidden code errors. They reported classification precision (fixed 
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relevance) for C of 45% and Java of 59% on average [8]. Ostrand et al. identified 

the top 20% of problematic files in a project using bug predictors and a negative 

binomial linear regression model [50, 51]. Using the top 20% of files from this list, 

they predict 71-93% of future bugs. Khoshgoftaar and Allen have proposed a 

model to list modules according to software quality factors such as future bug 

density [27, 28]. Their results showed that the top 10% of the identified modules 

have 64% of all bugs, and the top 20% have 82% of all bugs.  

The change classification approach can predict bugs with 62% to 92% 

accuracy at the file change level of granularity. With a file-level change having, on 

average, 20 LOC, this is the smallest prediction granularity in the literature. In 

addition, this approach does not require any pre-identified problem lists to predict 

bugs. Overall, the combined prediction accuracy and granularity exceed the state 

of the art reported in the literature. 

5.6.2 Recall-precision Curve 

There are tradeoffs between precision and recall, and it is often possible to 

improve recall by reducing precision and vice versa. The best tradeoff between 

buggy change recall and precision remains an open question. Buggy change recall 

can easily go up to 100% by predicting all changes as buggy, but the precision will 

be very low. The recall-precision curve shows the trade-offs between recall and 

precision. 
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Figure 5-4 shows the recall-precision curves of 4 selected projects, Apache, 

Bugzilla, Mozilla, and Scarab. The curve for the Apache project shows that the 

precision grows up to about 60% (with 10% recall). For Mozilla and Scarab, the 

precision can reach 85-90% by lowering the recall to 30%.  

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Precision

Re
ca

ll

Apache Mozilla Scarab Bugzilla

 

Figure 5-4. Recall-precision curves of selected 4 projects, Apache, Bugzilla, Mozilla, and 
Scarab using SVM. 

 

Most machine learning classifiers use a threshold value to classify instances. 

For example, SVM uses the distance between each instance and the hyperplane to 

measure the weights of each instance. If an instance's weight is greater than the 

threshold value, the instance belongs to class1, otherwise it belongs to class2. By 

lowering or raising the threshold, it is possible to change recall and precision. 
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Usually by lowering recall, precision can be increased. However, sometimes 

lowering recall does not raise precision. For example, by lowering recall and 

changing the threshold value, correctly predicted buggy changes can be lost, 

thereby lowering precision. 

Suppose there are change instances ordered by their weights in a one 

dimensional space as shown in Figure 5-5. An instance whose weight is smaller 

than a threshold value (to the left of the threshold) is classified as buggy. By 

selecting threshold 4 in Figure 5-5, the buggy change recall is 100% and buggy 

change precision is 50%. By selecting threshold 3, recall is 67% (4/6) and 

precision is 67% (4/6). By selecting threshold 2, recall is 50% (3/6) and precision 

is 75% (3/4). As this example demonstrates, when recall is reduced, precision 

usually increases. However, by selecting threshold 1, the recall is 17% (1/6) and 

precision is 50% (1/2) which is lower than the precision with threshold 2.  

 

Figure 5-5. Sample instances in a one dimensional space. 

 



 

 -90 - 
 

To see how the change instances in the real projects are ordered, and why 

there is jitter in the recall-precision curves in Figure 5-4, the buggy and clean 

change counts are listed in Table 5-6. First, all instances are ordered by their SVM 

weights (the left side for buggy and right side for clean, like instances in Figure 

5-5). Then the ordered instances are divided into 10 intervals, and buggy and clean 

instances in each interval are counted. For example, in the Scarab project the 

leftmost 76 instances include 65 buggy and 11 clean changes. The rightmost 72 

instances include 70 clean and 2 buggy changes. For the Apache project, even the 

leftmost instances include many clean changes. The many clean changes on the 

left side cause jitter in the recall-precision curve, and make it impossible to attain 

100% precision. 

Table 5-6. Buggy and clean counts of ordered change instances by SVM weights. 

Total 70 70 70 70 70 70 70 70 70 70
Buggy 32 27 21 15 19 10 4 4 1 1A1 
Clean 38 43 49 55 51 60 66 66 69 69
Total 76 72 72 72 72 72 72 72 72 72

Buggy 65 60 52 46 29 30 23 38 21 2SCA 
Clean 11 12 20 26 43 42 49 34 51 70

 

How are the recall-precision curves obtained using the 10-fold cross-

validation approach? For each fold, the change instance SVM weights of the test 

set are computed. After applying 10-fold cross validation, all instance weights are 

merged and ordered to determine recall-precision rates by changing the threshold. 

In fact, 10 different classifiers are trained to create 10 models, and all 10 models 
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are used to compute instance weights. 10 recall-precision curves are computed 

from 10 different classification models. 
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Figure 5-6. Recall-precision curves of each fold in the Apache 10-fold cross validation. 

 

For example, Figure 5-6 shows the precision-recall curves of the 10 

classification models used in the 10-fold cross validation of the Apache project. 

Each recall-precision curve is slightly different, but they share curve trends. 

However, to simplify the recall-precision curves, the mixed weights from 10 

classification models are used to show the recall-precision curves in Figure 5-4. 
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Figure 5-7. Recall-precision curves of SVM and dummy classifiers for the Scarab project. 

 

How is this recall-precision better than other approaches, such as randomly 

guessing changes (dummy classifier) as buggy or clean? Since there are only two 

classes, it can be assumed that the chance of correct prediction is about 50%. For 

example, in the Scarab project, 50.5% of changes are buggy changes (See Table 

5-3), so about 50% of the random guesses will be correct. Is this better than the 

results when using SVM? The recall-precision curves of the dummy and SVM 

classifiers for the Scarab project are compared in Figure 5-7. The dummy 

classifier’s precision is stuck at 50.5%, while the SVM precision grows up to 85% 

(with 30% recall). SVM can improve buggy change precision by 35% in the 

Scarab project. 
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5.6.3 Feature Groups 

The accuracy of the different feature group combinations discussed in Section 

5.4.1 was observed. First, a classification model is trained using features from one 

feature group. Then a classification model is trained using all feature groups 

except the one feature group. In addition, the combination of features extracted 

solely from the source code (added delta, new revision source code, and deleted 

delta) were examined.  Figure 5-8 shows the change classification accuracy for the 

Mozilla and Eclipse projects using various feature group combinations. The 

abbreviations for each feature group are shown in Table 5-4. The ‘~’ mark 

indicates that the corresponding feature group is excluded. For example, ‘~D’ 

means all features except for D (Deleted delta) are used. The feature group “AND” 

is the combination of all source code feature groups (A, N, and D). The accuracy 

trend of the two projects is different, but they share some properties. For example, 

the accuracy obtained by using only one feature group is lower than using from 

multiple feature groups.  
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Figure 5-8. Feature group combination accuracy of Eclipse and Mozilla using SVM. Note that 
complexity metrics (C) for Mozilla are not available so ~C and C for Mozilla are shown as 0. 

 

The average accuracy of 12 open source projects using various feature 

combinations is shown in Figure 5-9. Using a feature combination of only source 

code (A, N, and D combined) leads to a relatively high accuracy, while using only 

one feature group from the source code, such as A, N, or D, does not lead to high 

accuracy. Using only ‘L’ (change log) leads to the worst accuracy. This is a 

somewhat surprising result, since only the change log text has human readable 

semantics. The rationale behind this phenomenon is explored further in the 

discussion chapter. 
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Figure 5-9. Average feature group combination accuracy across 12 projects using SVM 

 
After analyzing the combinations of feature groups, the feature combination 

that yields the best accuracy and best recall for each project is identified, as shown 

in Figure 5-10 and Figure 5-11. The results indicate that there is no feature 

combination that works best across all projects. To achieve the best prediction 

accuracy, each project requires a project-specific feature selection process.   
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Figure 5-10. Feature group combination yielding best classification accuracy using SVM 
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Figure 5-11. Feature group combination yielding best buggy change classification recall using 
SVM 

5.6.4 Important Feature Groups 

It is necessary to understand the importance of feature groups for 

classification, since this affects feature selection and further feature creation. To 

find important feature groups, each individual feature was ranked and the number 

of group features ranked in the top 10% was counted. Let F be the set of all 

features, and Fi be the ith feature group: },...,,{ 21 iniii fffF = , and Υ
n

i
iFF = . 

All features in F were sorted by their chi-square rank [9]. Note that chi-square 

[9] computes rank of each feature individually. Usually machine learning 

classifiers use combined features. The ranks from chi-square [9] might not the 

same as the importance of features in a machine learning classifier. However, chi-

square rank [9] give us a general idea of the importance of each feature. 
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Let Ftop be the set of features ranked in the top 10%. Then the top feature sets, 

Ftopi that contained these features originally in Fi is obtained.  

}|{ topinintop FffF
i

∈= . 

The importance of feature group i is defined by 

Fimpi
=10

| Ftop
i

|

| Fi |                           

The importance value ranges from 0 to 10. Larger importance values indicate 

a more important feature group. 
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Figure 5-12. Importance of each feature group. 
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Figure 5-12 shows the importance of each group using a box-plot. The 

importance of each feature for 12 open projects is computed, and the average, 25% 

quartile (bottom of box) and 75% quartile (top of box) are shown. For example, 

features in ‘M’ (Metadata) are important features, since the average of the 

importance is 8.1. ‘F’ (file name) and ‘L’ (new revision source code) are less 

important features. The importance of ‘C’ (complexity metrics) varies from project 

to project, since the distance between the 25% and 75% quartiles is long.  

 

5.6.5 Important Individual Features  

The important individual features were highlighted from each feature group 

by ranking individual features using a chi-square metric [9]. After ranking 

individual features, the distributions of each feature in the buggy and clean 

changes were identified based on whether the corresponding feature contributed to 

either buggy or clean changes.  

The top 5 ranked individual features within each feature group are listed in 

Table 5-7 with the overall rank of the feature in the parenthesis and an indication 

of whether it is contributing to the buggy or clean change class (+ for buggy and – 

for clean). The important features of each project vary due to the unique bug 

properties of each project.  



 

 -99 - 
 

Table 5-7. Top ranked individual features of each group. The ‘+’ sign indicates the feature 
contributes to buggy changes. The ‘–’ sign indicate the feature contributes to clean changes. The 
number in parentheses indicates the overall rank of the feature. The △ mark beside a complexity 
metric indicates it is a delta metric. 

 Apache Bugzilla Eclipse 

Complexity 
metrics 

△CountLine (+4), 
CountLineCode (+7), CountStmt 

(+8), △SumCyclomaticStrict 
(+9), CountStmtExe(+11) 

N/A 

SumEssential(-117), 
△CountLineBlank(+228), 

CountStmtDecl(-417), 
CountLineComment(-419), 
CountLineCodeDecl(-420) 

Change 
Log 

and(+196), http(+356), copyright 
(-395), with(+408), via(+636) 

fix(+345), comments(-351), 
correcting (-414), patch(+480), 

ability(- 492) 

fix(+386), for(+398), 18(+961), 
3249(+962),  

1(-1795) 

Metadata 

changed_loc(+1), 
bug_count(+38),  time (+156) 
changed_log_length (+216) , 

author(+512) 

changed loc(+1), loc(+2), 
 bug count(+3), time(-9),  

change count(+43) 

time(+74), changed loc(+88), 
bug count(+104), days(-137), 

change log length(-142) 

New 
Source 

current(+10) , step(+23), 
variable(+27), 

additionally(+29), false (+30) 

order(+4), b(+7), bit(+8), 
ok(+10), used(+11) 

flowinfo(+1), analysecode(+2), 
flowcontext(+3), slow(+4), 

iabstractsynt(+6) 

Added 
Delta 

if(+2), is(+3), 0(+5), else(+6), 
<(+15) 

if(+5), my(+6), value(+15), 
not(+22), sendsql(+26) 

codestream(+12), 
recordpositionsfrom(+8), 

belongsto(+24), complete(+25), 
jobfamily(+26) 

Deleted 
Delta 

if(+18), ==(+21), of(+33), 
int(+43), else(+53) 

name(+153), value(+281), 
my(+300), fetchsqldata(+326), 

sendsql(+349) 

codestream(+14), public(+15), 
recordpositionsfrom(+19), 

return(+21), this(+22) 

Directory/F
ile name 

protocol(+372), main(+468),  
include(-702),  

rewrite(+ 841), c(+1171) 

relation(-219), set(-220), 
move (-375),  

createattachment (-490), 
export(-491) 

ast(+5), compiler(+47), 
statement(+108), core(- 116), 

model(-214) 

 

In the Apache project the most important feature by chi-square [9] is 

‘changed_loc’ in the Metadata feature group. It indicates the more lines change, 

the greater is the risk of a change being bug-introducing. The second most 

important feature in the Apache project is the “if” keyword in the added delta. It 

indicates that adding a new if condition is a risky change. This rank is computed 

for each feature individually and the listed features are only a small portion of the 

entire set of features. Further analysis of the top ranking features may lead to better 

understanding of the causality of bug introduction or permit analysis of common 

buggy change patterns. This remains future work. 
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5.7 Discussion 

This chapter discusses possible applications of change classification, and 

provides a more detailed analysis of the rationale of the results. Two results of 

different classification algorithms are compared. This chapter ends with some 

discussion on the limitations of the change classification experiment.  

5.7.1 Applications 

Right now, the buggy change classifier operates in a lab environment; 

however, it can be put into use in various ways: 

• A commit checker: The classifier identifies buggy changes during commits 

of changes to an SCM system, and notifies developers of the results. Bug 

prediction in the commit checker is immediate, thus making it easy for 

developers to inspect the changes they have just made.  

• Potential bug indicator during source code editing: The results show that 

the features extracted from source code (groups A, N, D) have a strong 

discriminative power. Just using features from source code, it is possible to 

perform accurate bug classification. This implies that a bug classifier can be 

embedded in a source code editor. During the source code editing process, 

the classifier could monitor source code changes. As soon as the cumulative 

set of changes made during an editing session leads the classifier to make a 
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bug prediction, the editor can notify the developer. 

• Impact on the software development process: Results from the change 

classifier could be integrated into the software development process. After 

committing a change, a developer can receive feedback from the classifier. If 

the classifier indicates a buggy change, this could trigger an automatic code 

inspection on the specified change. After the inspection, the developer 

commits a modified change and receives more feedback.  Using the classifier 

in this way would lead to a new low-level development cycle: make a 

change, receive feedback, inspect the change, and repeat.  

5.7.2 SVM and Naïve Bayes 

SVM is one of the most effective machine learning algorithms for text 

classification [26]. This section compares the accuracy of SVM and Naïve Bayes. 

For each classifier, trained and validated using the corpus described in Table 5-3, 

the accuracy is shown in Figure 5-13. SVM performs better for most projects. In 

some projects such as Gaim, JEdit, and PostgreSQL, Naïve Bayes performs as 

well as or better than SVM. These results indicate that different projects have 

different buggy/clean change patterns, and hence the best classification algorithm 

for one project is not necessarily the best classifier for another project.  
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Figure 5-13. SVM and Naive Bayes Accuracy comparison 

5.7.3 Project Periods and Accuracy 

For this project, the corpus (as shown in Table 5-3) uses file changes from 

revisions 500-1000 (500-750 for bigger projects) of each project. The first part of a 

project history may have noise in change patterns. A project is typically unsettled 

early on, with many refactorings and unusual change activities. Changes in the 

later periods are used on the assumption that these later periods have change 

patterns that are more regular.  

This section tests this assumption by comparing the classification results of 

the first and second periods of each project history. A second corpus was made for 

revisions 1-500 (1-250 for bigger projects) using the same methods used in 

creating the corpus for revisions 500-100 (500-750 for bigger projects). Figure 

5-14 compares the prediction accuracy for the two periods of all 12 projects. The 

accuracy for the second period (500-1000) is generally higher than that of the first 
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period. However, in some projects the accuracy of the first period is higher than 

that of the second period. Overall, the prediction accuracy of the first and second 

periods is similar. This is encouraging, since it shows that bug classification can be 

used relatively early in a project’s lifecycle. It indicates the assumption of the first 

period in history [23] is wrong for the change classification, and change 

classification can be used for periods that may have many refactorings or unusual 

change behaviors. 
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Figure 5-14. Accuracy of the revision 1-500 and revision 500-1000 using Naïve Bayes. 

 

5.7.4 Classification Granularity 

One of the advantages of classifying file changes is that it provides predictions 

at a small level of granularity (a single change to a single file). Table 5-8 shows 

the average LOC in a file change, the LOC in the file, entity (such as functions or 

methods) changed LOC, and entity LOC of the 12 projects. For example, the 
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average LOC for file changes in Apache 1.3 is 15.42, and average LOC of files in 

Apache 1.3 is 455.73. The average LOC for file change of all projects is 20, while 

the average LOC for files is 300, including comments, whitespaces, and blank 

lines. For example, if a tool predicts bugs at the file level in the corpus used in this 

study, it is necessary to inspect 300 LOC on average to locate the line(s) 

containing the bug. Since the change classification approach classifies file changes, 

the prediction is at the file change level, and hence only 20 lines on average need 

to be inspected. 

Table 5-8. Average LOC. Entity and entity change LOCs are available for only projects written 
C/C++ and Java. 

Project File change File Entity 
change Entity

Apache HTTP 1.3 (A1) 15.42 455.73 15.83   28.32
Bugzilla (BU) 18.30 375.37 N/A N/A
Columba (CO) 14.94 143.3 10.99 15.64
Gaim(GA) 19.64 832 11.09 38.43
GForge(GFO) 17.73 155.49 N/A N/A
JEdit (JED) 23.64 325.78 7.65 18.74
Mozilla (MOZ) 21.20 285 N/A N/A
Eclipse(ECL) 48.26 230.29 13.77 16.9
Plone(PLO) 9.7 49.11 N/A N/A
PostgreSQL (POS) 14.28 282.92 25 32.21
Scarab (SCA) 21.75 145.98 15.21 16.06
Subversion (SVN) 15.35 354.31 11.923 33.81
Average 20.02 302.94 13.93 25.01
 

It may also be possible to locate bugs at an even finer granularity than file 

changes. Using the same techniques described in this dissertation, it is possible to 

classify entity (function or method) changes (14 LOC per change) instead of file 

changes. Furthermore, it is possible to analyze the contents of each line in the 
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buggy changes, and ignore comments or blank lines to provide even finer 

granularity for the prediction. This remains future work. 

5.7.5 Discriminative Power of Change Log Features 

The change log for a project contains a human readable description of each 

change, and it is assumed to be a significant feature. The features from change logs 

are not significant features as shown in Figure 5-9. The low discriminative power 

of change log features is due to the high number of file changes in each commit. 

rev n-1 rev n rev n+1

 
Figure 5-15. Example commits and corresponding number of file changes 

Suppose we have commits and file changes as shown in Figure 5-15. In revision 

n-1 and revision n+1, there is only one file change in each commit. The commit at 

revision n has three file changes. Assume that the gray colored file changes are 

buggy and white colored file changes are clean. If there is only one change per 

revision, the file change and change log have a one-to-one mapping. However, if 

there is more than one file change, the file changes and change log are a many-to-

one mapping. When multiple file changes in the same commit are different change 

types, such as two clean changes and one buggy change, as shown in Figure 5-15 
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at revision n, it decreases the discriminative power of features extracted from 

change log messages. 

If there are many file changes in a commit, it is likely to have a mixture of 

change types across these files. Change log features have more discriminative 

power when the file change types in the same commit are consistent and/or each 

revision has a small number of file changes. 

5.7.6 Correlation between Percentage of Bug-introducing Changes 
and Classification Accuracy  

One observation that can be made from Table 5-3 is that the percentage of 

changes that are buggy varies substantially among projects, ranging from 10.1% of 

changes for Eclipse to 73.7% for Bugzilla. One explanation for this variance is the 

varying use of change log messages among projects. Bugzilla and Scarab, being 

change tracking tool projects, have a higher overall use of change tracking. It is 

likely that for those projects, the class of buggy changes also encompasses other 

kinds of modifications. For these projects, change classification can be viewed as 

successfully predicting the kinds of changes that result in change tracking tool 

entries.  

  One question that arises is whether the percentage of buggy changes for a 

project affects change classification performance such as accuracy, recall, and 

precision? A Pearson correlation was computed between the percentage of buggy 

changes, and the measures of accuracy, recall, and precision for the 12 projects 
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analyzed in this paper. Figure 5-9 lists the correlation values. A correlation value 

of 1 indicates tight correlation, while .5 indicates almost no correlation. The values 

show no correlation for accuracy, and weak but not significant correlations for 

buggy recall and precision. 

Table 5-9. Correlation between the percentages of buggy changes and change classification 
performance. 

 Buggy % vs. 
accuracy 

Buggy % vs. bug 
recall 

Buggy % vs. bug 
precision 

Correlation -0.56 0.77 0.64 

5.8 Summary  

 
If we know that a change we just made contains bugs, it will help us to 

identify and fix the potential bugs in the change before a bug report. Experimental 

results presented in this chapter show that it is possible to classify buggy changes 

with acceptable accuracy (78% on average) and buggy change recall (65% on 

average) using features from change information. Developers can benefit from 

focused and prompt prediction of buggy changes, receiving this prediction either 

while they are editing source code or right after a change submission. 

It is the first research to classify file changes using the combination of change 

information features and all source code terms.  
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5.9 Future Work 

Although these experimental results are encouraging, there is still room for 

improvement. The future work will include the following topics: 

Exploring on-line machine learning algorithms to learn and update a 

classification model as the project progresses and using it to predict future changes. 

After randomizing change instances, the ten-fold cross validation is used to 

validate the change classification approach. In practice, it is necessary to develop 

on-line machine learning algorithms that gather instances from revision 1 to n and 

trains a classifier to predict revision n+1 changes. 

The change or bug patterns may differ from developer to developer. If each 

developer’s buggy and clean changes are used to train a developer specific 

classifier, it may lead to more accurate change classification. A developer-specific 

classifier can be used to classify the corresponding developer’s changes. Training 

developer-specific change classifiers and applying them to each developer’s 

changes is also future work. 

Even though many features are used to classify changes in this dissertation, 

generating more features from change information and exploring various ways to 

extract features such as latent semantic analysis [36] may lead to more accurate 

classification.  
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In this study, two machine learning algorithms, Naïve Bayes and SVM are 

used. It may possible that other machine learning algorithms yield better accuracy, 

recall, and precision. Classifying changes with other machine learning algorithms 

such as decision trees and neural networks is also future work. 

Modifying existing machine learning algorithms to achieve better prediction 

accuracy, precision, and recall [16] is also necessary. Since the source code change 

classification is different from regular text classification, modified machine 

learning algorithms may work better than existing ones. 
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6 Threats to Validity 

There are four major threats to the validity of this work. 

Systems examined might not be representative. In this dissertation 12 

systems are examined, more than any other work reported in the literature. In spite 

of this, it is still possible that systems that have better (or worse) bug classification 

accuracy or bug cache hit rates than a random selection of systems. Since systems 

were only chosen that had some degree of linkage between change tracking 

systems and the text in the change log (so it is possible determine fix inducing 

changes), there is a project selection bias. It certainly would be nice to have a 

larger dataset. 

Systems are all open source. The systems examined in this dissertation all 

use an open source development methodology, and hence might not be 

representative of all development contexts. It is possible that the stronger deadline 

pressure, different personnel turnover patterns, and different development 

processes used in commercial development could lead to different buggy change 

patterns or bug localities.  
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Bug-fix data is incomplete. Even though projects that have good quality 

change logs were selected, the heuristic bug-fix change identification method is 

still only able to extract a subset of the total number of bugs (typically only 40%-

60% of those reported in the bug tracking system). Since the heuristic method 

relies on change logs to identify fixes, the identified fixes may not all be true fixes. 

Bug-introducing change data is incomplete.  Since the bug-introducing 

change identification algorithm uses hunks in the fix changes [32], the algorithm 

may miss certain types of bug-introducing changes such as only addition fix 

changes that only involve addition of text or bug-introducing changes caused by 

other parts of the source code.  
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7 Related Work 

Work related to this thesis falls into one of the followings types: bug 

prediction, source code classification and text classification. This chapter describes 

them and compares them with the bug cache and change classification approaches. 

7.1 Bug Prediction 

There is a rich literature for bug detection and prediction. This work falls into 

the following three categories: identifying a problematic module list by applying 

software quality metrics or change history [23, 27, 28, 35, 50, 51], predicting the 

bug density of each module using its software change history [20, 46], and 

detecting bugs by analyzing source or binary code using static or dynamic analysis 

techniques, including type checking, deadlock detection, automatic theorem 

proving, or pattern reorganization [14, 24, 38, 60]. This chapter discusses the first 

two categories, since they are related to this dissertation. Additionally, the bug 

prediction algorithms that use project histories are discussed.  
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7.1.1 Identifying Problematic Entities 

If it is possible to identify problematic software entities in advance, 

developers can use caution when changing them or can run intensive test cases on 

them. Classification or regression algorithms using various features such as 

complexity metrics, cumulative change count, or bug count are widely used to 

predict problematic entities. Table 7-1 summarizes selected bug prediction 

approaches by identifying problematic entities.  

Table 7-1. Selected bug prediction research. 

Authors Approaches Analyzed 
projects 

Prediction 
granularity Performance

Gyimothy et 
al. [22] 

Decision trees and neural 
networks with object-oriented 
metrics. 

Mozilla Class 
(File) 

Recall/precisio
n is 70% 

Brun et al. [8] SVM and decision trees to 
find relevant program 
properties (fault invariant). 
The fault invariant is used to 
find errors 

Get, 
Pathfinder, 
etc. 

Invariants Fixed relevant: 
45% for C and 
59% for Java 

Hassan et al. 
[23] 

Select top-ten modules using 
four factors separately: most 
frequently modified, most 
recently modified, most 
frequently fixed, and most 
recently fixed 

OpenBSD, 
NetBSD, 
FreeBDS, 
KDE, Open 
office 

Module 
(directory) 

The top-ten list 
finds 50% of 
bugs 

Ostrand et al. 
[50, 51] 

A negative binomial 
regression model using fault 
and change history 

Two 
industrial 
system 

File Using 20% of 
file list, the 
accuracy is 71-
93% 

Khoshgoftaar 
et al. [27, 28] 

A step wise regression  with 
quality factor such as the 
number of faults and software 
complexity metrics 

Two 
industrial 
system 

Module Using 10% of 
the modules, 
the accuracy is 
64% (82% 
using 20% of 
modules)  
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Gyimothy et al. used regression and machine learning algorithms such as 

decision trees [2] and neural networks [2] to predict fault classes of the Mozilla 

project in each release (releases 1.0~1.6) [22]. They use object-oriented metrics as 

features for the machine learning algorithms. Their recall and precision are about 

70% while the change classification accuracy in this study for the Mozilla project 

is 77.3% and precision is 63.4%. Note that Gyimothy et al. predicted faults in the 

class level, while the prediction of the change classification approach is at the 

granularity of file changes. Gyimothy et al. used release-based classes for 

prediction, and a release is an accumulation of many revisions. 

Brun and Ernst [8] use two classification algorithms to find hidden code errors. 

Using Ernst’s Daikon dynamic invariant detector, invariant features are extracted 

from code with known errors and with errors removed. They train a Support 

Vector Machine and a decision tree using the extracted features, then classify 

invariants in the source code as either fault-invariant or non-fault-invariant. The 

fault-invariant information is used to find hidden errors in the source code. 

Reported classification accuracy is 10.6% on average (9% for C and 12.2% for 

Java), with classification precision of 21.6% on average (10% for C and 33.2% for 

Java), and the best classification precision (with top 80 relevant invariants) of 52% 

on average (45% for C and 59% for Java). The classified fault invariants guide 

developers to find hidden errors. Brun and Ernst’s approach is similar to our work 

in that they try to capture properties of buggy code and use it to train machine 
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learning classifiers to make future predictions. However, they used only invariant 

information as code properties, which leads to lower accuracy and precision. In 

contrast, change classification uses a broader set of features including source code, 

complexity metrics, and change metadata.   

Hassan and Holt proposed a caching algorithm to compute the set of fault 

prone modules, called the top-ten list [23]. They used four factors to determine this 

list: software that was most frequently modified (MFM), most recently modified 

(MRM), most frequently fixed (MFF), and most recently fixed (MRF). This work 

is similar to ours in that they dynamically maintain the list using the current status 

of the project.  

The analysis in [23] uses the four factors separately to compute the list while 

the bug cache approach uses all factors together to derive synergy from all possible 

factors. For example, the bug cache approach uses MRF when the cache fetches a 

missed entity, and MFF if the cache replacement algorithm is BUG. The bug cache 

uses MRM when the cache pre-fetches a changed entity. The bug cache 

additionally uses co-change measurement (spatial locality) as a predictor, which 

boosts the performance of the bug cache approach. 

The granularity of the top-ten list in [23] is very large, at the subsystem level, 

where a subsystem is a collection of files. The entire bug caches operate at smaller 

granularity, which is more useful since it allows developers and testers to focus on 

a smaller set of code.  
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Similar to the top-ten list, Ostrand et al. identified the top 20% of problematic 

files in a project [50, 51]. Using future fault predictors and a negative binomial 

linear regression model, they predict the fault density of each file. These files are 

then ordered by fault density. Using the top 20% of files from this list, they 

predicted 71-93% of future faults. This is most directly comparable to Figure 4-9 

(bug cache using fixes), where the bug cache can predict 73-96% of future faults, 

but with the bug cache achieving greater precision (10% of files for bug cache vs. 

20% for Ostrand et al.).  

Khoshgoftaar and Allen [27, 28] propose a model to list modules according to 

software quality factors such as fault density or software complexity metrics such 

as LOC, number of unique operators, and cyclomatic complexity. A step-wise 

regression is then performed to find weights for each factor [27, 28]. Their results 

show that the top 10% of the identified modules have 64% of all identified faults, 

and the top 20% have 82% of all faults. Since [27, 28] use software complexity 

metrics, the list of buggy modules tends to be static over time, and hence does not 

easily adapt to changing observed bug densities. Finding a bug in a module does 

not change its rank, since it does not change the software’s computed complexity.  

Most existing research focuses on classifying or predicting future bugs at the 

level of modules, files, or functions. The change classification approach classifies 

changes by learning from previous changes. Software complexity metrics and 

change measures are widely used features, but most researchers in the literature 
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neglect terms in the source code when they extract features from the project 

history. The change classification approach uses every term in the source code 

including operators, and shows that such features have a strong discriminative 

power. 

7.1.2 Predicting Fault Density  

Graves et al. compute the fault density of each software module using a 

weighted time damp model that uses changes over time as a future fault prediction 

factor [20]. They assume that a module with old changes is either a fixed module 

or a fault-free module, and weight recent changes over older ones. They observed 

a significant improvement in predictive accuracy with this approach, providing 

additional support for the locality of bugs to changes.  

Mockus et al. identify significant change types such as the number of co-

changed subsystems, the number of change deltas, and whether the change was a 

fix, or change frequency [43]. They used logistic regression [2] for their prediction 

model. They identified significant factors such as whether the change was a fix, 

and their change interval was similar to the temporal bug locality concept used in 

the bug cache. The co-changing subsystem numbers are also similar to the spatial 

bug locality concept used in this study [43].  

Nagappan et al. indicate that relative code change measurements are a better 

fault predictor that absolute change measurements [46]. For example, instead of 
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using absolute changed-LOC as a predictor, they use changed-LOC/LOC instead. 

The bug cache approach uses absolute bug and change measurements to fetch or 

replace entities. The granularity of Nagappan’s prediction in [46] is at the entire 

binary level, and hence it is unclear how well their approach works on smaller 

grain sizes.  

7.1.3 Using Project History 

This section surveys research that uses project histories, including building 

project knowledge [10, 11], detecting common bug patterns [37, 64], and finding 

association rules among bugs. [59]. 

Hipikat is a tool that recommends relevant software artifacts to the current 

developers’ task based on project histories comprised of artifacts such as source 

code changes, mailing list messages, bug tracking entries, and written 

documentation [10, 11]. The Hipikat approach is similar to the work in this 

dissertation in that it uses project history to learn project specific knowledge. 

However, bug cache and change classification approaches explicitly identify bad 

(bug) and good (fix) changes to detect potential bugs. Hipikat tries to provide 

related references to developers rather than identify good or bad changes.  

Williams and Hollingsworth used project histories to improve existing bug 

finding tools [64]. It is very common to use a call function and its return value.  

Performing a null check on a return value can validate its correctness.  If left 
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unchecked, the return value may contribute to the generation of a bug. The 

problem in this approach is that there are too many false positives. The bug finding 

tool generates warnings about all source code that uses an unchecked return value, 

thereby causing a high false positive rate. To remove these false positives, 

Williams and Hollingsworth use project histories to determine what kinds of 

function return values must be checked. For example, if the return value of the 

function ‘foo’ was always checked in the project history, but not checked in 

current source code, it is very suspicious.  

Livshits and Zimmermann combined software repository mining and dynamic 

analysis to discover common method usage patterns that are likely to encounter 

violations in Java applications [37]. Their approach employs dynamic analysis and 

is more specific in finding violation patterns on method usage pairs, for example 

blockSignal() and unblockSingal() should exist in a pair in the source code.  

Song et al. found association rules among six bug types from project histories 

[59]. Using these association rules, they can predict future bugs. For example, 

suppose bug types A and B are often found together in the history.  Then if we find 

only bug type A in source code, we assume the code contains bug type B as well.  



 

 -120 - 
 

7.2 Source Code Classification, Clustering, and 
Associating 

Source code features (terms) have also been used in software classification 

[33], clustering [34, 39] and associating source code to other artifacts such as 

design documents [40]. Krovtez et al. used terms in the source code (as features) 

and SVM to classify software projects into broad functional categories such as 

communications, databases, games, and math [33]. Their insight is that software 

projects in the same category will share terms in their source code, thereby 

permitting classification. Maletic et al. used all terms in the source via Latent 

Semantic Analysis (LSA) to cluster software and associate other relevant software 

project documents [39, 40]. Kuhn et al. used partial terms from source code to 

cluster the code to detect abnormal module structures [34].  

Research that categorizes or associates source code with other documents is 

similar to ours in that it uses terms from the source code. However, the change 

classification approach uses features from multiple sources such as change deltas, 

source code, change log text, and change metadata rather than using only the 

source code. The goal of associating source code with other lifecycle documents 

differs from this study, since this study tries to identify buggy changes, while this 

other work associates relevant artifacts or tries to find abnormalities of module 

structures.  
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7.3 Text Classification 

Text classification is a well-studied area with a long research history. Using 

text terms as features, researchers propose algorithms to classify text documents 

[57], such as classifying news articles into their corresponding genres. Among 

existing work on text classification, spam filtering [67] is the most similar to ours. 

Spam filtering is a binary classification problem to identify email as spam or ham 

(not spam). The change classification approach adapts existing text classification 

algorithms into the domain of source code change classification. My research 

focuses on generating and selecting features related to buggy source code changes. 
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8 Conclusion 

This dissertation presented two adaptive bug prediction approaches that fully 

leverage project history. The bug cache approach predicts 73-95% buggy entities 

using a cache with 10% of all the files in the software. The change classification 

approach classifies changes with 75-95% accuracy after training a classifier on a 

project’s change history. The two approaches are project specific and maintain 

adaptive bug prediction models, meaning that the models learn from previous 

mistakes in change history. The two approaches yield reasonable bug prediction 

results that generally exceed the best results in the literature in either accuracy, 

granularity, or both. The two approaches show that the use of history and adaptive 

prediction models are effective for bug prediction. 

The following are contributions of this dissertation:   

Adaptive bug prediction approaches using project history: Two adaptive 

bug prediction approaches using project history are presented. In the literature, 

many static bug prediction models are widely used. The presented bug prediction 

models have a learning process so that the learned prediction models are project 

specific. The wide range of features from a project history, including keywords, 



 

 -123 - 
 

changed delta, complexity metrics, file name, author, and change time are used to 

build project specific prediction models and predict future bugs. For example, the 

bug cache approach uses each prediction result to update the cache adaptively. The 

change classification approach uses features from each project to train a project 

specific classifier.  

Leveraging bug-introducing change: A few researchers used bug-

introducing changes to identify buggy source patterns [29] or found correlations 

between signature changes and buggy changes [31]. However, most bug prediction 

related research uses bug-fix data to find prediction models or to evaluate the 

models [23, 49, 51]. Bug-fix data can indicate where bugs are, but cannot indicate 

when and who created the bugs. The algorithm to identify bug-introducing 

changes was introduced by Śliwerski et al. [58] and improved by Kim et al. [32]. 

In this dissertation, bug-introducing change data is used, since determining when 

bugs would be introduced is more important than finding out when the bugs were 

fixed. Two approaches that were proposed in this dissertation can serve as 

references for research that uses bug-introducing changes.  

Properties of bug occurrences: The experiments in this dissertation 

discovered that the occurrence of a bug was not in bursts, but rather local. The 

results of the bug cache clearly indicated that bug occurrences have strong 

temporal and special localities.   
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Bug cache algorithm that uses bug locality to predict future bugs: Based 

on the bug locality, this dissertation presented a simple algorithm, bug cache to 

predict future bug locations.  

Combining prediction features together leads better accuracy: The bug 

cache approach combines many possible bug prediction features such as bug 

occurrence time, accumulated bug counts, co-change files, and change counts, and 

yields better accuracy that that of using a single features individually.  

Software changes can be classified: Change classification is the first attempt 

to classify each software change as either buggy or clean using machine learning 

algorithms. This dissertation shows that source code is classifiable if the proper 

features are extracted and used.  

Feature engineering for software change classification: To classify 

software changes, it is important to extract the appropriate features from software 

changes. This dissertation introduced feature engineering techniques from software 

changes. For example, feature extraction methods from all keywords in the source 

code, file names, and metadata are described.  

Important features for change classification: Using the feature source 

combinations and chi square measurements, the important feature groups (Figure 

5-10) and individual features (Table 5-7) are identified. The identified features 
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could be used as good references for further research in selecting features, finding 

other feature sources, and developing classification algorithms.  

Bug prediction approach using history: The two approaches in this 

dissertation showed that project history is a good data source for future bug 

prediction, since project history accumulates the bug and fix experiences of 

software projects.  

Overall, I expect that future approaches will no longer see software history as 

a series of revisions and changes, but rather as a series of successes and failures—

and as a source for continuous awareness and improvement. The bug cache and 

change classification approaches are the first steps in this direction. 
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