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Abstract: In this paper, we introduce an approach for distributed nonlinear control of multiple
hovercraft-type underactuated vehicles with bounded and unidirectional inputs. First, a bounded
nonlinear controller is given for stabilization and tracking of a single vehicle, using cascade back-
stepping according to the method in Olfati-Saber (2002). Then, this controller is combined with a
distributed gradient-based control for multi-vehicle formation stabilization using formation potential
functions introduced in Olfati-Saber and Murray (2002). The vehicles are used in the Caltech Multi-
Vehicle Wireless Testbed (MVWT). We provide simulation results for stabilization and tracking of
a single vehicle and stabilization of a six-vehicle formation, and demonstrate that in all cases the
control bounds are satisfied. Based on the simulation results, the obtained controllers demonstrate
rather aggressive behaviors as the inputs are close to the control bounds initially.

1 Introduction

Cooperative control of systems with multiple semi-autonomous vehicles that are capable of per-
forming coordinated tasks in a distributed manner is an active area of research that has attracted
great interest. This is due to the many potential applications, such as coordination of unmanned
air vehicles (UAVs), automated search and rescue operations, distributed sensory networks, and
automated highway systems to name a few.

An appropriate way to test and demonstrate some of the theoretical results obtained on dis-
tributed coordination of multi-vehicle systems is on a testbed that mimics some of the realistic
constraints that exist in real-life applications of interest. To this end, the Caltech Multi-Vehicle
Wireless Testbed (MVWT) has been designed, consisting of eight hovercraft-type underactuated
vehicles with wireless communication and dedicated sensing, actuation, and computational devices
[1]. In this paper, we demonstrate an extension of the result in Olfati-Saber and Murray [9] to
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distributed control of multiple MVWT vehicles, which are subject to bounded and unidirectional
controls. This extension relies on an aggressive control design method introduced by the second
author in Olfati-Saber [8] for global configuration stabilization of the VTOL aircraft. The dynamics
of the VTOL aircraft has certain similarities to the model of a MVWT vehicle.

In Leonard and Fiorelli [6], coordinated control of multiple vehicles with linear and fully-
actuated dynamics is examined using potential functions (that differ from the ones used in Olfati-
Saber and Murray [9]). To the best of our knowledge, distributed cooperative control of multiple
hovercraft type vehicles has never been addressed before. In Fantoni et al [4], control of the kine-
matic model of a single hovercraft is considered without the constraint of bounded inputs. A rather
general result on stabilization of feedforward nonlinear system with bounded controls is given in
Teel [11]. This result is not applicable to the underactuated systems considered in this paper be-
cause they are in strict feedback form. A direct use of the standard backstepping procedure in
Isidori [5] does not lead to construction of uniformly bounded and unidirectional state feedback
laws. Instead, we use a variation of backstepping procedure called “cascade backstepping” given
in Olfati-Saber [7, 8] that does not make use of any recursive procedure for construction of Lya-
punov functions. An alternative approach that accounts for the control constraints is to use Model
Predictive Control (MPC) as in Dunbar et al [2], where similar restrictive control constraints need
to be satisfied for MPC of the Caltech ducted fan experiment. Formation stabilization of three
MVWT vehicles using MPC is considered in Dunbar and Murray [3].

In Olfati-Saber and Murray [9], a distributed and cooperative control algorithm is developed for
formation stabilization of multiple fully-actuated vehicles with double-integrator (linear) dynamics.
The key idea of the algorithm in [9] is to automatically obtain formation potentials from rigid and
unfoldable formation graphs as defined in Olfati-Saber and Murray [10]. Then use a gradient-based
controller obtained from these formation potentials to achieve local asymptotic stabilization of a
desired formation.

The main contribution of this paper is to show how the method introduced in [9] can be
extended to distributed and cooperative control of multiple underactuated vehicles (i.e. hovercraft)
with nonlinear dynamics and bounded and unidirectional controls. In fact, global asymptotic
stabilization and asymptotic position tracking for the dynamic model of a single underactuated
hovercraft with bounded and unidirectional control is a rather challenging task. Therefore, first we
address stabilization/tracking problems for one vehicle. Then, we combine the distributed controller
given in [9] with the nonlinear controller designed for a single vehicle to obtain a distributed
control algorithm for coordination of multiple underactuated vehicles. This is performed in a way
that guarantees the control inputs of each vehicle satisfies the corresponding input constraints
throughout formation stabilization and tracking.

The outline of this paper is as follows. In Section 2, stabilization of a single MVWT vehicle
is addressed and simulation results are given in Section 3. The control design approach for the
tracking controller of a single vehicle is explained in Section 4 with simulation results for tracking
a figure-eight trajectory presented in Section 5. The derivation of the distributed algorithm for
coordination of multiple vehicles is given in Section 6. Simulation results for six-vehicle formation
stabilization is presented in Section 7. Finally, concluding remarks are made in Section 8.
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2 Single Vehicle Stabilization Control

Each MVWT vehicle rests on omni-direction casters and is powered by two uni-directional ducted
fans. The hovercraft-like underactuated dynamics of a MVWT vehicle can be expressed as

q̈ = r1T − (η/m)q̇,

θ̈ = τ − (ψ/J)θ̇,

F1 = (mT + τJ/r)/2
F2 = (mT − τJ/r)/2
0 ≤ Fi ≤ Fmax, i = 1, 2

(1)

where (q, θ) ∈ R
2 × R, r1 = [cos(θ) sin(θ)]T , and Fi denotes the unidirectional and bounded force

applied by the ith ducted fan. In addition, T is the thrust and τ is the torque induced by the forces
F1 and F2. In terms of units, Fi are in units of force, while T and τ are normalized and have units of
translational and rotational acceleration, respectively. As a result, T and τ are restricted to stay in
the shaded region specified in Figure 1, where Tmax = 2Fmax/m, τmax = Tmax/2α and α = J/mr.
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Figure 1: Shaded region depicts allowable thrust force T and torque τ values.

The parametersm,J, η, ψ, r denote the mass, moment of inertia, viscous translational and rotational
friction coefficients, and the thrust force moment arm, respectively (see [1] for details).

For future use, we define the m-dimensional sigmoidal function σε
m : R

m → R
m as

σε
m(y) =

y
√

ε2 + ||y||2
, and denote σm ≡ σ1

m,

with m = 1, 2, ..., ε > 0 and || · || denotes the Euclidean norm || · ||2 unless stated otherwise.
In the following, we construct a controller that stabilizes the translational state in equation (1),

i.e. (q, q̇), to the origin. The attitude (or rotational) state (θ, θ̇) is stabilized to (θC , 0), where θC

is a constant. By our approach, it is not possible to specify θC in the stabilization problem. Thus,
it should be understood that when we reference stability, we a referring to stabilization to the final
state (q, θ, q̇, θ̇) = (0, θC , 0, 0). Remarks on the value of θC are given at the end of this section.

Consider translational stabilization to the origin for a double-integrator system

q̈ = u − βq̇, β ≥ 0, (2)

subject to the control constraint ||u|| ≤ Umax. Let u = k(q, q̇) be a global stabilizing state-feedback
for this 2-dimensional double-integrator with damping. To satisfy the control bounds, we use the
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following saturated (or sigmoidal) PD controller

k(q, q̇) = −Umaxσ2(q + q̇). (3)

It can be shown that according to LaSalle’s Invariance theorem, the smooth and positive-definite
function

V (q, q̇) = ||q̇||2/2 + Umaxϕ(q), ϕ(q) ,
√

1 + ||q||2 − 1

is a valid Lyapunov function for the closed-loop system that guarantees global asymptotic stability
of the equilibrium point (q, q̇) = (0, 0), where ϕ satisfies ϕ(q) ≥ 0, ϕ(q) = 0 ⇔ q = 0 and
∇ϕ(q) = σ2(q).

Given the bounded controller k above and returning to equation (1), the translational dynamics
are stabilized by setting

r1T = k, or T = ||k||, r1 = k/||k||. (4)

From the definition of r1 = [cos(θ) sin(θ)]T , the value of θ and its derivatives can be computed
given k and its derivatives. From θ and its (first two) derivatives, we can in turn determine the
torque τ from the attitude dynamics. As such, derivatives of k/||k|| are required for construction
of the torque τ . In order that these derivatives be well-defined over a domain that includes the
origin, we scale T and r1 in equation (4) by the parameter ζ as follows

r̂ ≡ ζr1, T̂ ≡
(

T

ζ

)

, where ζ ≡ ||k||
√

||k||2 + ε2
∈ [0, 1) =⇒ r̂T̂ = k.

We refer to the desired values for T̂ and r̂ as T̂d and r̂d, respectively, given by

T̂d =
√

||k||2 + ε2, r̂d = σε
2(k).

We choose the thrust as T = ζT̂d so that the control bounds for the thrust are satisfied. In the
remainder of this section, the remaining control τ is constructed, given the desired orientation
according to r1 = r̂d/ζ and such that the torque constraints are satisfied. Let r̂T

d = [v1 v2] and θd

denote the desired value of θ so that

ζ cos(θd) = v1, ζ sin(θd) = v2.

Given r̂d, θd = arctan(v2/v1), which implies the desired values for θ̇ and θ̈ can be computed as

θ̇d =
v̇2v1 − v2v̇1
v2
1 + v2

2

=
v̇2v1 − v2v̇1

ζ2
, θ̈d =

v̈2v1 − v2v̈1

ζ2
− θ̇d

ζ̇

ζ
, where ζ̇ =

< k, k̇ > (1 − ζ2)

ζ(||k||2 + ε2)
.

To avoid singularity problems arising from division by ζ, a modified version of ζ denoted by ζ̂ is
used. We define ζ̂ as follows

ζ̂(k, ε) =

{

1/
√

2, 0 ≤ ||k|| < ε
ζ, ε ≤ ||k|| .

Now, we construct the appropriate torque τ . Writing the attitude error state as (θe, θ̇e) = (θ −
θd, θ̇ − θ̇d) and combining this with equation (1) yields

θ̈e + θ̈d = τ − (ψ/J)(θ̇e + θ̇d) ⇐⇒ θ̈e = τ̂ − (ψ/J)θ̇e, where τ̂ ≡ τ − θ̈d − (ψ/J)θ̇d.
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We use the following saturated PD controller to stabilize the above error dynamics

τ̂ = −Bσ1(θe + θ̇e),

that satisfies the torque constraint |τ̂ | ≤ B. Finally, the desired torque for the original system is

τd = −Bσ1(θe + θ̇e) + θ̈d + (ψ/J)θ̇d.

According to equation (3) and T = ζ̂T̂d, the bounds on the desired thrust are ε/
√

2 ≤ T ≤ Umax,
so choosing ε small enough and Umax = Tmax will always generate a T that satisfies the aforemen-
tioned bounds. The torque bounds are captured by the following function that is parameterized by
the thrust T

|τ | ≤ a(T ), where a(T ) = τmax − 1

α
|T − Tmax/2| . (5)

The torque bounds could be achieved in practice by incorporating a saturation function, namely
by applying the torque τ = σ1(τd)a(T ), which we refer to as torque cutting.

For tuning the performance of the controller, we introduce parameters in k and τ̂ as

k = −Tmaxσ2(α1q + α2q̇), τ̂ = −Bσ1(β1θe + β2θ̇e).

The five controller parameters are thus (α1, α2, β1, β2, B). These parameters can be chosen such
that |τd| ≤ a(T ), in which case we can set τ = τd and the constraints in equation (1) are satisfied
analytically. In this case , a proof of asymptotic stability of the closed-loop dynamics follows along
the same lines of the proof of Theorem 2 in [8].

In the stabilization simulation, the parameters are chosen such that the torque bounds are
satisfied analytically (meaning without cutting but for a given bounded set of initial conditions) and
we implement τ = τd. Of course, for large enough initial state error, the same controller parameters
result in violation of the torque bounds. However, it should be noted that the MVWT platform has
a bounded configuration space and the simulation result here shows aggressive performance with
a non-trivial initial state error. In our future paper we theoretically show that there always exists
parameters such that for any initial state error the input constraints can be satisfied with asymptotic
stability. For tracking, stability holds when an appropriate time-parameterization of the desired
trajectory, with uniformly bounded tracking path curvature, is chosen. Although torque cutting
will guarantee that the torque bounds are respected, independent of the controller parameters, such
a control law is known to be non-robust and not necessarily stabilizing. This is why it is desirable
to avoid torque cutting.

As stated, stabilization is with respect to the final state (q, θ, q̇, θ̇) = (0, θC , 0, 0). With the
notation q = (x, y), θd = arctan(v2/v1) = arctan((α1y+α2ẏ)/(α1x+α2ẋ)), and so (θd, θ̇d) exhibits
initial transient behavior and converges to (θC , 0), where θC = limt→∞ arctan((α1y+α2ẏ)/(α1x+
α2ẋ)). The value of this limit depends upon the initial translational state and the controller
parameters (α1, α2), and therefore can not be commanded in general to take any desired value.

3 Single Vehicle Stabilization Simulation

The physical parameter values [1] are (m,J, η, ψ, r) = (5.15 kg, 0.05 kg-m2, 4.5 kg/s, 0.084 kg
m2/s, 0.124 m). Figure 2 shows the response of the vehicle from initial condition (q, θ, q̇, θ̇) =
(1, 1, π/4, 0, 0, 0) to the origin. The graphical picture of the vehicle shows the position, orientation
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Figure 2: Stabilization of vehicle in q = (x, y) space from (1, 1, π/4, 0, 0, 0) to the origin.
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Figure 3: The force/torque map plot and closed-loop response plot of the vehicle states (solid lines)
and desired state (0, θd, 0, θ̇d) (dashed lines).

and the fan forces, where the length of the cone is proportional to the force in each fan. Figure 3
shows the input and state responses. In this case, τ = τd and the torque bounds are analytically
satisfied. The dashed lines in the state responses define the desired state (0, θd, 0, θ̇d). The controller
parameter values chosen for this simulation are (α1, α2, β1, β2, B) = (0.5, 0.75, 0.2, 0.05, τmax/2).
The closed-loop response attests to the stability and performance of the controller. The initial
torque (visible in the difference in the length of the fan cones and on the force map) results from
the initial configuration error, particularly the angle error θe(0) 6= 0.

4 Single Vehicle Tracking Control

Consider tracking a desired translational position and velocity (qd, q̇d) with double integrator dy-
namics q̈ = u − βq̇, for some β ≥ 0, subject to ||u|| ≤ Umax. Again, denote the controller
u = k(q, q̇, qd, q̇d) and the translational error state (qe, q̇e) = (q − qd, q̇ − q̇d). Using a saturated
PD error controller, the control law is given by

k = −Ûmaxσ2(α1qe + α2q̇e) + q̈d.
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To satisfy the thrust constraint, we must characterize the parameter Ûmax and the desired trans-
lational acceleration. For example, when ||q̈d|| ≤ µTmax, for some µ ∈ (0, 1/2], the appropriate
choice is Ûmax = Tmax(1 − µ). The control law for T is as defined in the previous section with k

given above. The expression for τ is also the same as in the previous section, although to guarantee
that the configuration error can be driven to zero in the presence of equation (5), the values for

q
(3)
d and q

(4)
d (denoting third and fourth time derivatives), as well as the controller parameters

(α1, α2, β1, β2, B), must also be characterized. The specific characterizations will be detailed in the
future paper that addresses stability theoretically.

5 Single Vehicle Tracking Simulation

The tracking signal is qd = (2 sin(ωt), 2sin(2ωt)), where ω = 0.266 rad/sec is chosen such that
||q̈d|| ≤ 0.3 Tmax. Figure 4 shows the response of the vehicle from initial condition (0, 2,−π, 0, 0, 0).
The desired configuration is depicted by the white vehicle, with green cones depicting the associated
fan forces. The figure shows a snapshot of both vehicles at t = 0, 5, 10, 15, 20 and 23 seconds.
The desired orientation (white vehicle orientation), as in the stabilization case, depends upon
the translational state error. This is exhibited by the initial orientation of the white vehicle, a
function of the initial deviation of the translational state. For zero translational state error, the
desired orientation is arctan(ÿd, ẍd). Figure 5 shows the inputs and state responses. The controller
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Figure 4: Tracking reference in (x, y) space from initial condition (0, 2,−π, 0, 0, 0).

parameters are (α1, α2, β1, β2, B) = (5, 10, 1, 0.2, τmax/2). The closed-loop response again attests
to the performance of the controller.
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Figure 5: The force/torque map and closed-loop response of the vehicle states.

6 Multi-vehicle Formation Potential Based Cooperative Control

From [9], a cooperative and distributed control law for the translational dynamics of the ith vehicle
in a rigid formation graph is given in explicit form by

ki(qi, q̇i, qNi
) = Tmax



λ/|Ni|





∑

j∈Ni

σ1(ηij)nij



 − (1 − λ)σ2(q̇i)



 , (6)

where λ ∈ (0, 1), qNi
are the translational configuration variables, Ni denotes the set of neighbors

of the ith vehicle on the graph, |Ni| is the total number of neighbors of the ith vehicle, and the
edge shape variables and the unit vectors connecting vehicle i to vehicle j are, respectively, defined
by

ηij = ||qj − qi|| − dij , nij =
qj − qi

||qj − qi||
.

The feedback laws Ti, τi for each vehicle i are again as defined in Section 2 with k set to ki. Proof
that ki is stabilizing and that ||ki|| ≤ Tmax, for all vehicles i, is detailed in [9]. The controller
parameters are (α1, α2, λ, β1, β2, B), which could be chosen to be the same or different for each
vehicle in the formation.

As before, the derivation of the torque τi requires two time-derivatives of ki, which in turn
requires that each vehicle have the following information from its neighbors at each update of the
controller: (qj , θj , q̇j ,kj), for all j ∈ Ni. Thus, the control law is generated in two-stages (in series).
That is, for vehicle i, ki is first computed given state i and the position of all neighbors, then the
rest of the control law is computed given (qj , θj , q̇j ,kj), for all j ∈ Ni. In a practical setting, this
means (wireless) communication must occur amidst the control computations.

7 Six-Vehicle Formation Stabilization Simulation

The directed graph G = (V,E) that corresponds to this example has vertex and edge sets V =
{1, 2, 3, 4, 5, 6} and E = {(1, 2), (1, 3), (2, 3), (2, 5), (3, 2), (3, 5), (4, 2), (4, 5), (5, 2), (5, 3), (6, 5), (6, 3)}.
Figure 6 shows the response of the six vehicles for stabilization from the initial configuration
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shown, with zero initial velocity. The figure also shows the desired formation depicted as a di-
rected graph, where each vehicle has 2 neighbors with a desired distance of 1 from each neigh-
bor. Figure 7 shows the input responses and the inter-vehicle distances for each edge in the
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Figure 6: Stabilization response and the desired formation depicted as a directed graph.

graph. The controller parameter values chosen for this simulation, common for all six vehicles, are
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Figure 7: The force/torque map and inter-vehicle distances.

(α1, α2, λ, β1, β2, B) = (1.0, 0.5, 0.5, 1.0, 0.5, τmax/2). The final orientation of the vehicles are not
required to agree unless we augment the controller with an attitude alignment algorithm, which
will be incorporated in a future work.

8 Conclusions

Cooperative and distributed nonlinear control of a multi-vehicle formation that consists of the
underactuated hovercraft-type vehicles of the Caltech MVWT has been examined in this paper.
The nonlinear hovercraft controllers that perform stabilization/tracking for a single underactuated
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vehicle were here developed according to the cascade backstepping method given in [8]. Then,
the distributed control algorithm introduced in [9] for asymptotic formation stabilization of mul-
tiple vehicles with double-integrator type dynamics, was combined with the nonlinear hovercraft
controller. The result is a distributed nonlinear control algorithm for formation stabilization of
multiple underactuated, nonlinear hovercraft-type vehicles subject to bounded and unidirectional
input constraints.

We presented simulation results for both stabilization and trajectory tracking of a single vehicle
and formation stabilization of six vehicles. In all cases, we observed that the controllers behave in
a rather aggressive way by initially staying close to the control bounds. Moreover, all controllers
satisfy the control bounds imposed on the inputs of each vehicle.

Formal proofs of stability and tracking is the topic of an upcoming paper and follows the same
lines of argument presented in [8, 9].
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