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Abstract— This paper presents a distributed receding horizon
control law for dynamically coupled nonlinear systems that
are subject to decoupled input constraints. The subsystem
dynamics are modelled by continuous time nonlinear ordinary
differential equations, and the coupling comes in the form
of state dependence between subsystems. Examples of such
systems include tight formations of aircraft and certain large
scale process control systems. Given separable quadratic cost
structure, a distributed controller is defined for each subsystem,
and feasibility and asymptotic stabilization are established.
Coupled subsystems communicate the previously computed
trajectory at each receding horizon update. Key requirements
for stability are that each distributed optimal control not deviate
too far from the remainder of the previous optimal control, and
that the amount of dynamic coupling is sufficiently small.

Keywords: receding horizon control, model predictive
control, distributed control, decentralized control, large scale
systems.

I. INTRODUCTION

The problem of interest is to design a distributed controller
for a set of dynamically coupled nonlinear subsystems that
are required to perform a cooperative task. Examples of such
situations where distributed control is desirable include tight
formations of aircraft [2] and certain large scale process
control systems [13]. The control approach advocated here is
receding horizon control (RHC). In RHC, the current control
action is determined by solving a finite horizon optimal
control problem online at every update. In continuous time
formulations, each optimization yields an open-loop control
trajectory and the initial portion of the trajectory is applied
to the system until the next update. A survey of RHC,
also known as model predictive control, is given by Mayne
et al. [9]. Advantages of RHC are that a large class of
performance objectives, dynamic models and constraints can
be transparently accommodated.

In this paper, subsystems that are dynamically coupled
are referred to asneighbors. The work presented here is
a continuation of a recent work [6], wherein adistributed
implementationof RHC is presented in which neighbors
are coupled solely through cost functions. As in [6], each
subsystem here: is assigned its own optimal control problem,
optimizes only for its own control at each update, and ex-
changes information only with neighboring subsystems. The
motivation for pursuing such a distributed implementation is
to enable the autonomy of the individual subsystems, respect
the (decentralized) information constraints, and reduce the
computational burden of centralized implementations.
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Previous work on distributed RHC of dynamically coupled
systems include Jia and Krogh [7], Motee and Sayyar-
Rodsaru [11] and Acar [1]. All of these papers address
coupled LTI subsystem dynamics with quadratic separable
cost functions. State and input constraints are not included,
aside from a stability constraint in [7] that permits state
information exchanged between the subsystems to be delayed
by one update period. In these papers, analysis is facilitated
by exploiting the analytic solutions available in the LTI case.
In another work, Jia and Krogh [8] solve local min-max
problems for coupled nonlinear subsystems, where the neigh-
boring subsystem states are treated as bounded disturbances.
Stability is obtained by contracting each subsystems state
at every sample period, until the objective set is reached.
As such, stability does not depend on information updates
between neighbors, although such updates may improve per-
formance. When subsystems are cooperative, it is anticipated
that performance should improve by making more informed
assumptions about neighboring subsystems, as done in the
implementation here. In the future, this conjecture will be
tested in numerical experiments.

We begin in Section II by defining the nonlinear coupled
subsystem dynamics and control objective. In Section III,
distributed optimal control problems are defined for each
subsystem, and the distributed receding horizon control algo-
rithm is defined. Feasibility and stability results are presented
in Section IV, and Section V discusses conclusions and
future work.

II. SYSTEM DESCRIPTION ANDOBJECTIVE

In this section, the system dynamics and control objective
are defined. For any vectorx ∈ Rn, ‖x‖P denotes theP -
weighted 2-norm, defined by‖x‖2P = xT Px, andP is any
positive-definite real symmetric matrix. Also,λmax(P ) and
λmin(P ) denote the largest and smallest eigenvalues ofP ,
respectively. Often, the notation‖x‖ is understood to mean
‖x(t)‖ at some instant of timet ∈ R.

Our objective is to stabilize a group ofNa ≥ 2 dynami-
cally coupled agents toward the origin in a cooperative and
distributed way using RHC. For each agenti ∈ {1, ..., Na},
the state and control vectors are denotedzi(t) ∈ Rn and
ui(t) ∈ Rm, respectively, at any timet ≥ t0 ∈ R. The di-
mension of every agents state (control) are assumed to be the
same, for notational simplicity and without loss of generality.
The concatenated vectors are denotedz = (z1, ..., zNa

) and
u = (u1, ..., uNa

).
The dynamic coupling between the agents is topologically

identified by a directed graphG = (V, E), where V =



{1, ..., Na} is the set of nodes (agents) andE ⊂ V × V
is the set of all directed edges between nodes in the graph.
The setE is defined in the following way. If any components
of zj appear in the dynamic equation for agenti, for some
j ∈ V, it is said thatj is an upstream neighborof agent
i, andN u

i ⊆ V denotes the set of upstream neighbors of
any agenti ∈ V. The set of all directed edges is defined as
E = {(i, j) ∈ V × V | j ∈ N u

i ,∀i ∈ V}. For everyi ∈ V,
it is assumed thatzi appears in the dynamic equation fori,
and soi ∈ N u

i for every i ∈ V. In the language of graph
theory, then, every node has a self-loop edge inE . Note that
j ∈ N u

i does not necessarily implyi ∈ N u
j .

It will also be useful to reference the set of agents for
which any of the components ofzi arises in their dynamical
equation. This set is referred to as thedownstream neighbors
of agenti, and is denotedN d

i . The set of all directed edges
can be equivalently defined asE = {(i, j) ∈ V × V | i ∈
N d

j ,∀i ∈ V}. Note thatj ∈ N u
i if and only if i ∈ N d

j , for any
i, j ∈ V. Consider the example system and corresponding
directed graph given in Figure 1.

ż1 = f1(z1, z3)
ż2 = f2(z2, z3, z4) =⇒
ż3 = f3(z3, z4)
ż4 = f4(z4, z2)

(a) (b)
Fig. 1. Example of (a) a set of coupled dynamic equations and
(b) the corresponding directed graphG = (V, E) associated with
the directed information flow. In this example,V = {1, 2, 3, 4} and
E = {(1, 1), (1, 3), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4), (4, 2)}. The
upstream neighbor sets areN u

1 = {1, 3}, N u
2 = {2, 3, 4}, N u

3 = {3, 4}
and N u

4 = {2, 4}, and the downstream neighbor sets areN d
1 = {1},

N d
2 = {2, 4}, N d

3 = {1, 2, 3} andN d
4 = {2, 3, 4}. By this convention,

arrows in the graph point upstream.

It is assumed in this paper that the graphG is connected.
Consequently, for everyi ∈ V, the set

(
N d

i ∪N u
i

)
\{i} 6= ∅,

and every agent is dynamically coupled to at least one other
agent. It is also assumed that agents can receive informa-
tion directly from each and every upstream neighbor, and
agents can transmit information directly to each and every
downstream neighbor. Thecoupledtime-invariant nonlinear
system dynamics for each agenti ∈ V are given by

żi(t) = fi(zi(t), z−i(t), ui(t)), t ≥ t0, (1)

where z−i = (zj1 , ..., zjl
), l = |N u

i |, denotes the concate-
nated vector of the states of the upstream neighbors ofi.
Each agenti is also subject to the decoupled input constraints
ui(t) ∈ U , t ≥ t0. The setUN is the N -times Cartesian
productU×· · ·×U . In concatenated vector form, the system
dynamics are

ż(t) = f(z(t), u(t)), t ≥ t0, (2)

given z(t0), andf = (f1, ..., fNa
).

Assumption 1:The following holds: (a) f is C2 and0 =
f(0, 0); (b) system (2) has a unique solution for anyz(t0)

and any piecewise right-continuous controlu : [t0,∞) →
UNa ; (c) U ⊂ Rm is compact, containing the origin in its
interior; (d) for every i ∈ V, there exist positive constants
αi, γi andβj

i , j ∈ N u
i , such that

‖fi(zi, z−i, ui)‖Pi
≤ αi‖zi‖Pi

+
∑

j∈N u
i

βj
i ‖zj‖Pi

+ γi‖ui‖Wi
,

holds for allzi(t) ∈ Rn, zj(t) ∈ Rn, j ∈ N u
i , andui(t) ∈ U ,

t ≥ t0, andPi,Wi will be defined in the next section.
Consider now the linearization of (1) around the origin,
denoted as

żi(t) = Aiizi(t) +
∑

j∈N u
i

Aijzj(t) + Biui(t),

whereAil = ∂fi/∂zl(0, 0) and Bi = ∂fi/∂ui(0, 0). As in
many RHC formulations, a feedback controller for which
the closed-loop system is asymptotically stabilized inside
a neighborhood of the origin will be utilized. There exist
methods for constructing dynamic and static feedback con-
trollers, as done by Corfmat and Morse in [3], to achieve
stabilization while respecting the decentralized information
constraints. The analysis here is greatly facilitated if, for
everyi ∈ V, stabilization is possible with the static feedback
ui = Kizi, instead of a feedback that relies on components
of z−i, motivating the following assumption.

Assumption 2:For every agenti ∈ V, there exists a
decoupled static feedbackui = Kizi such thatAdi , Aii +
BiKi is Hurwitz, and the closed-loop linear systemż = Acz
is asymptotically stable, whereAc , [fz(0, 0) + fu(0, 0)K]
andK = diag(K1, ...,KNa

).
The decoupled linear feedbacks above are referred to as
terminal controllers. Associated with the closed-loop lin-
earization, denote the block-diagonal Hurwitz matrixAd =
diag(Ad1, ..., AdNa) and the off-diagonal matrixAo = Ac−
Ad. Assumption 2 inherently presumes decoupled stabiliz-
ability and that the coupling between subsystems in the
linearization is sufficiently weak, as discussed and quantified
in the survey paper [12]. The terminal controllers will be
employed in a prescribed neighborhood of the origin. Thus,
the coupling between subsystems must be sufficiently weak
in the prescribed neighborhood. The degree of weakness
required here will be stated as a mathematical condition in
the next section. Since the stabilizing controllers constructed
in [3] do not require the assumption of weak coupling
between subsystems, a future objective is to admit such
terminal controllers.

III. D ISTRIBUTED RECEDING HORIZON CONTROL

In this section,Na separate optimal control problems
are defined and the distributed RHC algorithm. In every
distributed optimal control problem, the same constant pre-
diction horizon T ∈ (0,∞) and constant update period
δ ∈ (0, T ] are used. In practice, the update periodδ ∈
(0, T ] is typically the sample interval. By the distributed
implementation presented here, additional conditions onδ
are required, as quantified in the next section. Denote the
update timetk = t0 + δk, wherek ∈ N = {0, 1, 2, ...}. In



the following implementation, every distributed RHC law is
updatedglobally synchronously, i.e., at the same instant of
time tk for the kth-update.

At each update, every agent optimizes only for its own
predicted open-loop control, given its current state. Since the
dynamics of each agenti depend on statesz−i, that agent
will presume some trajectories forz−i over each prediction
horizon. To that end, prior to each update, each agenti
receivesan assumedstate trajectorŷzj from each upstream
neighborj ∈ N u

i . Likewise, agenti transmits an assumed
state trajectorŷzi to every downstream neighborj ∈ N d

i ,
prior to each update. By design, then, the assumed state
trajectory for any agent isthe samein the distributed optimal
control problem of every downstream neighbor. Since the
models are used with assumed trajectories for upstream
neighbors, there will be a discrepancy, over each optimization
time window, between the predicted open-loop trajectory and
the actual trajectory that results from every agent applying
the predicted control. This discrepancy is identified by using
the following notation. Recall thatzi(t) and ui(t) are the
actual state and control, respectively, for each agenti ∈ V
at any timet ≥ t0. Associated with update timetk, the
trajectories for each agenti ∈ V are denoted

zp
i (t; tk) − the predicted state trajectory,

ẑi(t; tk) − the assumed state trajectory,
up

i (t; tk) − the predicted control trajectory,

wheret ∈ [tk, tk + T ]. Consistent with the ordering ofz−i,
let ẑ−i(·; tk) be the assumed open-loop state trajectories of
the upstream neighbors ofi. For any agenti ∈ V, then, the
predicted state trajectory satisfies

żp
i (t; tk) = fi(z

p
i (t; tk), ẑ−i(t; tk), up

i (t; tk)), (3)

for all t ∈ [tk, tk + T ], given zp
i (tk; tk) = zi(tk) and

ẑ−i(·; tk). The actual state trajectories, on the other hand,
satisfy

ż(t) = f(z(t), up(t; tk)), (4)

for time t ∈ [tk, tk+1], for any k ∈ N, given z(tk),
and whereup = (up

1, ..., u
p
Na

). So, while the actual and
predicted state trajectories do have the same initial condition,
they typically diverge over each window[tk, tk+1], and
zp
i (tk+1; tk) 6= zi(tk+1) in general for anyi ∈ V. Stability

is to be guaranteed forthe closed-loop system, represented
by equation (4), which is defined for all timet ≥ t0 by
following the distributed RHC algorithm. For each agenti,
an assumed control trajectorŷui(·; tk) is also utilized, and
ẑi(·; tk) and ûi(·; tk) are defined in the algorithm.

The cost functionJi(zi(tk), up
i (·; tk)) for any agenti ∈ V

at update timetk is given by∫ tk+T

tk

‖zp
i (s; tk)‖2Qi

+‖up
i (s; tk))‖2Ri

ds+‖zp
i (tk + T ; tk)‖2Pi

(5)

where Qi = QT
i > 0 and Ri = RT

i > 0. The terminal
cost matrixPi = PT

i > 0 satisfies the Lyapunov equation
PiAdi + AT

diPi = −4Q̂i, whereQ̂i = Qi + KT
i RiKi. Now,

let P = diag(P1, ..., PNa) and Q̂ = diag(Q̂1, ..., Q̂Na), and
soPAd+AT

d P = −4Q̂ with Q̂ > 0. The following assump-
tion quantifies the presumed degree of weakness of coupling
between neighboring subsystems in the linearization.

Assumption 3:PAo + AT
o P ≤ 2Q̂.

Lemma 1:Suppose that Assumptions 1–3 hold. There
exists a positive constantε ∈ (0,∞) such that the set

Ωε ,
{
z ∈ RnNa | ‖z‖P ≤ ε

}
,

is a positively invariant region of attraction for both the
closed-loop linearizationż(t) = Acz(t) and the closed-
loop nonlinear systeṁz(t) = f(z(t),Kz(t)). Additionally,
Kz ∈ UNa for all z ∈ Ωε.
The proof follows closely along the lines of the logic given
in Section II of [10] and is omitted for space reasons. For
eachi ∈ V, define the set

Ωi(ε) ,
{

zi ∈ Rn | ‖zi‖Pi ≤ ε/
√

Na

}
.

Then, z(t) ∈ Ω1(ε) × · · · × ΩNa(ε) implies z(t) ∈ Ωε.
Consequently, from Lemma 1, if at some timet′ ≥ t0,
zi(t′) ∈ Ωi(ε) for every i ∈ V, stabilization is achieved
if every agent employs their decoupled terminal controller
Kizi(t) for all time t ≥ t′. The objective of the RHC law is
to drive each agenti to the setΩi(ε). Once all agents have
reached these sets, they switch to their decoupled controllers
for stabilization. The collection of distributed optimal control
problems is now defined.

Problem 1: For each agenti ∈ V and at any update
time tk, k ∈ N, given{zi(tk), Ji(zi(tk), ûi(·; tk)), ûi(τ ; tk),
ẑ−i(τ ; tk), ∀τ ∈ [tk, tk + T ]}, find up

i (·; tk) that satisfies

Ji(zi(tk), up
i (·; tk)) ≤ Ji(zi(tk), ûi(·; tk)), (6)

subject to equation (3),up
i (τ ; tk) ∈ U , the control compati-

bility constraint

‖up
i (τ ; tk)− ûi(τ ; tk)‖Wi ≤ c1, (7)

τ ∈ [tk, tk + T ], and the terminal state constraintzp
i (tk +

T ; tk) ∈ Ωi(ε/2), given weightingWi ≥ 0, positive constant
c1 andε satisfies the conditions in Lemma 1. �
While the costJi(zi(tk), up

i (·; tk)) is defined by equation (5),
the costJi(zi(tk), ûi(·; tk)) will be defined later by equation
(8), after the distributed algorithm is stated. Before stating the
algorithm, an assumption is made to facilitate initialization.

Assumption 4:Given z(t0) at initial time t0, there exists
a feasible controlup

i (τ ; t0) ∈ U , τ ∈ [t0, t0 + T ], for each
agenti ∈ V, such that the solution to the full systeṁz(τ) =
f(z(τ), up(τ ; t0)), denotedzp(·; t0), satisfieszp

i (t0+T ; t0) ∈
Ωi(ε/2) and results in a bounded costJi(zi(t0), u

p
i (·; t0))

for every i ∈ V. Moreover, each agenti ∈ V has access to
(zp

i (·; t0), up
i (·; t0)).

Let Z ⊂ RnNa denote the set of initial states for which there
exists a control satisfying the conditions in Assumption 4. Of
course, Assumption 4 bypasses the difficult task of actually
constructing an initially feasible solution in a distributed way,
a task that is left for future work. The control algorithm is
now stated.



Algorithm 1: At time t0 with z(t0) ∈ Z, the dual-mode
Distributed Receding Horizon Controllaw for any agenti ∈
V is as follows:

Data: z(t0), up
i (·; t0), T ∈ (0,∞), δ ∈ (0, T ].

Initialization: At time t0, if z(t0) ∈ Ωε, then apply the
terminal controllerui(t) = Kizi(t), for all t ≥ t0. Else:

Controller: A) Over any interval[tk, tk+1), k ∈ N:
1) Apply up

i (τ ; tk), τ ∈ [tk, tk+1).
2) Compute

ẑi(τ ; tk+1) =
{

zp
i (τ ; tk), τ ∈ [tk+1, tk + T )

zK
i (τ), τ ∈ [tk + T, tk+1 + T ]

wherezK
i is the solution tożK

i (τ) = Adiz
K
i (τ) with

initial condition zK
i (tk + T ) = zp

i (tk + T ; tk).
3) Transmit ẑi(·; tk+1) to every downstream neighbor

l ∈ N d
i , and receivêzj(·; tk+1) from every upstream

neighborj ∈ N u
i .

B) At any time tk+1, k ∈ N:
1) Obtain z(tk+1). If z(tk+1) ∈ Ωε, apply the terminal

controllerui(t) = Kizi(t), for all t ≥ tk+1. Else:
2) Compute the state trajectorȳzi(·; tk+1) and assumed

control trajectoryûi(·; tk+1) according to

˙̄zi(τ ; tk+1) = fi(z̄i(τ ; tk+1), ẑ−i(τ ; tk+1), ûi(τ ; tk)),

ûi(τ ; tk+1) =
{

up
i (τ ; tk), τ ∈ [tk+1, tk + T )

Kiz̄i(τ ; tk+1), τ ∈ [tk + T, tk+1 + T ]

for all τ ∈ [tk+1, tk+1 + T ], with initial condition
z̄i(tk+1; tk+1) = zi(tk+1).

3) Compute the costJi(zi(tk+1), ûi(·; tk+1)) as∫ tk+1+T

tk+1

‖z̄i(s; tk+1)‖2Qi
+ ‖ûi(s; tk+1))‖2Ri

ds

+ ‖z̄i(tk+1 + T ; tk+1)‖2Pi
. (8)

4) Solve Problem 1 for agenti, yielding up
i (·; tk+1). �

Algorithm 1 presumes that the every agent can obtainz(tk)
at everyk ∈ N. This can be done using a single centralized
node, or in a distributed way using a consensus protocol
as discussed in [4]. By construction, each assumed state
trajectory ẑi is the remainder of the previously predicted
trajectory, concatenated with the closed-loop linearization
response that ignores coupling. Each assumed control trajec-
tory ûi is the remainder of the previously predicted trajectory,
concatenated with the linear control applied to the nonlinear
model and based on the decoupled linear responses for each
upstream neighbor. Observe that, for anyi ∈ V andk ≥ 2,
ẑi(tk; tk) = zp

i (tk; tk−1) 6= z̄i(tk; tk) = zi(tk).

IV. A NALYSIS

In this section, feasibility and stability are analyzed.
A desirable property of the implementation is that initial
feasibility implies subsequent feasibility. In particular, it
will be shown in Theorem 1 that a feasible solution to
Problem 1 for anyi ∈ V and at any timetk, k ≥ 1, is
up

i (·; tk) = ûi(·; tk). First, three lemmas are given for use
in the proof of Theorem 1. Specifically, terminal constraint
feasibility will be shown by combining Lemmas 2 and 3,

while control constraint feasibility is shown in Lemma 4.
Define the functionΘ(t; tk) ,

∑
i∈V ‖z̄i(t; tk)−ẑi(t; tk)‖Pi ,

for all t ∈ [tk, tk + T ], and the following positive constants:
αm = maxi∈V [αi], βm = maxi∈V [

∑
j∈N d

i
βi

j ], γm =

maxi∈V [γi], γ
W

= γmλ
1/2
max(KT WK)/λ

1/2
min (P ), whereW =

diag(W1, ...,WNa
).

Lemma 2:Suppose that Assumptions 1–4 hold and
z(t0) ∈ Z. In the application of Algorithm 1, suppose that
Problem 1 has a solution at each updatel = 1, ..., k, for
any givenk ≥ 1. Then, Θ(t; tk+1) ≤ ε/(4

√
Na), ∀t ∈

[tk+1, tk+1 + T ], provided the following parametric condi-
tions hold:

δ ·max

{
16λmin(Q̂)

N
3/2
a λmax(P )

, (αm + γ
W

)

}
≤ 1/2, (9)

βm ·max{8δNa, T eαm(T+δ)+βmδ} ≤ 1/4, (10)

c1 ≤ ε(1 + δγ
W

)

32TγmN
3/2
a eαm(T−δ)

. (11)

Proof. Define the functiony(t; tl) ,
∑

i∈V ‖z
p
i (t; tl) −

ẑi(t; tl)‖Pi
, t ∈ [tl, tl + T ], l = 1, ..., k. This function and

Θ(t; tk+1) are well defined by assuming the existence of a
solution to Problem 1 at each updatel = 1, ..., k. Using the
Lipschitz bounds stated in Assumption 1, the triangle and
Gronwall-Bellman inequalities, it is straightforward to show
that Θ(t; tk+1) ≤ Γk for all t ∈ [tk+1, tk + T ], where

Γ0 , 0, Γl , βmeαmT+βmδ

∫ tl+T

tl

y(s; tl)ds,

for l = 1, ..., k. Let w(t; tl) ,
∑

i∈V ‖u
p
i (t; tl)−ûi(t; tl)‖Wi

,
t ∈ [tl, tl + T ], for l = 1, ..., k. In the same fashion, it is
straightforward to show that

y(t; tl) ≤ eαm(t−tl)
[
βmeδ(αm+βm)

∫ tl−1+T

tl−1

y(s; tl−1)ds

+ γm

∫ tl−1+T

tl

w(s; tl)ds
]
,

for all t ∈ [tl, tl−1 + T ] and

y(t; tl) ≤ y(tl−1 + T ; tl)

+
∫ t

tl−1+T

∑
i∈V

‖fi(z
p
i (s; tl), ẑ−i(s; tl), u

p
i (s; tl)

−Adiẑi(s; tl)± fi(ẑi(s; tl), 0,Kiẑi(s; tl))‖Pi
ds,

for all t ∈ [tl−1 + T, tl + T ], l = 1, ..., k. To simplify the
integrand, analysis in the proof of Lemma 1, the Lipschitz
bound and triangle inequality are combined to yield

y(t; tl) ≤ y(tl−1 + T ; tl)+
∫ t

tl−1+T

[
αmy(s; tl)+γmw(s; tl)

+ βm

∑
i∈V

‖ẑi(s; tl)‖Pi +
λmin(Q̂)

N2
aλmax(P )

‖ẑ(s; tl)‖P

+ γm

∑
i∈V

‖ûi(s; tl)−Kiẑi(s; tl)‖Wi

]
ds.



Over the domain[tl−1+T, tl+T ], ‖ẑi(s; tl)‖Pi
≤ ε/(2

√
Na)

for every i ∈ V, and so‖ẑ(s; tl)‖P ≤ ε/2. Also, the last
term in the integrand is bounded byγ

W
Θ(s; tl). Now, using

Gronwall-Bellman and the previously obtained bound on
y(tl−1 + T ; tl), it follows that for all t ∈ [tl, tl + T ],

y(t; tl) ≤ βmeαm(T+δ)+βmδ

∫ tl−1+T

tl−1

y(s; tl−1)ds + eαmδX

+ γmeαmT

∫ tl+T

tl

w(s; tl)ds + γ
W

eαmδ

∫ tl+T

tl−1+T

Θ(s; tl)ds,

whereX = δε{βm

√
Na + λmin(Q̂)/(N2

aλmax(P ))}/2. The
bound onΘ(t; tk+1) over the time domaint ∈ [tk+T, tk+1+
T ] is likewise given by

Θ(t;tk+1) ≤ Θ(tk + T ; tk+1) +
∫ t

tk+T

[
αmΘ(t; tk+1)

+ βm

∑
i∈V

‖ẑi(s; tk+1)‖Pi
+

λmin(Q̂)
N2

aλmax(P )
‖ẑ(s; tk+1)‖P

γm

∑
i∈V

‖ûi(s; tk+1)−Kiẑi(s; tk+1)‖Wi

]
ds.

Now, using Gronwall-Bellman and the previously obtained
bound onΘ(tk + T ; tk+1), it follows that Θ(t; tk+1) ≤
Yk+1 for all t ∈ [tk+1, tk+1 + T ], where Yk+1 ,
eδ(αm+γ

W
) (X + Γk). Using the bound fory(t; tl) and the

definition for Γl yields

Γl ≤ βmTeαm(T+δ)+βmδ
[
Γl−1 + X (12)

+ γmeαm(T−δ)Nac1 + δγ
W

eδ(αm+γ
W

) (X + Γl−1)
]

, ρ1(Γl−1 + ρ2), l = 1, ..., k, (13)

Now, if ρ1 ≤ 1/2 and ρ2 ≤ ε/(16
√

Na), then Γl ≤
ε/(16

√
Na) for all l = 1, ..., k, and X ≤ ε/(16

√
Na).

If, in addition, eδ(αm+γ
W

) ≤ 2, then from the definition
of Yk+1, it follows that Yk+1 ≤ ε/(4

√
Na). Finally, since

Θ(t; tk+1) ≤ Yk+1 for all t ∈ [tk+1, tk+1 + T ], the result of
the lemma follows, provided:

ρ1 ≤ 1/2, ρ2 ≤ ε/(16
√

Na), andeδ(αm+γ
W

) ≤ 2. (14)

Conditions (9)–(11) are now shown to imply that (14) holds.
Condition (9) implieseδ(αm+γ

W
) ≤ 2 andδγ

W
eδ(αm+γ

W
) ≤

1, and combining with (10) impliesρ1 ≤ 1/2. With (11),

γmTNac1e
αm(T−δ)/

{
1 + δγ

W
eδ(αm+γ

W
)
}
≤ ε/(32

√
Na).

Also, (9) and (10) imply thatX ≤ ε/(32
√

Na). Combining
these last two bounds implies thatρ2 ≤ ε/(16

√
Na),

concluding the proof. �
The conservative approach taken in the proof results in
sufficient conditions (9)–(11) that are likewise conservative.
Condition (10) requires that the degree of dynamic coupling
(parameterized byβm) be sufficiently weak. In contrast,
conditions (11) and (9) are design constraints. To ensure
feasibility, the requirements that agents can not deviate too
far from the behavior neighbors assume for them (from
(11),(7)), and that the sample rate not be too large (from

(9)) are intuitive. We now proceed with the second lemma
used to ensure terminal constraint feasibility by the assumed
control.

Lemma 3:Suppose that Assumptions 1–4 hold and
z(t0) ∈ Z. In the application of Algorithm 1, suppose that
Problem 1 has a solution at each updatel = 1, ..., k, for
any given k ≥ 1. Then, for everyi ∈ V, ‖ẑi(tk+1 +
T ; tk+1)‖Pi

≤ ε/(4
√

Na), provided the following parametric
condition holds:

δλmin(Q̂)/λmax(P ) ≥ ln(4Na)/4. (15)
Proof. By construction, for everyi ∈ V, it follows from
the terminal constraint that‖ẑi(tk +T ; tk+1)‖Pi

= ‖zp
i (tk +

T ; tk)‖Pi
≤ ε/(2

√
Na), and sôz(tk+T ; tk+1) ∈ Ωε/2. With

the Lyapunov functionV (ẑ(t)) = ‖ẑ(t; tk+1)‖2P for t ∈ [tk+
T, tk+1 + T ], it follows that V̇ (ẑ(t)) ≤ −4‖ẑ(t; tk+1)‖2bQ ≤
−4[λmin(Q̂)/λmax(P )]V (ẑ(t)). Consequently,V (ẑ(t)) ≤
exp[−4(t − (tk + T ))λmin(Q̂)/λmax(P )]V (ẑ(tk + T )).
A sufficient condition for ‖ẑi(tk+1 + T ; tk+1)‖Pi

≤
ε/(4

√
Na) for every i ∈ V is that ‖ẑ(tk+1 +

T ; tk+1)‖P ≤ ε/(4
√

Na). Using the bound on the
Lyapunov function, the sufficient condition requires that
e−4δλmin( bQ)/λmax(P )V (ẑ(tk + T )) ≤ ε/(4

√
Na), or, more

conservatively, thate−4δλmin( bQ)/λmax(P )ε2/4 ≤ ε2/(16Na),
which is equivalent to (15), concluding the proof. �
Condition (15) suggests a (conservative) minimum amount
of time δ required to steer eachzp

i (tk +T ; tk) from Ωi(ε/2)
to Ωi(ε/4), using the decoupled terminal controllers. Since
condition (9) places an upper bound onδ, it must be
ensured these two conditions are compatible. Rewriting the
conditions, it is required that

ln(4Na)/4 ≤ δλmin(Q̂)/λmax(P ) ≤ N3/2
a /32. (16)

Provided Na ≥ 10, there always exists a feasible
δλmin(Q̂)/λmax(P ) that satisfies (16). It is now shown that
the assumed controls satisfy the control constraints when the
conditions of Lemma 2 are satisfied.

Lemma 4:Suppose that Assumptions 1–4 hold,z(t0) ∈ Z
and conditions (9)–(11) are satisfied. In the application of
Algorithm 1, suppose that Problem 1 has a solution at each
updatel = 1, ..., k, for any givenk ≥ 1. Then, for every
i ∈ V, ûi(τ ; tk+1) ∈ U for all τ ∈ [tk+1, tk+1 + T ].
Proof. Sinceûi(t; tk+1) = up

i (t; tk) for all t ∈ [tk+1, tk+T ],
it need only be shown that the remainder ofûi is in U .
A sufficient condition for this is ifz̄i(t; tk+1) ∈ Ωi(ε) for
all t ∈ [tk + T, tk+1 + T ], sinceε is chosen to satisfy the
conditions of Lemma 1 and, consequently,Kizi ∈ U for
all i ∈ V when z ∈ Ωε. From Lemma 2,‖z̄i(t; tk+1) −
ẑi(t; tk+1)‖Pi ≤ ε/(4

√
Na) for all t ∈ [tk + T, tk+1 +

T ]. By construction,‖ẑi(tk + T ; tk+1)‖Pi ≤ ε/(2
√

Na).
With the Lyapunov functionVi(ẑi(t)) = ‖ẑi(t; tk+1)‖2Pi

,
it follows that V̇ (ẑi(t)) ≤ −4[λmin(Q̂i)/λmax(Pi)]Vi(ẑi(t)),
∀t ∈ [tk +T, tk+1 +T ], and so‖ẑi(t; tk+1)‖Pi

≤ ε/(2
√

Na)
for all t ∈ [tk + T, tk+1 + T ]. Using the triangle in-
equality, ‖z̄i(t; tk+1)‖Pi

= ‖z̄i(t; tk+1) ± ẑi(t; tk+1)‖Pi
≤

‖z̄i(t; tk+1)−ẑi(t; tk+1)‖Pi
+‖ẑi(t; tk+1)‖Pi

≤ ε/(4
√

Na)+
ε/(2

√
Na) < ε/

√
Na, and so z̄i(t; tk+1) ∈ Ωi(ε), ∀t ∈



[tk +T, tk+1 +T ] for everyi ∈ V, concluding the proof.�
The first main theorem of the paper is now stated.

Theorem 1:Suppose that Assumptions 1–4 hold,z(t0) ∈
Z and conditions (9)–(15) are satisfied. Then, for every agent
i ∈ V, the assumed control̂ui(·; tk) is a feasible solution to
Problem 1 and at every updatek ≥ 1.
Proof. The proof follows by induction. First, the
k = 1 case. The trajectorŷui(·; t1) trivially satisfies
the cost improvement constraint (6) and the control
compatibility constraint (7). According to Algorithm
1, z̄i(·; t1) is the corresponding state trajectory that
satisfies the dynamic equation. Now, observe that
ẑi(t1; t1) = zp

i (t1; t0) = z̄i(t1; t1) = zi(t1) for every i ∈ V.
Additionally, z̄i(t; t1) = zp

i (t; t0) for all t ∈ [t1, t0 +T ], and
so z̄i(t0 + T ; t1) ∈ Ωi(ε/2). By the invariance properties
of the terminal controller and the conditions in Lemma 1,
it follows that the terminal state and control constraints
are also satisfied, concluding thek = 1 case. Now, the
induction step. By assumption, supposeup

i (·; tl) = ûi(·; tl)
is a feasible solution forl = 1, ..., k. It must be shown
that ûi(·; tk+1) is a feasible solution at updatek + 1.
As before, the cost improvement constraint (6) and the
control compatibility constraint (7) are trivially satisfied,
and z̄i(·; tk+1) is the corresponding state trajectory that
satisfies the dynamic equation. Since there is a solution
for updatesl = 1, ..., k, Lemmas 2–4 can be invoked.
Lemma 4 guarantees control constraint feasibility. The
terminal constraint requires̄zi(tk + T ; tk) ∈ Ωi(ε/2),
for each i ∈ V and every k ≥ 1. From Lemma 2,
‖z̄i(tk + T ; tk) − ẑi(tk + T ; tk)‖Pi

≤ ε/(4
√

Na), and
Lemma 3 guarantees that‖ẑi(tk + T ; tk)‖Pi

≤ ε/(4
√

Na).
Combining these two bounds, and with‖z̄i(t; tk) ±
ẑi(t; tk)‖Pi ≤ ‖z̄i(t; tk) − ẑi(t; tk)‖Pi + ‖ẑi(t; tk)‖Pi , it
follows that ‖z̄i(tk + T ; tk)‖Pi ≤ ε/(2

√
Na), concluding

the proof. �

Now, stability of the closed-loop system (4) is analyzed. At
any timetk, k ∈ N, the sum of the distributed cost functions
is denotedJΣ(tk) =

∑Na

i=1 Ji(zi(tk), up(·; tk)).
Assumption 5:For every agenti ∈ V, there exists

a common positive constantρmax ∈ (0,∞) satisfying
‖zp

i (t; tk)‖Pi
≤ ρmax/

√
Na, ẑi(t; tk) ≤ ρmax/

√
Na and

z̄i(t; tk) ≤ ρmax/
√

Na, for all t ∈ [tk, tk +T ] and anyk ≥ 1.
Boundedness assumptions of this form are standard in con-
vergence analysis of optimization algorithms.

Theorem 2:Suppose that Assumptions 1–5 hold,z(t0) ∈
Z and conditions (9)–(15) are satisfied. Then, by application
of Algorithm 1, the closed-loop system (4) is asymptotically
stabilized to the origin, provided the following parametric
conditions are satisfied:

δλmin(Q)/λmax(P ) ≥ ln(4Na)/4 (17)

Na ≥
(T − δ)(8ρmax + ε)λmax(Q̂)

135ελmin(P )
. (18)

Proof. If z(tk) ∈ Ωε for any k ≥ 0, the terminal controllers
take over and stabilize the system to the origin. Therefore, it
remains to show that ifz(t0) ∈ Z \ Ωε, then by application

of Algorithm 1, the closed-loop system (4) is driven to the
setΩε in finite time. This is shown by demonstrating that if
z(tk), z(tk+1) ∈ Z \Ωε, thenJΣ(tk+1)− JΣ(tk) ≤ −C for
some positive constantC. From this inequality, there exists a
finite integerl > 1 such thatz(tl) ∈ Ωε, by contradiction. If
this were not the case, the inequality impliesJΣ(tk) → −∞
as k → ∞. However,JΣ(tk) ≥ 0; therefore, there exists a
finite integerl ≥ 1 such thatz(tl) ∈ Ωε.

It remains to show that ifz(tk), z(tk+1) ∈ Z \ Ωε, then
JΣ(tk+1) − JΣ(tk) ≤ −C for some positive constantC.
From (5),JΣ(tk) is∫ tk+T

tk

‖zp(s; tk)‖2Q + ‖up(s; tk))‖2Rds + ‖zp(tk + T ; tk)‖2P .

From (6) and (8),

JΣ(tk+1) ≤
∫ tk+1+T

tk+1

‖z̄(s; tk+1)‖2Q + ‖û(s; tk+1))‖2Rds

+ ‖z̄(tk+1 + T ; tk+1)‖2P .

Subtracting the two equations implies

JΣ(tk+1)− JΣ(tk) ≤ −
∫ tk+1

tk

‖zp(s; tk)‖2Qds

+
∫ tk+T

tk+1

‖z̄(s; tk+1)‖2Q−‖ẑ(s; tk+1)‖2Qds−‖zp(tk + T ; tk)‖2P

+
∫ tk+1+T

tk+T

‖z̄(s; tk+1)‖2bQds + ‖z̄(tk+1 + T ; tk+1)‖2P .

The remainder of the proof is concerned with bounding each
of the terms on the right of the inequality. It can be shown
that if z(t1) ∈ Ω7ε/8 at any time t1 ∈ (tk, tk+1], then
maxt∈(tk,tk+1] ‖z(t)‖P ≤ ε. Consequently,z(tk+1) ∈ Ωε.
Sincez(tk), z(tk+1) ∈ Z \ Ωε is assumed, it must be that
‖z(t)‖P > 7ε/8 for all time t ∈ [tk, tk+1]. From the triangle
inequality, ‖z(t)‖P ≤ ‖z(t) − zp(t; tk)‖P + ‖zp(t; tk)‖P .
Following the procedure and results in the proof of Lemma 2,
‖z(t)−zp(t; tk)‖P ≤ Γk ≤ ε/(16

√
Na) for all t ∈ [tk, tk+1].

Suppose now that‖zp(t2; tk)‖P ≤ (7
√

Na − 1)ε/(8
√

Na)
at some timet2 ∈ [tk, tk+1] . Then,

‖z(t2)‖P ≤ ε

16
√

Na

+
(14

√
Na − 1)ε

16
√

Na

=
7ε

8
,

violating the condition that‖z(t)‖P > 7ε/8 for all time t ∈
[tk, tk+1]. Therefore, it can be assumed that‖zp(t2; tk)‖P ≥
(14

√
Na − 1)ε/(16

√
Na) > 13ε/16 for all time t ∈

[tk, tk+1], usingNa ≥ 10 > 1. As such,

−
∫ tk+1

tk

‖zp(s; tk)‖2Q ds ≤ −δ(13ε/16)2λmin(Q)
λmax(P )

≤ − ln(4Na)(13ε/16)2/4

Using the Lyapunov functionV2(z̄(t; tk), ẑ(t; tk)) =
‖z̄(t; tk)‖2P + ‖ẑ(t; tk)‖2P , it is straightforward to show that
dV2(z̄(t; tk), ẑ(t; tk))/dt ≤ −‖z̄(t; tk)‖2bQ − ‖ẑ(t; tk)‖2bQ, for



all t ∈ [tk−1 + T, tk + T ]. Consequently,∫ tk+1+T

tk+T

‖z̄(s; tk+1)‖2bQds + ‖z̄(tk+1 + T ; tk+1)‖2P

− ‖zp(tk + T ; tk)‖2P ≤ ‖z̄(tk + T ; tk+1)‖2P .

From the proof of Lemma 4,‖z̄(tk +T ; tk+1)‖2P ≤ (3ε/4)2.
To bound the remaining terms, observe that

‖z̄(t; tk+1)± ẑ(t; tk+1)‖2Q ≤ ‖z̄(t; tk+1)− ẑ(t; tk+1)‖2Q
+ 2‖z̄(t; tk+1)− ẑ(t; tk+1)‖Q‖ẑ(t; tk+1)‖Q+‖ẑ(t; tk+1)‖2Q.

Consequently, it follows that

‖z̄(t; tk+1)‖2Q − ‖ẑ(t; tk+1)‖2Q ≤ ‖z̄(t; tk+1)− ẑ(t; tk+1)‖2Q
+ 2‖z̄(t; tk+1)− ẑ(t; tk+1)‖Q‖ẑ(t; tk+1)‖Q.

From As. 5,‖ẑ(t; tk+1)‖Q ≤ ρmaxλ
1/2
max(Q)/(

√
Naλ

1/2
min (P )).

From Lemma 2,

‖z̄(t; tk+1)− ẑ(t; tk+1)‖Q ≤ ελ
1/2
max(Q)

4
√

Naλ
1/2
min (P )

.

Collecting terms, the cost difference inequality becomes

JΣ(tk+1)−JΣ(tk) ≤ − ln(4Na)/4(13ε)2 − (3ε)2

16

+
ε(T − δ)λmax(Q)

2Naλmin(P )

[ε

8
+ ρmax

]
.

With Na ≥ 10, ln(4Na)/4 > 0.9, and 0.9(13)2 > 122.
So, it follows that− ln(4Na)/4(13ε)2 − (3ε)2 < −135ε2.
Substitution into the inequality gives

JΣ(tk+1)− JΣ(tk) ≤ −C, where,

C ,
ε

16Na

[
135Naε− (T − δ)(8ρmax + ε)λmax(Q)

λmin(P )

]
,

and (18) ensures thatC > 0, concluding the proof. �
Condition (17) requires that, givenQ and P , δ must be
at least as large as is required by condition (15), since
λmin(Q) ≤ λmin(Q̂). Condition (18) requires thatNa not
be too small, which is consistent with the requirement that
Na ≥ 10 from (16). Such conditions onNa are an artifact
of the conservative conditions required in the lemmas, e.g.,
that all agents be withinΩε/(4

√
Na) to ensure that each

agent i ∈ V is within Ωi(ε/(4). Outside of the analysis
in proving the stated results, there is no clear engineering
reason suggesting a lower bound on the number of agents.

To summarize, the system itself dictates the parameters
(αm, βm, γm, Na), and the results above requireNa ≥ 10
(from (16)) to satisfy (18). These system parameters are also
involved in conditions (9)–(11), although the primary con-
straint is the upper bound (10) onβm, whereβm quantifies a
maximal amount of dynamic coupling between subsystems.
The design parameters are(δ, c1, T, K,Q,R, W, ε), and P
is determined given the linearization and matricesK, Q, R.
Feasibility requiredδ to be not too small nor too big,
as quantified by (16) and (17). The control compatibility
constraint boundc1 is also required to be sufficiently small
as quantified by (11).

V. CONCLUSIONS

In this paper, a recently developed distributed implemen-
tation of receding horizon control is extended to the case of
dynamically coupled nonlinear systems. The results, while
quite conservative, are only sufficient. A central element
to the stability analysis is that the actual and assumed
responses of each agent are not too far from one another,
as quantified by a control compatibility constraint. Also,
the amount of dynamic coupling must sufficiently weak, to
permit decoupled terminal controllers and to enable feasi-
bility and stability properties for the algorithm. That the
result requires a bound on the amount of coupling is no
surprise, while the highly conservative form of the bound
itself is an artifact of the sufficient conditions derived here.
Less conservative conditions and numerical experiments will
be explored in a future work. Relaxations of the theory
have recently been employed in the venue of supply chain
management [5]. In conclusion, it is noted that the results in
this paper are intimately related to those of Michalska and
Mayne [10], who demonstrated robustness to model error by
placing parametric bounds on (combinations of) the update
period and Lipschitz constant. While there is no model error
here, bounds are likewise derived to ensure robustness to the
bounded discrepancy between what agents do, and what their
neighbors believe they will do.
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