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Abstract— This paper presents a distributed receding horizon Previous work on distributed RHC of dynamically coupled
control law for dynamically coupled nonlinear systems that systems include Jia and Krogh [7], Motee and Sayyar-
are subject to decoupled input constraints. The subsystem Rodsaru [11] and Acar [1]. All of these papers address
dynamics are modelled by continuous time nonlinear ordinary . . .
differential equations, and the coupling comes in the form coupled L_Tl subsystem dynamlcs Wlth.quadratlc sgparable
of state dependence between subsystems. Examples of suci£0St functions. State and input constraints are not included,
systems include tight formations of aircraft and certain large aside from a stability constraint in [7] that permits state
scale process control systems. Given separable quadratic costinformation exchanged between the subsystems to be delayed
structure, a distributed controller is defined for each subsystem, by one update period. In these papers, analysis is facilitated

and feasibility and asymptotic stabilization are established. I . - . .
Coupled subsystems communicate the previously computed by exploiting the analytic solutions available in the LTI case.

trajectory at each receding horizon update. Key requirements N another work, Jia and Krogh [8] solve local min-max
for stability are that each distributed optimal control not deviate ~ problems for coupled nonlinear subsystems, where the neigh-

too far from the remainder of the previous optimal control, and  poring subsystem states are treated as bounded disturbances.
that the amon.mt of dynamic coupling is sufficiently small. —  giapjlity is obtained by contracting each subsystems state
Keywords: receding horizon control, model predictive o every sample period, until the objective set is reached.
control, distributed control, decentralized control, large scalgg ¢,ch stability does not depend on information updates
systems. between neighbors, although such updates may improve per-
I. INTRODUCTION formance. When subsystems are cooperative, it is anticipated

that performance should improve by making more informed

The problem of interest is to design a distributed Contm”eéssumptions about neighboring subsystems, as done in the
for a set of dynamically coupled nonlinear subsystems thg?g

. . plementation here. In the future, this conjecture will be
are required to perform a cooperative task. Examples of Sug

tuati here distributed trol is desirable include tighs ted in numerical experiments.
situations where distributed control 1S desirable include tght . begin in Section Il by defining the nonlinear coupled

formations of aircraft [2] and certain large scale proces§ubsystem dynamics and control objective. In Section I,
contrql systems [13]. The control approach advocated hereE?stributed optimal control problems are defined for each
receding horizon control (RHC). In RHC, the current contro ubsystem, and the distributed receding horizon control algo-

action s determme@ by solving a finite honz_on Optm_qalrithm is defined. Feasibility and stability results are presented
control problem online at every update. In continuous tim Section IV, and Section V discusses conclusions and

formulations, each optimization yields an open-loop contr

. o . . : .~ future work.

trajectory and the initial portion of the trajectory is applied

to the system until the next update. A survey of RHC, Il. SYSTEM DESCRIPTION ANDOBJECTIVE

also known as model predictive control, is given by Mayne |, yis section, the system dynamics and control objective
et al [9]. Advantages of RHC are that a large class OE\re defined. For any vectar € R", ||z||» denotes theP-
performance objectives, dynamic models and constraints CWéighted 2-norm, defined byz||2 = =7 Pz, and P is any

) P — 7y
be transparently accommodated. positive-definite real symmetric matrix. Also,,.x(P) and

In this paper, subsystems that are dynamically CO”ple/qmm(P) denote the largest and smallest eigenvalue® of
are referred to aseighbors The work presented here is

: . AU respectively. Often, the notatiofr|| is understood to mean
a continuation of a recent work [6], whereindstributed (1| at some instant of time € R
implementationof RHC is presented in which neighbors ™ objective is to stabilize a group o, > 2 dynami-

are coupled solelly thr(_)ugh (?OSI funct|o_ns. As in [6], eac%ally coupled agents toward the origin in a cooperative and
subsystem here: is assigned its own optimal control prOblerHistributed way using RHC. For each agent {1,..., N, }

optimizes only for its own control at each update, and e€Xy,o state and control vectors are denotet) € R" and

changes information only with neighboring subsystems. Thﬁ,(t) € R™, respectively, at any time > ¢, € R. The di-

motivation for pursuing such a distributed implementation is o \qion of every agents state (control) are assumed to be the
to enable the autonomy of the individual subsystems, respect o for notational simplicity and without loss of generality.

the (decentralized) information constraints, and reduce thlehe concatenated vectors are denoted (=, 2x.) and

computational burden of centralized implementations. w = (1., un.)
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{1,...,N,} is the set of nodes (agents) addC ¥V x V and any piecewise right-continuous contiol: [tg, c0) —

is the set of all directed edges between nodes in the gragi+; (c) 4 ¢ R™ is compact, containing the origin in its
The seff is defined in the following way. If any componentsinterior; (d) for everyi € V, there exist positive constants
of z; appear in the dynamic equation for agénfor some «;,~; and3/, j € N}, such that

j €V, it is said thatj is an upstream neighboof agent ,

i, and N C V denotes the set of upstream neighbors ot fi(zis 23, i) P, T Z Bi =1
any agenti € V. The set of all directed edges is defined as JEN?
E={(i,j) e VxV|jeN!VieV} Foreveryi € V, holds forallz(t) € R, z;(t) € R", j € N¥, andu,(t) € U,
it is assumed that; appears in the dynamic equation fior ¢ > ¢, and P,, W; will be defined in the next section.

and soi € N} for everyi € V. In the language of graph Consider now the linearization of (1) around the origin,
theory, then, every node has a self-loop edgé&.ifNote that denoted as

Jj € N does not necessarily implye N} )
It will also be useful to reference the set of agents for Z4(t) = Auzi(t) + Z Aijz;(t) + Biui(?),

which any of the components ef arises in their dynamical JENY

equation. This set is referred to as thawvnstream neighbors \where A;, = df;/92(0,0) and B; = df;/du;(0,0). As in

of agenti, and is denotedV?. The set of all directed edges many RHC formulations, a feedback controller for which

can be equivalently defined @&= {(i,j) € VxV | i € the closed-loop system is asymptotically stabilized inside

N, Vi € V}. Note thatj € NV} ifand only ifi € N'{, forany  a neighborhood of the origin will be utilized. There exist

i,j € V. Consider the example system and correspondingethods for constructing dynamic and static feedback con-

directed graph given in Figure 1. trollers, as done by Corfmat and Morse in [3], to achieve
stabilization while respecting the decentralized information

) : 2 constraints. The analysis here is greatly facilitated if, for
4= fila,23) everyi € V, stabilization is possible with the static feedback
Zy = fa(22,23,24) = u; = K;z;, instead of a feedback that relies on components
23 = f3(23, 24) ! of z_,, motivating the following assumption.
3
' (

Assumption 2:For every agenti € V), there exists a
decoupled static feedbaek = K;z; such thatd,; £ A;; +
€) (b) B; K; is Hurwitz, and the closed-loop linear systém= A.z
Fig. 1. Example of (a) a set of coupled dynamic equations anéS asymptotically stable, wheré. £ [£2(0,0) + f.(0,0)K]
(b) the corresponding directed graphh = (V,£) associated with gnd K = diag(Kl’_,_’KN )
the directed information flow. In this exampl®; = {1,2,3,4} and : °
£ = {(1,1),(1,3), (2,2), (2,3), (2,4), (3,3), (3,1), (1, 4). (4,2)}. The The .decoupled linear feedbacks .above are referred 'to as
upstream neighbor sets afé! = {1,3}, V¥ = {2,3,4}, N¥ = {3,4}  terminal controllers Associated with the closed-loop lin-
and N} = {2,4}, and the downstream neighbor sets &% = {1}, earization, denote the block-diagonal Hurwitz matriy =
NG = {2,4}, N§ = {1,2,3} and Nl = {2,3,4}. By this convention,  giaq(A,; . ..., Agy,) and the off-diagonal matrixl = A, —
arrows in the graph point upstream. yrrm e raNa s -
Aq. Assumption 2 inherently presumes decoupled stabiliz-
ability and that the coupling between subsystems in the
. . linearization is sufficiently weak, as discussed and quantified
Consequently, for ever , the set(Nd U AU . ' ) .
g Y yev (M N‘)\{Z} #0 i) the survey paper [12]. The terminal controllers will be

and every agent is dynamically coupled to at least one oth ; ; . .
agent. It is also assumed that agents can receive inform rpployed_ in-a prescribed neighborhood of the orgin. Thus,
e coupling between subsystems must be sufficiently weak

tion directly from each and every upstream neighbor, an X .
agents can transmit information directly to each and evetly the prescribed neighborhood. The degree of weakness

downstream neighbor. Theoupledtime-invariant nonlinear equired here will be stated as a mathematical condition in
system dynamics for éach agent V are given by the next section. Since the stabilizing controllers constructed

in [3] do not require the assumption of weak coupling
2i(t) = fi(zi(t), z—i(t),ui(t)), ¢ > to, (1) Dbetween subsystems, a future objective is to admit such

y terminal controllers.
wherez_; = (zj,,...,2j,), | = |[N}|, denotes the concate-

nated vector of the states of the upstream neighbors of  Ill. DISTRIBUTED RECEDING HORIZON CONTROL

Each agent is also subject to the decoupled input constraints |n this section, N, separate optimal control problems
ui(t) € U, t > to. The setd” is the N-times Cartesian are defined and the distributed RHC algorithm. In every
product{ x - - - xU. In concatenated vector form, the systemyjstributed optimal control problem, the same constant pre-

It is assumed in this paper that the graplis connected.

dynamics are diction horizonT € (0,00) and constant update period
N d € (0,7] are used. In practice, the update peridde
t) = t t t>t 2 ?
) = ) u®), t2to, @ (0,T] is typically the sample interval. By the distributed
given z(tp), and f = (f1,..., fn,)- implementation presented here, additional conditionséon
Assumption 1:The following holds: &) f is C?> and0 = are required, as quantified in the next section. Denote the

£(0,0); (b) system (2) has a unique solution for anft,) update timet; = to + ok, wherek € N = {0,1,2,...}. In



the following implementation, every distributed RHC law islet P = diag P}, ..., Py,) andQ = diag @1, ..., Qy,), and

updatedglobally synchronouslyi.e., at the same instant of so PAq+ Al P = —4@ with @ > 0. The following assump-

time t;, for the k"-update. tion quantifies the presumed degree of weakness of coupling
At each update, every agent optimizes only for its owmetween neighboring subsystems in the linearization.

predicted open-loop control, given its current state. Since the Assumption 3:P A, + AL P < 2Q.

dynamics of each ageritdepend on states ;, that agent Lemma 1:Suppose that Assumptions 1-3 hold. There

will presume some trajectories far_; over each prediction exists a positive constaate (0, c0) such that the set

horizon. To that end, prior to each update, each agent N N

receivesan assumedbstate trajectory?; from each upstream 2 = {Z eR™™ [ zllp < 5}’

neighborj € N} Likewise, agent transmits an assumed is a positively invariant region of attraction for both the
state trajectory; to every downstream neighbgre N,  closed-loop linearization:(t) = Acz(t) and the closed-
prior to each update. By design, then, the assumed stagdp nonlinear systemi(t) = f(z(t), Kz(t)). Additionally,
trajectory for any agent ithe samen the distributed optimal  f» ¢ /N for all z € (..

control problem of every downstream neighbor. Since thghe proof follows closely along the lines of the logic given

models are used with assumed trajectories for upstream Section Il of [10] and is omitted for space reasons. For
neighbors, there will be a discrepancy, over each optimizatiashch; < ), define the set

time window, between the predicted open-loop trajectory and

the actual trajectory that results from every agent applying Qi(e) = {Zz‘ ER” | |lzillp, < 6/\/]\Ta} :
the predicted control. This discrepancy is identified by usin
the following notation. Recall that;(¢) and u,;(¢t) are the
actual state and control, respectively, for each agentV

at any timet > ty. Associated with update time,, the
trajectories for each agentc V are denoted

Hhen, =(1) € Qu(e) x -+ x Q. () implies () € Q..
Consequently, from Lemma 1, if at some tine > ¢,
zi(t") € Q,;(e) for everyi € V, stabilization is achieved
if every agent employs their decoupled terminal controller
K;z;(t) for all time ¢ > ¢’. The objective of the RHC law is

zf(t;t) — the predicted state trajectory, to drive each agentto the set2;(c). Once all agents have
Zi(t;ty) — the assumed state trajectory, reached these sets, they switch to their decoupled controllers
uj (t;ty) — the predicted control trajectory, for stabilization. The collection of distributed optimal control

wheret € [t, tr + T]. Consistent with the ordering of_;, pr(;k;:)ebrresn:slhg\(l)vrds;lsﬁdé eni € V and at anv update
let 2_;(-;tx) be the assumed open-loop state trajectories ?ifmet I c N iven {z(t g); Ti(za(te), (5 1)) ﬂY(T.'z )
the upstream neighbors of For any agent € V, then, the kt v ’gt o Tk hind b . 7thk { satish k)
predicted state trajectory satisfies E-ilT3tk), V7 € [t b + T}, find wi(; £4) that satisfies

(- P(.. < J:(z: (-
Pt = FEED) ) D), @) Flatn) wltw)) < Alalt GGw), - 6)
H 1 p . -
for all ¢ € [te,tx + T], given =P(te;ts) = =(tx) and subject to equation (3} (7;tx) € U, the control compati

. : ility constraint
2_;(-;tx). The actual state trajectories, on the other hané), y

satisfy luf (75 t) — G (75 t8) [|lw; < e, @)
2(t) = f(2(t), uP (¢ tr)), (4) 7 € [tx,tr + T, and the terminal state constraigft(t, +
T;t,) € Qi(g/2), given weightingi?; > 0, positive constant

for time ¢ f} [tk’t’f;ﬂ* fgr any k € N, given =(fy), . andc satisfies the conditions in Lemma 1. [

and whereu” = (uj,...,uy, ). So, while the actual and \ypje the costs; (2 (1), u? (-; t1,)) is defined by equation (5),
predicted state trajectories do have the same initial cond|t|0fpTe cost]; (2 (tx), @i (- tx)) will be defined later by equation
they typically diverge over each windoWy,tx1], and (g) after the distributed algorithm is stated. Before stating the

% (te15tk) 7 zi(tk+1) in general for anyi € V. Stability  500rithm, an assumption is made to facilitate initialization.
is to be guaranteed fahe closed-loop systemepresented “agg mption 4:Given 2(t,) at initial time #,, there exists

by equation (4), which is defined for all time > ¢y by ; taasible controk?(r:to) € U, T € [to, to + T1, for each
following the distributed RHC algorithm. For each ageént agenti € V, such tﬁat the solution to the full systeftr) =
an assumed control traject.o@{(g.tk) is aIso_utiIized, and F(2(7), 1 (73 1)), denoted? (- o), satisfies? (tg+T; to) €
21(,tk) andﬂl(,tk) are defined in the algorlthm. . 97(8/2) and results in a bounded Cm(zz(to),uf(,to))
The cost function/; (=i(x), u; (1)) for any agent € Vo every e V. Moreover, each ageritc V has access to
at update time;, is given by (2P (5 0), u? (o))
ti+T Let Z c R™N« denote the set of initial states for which there
127 (55 t) 6,4 lluf (s 81)) 7, ds+ 1127 (8 + T3 tx) |3, (5)  exists a control satisfying the conditions in Assumption 4. Of
course, Assumption 4 bypasses the difficult task of actually
where Q; = QF > 0 and R; = RI > 0. The terminal constructing an initially feasible solution in a distributed way,
cost matrix P; = PZ-TA> 0 satisfies the Lyapunov equationa task that is left for future work. The control algorithm is
P Ay + AZ;PZ = —4Q;, WherEQi =Q;+ K?RZKZ Now, now stated.

tr



Algorithm 1: At time ¢, with z(ty) € Z, the dual-mode while control constraint feasibility is shown in Lemma 4.
Distributed Receding Horizon Contrtdw for any ageni €  Define the functior® (¢; ) = 3,y 12 (t; ti) — 2 (¢ tr)

P>
V is as follows: for all t € [t, tr + T, and the following positive constants:
Data: z(to), u?(-;t0), T € (0,00), 6 € (0,T). = maxiey(os], B = maxiev[Diena Bl vm =
Imyahzanon: At time to, if z(tg) € €., then appI)./ the max;cv il Y = Ym #/ai(KTWK)/A,Inﬁ(P),WhereW _
terminal controlleru;(t) = K;z;(t), for all t > ty. Else: diag(W1, ..., W, ).
Controller: A) Over any intervalty, t.+1), k € N: Lemma 2:Suppose that Assumptions 1-4 hold and
1) Apply uf(T5tk), T € [tks ths1)- z(to) € Z. In the application of Algorithm 1, suppose that
2) Compute Problem 1 has a solution at each update: 1,...,k, for
R P(rite), TE [thar,tr+T) any givenk > 1. Then, ©(t;tr41) < ¢/(4V/N,), Vt €
Zi(Titet1) = 2K(r),  Telte+ T thsr +T) [?kﬂ,ékﬁ + T, provided the following parametric condi-
tions hold:

wherezX is the solution t0:X (1) = Ay 2K () with .

- N T : 16\

initial condition 2 (ty +T) = 2] (t + Ti k). 5 ma J 10Amin(Q) (amt7) b < 1/2, (9)
3) Transmit 2;(-;tx+1) to every downstream neighbor Ng/Z)\max(P)

I € N4, and receives;(-;t;1) from every upstream

neighborj € AV Bm maX{S(SNla,T:; b < 1/4, (20)
B) At any timetyy1, k € N: c1 < e( ;27‘”)@ 5 (11)
1) Obtain z(tyy1). If z(trr1) € Q., apply the terminal 32Ty, No'“eam =
controlleru;(t) = K,z(t), for all ¢t > t;1. Else: Proof. Define the functiony(t; ;) = Diev Iz (1) —
2) Compute the state trajectory(~ ;1) and assumed =i(tit)llp, ¢ € [ti,ti + T, 1 = 1,.... k. This function and
control trajectoryi (-; ty.1) according to (t;tr+1) are well defined by assuming the existence of a
' ’ solution to Problem 1 at each upddte- 1, ..., k. Using the
Zi(Tithy1) = fi(Zi(Ts trgn), i (T teyn), Ui (T3 Lr)), Lipschitz bounds stated in Assumption 1, the triangle and

) ub (13 tk), 7€ [thprte +T) Gronwall-Bellman inequalities, it is straightforward to show
Ui(T3 1) = KiZ(Tites1), 7€ [tp+Totpyr +T)  thatO(t;tesq) < Ty forall t € [tyiq,t, + T, where

for all 7 € [tg+1,te+1 + T, with initial condition
Zi(tha1stet1) = 2i(tesr)-
3) Compute the cosf;(z;(tg+1), @i (+;tg+1)) as
fori =1,.. k. Letw(t;t;) £ 3,y |uf (¢ t) =t (¢ ) | w,

thr1+T . .
/ I1Zi(s; tes )5, + [lai(sitrrr))l| %, ds t € [t;,ty + T), for I = 1,...,k. In the same fashion, it is
it straightforward to show that
+ 12t + Titogr) |5 (8)

ti—1+T

4) Solve Problem 1 for ageri yielding u? (- ty;). M y(t:ty) < exm =1 {ﬁmeé(am%m)/t y(s;t;—1)ds
Algorithm 1 presumes that the every agent can obigin) t 4T o
at everyk € N. This can be done using a single centralized + %n/ w(s; tl)ds}
node, or in a distributed way using a consensus protocol t
as.discusse(.j in [4]. By. construction, eagh assumec_j Sta§ all ¢ [t ti_1 + T] and
trajectory 2; is the remainder of the previously predicted
trajectory, concatenated with the closed-loop linearizationy(¢;¢;) < y(t;—1 + T;t;)
response that ignores coupling. Each assumed control trajec- t
tory 4; is the remainder of the previously predicted trajectory, + / Z 1fi(2f (s3t1), 2-i(s5t), uf (53 t0)
concatenated with the linear control applied to the nonlinear AT ey

t+T
Iy20, It2 5me°‘mT+’3m5/ y(s;t;)ds,

t

model and based on the decoupled linear responses for each — Agizi(s;ty) + fi(Zi(s511),0, KiZi(s; 1)) p,ds,

upstream neighbor. Observe that, for ang V andk > 2, forall t € [ty 1+ Tts+T), 1 = 1,.... k. To simplify the

it te) = 28 (b t—1) # Zi(tes te) = 2i(tn). : -1 P e e

Ziltista) = 27 (B t) # Ziltis ) = z(t) integrand, analysis in the proof of Lemma 1, the Lipschitz
IV. ANALYSIS bound and triangle inequality are combined to yield

In this section, feasibility and stability are analyzed. ¢
A desirable property of the implementation is that initialy(¢;¢;) < y(ti—1 + T tl)+/ [amy(s;tl)—i—'ymw(s;tl)
feasibility implies subsequent feasibility. In particular, it ti14+T

will be shown in Theorem 1 that a feasible solution to . )\min(@) .
Problem 1 for anyi € V and at any timet,, k£ > 1, is +ﬁmZ\|2i(8;tz)Hﬂ * Ng)\maX(P)”Z(S;tl)HP
u? (- ty) = G;(-;tx). First, three lemmas are given for use g

in the proof of Theorem 1. Specifically, terminal constraint +Ym Z ([ (s5t1) — Kiéi(&tl)llwl}ds-

feasibility will be shown by combining Lemmas 2 and 3, i€y



Over the domairit;_1+T, 6+, || Zi(s; t0) | p, < €/(2v/Ny)

for everyi € V, and so||2(s;t;)||p < €/2. Also, the last
term in the integrand is bounded by, O(s; ;). Now, using

(9)) are intuitive. We now proceed with the second lemma
used to ensure terminal constraint feasibility by the assumed
control.

Gronwall-Bellman and the previously obtained bound on Lemma 3:Suppose that Assumptions 1-4 hold and

y(ti—1 + T 1), it follows that for allt € [t;, ¢, + T,

y(t,tl)S 6me(lm(T+5)+ﬁm5/

ti—1

t+T t+T
+’7meamT/ w(s;tl)ds"i_’YWeamé/

t ti—1+T

ti_1+T
y(s;ty_1)ds + e*m0X

O(s; t;)ds,

where X = 62{8m v Ny + Amin(Q)/ (N2 Amax (P))}/2. The
bound on®(¢; t;.+1) over the time domain € [t;+T, t;4+1+
T1] is likewise given by

t

O(titht1) < Otk + Titgr1) +/ [am@(t§tk+1)
tp+T

mm( )
N2 /\max (P

+ ﬁm Z ||zz S tk+1)

] 12(s;tk+1)llp
2%

Yoo > (5 trn) = KiZi(53 )l | .
2%

2(to) € Z. In the application of Algorithm 1, suppose that
Problem 1 has a solution at each update- 1, ..., k, for
any givenk > 1. Then, for everyi € V, ||2;(txy1 +
Titr1)|lp, < e/(4v/N,), provided the following parametric
condition holds:

5Amin(Q) /Amax(P) > In(4N,)/4. (15)
Proof. By construction, for every € V, it follows from
the terminal constraint thats; (tx, + T; ti+1)|l p, = |27 (¢ +
Tsty)|p, < €/(2v/Na), and SG2(tx+T; ty 1) € Qe jp. With
the Lyapunov functio (2(t)) = ||2(t; tx11)||% for t € [tp+
T,tys1 + T), it follows that V(2(t)) < —A|[2(t tra) 5 <
—4[Amin(Q)/Amax(P)]V (£(t)). Consequently,V(2(t)) <
exp[—4(t — (te + T))Amin(Q)/Amad(P)]V (2(tx + T)).
A sufficient condition for ||2;(tkr1 + Tites1)|lp, <
e/(4y/N,) for every i € V is that |2(tg41 +
Titri1)llp < €/(4Y/N,). Using the bound on the
Lyapunov function, the sufficient cond|t|on requires that

Now, using Gronwall-Bellman and the previously obtained 4 (@ /Awa(P)V (5(t, + T)) < ¢/(4y/N,), or, more

bound on®O(t; + T;tr41), it follows that ©(t;tr41) <
Y1 for all ¢t € [tii1,tper + T), where Yy =

conservatively, thae—403mn(Q)/Ama(P) 2 /4 < 52/(16N)
which is equivalent to (15), concluding the proof. |

e®l@m 1w ) (X 4 T). Using the bound for(t;¢;) and the Condition (15) suggests a (conservative) minimum amount

definition forI"; yields

) < By TetmTH0)+5m [Fl—l +X (12)
+ Yme®m TN, ¢ + 0V edlamtry) (X + Fl,l)}

£ T +p2), 1=1,..k, (13)

Now, if p1 < 1/2 and p» < ¢/(16V/N,), thenT; <
e/(164/N,) for all I = 1,....k, and X < £/(16+/N,).

If, in addition, e’(®=*t7w) < 2, then from the definition
of Yi1, it follows that Y1 < e/(4v/N,). Finally, since
O(t;thy1) < Yiyq forall ¢ € [tgi1,te+1 + T, the result of

the lemma follows, provided:

pr<1/2, pp <e/(16/N,), ande’@mw) < 2. (14)

Conditions (9)—(11) are now shown to imply that (14) holds

Condition (9) implies:*(@m+7w) < 2 anddry,, 2 (@ T1w) <
1, and combining with (10) impliep; < 1/2. With (11),

YmT Nycie®m(T=9) {1 + 5’ywe‘s(am+7w)} < e/(32v/N,).

Also, (9) and (10) imply thatX < e/(32+/N,). Combining

these last two bounds implies that < ¢/(16+/N,),
concluding the proof. |

The conservative approach taken in the proof results ih]. By construction,||2;(tr + T;tx11)

of time § required to steer eacHf (¢ + T'; ty.) from Q;(g/2)

to ;(¢/4), using the decoupled terminal controllers. Since
condition (9) places an upper bound @n it must be
ensured these two conditions are compatible. Rewriting the
conditions, it is required that

In(4N,)/4 < SAmin(Q)/Amax(P) < N2/?/32.  (16)

Provided N, > 10, there always exists a feasible
0 Amin(Q)/Amax(P) that satisfies (16). It is now shown that
the assumed controls satisfy the control constraints when the
conditions of Lemma 2 are satisfied.

Lemma 4: Suppose that Assumptions 1-4 holdiy) € Z
and conditions (9)—(11) are satisfied. In the application of
Algorithm 1, suppose that Problem 1 has a solution at each
updatel = 1,...,k, for any givenk > 1. Then, for every
teV, G(T;tir1) €U for all T € [trq, ter1 + T
Proof. Sincet; (t;tp11) = ul (t;ty) forall ¢ € [tyi1, ti+T7,
it need only be shown that the remainder @f is in U.
A sufficient condition for this is ifz;(¢;tx11) € Qu(e) for
all t € [ty + T,txy1 + T), sincee is chosen to satisfy the
conditions of Lemma 1 and, consequently;z;, € U for
all i € YV whenz € Q.. From Lemma 2,||z;(¢; tg+1) —
Zi(tster1)|lp, < /(4 Ng) for all t € [ty + T, tpr1 +
p < /(2v/Ny).

sufficient conditions (9)—(11) that are likewise conservativelVith the Lyapunov functionV;(2;(t)) = [12i(t: tes1) |3,

Condition (10) requires that the degree of dynamic coupling follows that V(2;(t)) < —4[Amin(Q

i)/ Amax(P:)]Vi(2:(2)),

(parameterized bys,,,) be sufficiently weak. In contrast, Vt € [t + T, ti+1+7T), and s0||2;(¢;tk+1) || P < €/(2v/Na)

conditions (11) and (9) are design constraints. To ensufer all t € [t + T,tp+1 + T

Using the triangle in-

feasibility, the requirements that agents can not deviate taguality, ||z; (¢; te+1)|lp, = ||Z:(ter1) £ 2t ter) |l <

far from the behavior neighbors assume for them (froniz;(¢; tx41)—2i(t; tes1)

P < 2’;—/(LJ:\/]TU«)—’—

Zi(ts thtt)

(11),(7)), and that the sample rate not be too large (from/(2v/N,) < &/v/N,, and s0z;(t;tp41) € Qi(e), Vt €



[t +T,tx+1 + T for every: € V, concluding the proof.l  of Algorithm 1, the closed-loop system (4) is driven to the
The first main theorem of the paper is now stated. set(). in finite time. This is shown by demonstrating that if
Theorem 1:Suppose that Assumptions 1-4 holdi) €  z(tk), 2(tk+1) € Z \ Qe, thenJs (ty41) — Ju(ty) < —C for
Z and conditions (9)—(15) are satisfied. Then, for every agesbme positive constaidf. From this inequality, there exists a

i € V, the assumed contrdl;(-; ¢;) is a feasible solution to finite integer! > 1 such thatz(¢;) € Q., by contradiction. If

Problem 1 and at every update> 1. this were not the case, the inequality impli&s(t;) — —oo
Proof. The proof follows by induction. First, the ask — oo. However, Jx(t;) > 0; therefore, there exists a
k = 1 case. The trajectoryi,(-;t;) trivially satisfies finite integer! > 1 such thatz(¢;) € Q..

the cost improvement constraint (6) and the control It remains to show that it(tx), 2(tx+1) € Z \ Q, then
compatibility constraint (7). According to Algorithm Js(t,.1) — Jx(tx) < —C for some positive constant'.
1, z(st1) is the corresponding state trajectory thaFrom (5),Js () is

satisfies the dynamic equation. Now, observe that
éi(tl;tl) = Zf(tl;to) = Zi(tl;tl) = Zi(tl) for everyi € V.
Additionally, z;(t;t1) = 2% (t; o) for all ¢ € [t1,to + 7], and

S0 z;(to + T5t1) € Q;(e/2). By the invariance properties
of the terminal controller and the conditions in Lemma 1From (6) and (8),
it follows that the terminal state and control constraints

tr+T
127 (s 1)1y + IluP (s5 ) R0 + [127 (¢ + T ) | B

122

thr1+T
are also satisfied, concluding the = 1 case. Now, the  Jx(tk+1) g/ ||Z(s;tk+1)\|2Q+ a(s;tryt))]|%ds
induction step. By assumption, suppas¥-;t;) = ;(-; ;) et ,
is a feasible solution foi = 1,...,k. It must be shown + |Z2(tks1 + T tegr) || -

that @;(-;tx+1) is a feasible solution at update + 1. ] ) o

As before, the cost improvement constraint (6) and theubtracting the two equations implies
control compatibility constraint (7) are trivially satisfied, trogt

and z;(-;tk+1) is the corresponding state trajectory that/s(tx+1) — Jx(tx) < —/t 127 (5 tr) | &, ds

satisfies the dynamic equation. Since there is a solution k

for updates! = 1,...,k, Lemmas 2-4 can be invoked. b T 9 14 9 9
SV . 3tk - it ds—||2P (¢ Tty
Lemma 4 guarantees control constraint feasibility. The+/tk+|1|z(s’ ert)llg=lE(sstura)lgds == (b + T5 ) [
terminal constraint requireg;(tx + T;tx) € Qu(e/2), top1+T
for each:i € V and everyk > 1. From Lemma 2, +/ ., \|2(s;tk+1)||%ds+||2(tk+1 + Tits)|5.
te+

Zi(te + Tstr) — Zi(tx + Titw)llp, < e/(4V/N,), and
Lemma 3 guarantees that;(t, + T;tx)|lp, < ¢/(4V/Na).  The remainder of the proof is concerned with bounding each
Combining these two bounds, and withz;(t;tk) £  of the terms on the right of the inequality. It can be shown
Zitte)llp < llzi(tte) = 2t te)llp + 112G )] Py 1t that if 2(t') € Qg5 at any timet' € (ty,t,11], then
follows that [|z;(tx + Tstx)llp, < &/(2V/Na), concluding  max,c(,, .. [|l2(t)[p < e. Consequentlyz(t+1) € Q..
the proof. B Sincez(tx), z(tks1) € Z \ Q. is assumed, it must be that
lz(®)||p > Te/8 for all time t € [tx, tx+1]. From the triangle
Now, stability of the closed-loop system (4) is analyzed. Afnequality, ||z(t)||p < ||2(t) — 22(t; te)||p + [|27(: t) | -
any timety, k € N, the sum of the distributed cost functionsfFollowing the procedure and results in the proof of Lemma 2,
is denoted/s(tx) = > 2% Ji(2i(tk), uP (k). 2(8)—2P (t; ) || p < Tx < e/(163/Ny) forall t € [ty tpi1]-
Assumption 5:For every agenti € V, there exists Suppose now thafz?(t2;t)|p < (Tv/N, — 1)e/(8V/N,)
a common positive constantmax € (0,00) satisfying at some time?2 e [tk trt1] - Then,
Hzf(t;tk)HP,- < Pmm/m, ":’i(tth) < Pmax/\/ﬁa and
Zi(t;tr) < pmax/V/Na, for all t € [ty t, +T] and anyk > 1. L (14y/N, — 1)e Te
~ 16N, 16N, 8’

Boundedness assumptions of this form are standard in con-
vergence analysis of optimization algorithms. o - _
Theorem 2:Suppose that Assumptions 1-5 hotdto) € violating the COﬂdItIO!’] thaljz(t)||p > 7¢/8 for all time ¢ €
7 and conditions (9)—(15) are satisfied. Then, by applicatiofi#- tk+1]. Therefore, it can be assumed tlﬂat'(tQ.; ti)llp =
of Algorithm 1, the closed-loop system (4) is asymptotically 14V Na — 1)e/(16v/Na) > 13¢/16 for all time ¢ €

stabilized to the origin, provided the following parametriclt: tk+1], USING N, > 10 > 1. As such,
conditions are satisfied:

()1l

e 2 5(13£/16)*Amin(Q)
SAmin(Q)/Amax(P) > In(4N,) /4 17) - /,k 27 (s i)l ds < — Amax(P)
(T — 0)(8pmax+ €)/\max(@) < —In(4N,)(13¢/16)* /4
No 2 135 Amin(P) ' (18)

Proof. If z(t;) € Q. for any k > 0, the terminal controllers  Using the Lyapunov functionVa(2(t;tx), 2(: k) =
take over and stabilize the system to the origin. Therefore, i (t; tx)[| % +A||Z(t;tk)||?m it is stralght;‘orwatd to Sh20W that
remains to show that if(ty) € Z \ Q., then by application dVa(2(t; ), 2(;tx))/dt < —|[Z(¢:8x)[15 — [12(E: eI for



all ¢t € [tx—1 + T, tx + T]. Consequently,

tpp1+T
[ ettt + Titusn)
tr+T

P+ Tst)llp < 2(tk + Titis) 13-
From the proof of Lemma 4|z(t; + T tx11)||% < (3g/4)2.
To bound the remaining terms, observe that

12085 ts1) £ 20t G < 1206 trern) — 20t 117
+2)|2(t trr) — 2t ter) @l 20t tern) @+ 2(8: ts) 1
Consequently, it follows that

I2(t; te )15 — 12(E tea) 15 < 112 trgr) — 2(; tes1) 15
+2[12(t tha1) — 2t ter ) Q2 ter) | -

From As. 5,|12(t; tx11)llo < pmacdmia(Q)/ (VN AL (P)).
From Lemma 2,

A Q)
4/ Ny (P)
Collecting terms, the cost difference inequality becomes
_11[1(4Na)/4(13;3)2 — (3¢)?
16

12(t; try1) — 2(t thg1)ll@ <

Js(ter1)—Js(tr) <
2N o Amin(P) [é th max} '

With N, > 10, In(4N,)/4 > 0.9, and 0.9(13)? > 122,
So, it follows that—In(4N,)/4(13¢)? — (32)? < —135¢2.
Substitution into the inequality gives

Js(trsr) — Js(te) < —C, wherg
€ (T - 5)(8Pmax + E)AmaX(Q)
16N, 135N,¢e (P ,

and (18) ensures th&t > 0, concluding the proof. |
Condition (17) requires that, give® and P, § must be

C £

at least as large as is required by condition (15), sinces)

~

Amin(@) < Amin(@). Condition (18) requires thaiV, not

V. CONCLUSIONS

In this paper, a recently developed distributed implemen-
tation of receding horizon control is extended to the case of
dynamically coupled nonlinear systems. The results, while
quite conservative, are only sufficient. A central element
to the stability analysis is that the actual and assumed
responses of each agent are not too far from one another,
as quantified by a control compatibility constraint. Also,
the amount of dynamic coupling must sufficiently weak, to
permit decoupled terminal controllers and to enable feasi-
bility and stability properties for the algorithm. That the
result requires a bound on the amount of coupling is no
surprise, while the highly conservative form of the bound
itself is an artifact of the sufficient conditions derived here.
Less conservative conditions and numerical experiments will
be explored in a future work. Relaxations of the theory
have recently been employed in the venue of supply chain
management [5]. In conclusion, it is noted that the results in
this paper are intimately related to those of Michalska and
Mayne [10], who demonstrated robustness to model error by
placing parametric bounds on (combinations of) the update
period and Lipschitz constant. While there is no model error
here, bounds are likewise derived to ensure robustness to the
bounded discrepancy between what agents do, and what their
neighbors believe they will do.
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