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Abstract— This paper considers the problem of distributed
control of dynamically decoupled systems that are subject
to decoupled constraints, while their states are coupled non-
separably in the cost function of an optimal control problem.
A distributed receding horizon control (RHC) algorithm is
presented, in which each subsystem (agent) computes its own
control locally. The implementation presumes synchronous
parallel updates. Coupled agents, referred to as neighbors,
coordinate by the exchange of an assumed state trajectory prior
to each update. The algorithm is an improvement over the
previous algorithm developed by the author, in that stability is
guaranteed without adding any additional constraints to each
local optimal control problem. Instead, a move suppression
term is added into each local cost function, which penalizes the
deviation of the computed state trajectory from the assumed
state trajectory. Closed-loop stability follows if the weight on
the move suppression term is larger than a parameter that
bounds the amount of coupling in the cost function between
neighbors.

Keywords: receding horizon control, model predictive
control, distributed control, decentralized control, large scale
systems, multi-vehicle control.

I. INTRODUCTION

This paper considers the problem of controlling of a set of
dynamically decoupled agents that are required to perform
a cooperative task. An example of such a situation is a
group of autonomous vehicles cooperatively converging to
a desired formation, as explored in [5], [12]. One control
approach that accommodates a general cooperative objective
is receding horizon control (RHC). In RHC, the current
control action is determined by solving a finite horizon opti-
mal control problem at each sampling instant. In continuous
time formulations, each optimization yields an open-loop
control trajectory and the initial portion of the trajectory
is applied to the system until the next sampling instant.
A cooperative objective can be incorporated into RHC by
appropriate choice of the cost function in the optimal control
problem. Agents that are coupled in the cost function are
referred to as neighbors.

A distributed implementation of RHC is here presented
in which each agent is assigned its own optimal control
problem, optimizes only for its own control at each update,
and coordinates with neighboring agents. Neighbors coordi-
nate by the exchange of an assumed state trajectory prior
to each update. The work presented here is a continuation
of [5], in which a consistency constraint is included in
each local problem to ensure agents do not deviate too far
from the assumed trajectory. The implementation here is an
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improvement, in that the consistency constraint is no longer
necessary. Instead, a move suppression term is added into
each local cost function, which penalizes the deviation of the
computed state trajectory from the assumed state trajectory.
Closed-loop stability follows if the weight on the move
suppression term is larger than a parameter that bounds the
amount of coupling in the cost function between neighbors.
While move suppression terms are traditionally on the rate
of change of the control inputs in discrete-time applications
of model predictive process control, the move suppression
term here involves the state trajectory.

In the context of multiple autonomous vehicle mis-
sions, several researchers have proposed hierarchical/leader-
follower distributed RHC schemes [8], [13], [14]. In some
of these approaches, coupling constraints are admissible,
which is an advantage. In contrast to hierarchical methods,
the distributed RHC framework here uses no hierarchical
assignment and agents compute their own control in parallel.
Another recent work in which agents update in parallel and
inter-agent communication delay is admitted is [6], although
a conservative small-gain condition is required for stability.
The paper is organized as follows. Section II begins by
defining the agent dynamics and constraints, and the generic
form of coupling cost function. In Section III, distributed
optimal control problems are defined for each agent, and the
distributed RHC algorithm is stated. Feasibility and stability
results are then given in Section IV, and Section V provides
conclusions.

II. SYSTEM DESCRIPTION AND OBJECTIVE

In this section, the system dynamics and control objective
are defined. We make use of the following notation. The
symbol R+ represents the set of non-negative reals. The
symbol ‖ · ‖ denotes the Euclidean norm in Rn, and di-
mension n follows from the context. For any vector x ∈ Rn,
‖x‖P denotes the P -weighted 2-norm, given by ‖x‖2P =
xT Px, and P is any positive definite real symmetric matrix.
Also, λmax(P ) and λmin(P ) denote the largest and smallest
eigenvalues of P , respectively. Often, the notation ‖x‖ is
understood to mean ‖x(t)‖ at some instant of time t ∈ R.

In the control problem below, subsystems will be coupled
in an integrated cost function of an optimal control problem.
For example, vehicles i and j might be coupled in the
integrated cost by the term ‖qi − qj + dij‖2, where q(·) is
the position of the vehicle, and dij is a constant desired
relative position vector that points from i to j. The purpose
of the distributed RHC approach is to decompose the overall
cost so that, in this example, i and j would each take a
fraction of the term ‖qi − qj + dij‖2 (among other terms)



in defining their local cost functions. Then, i and j update
their RHC controllers in parallel, exchanging information
about each others anticipated position trajectory so that each
local cost can be calculated. More generally, the coupling
cost terms may not be quadratic; the assumption is that
the coupled cost terms are non-separable, so that agents
i and j must exchange trajectory information if they are
coupled via the cost function. An example of quadratic
coupling cost functions is examined in this paper, while non-
quadratic coupling cost functions are treated elsewhere [4].
The concept of non-separability is now formally defined.

A non-negative function g : Rn × Rn → R+ is called
non-separable in x ∈ Rn and y ∈ Rn if g is not additively
separable for all x, y ∈ Rn. That is, g cannot be written as
the sum of two non-negative functions g1 : Rn → R+ and
g2 : Rn → R+ such that g(x, y) = g1(x) + g2(y) for all
x, y ∈ Rn. By this definition, note that g is non-separable in
vectors x and y even if only one of the components of y is
coupled non-separably to any of the components of x.

The objective is to stabilize a collection of subsystems,
referred to as agents, to an equilibrium point using RHC. In
addition, each agent is required to cooperate with a set of
other agents, where cooperation refers to the fact that every
agent has incentive to optimize the collective cost function
that couples their state to the states of other agents. For each
agent i ∈ V , {1, ..., Na}, the state and control vectors are
denoted zi(t) ∈ Rn and ui(t) ∈ Rm, respectively, at any
time t ≥ t0 ∈ R. The decoupled, time-invariant nonlinear
system dynamics are given by

żi(t) = fi(zi(t), ui(t)), t ≥ t0. (1)

While the system dynamics can be different for each agent,
the dimension of every agents state (control) is assumed to
be the same, for notational simplicity and without loss of
generality. Each agent i is also subject to the decoupled state
and input constraints,

zi(t) ∈ Z, ui(t) ∈ U , ∀t ≥ t0,

where Z and U are also assumed to be common to every
agent i for notational simplicity and without loss of gener-
ality. The cartesian product is denoted ZNa = Z × · · · ×Z .
The concatenated vectors are denoted z = (z1, ..., zNa

) and
u = (u1, ..., uNa). In concatenated vector form, the system
dynamics are

ż(t) = f(z(t), u(t)), t ≥ t0, (2)

where f(z, u) = (f1(z1, u1), ..., fNa
(zNa

, uNa
)). The de-

sired equilibrium point is the origin, and some standard
assumptions regarding the system are now stated

Assumption 1: The following holds for every i ∈ V:
(a) fi : Rn×Rm → Rn is continuous, 0 = fi(0, 0), and fi

is locally Lipschitz in zi;
(b) Z is a closed connected subset of Rn containing the

origin in its interior;
(c) U is a compact, convex subset of Rm containing the

origin in its interior;

(d) every state trajectory zi is bounded, satisfying ‖zi(t)‖ ≤
ρ for some ρ ∈ (0,∞) and for all t ≥ t0.

That states remain bounded is a prerequisite for any imple-
mented nonlinear optimization algorithm [11]. It is assumed
that a single collective cost function L : RnNa → R+ is
provided that couples the states of the agents, and that each
agent has incentive to minimize this function with respect
to their own state. For each i ∈ V , let Ni ⊆ V \ {i}
be the set of other agents whose states are coupled non-
separably to zi in L(z). By definition, j ∈ Ni if and only
if i ∈ Nj , for all distinct i, j ∈ V . Denote Ni = |Ni| and
let z−i = (zj1 , ..., zjNi

) be the collective vector of states
coupled non-separably to zi in L(z).

Assumption 2: The function L : RnNa → R+ is continu-
ous, positive definite and can be decomposed as follows: for
every i ∈ V there exists an integer Ni ∈ {1, ..., Na−1} and a
continuous and non-negative function Li : Rn×RnNi → R+,
not identically zero, such that
(a) Li(zi, z−i) is non-separable in zi ∈ Rn, z−i ∈ RnNi ;
(b)

∑
i∈V Li(zi, z−i) = L(z);

(c) there exists a positive constant ci ∈ (0,∞) such that

Li(x, y) ≤ Li(x,w) + ci‖y − w‖,

for all x ∈ Rn and for all y, w ∈ RnNi . The constant ci

is referred to as the strength-of-coupling parameter,
and the term ci‖ · ‖ is referred to as the cost coupling
bound.

Observe that Ni is the number of neighbors for each i ∈ V .
The example coupling cost function L below, is shown to
satisfy the structure required in Assumption 2.

Example 1 (Quadratic Coupling Cost): Let L(z) =
‖z‖2Q, where Q = QT > 0 is full rank. It is
straightforward to identify Qi = QT

i ≥ 0 such that
with Li(zi, z−i) = ‖(zi, z−i)‖2Qi

Assumptions 2(a)-(b) are
satisfied. The expression for ci is next derived to satisfy
Assumption 2 (c). For any x ∈ Rn and y, w ∈ RnNi ,

Li(x, y)−Li(x, w) =
∥∥∥∥ x

y

∥∥∥∥2

Qi

−
∥∥∥∥ x

w

∥∥∥∥2

Qi

= (y − w)T Qi,c(y + w) + 2xT Qi,b(y − w),

with Qi =
[

Qi,a Qi,b

QT
i,b Qi,c

]
.

Since every state zi is assumed to satsify ‖zi‖ ≤ ρ,

(y − w)T Qi,c(y + w) + 2xT Qi,b(y − w)

≤ ‖y − w‖2ρ
{

λmax(Qi,c)Ni + λ1/2
max(Q

T
i,bQi,b)

}
.

It is straightforward to show that λmax(Qi) ≥
λ

1/2
max(QT

i,bQi,b) and λmax(Qi) ≥ λmax(Qi,c) [4]. Thus,

Li(x, y)− Li(x,w) ≤ ci‖y − w‖,

with ci = 2ρλmax(Qi)(Ni + 1). �
Other examples of costs that satisfy Assumption 2, including
quadratic and non-quadratic multi-vehicle formation costs,
are provided in [4]. If the cost L (and Li) are norm costs,
instead of norm-squared (quadratic) costs, it is trivial to



identify ci using the triangle inequality. Another observation,
related to the form of move suppression used later, is that
norm-squared (quadratic) costs do not satisfy Li(x, y) ≤
Li(x,w) + ci‖y−w‖2 for all x, y, w, for any given positive
constant ci.

III. DISTRIBUTED RECEDING HORIZON CONTROL

In this section, Na separate optimal control problems
and the distributed RHC algorithm are defined. In every
distributed optimal control problem, the same constant pre-
diction horizon T ∈ (0,∞) and constant update period
δ ∈ (0, T ] are used. The receding horizon update times are
denoted tk = t0 + δk, where k ∈ N = {0, 1, 2, ...}. In
the following implementation, every distributed RHC law is
updated globally synchronously, i.e., at the same instant of
time tk for the kth-update.

At each update, every agent optimizes only for its own
open-loop control, given its current state and that of its
neighbors. Since each cost Li(zi, z−i) depends upon the
neighboring states z−i, each agent i must presume some
trajectories for z−i over each prediction horizon. To that end,
prior to each update, each agent i receives an assumed state
trajectory from each neighbor. Likewise, agent i transmits an
assumed state to all neighbors prior to each optimization. To
distinguish the different trajectories, the following notation
is used for each agent i ∈ V :

zi(t) : the actual state, at any time t ≥ t0,
zp
i (τ ; tk) : the predicted state, τ ∈ [tk, tk + T ],
ẑi(τ ; tk) : the assumed state, τ ∈ [tk, tk + T ],

for any k ∈ N. For the RHC implementation here, zi(t) =
zp
i (t; tk) for all t ∈ [tk, tk+1] and any i ∈ V . The pre-

dicted and assumed control trajectories are likewise denoted
up

i (τ ; tk) and ûi(τ ; tk), respectively. Let ẑ−i(τ ; tk) be the
vector of assumed state trajectories of the neighbors of i,
corresponding to current time tk. At time tk, the cost function
Ji(zi(tk), up

i (·; tk)) for the optimal control problem for each
agent i ∈ V is∫ tk+T

tk

[
Li(z

p
i (s; tk), ẑ−i(s; tk)) + ‖up

i (s; tk))‖2Ri

+bi‖zp
i (s; tk)− ẑi(s; tk)‖

]
ds + ‖zp

i (tk + T ; tk)‖2Pi
, (3)

given constant bi ∈ [0,∞), and matrices Ri = RT
i > 0 and

Pi = PT
i > 0. The cost term bi‖zp

i (s; tk) − ẑi(s; tk)‖ in
equation (3) is a state move suppression term. It is a way
of penalizing the deviation of the predicted state trajectory
from the assumed trajectory, which is the trajectory that
neighboring agents rely on. In previous works, this term
was incorporated into the distributed RHC framework as
a constraint, called a consistency constraint [5], [3]. The
formulation presented here is an improvement over these past
formulations, since the move suppression cost formulation
yields an optimization problem that is much easier to solve,
and allows a greater degree of freedom to the RHC control
law. Note the move suppression term is in the form bi‖ · ‖,
and not bi‖ · ‖2. The reason for this is directly related to

the form of the cost coupling bound made in part (c) of
Assumption 2, which takes the form ci‖ · ‖ and not ci‖ · ‖2.
The connection between the move suppression term and the
cost coupling bound will be clarified in the stability analysis
provided in Section IV.

RHC stability results sometimes rely on the calculation
of the optimal cost at each RHC update, e.g., [7], [9]. To
relax this requirement here, each cost is minimized while
subject to the improvement constraint Ji(zi(tk), up

i (·; tk)) ≤
Ji(zi(tk), ûi(·; tk)). The cost Ji(zi(tk), ûi(·; tk)) is the same
as in equation (3), but replacing (zp

i (s; tk), up
i (s; tk)) with

(ẑi(s; tk), ûi(s; tk)). As will be shown in the coming sec-
tions, a feasible solution to this constraint is always available,
and the resulting distributed RHC law is stabilizing even
without computation of the optimal cost, i.e, feasibility is
sufficient for stability. The primary reason to use an improve-
ment constraint for stability, instead of requiring optimality,
is to facilitate computationally tractable and feasibility at
each RHC update. Other (centralized) RHC methods that
also rely on feasibility for stability, instead of optimality,
are [1], [10]. The collection of distributed optimal control
problems is now defined.

Problem 1: For each agent i ∈ V and at any update time
tk, k ∈ N:

Given: zi(tk), ûi(τ ; tk), ẑi(τ ; tk) and ẑ−i(τ ; tk) for all
τ ∈ [tk, tk + T ],

Find: a state and control pair (zp
i (τ ; tk), up

i (τ ; tk)) that
minimizes Ji(zi(tk), up

i (·; tk)) subject to the constraints

Ji(zi(tk), up
i (·; tk)) ≤ Ji(zi(tk), ûi(·; tk)) (4)

żp
i (τ ; tk) = fi(z

p
i (τ ; tk), up

i (τ ; tk))
up

i (τ ; tk) ∈ U
zp
i (τ ; tk) ∈ Z

 τ ∈ [t, t + T ],

zp
i (tk + T ; tk) ∈ Ωi(εi) := {z ∈ Rn | ‖z‖2Pi

≤ εi}, (5)

with zp
i (tk; tk) = zi(tk), and given constant εi ∈ (0,∞). �

As stated, the constraint (4) is used to guarantee stability.
Minimization of the cost Ji is done solely for performance
purposes. In practice, the resulting computed control must be
feasible, but need not be optimal. The closed-loop system for
which stability is to be guaranteed is

ż(t) = f(z(t), uRH(t)), τ ≥ t0, (6)

with the applied distributed RHC law

uRH(t) = (up
1(t; tk), ..., up

Na
(t; tk)),

for t ∈ [tk, tk+1) and any k ∈ N. As with most nominally
stabilizing RHC formulations [1], [5], [7], [10], observe that,
under the closed-loop distributed RHC law, the predicted
state zp

i (t; tk) for every i ∈ V is equal to the actual state
zi(t) for all t ∈ [tk, tk+1] and any k ∈ N. Before stating the
control algorithm formally, which in turn defines the assumed
trajectories for each agent, decoupled terminal controllers
associated with each terminal cost and terminal constraint
(5) are required.



Assumption 3: For every agent i ∈ V , there exists a
(possibly nonlinear) state feedback controller κi(zi) and a
constant εi ∈ (0,∞) such that:
(a) κi(zi) ∈ U for all zi ∈ Ωi(εi),
(b) Ωi(εi) ⊂ Z , and
(c) the function V (z) =

∑
i∈V ‖zi‖2Pi

satisfies

d

dt
V (z) ≤ −

[
L(z) +

∑
i∈V

‖κi(zi)‖2Ri

]
,

for all z ∈ Ω1(ε1)× · · · × ΩNa
(εNa

).
The assumption provides sufficient conditions under which
the closed-loop system żi(t) = fi(zi(t), κi(zi(t))) is asymp-
totically stabilized to the origin, with constraint feasible state
and control trajectories, and positively-invariant region of
attraction Ωi(εi). Variants of this assumption are common in
the RHC literature [9]. For example, by assuming stabilizable
and C2 dynamics fi for each agent i, a feasible local linear
feedback ui = Kizi which stabilizes each linearized and
nonlinear subsystem (1) in Ωi(εi) can be constructed [1],
[10]. Moreover, with this linear feedback control, one can
show that εi exists for each i ∈ V when L is quadratic, in
which case the assumption can be converted into an existence
lemma. The decoupled feedback controllers ui = κi(zi) are
referred to as terminal controllers, since they are associated
with the terminal state constraint set. With the terminal
controllers defined, the assumed trajectories can now also
be defined, given by

ẑi(t; tk) =
{

zp
i (t; tk−1), t ∈ [tk, tk−1 + T )

zκ
i (t; tk−1 + T ), t ∈ [tk−1 + T, tk + T ]

(7)

ûi(t; tk) =
{

up
i (t; tk−1), t ∈ [tk, tk−1 + T )

κi(zκ
i (t; tk−1 + T )), t ∈ [tk−1 + T, tk + T ]

(8)

where zκ
i (·; tk−1 + T ) is the solution to

żκ
i (t) = fi(zκ

i (t), κi(zκ
i (t))), (9)

with initial condition zκ
i (tk−1 + T ; tk−1 + T ) = zp

i (tk−1 +
T ; tk−1). By construction, each assumed state and control
trajectory is the remainder of the previously predicted tra-
jectory, concatenated with the closed-loop response under
the terminal controller. Assumption 1(d) is now extended to
include the predicted and assumed state trajectories.

Assumption 4: For every agent i ∈ V and any update tk,
k ∈ N, there exists a positive constant ρ ∈ (0,∞) such that
‖zp

i (t; tk)‖ ≤ ρ and ‖ẑi(t; tk)‖ ≤ ρ for all t ∈ [tk, tk + T ].
For each i ∈ V , let Zi ⊂ Rn denote the bounded set

of initial states zi(t) which can be steered to Ωi(εi) by a
piecewise right-continuous control up

i (·; t) : [t, t + T ] → U ,
with the resulting trajectory zp

i (·; t) : [t, t + T ] → Z . Note
that at initial time, ẑi(t; t0) can’t be calculated as a function
of the previously predicted trajectory, since no such trajectory
exists. Therefore, a different means of computing ẑi(t; t0)
must be defined so that the distributed RHC algorithm can
be initialized. The procedure for initialization is incorporated
into the control algorithm.

When every agent is in its terminal state constraint set,
all agents synchronously switch to their terminal controllers.
The terminal controllers are then employed for all future
time, resulting in asymptotic stabilization. Switching from
RHC to a terminal controller is known as dual-mode RHC
[10]. To determine if all agents are in their terminal sets, a
simple protocol is used. If an agent has reached its terminal
set at an update time, it sends a flag message to all other
agents. If an agent sends a flag and receives a flag from all
other agents, that agents switches to its terminal controller,
since this will only happen if all agents have reached their
terminal set. The control algorithm is now stated.

Algorithm 1: [Distributed RHC Algorithm] For any agent
i ∈ V , the distributed RHC law is computed as follows:

Data: zi(t0) ∈ Zi, T ∈ (0,∞), δ ∈ (0, T ].
Initialization: At time t0, if zi(t0) ∈ Ωi(εi), transmit a

flag message. If a flag is sent and a flag is received from all
other agents, employ the terminal controller κi for all future
time t ≥ t0.

Otherwise, solve a modified Problem 1, setting bi = 0 in
(3), ẑ−i(t; t0) = z−i(t0) for all t ∈ [t0, t0+T ], and removing
the constraint (4). Proceed to controller step 1.

Controller:
1) Over any interval [tk, tk+1), k ∈ N:

a) Apply up
i (τ ; tk), τ ∈ [tk, tk+1).

b) Compute ẑi(·; tk+1) according to (7) and
ûi(·; tk+1) according to (8).

c) Transmit ẑi(·; tk+1) to every neighbor j ∈ Ni.
Receive ẑj(·; tk+1) from every neighbor j ∈ Ni,
and assemble ẑ−i(·; tk+1). Proceed to step 2.

2) At any update time tk+1, k ∈ N:
a) Measure zi(tk+1).
b) If zi(tk+1) ∈ Ωi(εi), transmit a flag to all other

agents. If, in addition, a flag is received from all
other agents, employ the terminal controller κi

for all future time t ≥ tk+1. Otherwise, proceed
to step (c).

c) Solve Problem 1 for up
i (·; tk+1), and return to

step 1. �
Initialization and part 2(b) of the algorithm presume that
the every agent can communicated to all others. To make
the algorithm entirely distributed and decentralized, commu-
nication of flag messages to neighbors only can be done
and a consensus protocol used to determine if all agents
are in their terminal sets at any update, as discussed in
[2]. At initialization of Algorithm 1, if all agents are not in
their terminal sets, a modified Problem 1 is solved in which
neighbors are assumed to remain at their initial conditions.
While this choice facilitates initialization, it is known that
neighbors will not remain at their initial conditions. As such,
for performance reasons, it may preferable to reduce the
weight of the Li term in (3). If an iterative procedure can be
tolerated, the computed initial zp

i (·; t0) and up
i (·; t0) could be

defined as the assumed trajectories ẑi(·; t0) and ûi(·; t0), with
ẑi(·; t0) transmitted to neighbors, and the modified Problem 1
resolved again. While the move suppression cost is removed



at initialization (bi = 0), the value of bi is nonzero at every
subsequent update tk, k ≥ 1, with conditions on permissible
values for bi defined in the next section.

IV. FEASIBILITY AND STABILITY ANALYSIS

This section demonstrates the feasibility and stability
properties of the distributed RHC algorithm. For compu-
tational reasons, it is desirable for any RHC algorithm to
have a feasible solution to the optimal control problem at
every update, since the optimization algorithm can then be
preempted at each RHC update. A feasible solution at time
tk is defined as a state and control pair (zp

i (·; tk), up
i (·; tk))

that satisfies all constraints, and results in bounded cost, in
Problem 1. According to Algorithm 1, a modified problem
is solved at time t0 (initialization). The remainder of this
section assumes that a solution to this problem can be found
for every i ∈ V . Assuming initial feasibility is standard in the
RHC literature [1], [9], [10]. The first result of this section is
to show that, if a feasible solution to the modified problem
is found at t0, then there is a feasible solution to Problem 1
at every subsequent RHC update time tk, k ≥ 1.

Lemma 1: Suppose Assumptions 1–4 hold, and zi(t0) ∈
Zi for every i ∈ V . For every agent i ∈ V , suppose that a
feasible solution (zp

i (·; t0), up
i (·; t0)) to the modified Problem

1 is computed at initial time t0, with the modified problem
defined in the initialization step of Algorithm 1. Then, for
every agent i ∈ V , (ẑi(·; tk), ûi(·; tk)) is a feasible solution
to Problem 1 at every subsequent update time tk, k ≥ 1.
The proof is a classical proof, and follows the logic used in
[1] and elsewhere. Tthe stability of the closed-loop system
(6) is now analyzed.

Theorem 1: Suppose Assumptions 1–4 hold, and zi(t0) ∈
Zi for every i ∈ V . Suppose also that a solution to the
modified Problem 1 is computed at initial time t0 for every
agent i ∈ V . Then, by application of Algorithm 1 for all
time t ≥ t0, the closed-loop system (6) is asymptotically
stabilized to the origin, provided the move suppression
weight bi in the cost function (3) satisfies

bi ≥
∑
j∈Ni

cj , ∀i ∈ V, (10)

where ci is the strength-of-coupling parameter, defined in
Assumption 2.
Equation (10) says that the weight bi on the move sup-
pression term is bounded from below by the sum of the
strength-of-coupling parameters cj of the neighbors of i.
Each strength-of-coupling parameter cj is a (possibly conser-
vative) measure of how much net coupling there is between
j and all other neighbors Nj . The larger cj , and hence the
more net coupling, the more dependent j is on the assumed
trajectories of neighbors in the term Lj in the optimal control
cost function1. So, another way of interpreting (10) is that,
the more the neighbors of i rely on assumed trajectories in

1While cj may be large, it may only be a subset of neighbors Nj

in Lj that are dominating the cost, and j would be more dependent on
those neighbors assumed trajectories. Still, we can leave this detail aside to
interpret (10).

their own coupled cost term Lj , the more i must adhere to its
own assumed trajectory in the move suppression cost term
bi‖ · ‖. In this way, (10) is a way of ensuring consistency
between what neighbors assume an agent does, and what the
agent actually does.
Proof. As with most stability results in RHC theory, a non-
negative value function is shown to be strictly decreasing for
states outside the terminal constraint sets. Define the value
function

J(tk) :=
∑
i∈V

Ji(zi(tk), up
i (·; tk)).

By application of Algorithm 1, if zi(tk) ∈ Ωi(εi) for all
i ∈ V at any update time tk, the terminal controllers take over
and stabilize the system to the origin. Therefore, it remains
to show that, by application of Algorithm 1, the closed-loop
system (6) is driven to the set Ω1(ε1)× · · · × ΩNa

(εNa
) in

finite time.
Suppose the closed-loop system (6) does not enter set

Ω1(ε1) × · · · × ΩNa(εNa) in finite time. Then, for any
k ≥ 0, zi(tk) /∈ Ωi(εi) and zi(tk+1) /∈ Ωi(εi) for all
i ∈ V . From the cost improvement constraint (4), J(tk+1) ≤∑

i∈V Ji(zi(tk+1), ûi(·; tk+1)), thus, for any k ∈ N,

J(tk+1)− J(tk) ≤

−
∫ tk+1

tk

∑
i∈V

[
Li(z

p
i (s; tk), ẑ−i(s; tk)) + ‖up

i (s; tk))‖2Ri

]
ds

+
∫ tk+T

tk+1

∑
i∈V

[
Li(ẑi(s; tk+1), ẑ−i(s; tk+1))

− Li(z
p
i (s; tk), ẑ−i(s; tk))

]
ds

−
∫ tk+T

tk+1

∑
i∈V

bi‖zp
i (s; tk)− ẑi(s; tk)‖ ds

+
∫ tk+1+T

tk+T

L(ẑ(s; tk+1)) +
∑
i∈V

‖κi(ẑi(s; tk+1))‖2Ri
ds

+ V (ẑ(tk+1 + T ; tk+1))− V (ẑ(tk + T ; tk+1)),

where L(z) =
∑

i∈V Li(zi, z−i) and V (z) =
∑

i∈V ‖zi‖2Pi
.

From Assumption 3(c), the collection of last four terms on
the right side of the inequality is bounded from above by
zero, since ẑi(s; tk+1) ∈ Ωi(εi) for all s ∈ [tk +T, tk+1+T ]
and every i ∈ V . Since ẑi(s; tk+1) = zp

i (s; tk) for all s ∈
[tk+1, tk + T ], from Assumption 2,

∫ tk+T

tk+1

∑
i∈V

[
Li(ẑi(s; tk+1), ẑ−i(s; tk+1))

− Li(z
p
i (s; tk), ẑ−i(s; tk))

]
ds

≤
∫ tk+T

tk+1

∑
i∈V

ci‖ẑ−i(s; tk+1)− ẑ−i(s; tk)‖ ds.



Therefore, the cost difference satisfies

J(tk+1)− J(tk) + ηk

≤
∫ tk+T

tk+1

∑
i∈V

[
ci‖ẑ−i(s; tk+1)− ẑ−i(s; tk)‖

− bi‖zp
i (s; tk)− ẑi(s; tk)‖

]
ds, (11)

with

ηk :=
∑
i∈V

∫ tk+1

tk

Li(z
p
i (s; tk), ẑ−i(s; tk)) + ‖up

i (s; tk))‖2Ri
ds.

Next, it is shown that the term on the right of the inequality in
(11) is non-positive, provided each bi satisfies the inequality
(10). From the triangle inequality,∑

i∈V
ci‖ẑ−i(s; tk+1)− ẑ−i(s; tk)‖

≤
∑
i∈V

ci

∑
j∈Ni

‖ẑj(s; tk+1)− ẑj(s; tk)‖

=
∑
i∈V

(
‖ẑi(s; tk+1)− ẑi(s; tk)‖

∑
j∈Ni

cj

)
,

and the equality follows since the term ‖ẑj(s; tk+1) −
ẑj(s; tk)‖ is present in the overall summation Nj times, each
with one of the coefficients cl, l ∈ Nj . If each bi satisfies
(10), the cost difference becomes

J(tk+1)− J(tk) + ηk

≤
∫ tk+T

tk+1

∑
i∈V

[ ∑
j∈Ni

cj − bi

]
‖zp

i (s; tk)− ẑi(s; tk)‖ds ≤ 0.

If zi(tk) /∈ Ωi(εi) and zi(tk+1) /∈ Ωi(εi) for all i ∈ V , for
any k ≥ 0, then infk ηk > 0. Thus, from the inequality
above, if zi(tk) /∈ Ωi(εi) and zi(tk+1) /∈ Ωi(εi) for all
i ∈ V , there exists a constant η ∈ (0, infk ηk] such that
J(tk+1) ≤ J(tk) − η for any k ≥ 0. From this inequality,
it follows by contradiction that there exists a finite update
time tl such that zi(tl) ∈ Ωi(εi) for all i ∈ V . If this
were not the case, the inequality implies J(tk) → −∞ as
k →∞. However, J(tk) ≥ 0; therefore, there exists a finite
time such that the closed-loop system (6) is driven to the set
Ω1(ε1)× · · · × ΩNa(εNa), concluding the proof. �
Note that the move suppression term bi‖ · ‖ in each cost
function Ji(zi(tk), up

i (·; tk)) is not differentiable at the ori-
gin. If the optimization algorithm can handle non-smooth
costs/constraints, this may not be an issue. To make the move
suppression term smooth, one could employ the function
φ : Rn → R+ defined by φ(x) =

√
a1‖x‖2 + a2

2 − a2,
with constants a1 > 1 and a2 > 0 (see [4]).

V. CONCLUSIONS

In this paper, a distributed implementation of receding
horizon control for coordinated control of multiple agents is
formulated. A generic integrated cost function that couples
the states of the agents is first defined, where the coupling
terms in the cost are required to satisfy a linear growth
bound. An example cost function relevant for formation

stabilization of multiple autonomous vehicles is shown to
satisfy the required bound, provided all state trajectories
remain bounded. One aspect of the generality of the approach
is that agents dynamics are nonlinear and heterogeneous.
The coupling cost is decomposed and distributed optimal
control problems are then defined. Each distributed problem
is augmented with a move suppression cost term, which is a
key element in the stability analysis by ensuring that actual
and assumed responses of each agent are not too far from one
another. Stability of the closed-loop system is proven when
the move suppression weight parameter is large enough, in
comparison to the linear growth parameters that bound the
amount coupling the cost function. The resulting distributed
RHC algorithm is computationally scalable, since the size
of each local optimal control problem is independent of the
number of neighbors for each agent, as well as the total
number of agents. The implementation also does not require
agents to update sequentially, as in hierarchical methods;
agents update their control in parallel. This is likely to be
an advantage when the agents are operating in time critical
networked environments, in which turn-taking could too
taxing to manage.
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