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Abstract—Generally, fault detection is the process of mon-
itoring a physical dynamic system accompanied by confir-
mation and assessment of any degradation of system per-
formance. These systems are mathematically modeled and
terms that are representative of a specific fault are iden-
tified and monitored for detection. In this paper, a fault
detection algorithm is developed to isolate and detect fric-
tion changes in a high precision positioning mechanism. The
designed fault detection algorithm addresses dynamic model
estimation, dynamic filtering and recursive parameter esti-
mation techniques to monitor on-line friction changes. The
procedure is illustrated on a high precision servo pneumatic
cylinder that drives a translational air bearing apparatus,
designed to permit the addition of friction. Side loading of
the cylinder rod induced by a friction fault causes significant
loss of performance in these applications. It therefore serves
to design a simple and effective on-line fault detection and
isolation scheme for the designed experimental set-up.

I. Introduction

A characterization of external friction disturbances is
beneficial for servo control applications where high preci-
sion positioning is crucial. The adverse effects of friction
can be controlled by friction compensation [1], for which a
characterization of the friction is required. In this paper,
a friction fault detection algorithm is designed to monitor
friction changes in a mechanical positioning mechanism.
The algorithm proposed in this paper is able to monitor
Coulomb and viscous friction separately by an on-line es-
timation of the friction parameters. The on-line detection
of friction (fault) presented in this paper could facilitate
the compensation of dry friction in high precision position-
ing mechanisms. Moreover, a fault detection technique for
monitoring dry friction would help the detection of chang-
ing process conditions.

The friction detection technique developed in this pa-
per is designed and illustrated on a servo pneumatic cylin-
der that drives an air bearing mass load. The air bearing
mass is configured in such a way that it allows for (sud-
den) changes in the friction conditions. The friction fault
detection scheme is implemented by simply adding an ac-
celeration sensor to the load of the pneumatic cylinder. As
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a result, the scheme does not require the use of any type
of compensation and is therefore independent of the con-
trol strategy implemented for these types of applications.
Several experimental test cases prove that the scheme is
successful.

The paper is organized as follows. The experimental
set-up for the friction detection algorithm is described in
Section II. The subsequent sections contain the key steps
in the generation of the friction fault detection scheme.
Firstly, the dynamic modeling based on parametric identi-
fication of the pneumatic actuator and servo valve is dis-
cussed in Section III. Section IV presents the friction fault
detection algorithm, where parameters in a proposed fric-
tion model are estimate recursively. The implementation
results are detailed in Section V and conclusions are given
in Section VI.

II. Case study: pneumatic actuator

Pneumatic actuators (cylinders) are air driven actuation
devices, where the air is regulated by some type of voltage
controlled valve [2]. These actuators are in increasing use in
industry in electro-mechanical systems with precision po-
sitioning objectives [3], [4], [5]. The presence of Coulomb
friction in these actuators is a chief obstacle in automated
systems that require precision positioning. This dry fric-
tion phenomena can interfere with the precision positioning
objectives and cause problems like overshooting and force
limit-cycling [6].

The application of a friction fault detection scheme
to a pneumatic actuators will illustrate the usefulness of
the friction monitoring. for that purpose, the following
schematic of the experimental precision positioning appa-
ratus used in this paper is given in Figure 1.

The voltage supplied to the flapper servo-valve Vin di-
rects the flapper and hence the flow of air to the two piston
chambers. Asymmetric flow, i.e. nonzero valve voltage, ul-
timately creates a pressure difference in the cylinder cham-
bers and the piston, rod and air bearing mass are forced
into motion.

The air bearing mass is designed to permit the addition
of dry friction on-line. The mass is two hollowed out sec-
tions of aluminum block bolted together with a supply hose
port in the top section and 36 small exhaust holes in the
bottom section. The block hovers on air as long as suffi-
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Fig. 1. Experimental Apparatus of an Air Bearing Mass with Pneu-
matic Actuation.

cient air is supplied to it (approximately 10 psi). The holes
were made near the corners of the bottom section of the
block to promote stability of the mass when in motion.

Fig. 2. Top Close Up View of Air Bearing Mass.

A top close up view of the air bearing mass is shown in
Figure 2. This figure contains a clear view of the supply air
hose to the air bearing mass and the rod of the mounted
pneumatic cylinder (left), which threads directly into the
mass. The measured signals of interest for identification
and detection are the voltage input Vin to the servo-valve
and the acceleration ẍ of the air bearing mass. Mounted on
the mass are an accelerometer for measuring ẍ and a lin-
ear variable differential transformer (LVDT) opposite the
cylinder rod for measuring x. The mass rides above a lev-
eled smooth aluminum surface with an exhaust channel cut
in the direction of motion to escape the airflow. This chan-
nel enables a smooth transition to friction as the supply
pressure is reduced below critical (contact) pressure. The
height of the cylinder is set to thread the rod into the mass
when the mass is exhausting enough air to make no contact
with the level surface. Therefore, side loading of the rod is
present when contact is induced and as it increases.

III. Dynamic modeling of the pneumatic

actuator and servo valve

A. Experiment based modeling

For the modeling of the dynamical behavior of the pneu-
matic actuator with the flapper servo valve depicted in Fig-
ure 1, an experiment based modeling approach is used. The
experiment based modeling approach in this paper uses
system identification to experimentally model the dynam-
ics from the valve voltage input Vin to the acceleration ẍ
of the air bearing mass. The result is a linear dynamic
time invariant model of the actuator that will be used in
the monitoring of the coulomb and viscous friction on the
basis of simple acceleration measurements of the system.

The experimental based modeling of the pneumatic ac-
tuator and the servo valve consists of two steps. First, an
experiment design for data acquisition has to be performed.
Subsequently, a parametric model estimation is carried out.
The resulting dynamic model that relates the voltage in-
put Vin of the valve to the acceleration ẍ of the mass is
estimated on the basis of frequency domain measurements
obtained from the experiment design. More details can be
found in the following sections.

B. Experimental data acquisition

For the experiment design, a chirp signal with an am-
plitude of 0.7 V over a frequency range between 0 and
20 Hz was used as an input signal for the valve voltage
Vin. Both the position and the acceleration of the air bear-
ing mass depicted in Figure 1 were observed and 1024 data
points were gathered for identification purposes. The mea-
surements were done under a low friction load regime (no
friction fault) to model the pneumatic positioning mech-
anism without friction errors. For identification purposes,
the dynamic relation between voltage input Vin of the valve
and the acceleration ẍ of the mass is of importance. Addi-
tional position measurements were carried out to validate
the model being estimated.

By means of spectral analysis [7], the frequency response
between voltage input Vin of the valve and the acceleration
ẍ of the mass is estimated. The estimated frequency re-
sponse is denoted by G(ω) and Figure 3 shows a Bode plot
of the estimated frequency response.

By inspection of Figure 3 it can be seen that the relation
between voltage input Vin of the valve and the acceleration
ẍ of the mass is a basic differentiator with a roll-off at
approximately 10 Hz. The differentiating action is due to
the proportional relation between valve voltage input and
air flow at low frequencies. The roll-off frequency at 10 Hz
is due to the valve dynamics as the flow controlled flapper in
the valve behaves like a damped beam with a bandwidth of,
apparently, 10 Hz. For frequencies above 10 Hz, the valve
saturates and the up stream pressures, and therefore the
chamber pressures, remain essentially constant. Therefore,
for voltage inputs that exceed 10 Hz, very little motion in
the pneumatic cylinder piston and the air bearing load is
observed.

Taking into account these observations and the shape of
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Fig. 3. Amplitude and Phase Bode Plot of the Frequency Response
G(ω) that relates valve voltage input to air bearing mass accel-
eration

the measured frequency response with the additional time
delays that cause additional phase shifts, a relative simple
model with fourth order dynamics should be able to fit this
frequency response. The result of the parametric identifi-
cation of a fourth order model are given in the following
section.

C. Parametric estimation of dynamic model

To model the dynamics between voltage input Vin of the
valve and the acceleration ẍ of the mass, a dynamic dis-
crete time model Ĝ is being estimated. The discrete time
model Ĝ will be used to simulate and compare discrete time
observations of the acceleration signal ẍ for the purpose of
coulomb and viscous friction monitoring of the pneumatic
cylinder.

The discrete time model Ĝ is found by curve fitting the
measured frequency response G(ω) given in Figure 3. Dur-
ing the curve fitting of the frequency response, the discrete
time model is parameterized via a fourth order model

Ĝ(q, θ) =
B(q, θ)
A(q, θ)

, with

B(q, θ) = b1q
−1 + b2q

−2 + b3q
−3 + b4q

−4

A(q, θ) = 1 + a1q
−1 + a2q

−2 + a3q
−3 + a4q

−4

and θ = [b1 b2 b3 b4 a1 a2 a3 a4]

(1)

where q−1 denotes the usual shift operator u(t − 1) =
q−1u(t). The transfer function of the discrete time model
Ĝ is given by Ĝ(z, θ) with z = ejωT , where T denotes the
sampling time of the discrete time model Ĝ(z, θ).

The 8 coefficients of the parameter θ in the parameteri-
zation of the fourth order discrete time model given in (1)
are determined by means of a (non-linear) least squares
curve fitting problem

θ̂ = arg min
θ

∥∥∥[Ĝ (ejωT , θ)−G(ω)
]
W (ω)

∥∥∥
2

(2)

where G(ω) is the measured frequency response data and
W (ω) denotes an additional (frequency dependent) weight-
ing function. The weighting function W (ω) can be used
certain parts in the frequency domain data that needs to
be fitted.

The computational procedure of the non-linear curve fit-
ting to obtain the parameter θ is done with the frequency
domain model identification program FREQID [8], [9]. The
interface allows a weighting function W (ω) and model or-
der selection during the estimation of a parametric model.

With FREQID, a fourth order discrete time parametric
model (1) is estimated using a weighting function W (ω) =
|G(ω)|−1 and a sample time T = 1/256 sec. The weighting
function W (ω) is set to the inverse of the data G(ω) to
minimize a relative error in (2). The sampling frequency
of 256 Hz is chosen to accommodate the signal process-
ing hardware on which the friction fault detection will be
implemented. Note that a sampling frequency of 256 Hz
captures all of the necessary dynamics of the system, as
magnitude roll-off occurs well below the Nyquist frequency
of 128 Hz.

10
−2

10
−1

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

lo
g 

m
ag

frequency (Hz)

10
−2

10
−1

10
0

10
1

10
2

−200

−100

0

100

200

ph
as

e 
(d

eg
)

frequency (Hz)

Fig. 4. Amplitude and phase Bode plot of frequency data G(ω) and
curve fitted fourth-order model Ĝ(z−1, θ̂) (solid)

The estimated discrete time model is shown in a solid line
on top of the measured frequency response G(ω) in Figure
4. The linear model Ĝ(q, θ̂) is used to model the dynam-
ics of the pneumatic positioning mechanism by considering
the valve input voltage signal and the load acceleration sig-
nal. As the dynamic model is derived from a non-friction
regime, the model Ĝ(q, θ̂) will simulate a non friction ac-
celeration signal ẍ on the basis of a measured valve voltage
input signal Vin. By comparing a measured acceleration
signal with a simulated (friction free) acceleration signal ẍ,
detection of friction faults can be accomplished.



IV. Friction monitoring by acceleration

measurements

A. Acceleration measurements and friction force

As was stated, detection of friction in a servo pneumatic
application is desirable. In this detection scheme, only the
voltage input and measured and modeled accelerations of
the air bearing mass are required to design the dynamic
filter and monitor the nonlinear dry friction force on-line
for fault detection. The advantage of requiring the mea-
surement of only acceleration is that inexpensive, reliable
accelerometers are available and easily added to the load
of a precision positioning apparatus.

A.1 Dynamic Relation Between Friction Force and Mea-
sured Acceleration

The non friction acceleration signal ¨̂x(t) provides the non
fault information with which the fault sensitive measure-
ments, i.e. the measured acceleration ẍ(t), may be com-
pared. As friction force is proportional to acceleration, it is
intuitive that the difference in these signals would capture
a friction fault in some way if it occurs. The acceleration
residual is defined as

ẍr , ẍ− ¨̂x. (3)

This signal alone can capture any unmodeled faults such as
dry friction. However, to achieve the fault detection and
isolation objective, this signal must somehow be reduced
to a signal or signals that are sensitive to friction faults
and relatively robust to other possible sensor, actuation or
process faults. To relate the friction force to this resid-
ual, a qualitative description about the behavior of the air
bearing dynamics with and without friction is helpful. The
air bearing mass is driven by the piston/rod of a pneu-
matic cylinder that has stiffness and damping properties.
As discussed, the cylinder dynamics including the stiffness
and damping properties are nonlinear with and without the
addition of friction. In this qualitative discussion a simple
linear forced mass-spring-damper system is investigated to
observe that there exists a dynamic relation between an
added friction force and an acceleration residual in sys-
tems that have stiffness and damping properties. Consider
the linear system given by

m ẍ1 = F − k x1 − c ẋ1, (4)

where x1 represents the position, ẋ1 the velocity and ẍ1
the acceleration of a mass m. Clearly, by no means does
this model represent the pneumatic cylinder and mass load
dynamics with or without friction, but it does provide use-
ful insight into a friction to acceleration residual relation
in the pneumatic cylinder experiment. When a dry friction
force is present, the dynamics of the system in (4) change
to

m ẍ2 = F − k x2 − c ẋ2 − Ff , (5)

where x2 represents the position, ẋ2 the velocity and ẍ2
the acceleration of the mass subjected to the added dry

friction force Ff . Subtracting (5) from (4) yields

m ẍe + c ẋe + k xe = −Ff , (6)

where ẍe = ẍ1 − ẍ2, and so on. The friction force Ff is
positive when acting to the left and ẍe is effectively an
acceleration residual in (6). Therefore, (6) shows that a
dynamic relation exists between the dry friction force Ff
and the acceleration residual ẍe. Note that this dynamic
relation exits whether or not the stiffness and damping co-
efficients change with the added friction force. With this
insight, it is left to model the dynamic relation between a
measured friction force and the acceleration residual in the
experimental test.

In Section IV-B.1 this dynamic relation is generated as a
filter in the highly nonlinear pneumatic cylinder and mass
load dynamics with friction. This gives the freedom to se-
lect a friction model based upon the measured states of the
air bearing motion, i.e. the acceleration measurements or
computed velocity or displacement values from this mea-
surement. For the friction model employed here, only ve-
locity measurements are needed. A third-order high pass
digital Butterworth filter is used to eliminate any DC con-
tent in the measured acceleration signal and a discrete time
integrator is used in Matlab Simulink [10] to compute the
measured velocity.

A.2 Proposed Friction Model

Most of the work that have addressed the compensa-
tion of friction in pneumatic actuator applications [3], [11]
do not apply identification tools. According to Johnson
and Lorenz, “...because of its nonlinear nature, friction is
often neglected or inadequately compensated by conven-
tional controllers” ([1], p.1392). Although friction has be
compensated for by more modern control algorithms [1],
sudden and unpredictable changes in friction due to, for
example, wear and side loading of a pneumatic cylinder
cause unacceptable behavior of the positioning mechanism.

For a dynamic system undergoing slipping dry friction,
i.e. dry friction that has a comparatively low sticking and
high slipping characteristic, the coulomb and viscous fric-
tion model has been validated in [12], [6], [13], with ex-
perimental validation in [14]. This model is therefore uti-
lized here to capture the dry aluminum-on-aluminum slid-
ing that occurs when the friction fault is induced in the
experimental set-up. The friction model takes the form

Ff = α
ẋ

|ẋ| + β ẋ, (7)

where the friction force −Ff and velocity ẋ are assumed
positive to the right. The high slip low stick condition is
achievable in this experimental precision positioning ap-
paratus and it is also possible to add friction of high stick
character. The small amount of sticking present in the high
slip cases will be modeled within the estimated dynamic fil-
ter. The chief advantage of this model is that it is linear
in the parameters α and β and therefore facilitates identi-
fication. By recursively estimating these parameters with



least-squares the friction fault level in the precision posi-
tioner is isolated and monitored for detection, as described
in the next sections.

B. Estimation of friction coefficient changes

In Section IV-B.1, the filter that relates the friction force
and the acceleration residual is detailed. A description of
the process of estimating and monitoring the friction model
parameters for fault detection is then given in Section IV-
B.2.

B.1 Identification of Dynamic Friction Signal Filter

The dynamic model, or filter, between the friction force
and the acceleration residual is written as an output error
model [15], given as

y(t) =
[
B(q−1)/F (q−1)

]
u(t− nk) + e(t), (8)

where y(t) = ẍr(t), u(t) = Ff (t),
[nb, nf ] =

[
order of B(q−1), order of F (q−1)

]
,

nk = model delay order. (9)

and e(t) represents the error between the acceleration resid-
ual and the filtered friction signal. The prediction error
estimate of (8) finds the parameters in B(q−1) and F (q−1)
that minimize the L2 norm of e(t), given y(t) and u(t).
With these parameters, the dynamic filter simulates the
acceleration residual for a given friction signal. Since fric-
tion lags the acceleration residual, the order of B(q−1) is
higher than that of F (q−1). For this problem, the orders
selected are [nb, nf , nk] = [4, 3, 0].

B.2 Incorporation of Friction Model with Model Based Fil-
ter

The friction fault signature is defined here by incorporat-
ing the friction model with the dynamic filter. Substituting
(7) into (8),

ẍr(t) = G̃e(q−1)
[
α

ẋ

|ẋ| + β ẋ

]
+ e(t). (10)

Normalizing the lead coefficient in the friction model,

ẍr(t) = Ge(q−1)
[
ẋ

|ẋ| + γf ẋ

]
+ e(t) (11)

= Ge(q−1) xf (t) + e(t). (12)

where xf (t) represents the friction signal after normaliza-
tion of the coulomb term coefficient and the constant γf
represents the relative amount of viscous to coulomb fric-
tion when the friction fault is present. It remains to es-
timate γf and Ge in the presence of a friction fault. A
window of data in time, comprised of faulty velocity and
acceleration measurements and a modeled acceleration sig-
nal, defines the signals in (11). Let the data window time
interval be defined as t ε [t1, t2]. The parameter γf is it-
erated through the values [0.0, 10.0] in steps of 0.2 and for

each value, the parameters in Ge are estimated by least-
squares with the cost function e(t), i.e. the estimated pa-
rameters minimize∥∥ ẍr(t)−Ge(q−1) xf (t)

∥∥
L2(t1,t2). (13)

The set of Ge parameters and corresponding value of γf
that result in the smallest L2(t1, t2) norm of the error e(t)
define, respectively, the dynamic filter and the relative level
of viscous friction for the given window of data. Clearly
then, for each servo voltage input and corresponding mea-
sured and modeled signals in which a friction fault occurs,
a dynamic filter and associated level of viscous friction γf
are generated. For this set of data, the filter parameters are
fixed and the normalized friction model coefficients (1, γf )
serve as the signature values to which the recursively esti-
mated friction model parameters are compared.

C. On-line implementation of friction detection

In this section a procedure is formulated for recursively
estimating the friction model parameters and monitoring
them for friction fault detection. (11) can be rewritten in
the form

ẍr(t) = Ge(q−1)
[
ẋ

|ẋ| + γf ẋ

]
+ e(t)

= Ge(q−1)
[
ẋ

|ẋ|

]
+ γf Ge(q−1) [ẋ] + e(t), (14)

where Ge and γf are defined. The normalized friction
model coefficients (1, γf ) fit the filtered measured velocity
signals in (14) to the acceleration residual in a least-squares
sense. The fit is generated over a time domain window
of data in which a friction fault is present. To fit filtered
measured velocity signals to the acceleration residual signal
on-line, these parameters can be estimated by least-squares
using current windows of data, i.e. the parameters can be
recursively estimated. Now the friction model coefficients
are non-constant and are expected to vary slightly within
and largely in transition between the non friction and fric-
tion regimes. To account for time varying coefficients, (14)
is modified by

y(t) = θ1(t) g1(t) + θ2(t) g2(t) + e(t), (15)
where, y(t) = ẍr(t),

g1(t) = Ge(q−1)
[
ẋ

|ẋ|

]
,

g2(t) = Ge(q−1) [ẋ] ,

and θ1(t) and θ2(t) represent the time varying coulomb
friction and viscous friction coefficients, respectively. As
was stated, these parameters ought to converge to their re-
spective signature values (1, γf ) when the fault is present.
These values indicate the relative level of Coulombic to
viscous friction, respectively. It is important to note that
prior to the fault, the parameters do not have any physical
interpretation. Rather, they match the small non friction
acceleration residual and the filtered measured signals g1(t)



and g2(t). Also, as the fault is added over a small finite
window of time, the fit parameters in this transition are
expected to display transient behavior that again has no
physical interpretation. The physical interpretation of the
two parameters remains solely in their signature levels, ex-
hibited when the fault is present and after some transient
behavior. To implement the recursive estimation, (15) is
rewritten as

y(t) = g(t)Tθ(t) + e(t), where (16)
g(t)T = [ g1(t), g2(t) ] ,
θ(t)T = [ θ1(t), θ2(t) ] .

For a current window of y(t) and g(t) data t ε [ta, tb], the
well known least-squares estimate θ̂(tb) of the parameter
vector θ(tb) at window time tb is

θ̂(tb) =
[
g(t) g(t)T

]−1
g(t) y(t), t ε [ta, tb]. (17)

Alternatively, an exponentially weighted forgetting fac-
tor could be used on signals y(t) and g(t) instead of using
current windows of data. However, this slows the estima-
tion process down as time grows since all of the data from
the beginning of the test is accounted for in exponential
weighting, and speed of estimation is critical for on-line
implementation. The detection logic contains a non fric-
tion parameter value threshold level and compares the esti-
mated parameters to the signature values. Simply, a fault
is detected once the estimates exceed the thresholds and
the parameters are monitored for tracking to the signa-
ture values. The parameters would likely exit the pre-fault
threshold levels in the event of different types of faults.
Successful tracking of the parameters to the signature val-
ues could therefore be considered as success in detection
and isolation of the dry friction fault. The threshold levels
are computed as the average plus and minus three times the
standard deviation of an initial set of estimated parameter
values θ̂ that are known to be friction free.

A few words are in order about some properties of the
parameter estimates. A property of recursive estimation of
variables that are subject to random processes such as noise
is that they exhibit variance. The variance is a function of
the data batch length, the interval between data batches,
and naturally the noise present in the batches themselves.
Although the first two of these elements can be controlled
in the detection scheme, the noise level cannot. Moreover,
the signal noise levels are highly sensitive to varying input
types and levels of friction, particularly in the experimental
case. So, it is expected to observe different levels of para-
metric variance in the highly nonlinear system of the ex-
periment for test cases that investigate varying input types,
levels of friction, etc.

A property of convergence of recursively estimated ran-
dom variables is that the estimates remain bounded.
Therefore, convergence of the parameters refers to bound-
edness. Tracking performance of the parameters to the
signature values refers to the variance level present in their
estimates, prior to and after the fault occurs. When a

fault occurs, it immediately infects the pre fault data to
which the parameters were fit. Once the data batch con-
tains solely faulty information, the parameters generally
track to their signatures. It is expected therefore to ob-
serve transient behavior in the parameter estimates for a
period after the fault occurs.

It is important to note that the recursive estimation of
the filter parameters is a nonlinear process, i.e. the es-
timation has its own nonlinear dynamics. Moreover, the
parameters are mapped to data that is also nonlinear since
it contains information about the friction, once the fault oc-
curs. Therefore, estimates in the transient range are likely
to behave spuriously, e.g. exhibit peaks in amplitude.

V. Experimental results

The FDI scheme has been numerically validated [5]. A
general linear second order model, that could represent
for example a liner mass-spring-damper, was subjected to
Coulombic and viscous friction faults (separately and to-
gether). To better represent experimental conditions, uni-
formly distributed random noise was added to the acceler-
ation and velocity signals generated by the fault sensitive
model. In this way the simulated acceleration signals and
velocity signal (from the fault sensitive model) provide a
means of validating the filtering, estimation and detection
components of the scheme developed in the previous sec-
tions. Thus, the scheme functions as a stand alone system-
atic way of extracting Coulombic and viscous type friction
faults, with some robustness with respect to experimental
noise. Now, validation via experimental analysis is given.

Seven different test cases display the success and limi-
tations of the method described in the preceding sections
when applied to the pneumatic cylinder and air bearing
mass load experiment [5]. These cases compare different
levels of stiction in the friction fault for a range of volt-
age input signals. The wide range of inputs is applied to
show that the scheme is not restricted to a specific input
for success in detection and isolation of the friction fault.
For brevity, two of these test case will be discussed here.
The two test cases are all displayed in Table I and Table
II. Specifically, tests 1 and 2 compare different types of
applied friction fault for common inputs.

TABLE I
Dry Friction Fault Detection Test Cases

Test Input
No. Voltage (V) Frequency (Hz) Type
1 1.4 8 sine
2 1.5 8 sine

Air Supply at the Fault
1 slightly reduced supply
2 completely cut-off supply

In the tables, air supply at the fault and the fault char-
acter describe the type of fault applied. Air supply at the
fault refers to the to the amount and speed that the air sup-
ply to the block is reduced to induce a friction fault. The



TABLE II
Dry Friction Fault Detection Test Cases

Test Fault Occurrence Fault
No. Time (sec) Character
1 3.05 small and

high slip fault
2 2.9 abrupt fault with

low stick
Detection Parameter (θ1, θ2)
Time (sec) Performance

1 0.015 both very
well behaved

2 0.035 both very
well behaved

fault character refers to the size of and amount of sticking
or slipping observed in the load acceleration measurements
due to the friction fault. Fault occurrence time and detec-
tion time refer the time of initiation of the fault and of the
parameters exiting their threshold windows, respectively.
Parametric performance describes the behavior of the pa-
rameters prior to and after the fault. The parameters are
“well behaved” when they track to a pre-friction level and
to their signature values with little variance.

For the two test cases, all conditions are nearly equiv-
alent except in the manner in which the friction fault is
applied. The only other variation is that case 1 has 1.4
Volts amplitude input and case 3 has 1.5 Volts amplitude
input. This variation is assumed negligible. The chief vari-
ation is in the application of the fault. In both cases the
fault is applied abruptly, but in case 1 the magnitude of
the fault is smaller than in case 2.
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Fig. 5. Measured Acceleration and Friction Model Parameters for
Test Case 1

The measured acceleration and estimated parameter evo-
lution plots for test cases 1 and 2 are shown in Figure 5 and
Figure 6, respectively. The occurrence of the fault in each
case is marked in the acceleration plots in each figure. To
see the detection of the dry friction fault, the plots on the
right in these figures shows the evolution of the recursively
estimated friction model parameters θ1(t) and θ2(t). The
dashed lines represent the fault thresholds. These plots
show a tracking time of 1.5 and 0.7 seconds, respectively,
to the signature values with low variance for these abrupt
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Fig. 6. Measured Acceleration and Friction Model Parameters for
Test Case 2

fault cases. The value of θ1(t) shows lower variance than
that of θ2(t) in both cases.

The measured acceleration shows a stiction effect in the
peaks prior to the fault occurrence. For different voltage
inputs, this effect varies and generally decreases for increas-
ing input amplitude and frequency. In any case, the added
dry friction fault is distinguished from any pre-fault stic-
tion in the dynamic filter generation, thereby isolating the
desired dry friction fault for detection. Although the es-
timated parameters have no physical meaning except by
their signature values, they converge to this pre-fault stic-
tion behavior.
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Fig. 7. Acceleration Residual for Test Case 2

It is useful to see how the parameter estimates are quan-
titatively related to measured acceleration. As discussed,
the friction force is dynamically related to the difference
between the measured and modeled accelerations, i.e. the
acceleration residual, when friction is present. A plot of
the acceleration residual for test case 2 is shown in Figure
7.

As discussed in Section IV-B.1, the filter parameters and
the signature values are estimated to fit the filtered friction
model signal to this acceleration residual after the occur-
rence of the fault. In Figure 8, the fit between the filtered
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Fig. 8. Acceleration Residual (dashed) and Filtered Friction Model
Signal (solid) for Test Case 2

friction signal (solid) and the acceleration residual (dashed)
show the success of this approach. Thus, in the event of
a fault the estimated parameters track to the parameter
values that, with the estimated filter, generate a fit such as
that exhibited in Figure 8.

VI. Conclusions

The fault detection scheme designed here detects chang-
ing process conditions in the case of wear and excessive side
loading, in the form of dry friction, of a precision position-
ing device. A flow diagram of the implementation of this
friction detection scheme is shown in Figure 9. The pro-
cess input d represents noise present in the experimental
apparatus, with or without friction. All other parameters
and variables are defined in the previous sections as fol-
lows. In Section III the frequency response measurement
from the servo valve voltage input Vin to the mass acceler-
ation ẍ, under no added friction conditions, was given and
discussed. Also, the discrete fourth-order transfer function
Ĝ(z−1) was fit to the frequency response data to simulate
acceleration ¨̂x(t) of the mass without friction for a given
servo voltage input.

It was shown in Section IV-A that the friction force Ff
is dynamically related to the difference between the mea-
sured and simulated (non friction) accelerations, called the
acceleration residual ẍr(t). In Section IV-A.2 the viscous
and coulomb friction model was employed and a predic-
tion error approach [15] was used to model the dynamic
relationship between the friction force and the acceleration
residual, using an output error optimization in Section IV-
B.1. A parameterized friction signal xf (t) was incorporated
with the normalized filter Ge(q−1) in Section IV-B.2 and
the procedure was implemented by recursive least-squares
(RLS) estimation of the friction model parameters θ̂(t) in
Section IV-C. Simple threshold decision logic was applied
to these estimates to detect the isolated dry friction fault
on-line.

Fig. 9. Flow Diagram of Scheme for Fault Detection and Isolation
of Dry Friction in a Precision Positioning Device.

By systematically reducing the data contained in the
measured input and output signals to the estimation of
two friction model parameter signals, the scheme isolates
the friction fault from other possible sensor, actuation or
process faults that can occur in precision positioning de-
vices. Thus, the goal of detection and isolation of FDI
schemes has been achieved.

Experimental identification of friction and its compen-
sation in precise, position controlled mechanisms was also
investigated by Johnson and Lorenz [1]. Much like the
scheme developed here, they utilize signal processing to
expose a functional form of friction that they use for con-
trolling an otherwise linear model. More precisely, friction
depends on the state errors in the controller. The work here
adds the capability of detection of experimentally identified
friction and has shown success in a highly nonlinear ap-
plication, namely the pneumatic actuator. Moreover, the
scheme is independent of any type of controller, suggest-
ing use in conjunction with controllers of any form in these
types of applications. There also exists freedom in the se-
lection of the friction model in the scheme outlined here.
Provided that the model depend linearly on the param-
eters, dependence upon other linear and nonlinear terms
is also possible. In any case, a controls engineer would
certainly benefit by applying this simple, reliable method
of dry friction fault detection in lieu of or adjointly with
any precision compensation. In simulation analyses, the
scheme has been proven to be very effective and success-



ful. Furthermore, for implementation in an experiment, the
only added hardware required is an accelerometer, which
is light-weight, inexpensive and easy to add to a positioned
load.
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