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Abstract: We consider the control of dynamically decou-
pled subsystems whose state vectors are coupled in the cost
function of a finite horizon optimal control problem. For a
given cost structure, we generate distributed optimal control
problems for each subsystem and establish that a distributed
receding horizon implementation is asymptotically stabi-
lizing. The communication requirements at each receding
horizon update include the exchange of the previous opti-
mal control trajectory between subsystems with coupling in
the cost function. The key requirements for stability are that
each distributed optimal control not deviate too far from the
previous one, and that the receding horizon updates hap-
pen sufficiently fast. A simulation example of multi-vehicle
formation stabilization is provided.

Keywords: cooperative control, predictive control for lin-
ear systems, constrained control.

1 Introduction

We are interested in the control of a set of dynamically de-
coupled subsystems that are required to perform a cooper-
ative task. An example of such a situation is a group of
vehicles cooperatively converging to a desired formation,
as explored by Dunbar and Murray [7] and Ren and Beard
[15]. In [7], the cooperative objective is accommodated by
an appropriate cost function in an optimal control problem
that is implemented using receding horizon control. A re-
cent survey of receding horizon control, or model predictive
control, is given by Mayne et al [12]. Henceforth, we refer
to each subsystem as an agent and any two agents that are
cooperating are referred to as neighbors. In the formula-
tion here, neighbors have a term coupling their states in a
single cost function of an optimal control problem. Gener-
ally, receding horizon control is warranted when the indi-
vidual subsystems are required to satisfy state and control
constraints, as in the case of vehicles.

A drawback of the receding horizon control approach to
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our problem is that currently only a centralized solution and
implementation can guarantee asymptotic stability theoret-
ically. A distributed solution to the problem is desirable,
for autonomy of the individual subsystems and for potential
scalability and improved tractability of the approach. Pre-
vious work on distributed receding horizon control include
studies by Jia and Krogh [9], Motee and Sayyar-Rodsari
[14] and Acar [1]. In all of these papers, the cost is separa-
ble while the dynamics are coupled. Further, state and input
constraints are not included, aside from a stability constraint
in [9]. In another work, Jia and Krogh [10] solve a min-
max problem for each agent, where again coupling comes in
the dynamics and the neighboring agent states are treated as
bounded disturbances. Stability is obtained by contracting
each agents state at every sample period, until the objective
set is reached. As such, stability does not depend on infor-
mation updates with neighboring agents, although such up-
dates may improve performance. More recently, Keviczky
et al [11] have formulated a distributed model predictive
scheme where each agent optimizes locally for itself and for
every neighbor at each update. By this formulation, feasi-
bility becomes difficult to ensure when coupling constraints
are present, and no proof of stability is provided.

The problem formulation and stability results here are based
somewhat on those given by Chen and Allgower [4]. For
a particular structure in the centralized cost and by appro-
priate decomposition in defining the distributed integrated
costs, asymptotic stability is proven under stated conditions.
Key requirements for stability are that the receding horizon
updates happen sufficiently fast, and each distributed opti-
mal control trajectory is constrained to not deviate too far
from the remainder of the previous optimal trajectory. No
communication is required between agents while the dis-
tributed optimal control problems are being solved.

Section 2 defines an optimal control problem, with an in-
tegrated cost function relevant for multi-vehicle formation
stabilization, and defines the centralized receding horizon
control law. Section 3 defines the distributed receding hori-
zon implementation and the results used to prove asymp-
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totic stability. Simulation results of a multi-vehicle forma-
tion are then given in Section 4. Finally, Section 5 gives
conclusions, extensions and applications of the theory.

2 Receding Horizon Control

In this section, we pose a single finite horizon optimal con-
trol problem relevant for multi-vehicle formation stabiliza-
tion and define the centralized receding horizon control law.
The coupling of states of the vehicles occurs in the cost
function. To simplify analysis, we consider only linear ho-
mogeneous dynamics here. Nonlinear heterogeneous sub-
system dynamics, with a more generic quadratic coupling
cost function and coupling state constraints, is treated else-
where [6].

We wish to stabilize a group of agents toward a common ob-
jective in a cooperative way using receding horizon control.
For each agent ¢ € {1,...,N,}, the state and control are
2i(t) = (qi(t),d;(t)) € R?™ and u;(t) € R", respectively,
and the decoupled dynamics are given by

ql(t) :ui(t), ’iZl,...,Na. (])

Each agent 1 is also subject to the decoupled input and state
constraints

ui(t) eU, z(t)eZ, t>0.

The set Z is the N-times Cartesian product Z x --- x Z.
The concatenated vectors are denoted ¢ = (q1, ..., qn, ),
i = (41, 4n,)s 2 = (21,..,2n,) € ZNe and u =
(ul, ey UNG) € YN,

Definition 1 The control objective is to cooperatively
asymptotically stabilize all agents to z¢ = (25,..., 2%, ) €
ZNe | an equilibrium point of equation (1), with equilibrium
control equal to zero.

The position values at 2¢ are denoted ¢¢ = (gf, .-, 4%, ),
and the equilibrium velocity is clearly zero from equation
(1). The cooperation is achieved by the minimization of the
integrated cost function

Lzou)= Y wllg —q;+dil
(4,5)€ &o

+wllgs — qall* + vIlgl* + pllul?,

with positive weighting constants w, v and . We refer to
the term w||q,. — qq||? as the tracking cost, where

qs = (@1 +q2+43)/3, qa=(¢f +q5+q5)/3.

Every desired relative vectors d;; between neighboring
agents ¢ and j satisfies ¢f +d;; = ¢j. The set & denotes the
set of edges (4, j) in the formation graph defined in [8]. As-
suming the formation graph is connected, which means that
the position state gj of every agent k € {1, ..., N,} occurs

in at least one of the terms ||¢; — ¢; + di;||* in L(z, u), we
can write the integrated cost equivalently as

L(z,u) =[]z = 2°|[g + pllul?, @)

where Q = QT > 0 [Proposition 1 in [8]].

Assumption 1 The following holds: (i) The set U C R™
is compact, convex and contains the origin in its interior,
and the set Z C R?™ is convex, connected and contains zf
in its interior, for every i € {1,...,N,},; (ii) All states are
measurable and computational time is negligible compared
to the evolution of the closed-loop dynamics.

We do not incorporate any type of collision avoidance in this
paper, although this can be done by an appropriate choice
of cost function or constraints. At any time ¢, given z(t)
and fixed horizon time 7', the centralized open-loop optimal
control problem is

Problem 1 Find

t+T
J*(2(t),T) = r&i_gl/t L(z(7),u(r)) dr + G(=(t + T)),

subject to

d(s) = u(s), u(s) e U=, z(s) € ZNe Vs e [t,t +T],
2(t+T;2(t)) € Qa),

where G(z) = ||z — 2¢||%, P = PT > 0 and

Q) :={z e R*Me : G(2) <a, a>0}.

Let the first optimal control problem be initialized at some
time ¢y € R and let § denote the receding horizon update
period. The closed-loop system is

q(T) = u:ent(T)v T 2 to, (3)
where the centralized receding horizon control law is
Ulent (T) = Uoen (T3 2(1)), T € [t,£+6], 0< 6 < T,

and uly, (s; 2(t)), s € [t, t+T], is the optimal open-loop so-
lution (assumed to exist) to Problem 1 with initial state z(t).
The receding horizon control law is defined for all ¢ > ¢,
by applying the open-loop optimal solution until each new
initial state update z(t) < z(t + 0) is available. The no-
tation above shows the implicit dependence of the optimal
open-loop control u,, () on the initial state z(t) through
the optimal control problem. Receding horizon control is
not optimal and not necessarily stabilizing. Sufficient con-
ditions for asymptotic stability are established in [4] and in-
volve appropriate choice of terminal weighting P and ter-
minal constraint set parameter . In the next section, IV,
optimal control problems are defined for a distributed re-
ceding horizon implementation. Under stated conditions on
the update parameter §, the implementation is asymptoti-
cally stabilizing.
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3 Distributed Receding Horizon Control

In this section, a distributed receding horizon control law
is defined. We first introduce some notation and define N,
separate optimal control problems, that are solved and im-
plemented in a distributed receding horizon fashion. Next,
we analyze the stability of the closed-loop system.

3.1 Distributed Optimal Control Problems

In the centralized integrated cost, the non-separable terms
llg; — qj + dij||% for all (i, ) € Eo, as well as the tracking
term ||¢;, — qal|?, couple the states of neighboring agents.
The set of neighbors of each agent i is denoted N;. Let
Z—i = (%j,,. %)y, ) denote the vector of states of the
neighbors of i, ie., jr € N;, k = 1,...,|N;|, where
the ordering of the states is arbitrary but fixed. Also, let
U—; = (Ujy,...; Uy, ), Where the ordering is consistent
with z_;.

Definition 2 The distributed integrated cost in the optimal
control problem for any agent i € {1,...,N,} is defined as
Li(2i,2—iyu;) = LE (24, 2—3) + yul|uil|?, where v > 1 is
constant and L (z;,z—;) is

w . .
| S e — g+ P} + Al + Lati) |
JEN;

w 2 :
. disy — §||q):_qd” ; 2217273
with  L%(i) { 0, otherwise.

Thus, ZfV:“I Li(z, z2—i,u;) = yL(z, u).

Agents 1, 2 and 3 are neighbors by virtue of the track-
ing term; however, the summation over N; in L? for i €
{1,2, 3} is understood to include only the ||g; — q; + d;;||?
terms in &y, which may or may not exists between 1, 2 and
3. In the proof of stability, the key structure is that the dis-
tributed integrates costs sum to be the centralized cost mul-
tiplied by a constant larger than 1. For any other cost, if
a similar decomposition structure can be chosen, and if the
other stated assumptions hold, the stability results that fol-
low still hold. Moreover, the stability results that follow do
not depend on equal weighting of terms between neighbor-
ing agents. The weighting will of course affect the perfor-
mance of the closed-loop system, so making the weights
lop-sided would result in one agent reacting more to the
term than the corresponding neighbor. In the limit that one
agent takes all of a coupling term, the result corresponds to
a directed graph, or leader-follower situation relative to that
term.

Definition 3 (Distributed Implementation Logic) At each
update of the distributed receding horizon control laws, ev-
ery agent: (1) senses its own current state and senses or
receives the current state of its neighbors, and (2) computes
the optimal control trajectory, comparing it to an assumed

control trajectory and based on some assumed control tra-
Jectories for its neighbors. Prior to the next receding hori-
zon update, every agent: (1) implements the current optimal
control trajectory, (2) computes the next assumed control
trajectory, to be used at the next update, and (3) transmits
the assumed trajectory to all of its neighbors and receives
the assumed control trajectories from each neighbor.

Implicit in the procedure above is that the assumed control
for each agent ¢ is consistent in every optimization problem
that it occurs, i.e., in the optimal control problem for agent ¢
and for each neighbor j € N;. Before defining the compu-
tation for the optimal and assumed control trajectories, we
introduce some notation.

Definition 4 For every agenti =1, ..., N,, we denote:
u;(+) : applied control, ;(-) : assumed control.

The applied control is being optimized and applied to the
system. While being optimized, the applied control is also
compared to the assumed control, which all neighbors as-
sume 1 is employing over the interval.

The state trajectories corresponding to the applied and as-
sumed controls are denoted z;(+) and Z;(+), respectively. For
each agent 4, given the current state z;(¢) and assumed con-
trol @;(s), s € [t,t + T, of any neighbor j € N, the
assumed state trajectory 2;(s), s € [t,t + T, is computed
using the model for that agent. Consequently, the initial
condition of every assumed state trajectory is equal to that
of the actual state trajectory of the corresponding agent, i.e.,
2;(t) = z;(t), for initial time ¢. To be consistent with the
notation z_;, let 2_;(-) and % (+) be the vector of assumed
neighbor states and controls, respectively, of agent .

Denote the receding horizon update times as t; = to + 0k,
where k € N = {0,1,2,...}. Common to each problem, we
are given the constant y € (1, co) from Definition 2, update
parameter § € (0,7") and fixed horizon time T'. Conditions
will be placed on the update parameter § in the next section
to guarantee stability of the closed-loop system. The col-
lection of distributed open-loop optimal control problems is
now defined.

Problem 2 For every agent i € {1,...,N,} and at any
update time ty, k € N, given initial conditions z;(ty),
z_i(tx), and assumed controls 0;(s) and G_;(s), for all
S € [t ty + T, find J} (2 (tr), z2—i(tr), T), equal to

tr+T
mzr;/ Li(zi(7), 2-i(7), ui(7)) AT + Gy (zi(t + T),
Uq (- ti

subject to
Gi(s) = ui(s), 4;(s) =1;(s), Vj € N;,
ui(s) €U, zi(s)eZ s € [tr, ty + T,
[lui(s) — wi(s)|| < 6%k
zi(tk + 1) € Qi(es), )
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given constant k. € (0,00), Gi(z) = ||z — #§||5, P =
PT > 0 and where

Qi(e;) = {2 € R*™ : Gi(2) <&, &; > 0}.

As part of the optimal control problem, the applied control
for 7 is constrained to be at most a distance of §2x from
the assumed control. The assumed control for each agent,
as well as each terminal cost weighting P;, will be mathe-
matically defined below. As discussed in [8], it may be de-
sirable to compute and transmit the needed assumed states,
rather than assumed controls, since that is what each dis-
tributed optimal control problem depends upon in this case.
This would, for example, remove the need for the differ-
ential equation of each neighbor in each local optimization
problem. The optimal solution to each distributed optimal
control problem, assumed to exist, is denoted

uy (75 2i(tk)), T € [t tr + T7.

The closed-loop system, for which stability is to be guaran-
teed, is

q(T) = u:iisl(T)» T 2 1o (5)

where the distributed receding horizon control law is

Ugise (T3 2(th)) = (ugn (75 21(8)); - g, (75 28, (8k)))

for 7 € [ti,tr + 6], 0 <0 < T and k € N. As before, the
receding horizon control law is updated when each new ini-
tial state update z(¢x) < z(tx+1) is available. The optimal
state for agent ¢ is denoted 2z, (7; 2z;(tx)) and the concate-
nated vector of the distributed optimal states is denoted

Zais (T3 2(8)) = (i (73 21(t)), -5 Zan, (75 28, (8))),

for all 7 € [t,tr + T]. Although we denote the optimal
control for agent i as u};(7; z;(tx)), it is understood that
this control is implicitly dependent on the initial state z;(ty)
and the initial states of the neighbors z_; ().

Assumption 2 The following holds for everyi =1, ..., Ng:
(i) The positive constant €; > 0 is chosen such that
Qi(e;) C Z and such that for all z; € Q;(g;), there is an
asymptotically stabilizing feedback v, = K;(z; — z¢) that
is feasible and the weighting matrix P; = PT > 0 satisfies

(A; + BiK;))T Py + Pi(A; + BiK;) = —(Q; + uK]' K;)

Moreover, (Q; is chosen such that @ = diag(Q1,...,QnN,)
satisfies @ > Q, where Q is defined in equation (2); (ii)
At any receding horizon update time, the collection of open-
loop optimal control problems in Problem 2 are solved glob-
ally synchronously; (iii) The communication of control tra-
Jectories between neighboring agents is lossless.

The receding horizon control law is employed for all time
after the initialization and the decoupled linear feedbacks

K; need not be employed, even after agent 4 enters §2;(g;).
Due to condition (ii) above, the distributed receding hori-
zon control laws are not technically decentralized, since a
globally synchronous implementation requires centralized
clock keeping [3]. However, a locally synchronous, and
consequently decentralized, version is also currently being
constructed [6]. Also, one choice for @); that would satisfy
@ > Qis Qi = Amax(@)I(2n), Where Apy (M) is the maxi-
mum eigenvalue of the square matrix M. We now define the
initialization procedure for the distributed receding horizon
control law, and the assumed control for each agent at each
update time.

Definition 5 (Initialization) Denote time t_1 = tg — 0.
Solve Problem 2 with initial state z(t_1), setting ;(1) = 0
forall T € [t_1,t_1 + T] and every i = 1,...,N,, and
also setting k = 400. The optimal trajectories are de-
noted w}, (75 2;(t—1)) and z5,(T; z;(t_1)), for every i =
1, ..., Nq. The optimal control w), ,(T; z(t_1)) is applied for
T E [t_l,to].

At initialization, the control deviation constraint is removed
by setting x to a large number. The assumed controls at ini-
tialization will naturally have an impact on closed-loop per-
formance. If instead the centralized problem were solved at
time ¢_1, and the solution disseminated to the agents, the
closed-loop performance may be closed to that of the cen-
tralized case. Also, initialization is considerably more com-
plicated if there are coupling constraints between neighbor-
ing agents, as intimated in [11]. The formulation in [6]
guarantees that if an initially feasible solution can be found
with coupling constraints, with appropriate but not substan-
tial added conservatism, subsequent feasibility is ensured.

Definition 6 (Assumed Control) For each agent i =
1,...,N, and for any k € N, the assumed control i;(-) :
[tk, tx + T — U is defined as follows:

if 2(tg) = 2°, then0;(-) = 0. Otherwise

(1) = wy (75 2i(tk—1)), T € [tpath—1 + T
’ Ki(zE(7)) —28), 7T€[thr +Titx +T] °

where zF(s) is generated by the closed-loop solution to
§¥(s) = K;(2F (s) — 2¢). The assumed control for agent i at
initial time ty, is generated and transmitted to each neighbor
J € N; in the time window [t—1, tx).

To state Definition 6 in words, in Problem 2 every agent
is assuming all neighbors will continue along their previ-
ous optimal path, finishing with the decoupled linear control
laws defined in Assumption 2, unless the control objective is
met at any finite update time after initialization. In the latter
case, neighbors are assumed to do nothing, i.e., apply zero
control. Notice that the communication of control trajecto-
ries between neighboring agents is not required to happen
instantaneously, but over each receding horizon update time
interval.

p- 4



The test of whether z(t;) = z° in generating the assumed
control is a centralized test. The reason for the test is its use
in the proof of Proposition 3.1, stated in the next section. We
note that the asymptotic stability result in the next section
guarantees that only in the limit as t; — oo do we have
z(ty) — z°. Practically then, one could assume z(ty) # 2¢,
which is true for any finite k when z(¢t_1) # 2¢, and ignore
the test completely. Also, if dual-mode receding horizon
control is used, the test can be removed, since Proposition
3.1 is not used to prove asymptotic stability in that case. A
dual-mode version is provided in [8].

If J7(z(t—1),2-;(t_1),T) = 0 for any agent 4, then it
can be shown that z;(t_1) = z{ and z;(t_1) = 2§, for
each neighbor j € N, is the unique feasible solution,
i.e., the local objective has been met. However, even if
J¥(zi(t-1), 2—i(t=1),T) = 0, it may not remain zero for
all k € N. An example is where 7 and all neighbors j € N;
are initialized meeting their objective, but some [ € N has
not met its objective. Thus, in the subsequent optimiza-
tions, 7 will react to [, followed by ¢ reacting to j, since the
coupling cost terms become nontrivial. Consequently, we
can not guarantee that each distributed optimal value func-
tion J*(z;(tr), z—;(tr), T) will decrease with each reced-
ing horizon update. Instead, we show in the next section
that the sum of the distributed optimal value functions is a
Lyapunov function that does decrease at each update, en-
abling a proof that the distributed receding horizon control
laws collectively meet the control objective.

3.2 Stability Analysis

We now proceed with analyzing the distributed receding
horizon control laws. The proofs of the results stated in
this section are provided in [8], available on-line. At any
time t;, k € N, the sum of the optimal distributed value
functions is denoted as

Na
I5(z(tk), T) = Z Ji (zi(th), 2-i(te), T).-

For stability of the distributed receding horizon control
laws, we investigate J5(z(tx),T) as a Lyapunov function.
One has to be careful not to assume that J3(z(t),T) is it-
self optimal. Problem 2 is feasible at time t, if for every i =
1, ..., N,, there exists a control w; () : [tg, tx+T] — U such
that all the constraints are satisfied and the value function
Ji(zi(tr), z—i(t), ui(-), T) is bounded. Let Zy C ZNa
denote the set of initial states for which Problem 2 is feasi-
ble at initialization (time t = t_1), as defined in Definition
5.

Lemma 1 Under Assumptions 1 and 2, Zx, is a positively
invariant set with respect to the closed-loop system (5) set-
ting wh; (- z;(ty)) = () for every i = 1,..., N, and for
k € N. Thus, feasibility at initialization implies subsequent
feasibility.

The proof follows immediately from Definitions 5 and 6.
Note that the assumed control 4; is exactly the feasible con-

trol trajectory used in Lemma 2 of [4] to show initial feasi-
bility implies subsequent feasibility of the on-line optimiza-
tion problem in the centralized case. Clearly, z€ is in the set
Zs.

Since we will be exploring the closed-loop behavior for ini-
tial states that start in Zx;, we can immediately infer that any
closed-loop state trajectory will remain bounded. Specifi-
cally, if an initial state can be driven to the compact termi-
nal constraint set in finite time using bounded control (U is
compact), then the optimal trajectory from that state will re-
main bounded. In the bounding argument for the proof of
stability, we will make use of the notation

2 (7 t) = 2f[| < R, (©)

forall T € [ty, ¢, +T),any k € Nand foralli =1,..., N,.
Moreover, let Uy.x > 0 be a positive scalar denoting the
maximum-norm value over all feasible controls.

Assumption 3 The optimal solution to Problem 2 exists
and is numerically obtainable for any z(t) € Zs.

Lemma 2 Under Assumptions 1-3, Zx, is a positively in-
variant set with respect to the closed-loop system (5). Thus,
ifz(t_1) € Zyx, z};,(T) € Zs forall T > t_.

The next result says that the net objective of the distributed
receding horizon control laws is consistent with the control
objective.

Proposition 3.1 Under Assumptions 1-3, for a given fixed
horizon time T > 0 and at any time ty, k € N,

1. J5(2(tg), T) > 0 for any z(ty) € Zs, and
Jg(z(tk),T) =0 lfandonly UCZ(tk) = ZC,
2. Ji(z(tg), T) is continuous at z(ty,) = z°.

Our objective is to show the distributed receding horizon
control law achieves the control objective for sufficiently
small §. We begin with three lemmas that are used to bound
the Lyapunov function candidate J(z(¢),T). The first
lemma gives a bounding result on the decrease in J3 (-, T)
from one update to the next.

Lemma 3 Under Assumptions 1-3, for a given fixed hori-
zon time T > 0, we have that

J;(Z(tk+1),T) - J;(Z(tk)7T)

tr+6 Na
= _/ D Li(zii(rzite), 2-i(r)) AT + 6%,

e =1
forany § € (0,T) and for any z(t) € Zs, k € N, where
& = ywrT?(2|&] +2/3) [3BR + T*].
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Ultimately, we want to show that J3(-,7") decreases from
one update to the next along the actual closed-loop trajec-
tories. The next two lemmas show that, for sufficiently
small §, the bounding expression above can be bounded by
a negative-definite function of the closed-loop trajectories.

Lemma 4 Under Assumptions 1-3, for any z(t;) € Zs,
k € N, such that at least one agent i satisfies z;(t) # z¢,
and for any positive constant §, there exists a 6(z(tx)) > 0
such that

tp+5 Na
_/ ZLf(z;i(T;Zi(tk));éfi(T)) dr + 6%

e =1

tr+0
<= [ Neilrsaw)) - I dr, )

tr

Jorany § € (0,0(2(tx))]. If z(tx) = 2°, then the equation
above holds with 6(z(ty)) = 0.

By making the following assumption, we are able to obtain
an analytic bound on the update period from the integral
expression above.

Assumption 4 The interval of integration [ty ti.+9] for the
expressions in equation (7) is sufficiently small that first-
order Taylor series approximations of the integrands is a
valid approximation for any z(ti) € Zs.

Lemma 5 The margin in Lemma 4 is attained with

 (r=D)llatr) = 2013
- £+ Ynan(Q) (B2 + Un21ax)7

given the state and control bounds R and U,,,, respectively.

d(z(tr)) ®

Since d(z(tx)) depends on ||z(tx) — 2¢||3), a centralized
computation is required to generate equation (8) at each re-
ceding horizon update. Otherwise, a distributed consensus
algorithm could be run in parallel to determine ||z(t) —
z°/|), or a suitable lower bound on it. In the dual-mode
version [8], no such centralized computation is required on-
line, since a fixed bound on the update period is computed
off-line and applied for every receding horizon update. The
main theorem of this paper is now given.

Theorem 1 Under Assumptions 1-4, for a given fixed hori-
zon time T > 0 and for any state z(t_1) € Zx at ini-
tialization, if the update time § satisfies § € (0,0(z(tx))],
k € N, where §(z(tx)) is defined in equation (8), then z°
is an asymptotically stable equilibrium point of the closed-
loop system (5) with region of attraction Zs,, an open and
connected set.

After applying the previous lemmas, J§(z(ty), T) is shown
to be a Lyapunov function for the closed-loop system and

the remainder of the proof follows closely along the lines of
the proof of Theorem 1 in [4]. From equation (8), we ob-
serve that §(z(¢;)) — 0 as z(tx) — z°. As a consequence,
the control comparison constraint gets tighter, and the com-
munication between neighboring agents must happen with
increasing bandwidth, as the agents approach their control
objective. To mitigate these problems, a small fixed upper
bound on ¢ is provided in [8] that guarantees all agents have
reached their terminal constraint sets via the distributed re-
ceding horizon control, making it safe to henceforth apply
the decoupled linear feedbacks. The result is called dual-
mode distributed receding horizon control.

In the next section, formations of vehicles are stabilized
using the centralized and distributed receding horizon con-
trollers defined in this section. In the simulations, it is ob-
served that for a fixed, small value for the update parameter
0, convergence is obtained with good accuracy. The dis-
tributed receding horizon controller is applied for all time
and switching to the decoupled feedbacks is not employed.

4 Formation Stabilization Example

A simulation of a four vehicle formation is presented in this
section. The objective is a finger-tip formation that tracks
the reference trajectory (qref(t), dref(t)) € R*, defined as

_ [ (t,0.0), t € [0.0,10.0)
qref(t)_{ (10.0,10.0 — ), € [10.0,00) ° @

where to = 0.0 in the notation of the previous sections. The
error system for any agent 4 has state (¢; — gref, G — Grer)
and dynamics ¢; = u;. The jump in the reference velocity
at time ¢ = 10.0 serves to examine how well the error dy-
namics are stabilized for two different legs of the reference
trajectory. The state and control constraint sets are defined
as Z = R* and

U= {(u,u) ER® : —1<u; <1, j=1,2}.

To eliminate any offset between the center of geometry of
the formation and the reference trajectory, we set the for-
mation path to g4(t) = (0.0,0.0) for all £ > 0.0. In
terms of the error dynamics, the tracking cost thus becomes
I[(q1 + g2 + q3)/3 — qret||*. The vector formation graph
is defined by vertices V = {1, 2, 3,4} and relative vectors
£ =1{(1,2),(1,3),(2,4)}. The desired relative vectors are
defined for the two legs of the reference trajectory as

dio = dos = (_271)a tE[O,lO)
UL (L2), te[10,00)

(—=2,-1), te]0,10)
s = { (-1,2), te[10,00)

The common rotation in the vectors at time ¢ = 10 is match
the heading of the fingertip formation with the heading of
the reference trajectory. The initial conditions for each
agent are given as ¢;(0.0) = (—1,2), ¢2(0.0) = (—4,0),
¢3(0.0) = (—=2,0) and ¢4(0.0) = (=7, —1), with ¢;(0.0) =
(0,0) for each agent ¢ € V. In both centralized and dis-
tributed receding horizon implementations, a horizon time
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of T' = 5.0 and update parameter of § = 0.5 are used. Also,
the following weighting parameter values are consistent in
both implementations: w = 2.0, v = 1.0 and p = 2.0.

To solve the optimal control problems numerically, we em-
ploy the Nonlinear Trajectory Generation (NTG) software
developed at Caltech. A detailed description of NTG as a
real-time trajectory generation package for constrained me-
chanical systems is given in [13]. For the centralized re-
ceding horizon control law, parameter values in the opti-
mal control problem satisfy sufficient conditions for stabil-
ity [8]. The finger-tip formation response is shown in Figure
1. The four closed-loop position trajectories of the vehicles

Position Space

Y motion (m)

-5 0 5 10
X motion (m)

Figure 1: Four vehicle formation using centralized receding hori-
zon control.

are shown, with each vehicle depicted by a triangle. The
heading of any triangle shows the direction of the corre-
sponding velocity vector. The symbols along each trajec-
tory mark the points at which the receding horizon updates
occur. The legend identifies a symbol with a vehicle num-
ber for each trajectory. The vehicles are shown at the snap-
shots of time 0.0, 6.0, 12.0 and 18.0 seconds. Also shown
at these instants of time are the reference trajectory posi-
tion ¢ref(t), identified by the black square, and the average
position of the core vehicles ¢ (t), identified by the yel-
low square. The tracking part of the cooperative objective
is achieved when ¢, () = gef(t), i.e., when the two squares
are perfectly overlapping.

At time 6.0, the vehicles are close to the desired forma-
tion, and the squares are nearly overlapped, indicating that
the tracking objective is being reached. At time 12.0, the
snapshot shows the formation reconfiguring to the change in
heading of the reference trajectory which occurred at time
10.0. At time 18.0, the objective has again been met with
good numerical precision.

For the distributed receding horizon implementation, the
initial state at time 0.0 is used for initialization ({_1 = 0.0),
as described in Definition 5. Regarding the conditions in
Assumption 2, we first choose Q; = Amax(Q)I(4), Where

Amax (@) =~ 6.85. As in the centralized case, K; is defined
as the linear quadratic regulator and P; the corresponding
stable solution to the algebraic Riccati equation. Following
the steps in [8], we can show that a; = 0.33 guarantees
that the conditions in the assumption will hold. Finally, we
set v = 2 in the cost functions of the distributed optimal
control problems. After initialization, the control compar-
ison constraint is enforced, setting x = 2. The finger-tip
formation response is shown in Figure 2. The performance
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Figure 2: Four vehicle formation using distributed receding hori-
zon control.

is close to that of the centralized implementation. At snap-
shot time 6.0, the formation is slightly lagging the refer-
ence, compared to the centralized version. Also, vehicles
1 and 3 in particular slightly overshoot, in comparison to
their centralized counterparts, when the reference changes
heading. The overshoot can be attributed to the assump-
tion that neighbors are reacting to the reference gy = (¢,0)
for t € [10,15], while in reality neighbors are reacting to
the actual gr = (10,10 — ¢) for ¢t € [10,15]. After the
next update, i.e., for time ¢ > 10.5, performance improves
as assumed information contains the influence of the actual
reference heading. Note that the overshoot is eliminated if
the initialization procedure is redone at time 10.0. At time
18.0, the formation objective is close to being met, and for
slightly more time the same precision as the centralized im-
plementation is achieved.

A more naive approach is when neighbors are assumed to
have zero control and the control comparison constraint is
not enforced (x = +00). This was explored in simulations
in a previous paper [7], as well as in [8] where the response
is characterized by overshoot, as agents believe neighbors
will continue along vectors tangent the path over the entire
optimization horizon at each update. If the horizon time T’
is shortened, overall performance improves, as the assump-
tion becomes more valid. The reason is that a straight line
approximation is generally a valid approximation locally,
and shrinking 7" means the assumption should hold over a
more local domain, relative to larger values of 7". In the
formulation in [11] a similar effect is observed.
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Since agents are relying on the assumption that neighbors
keep doing what they were doing, and the control compari-
son constraint ensures that the assumption is not too far off,
stability is ensured. In fact, if the comparison constraint is
removed, stability is observed in the simulation for the cho-
sen parameter values above. The sensitivity to horizon time
when neighbors are assumed to continue along straight-line
paths, and as observed in the formulation in [11], is no
longer present.

Regarding the communication requirements of transmitting
assumed controls to neighboring agents, in the NTG formu-
lation corresponding to the simulations above, 14 B-spline
coefficients specified the two-dimensional assumed control
trajectory of each agent. In comparison, when agents as-
sume neighbors continue along straight lines, 4 numbers
much be communicated at each update, representing the ini-
tial condition of the state at the update time. Polynomial
representations of trajectories in the optimization problem,
when valid, can aid in keeping the communication require-
ments closer to that of traditional decentralized schemes.

5 Conclusions and Extensions

A centralized optimal control problem, whose cost cou-
ples the states of a set of dynamically decoupled subsys-
tems, is decomposed into a set of distributed optimal control
problems for a distributed receding horizon implementation.
The implementation requires an additional constraint in the
local optimal control problems, namely a constraint ensur-
ing that assumed and applied control trajectories not deviate
too far from one another. Asymptotic stability is proven in
the absence of uncertainty and for sufficiently fast receding
horizon updates.

In the generalization of the theory, heterogeneous nonlin-
ear dynamics and coupling state constraints between neigh-
boring agents are possible [6]. The dimension of each dis-
tributed optimal control problem is equal to that of an op-
timal control problem of the single corresponding agent,
so the implementation is scalable. Thus, there is consider-
able improvement in tractability over the centralized prob-
lem, particularly when the number of agents NN, is large.
Additionally, no particular communications topology is re-
quired, aside from unidirectional links. If the trajectories
are known to be sufficiently smooth, and polynomial-based
approximations are valid, the communication requirements
need not be substantially worse than that of other decentral-
ized schemes.

We should also emphasize that the multi-vehicle formation
stabilization problem is a venue. In other problems where
the performance objective, specifically the integrated cost,
is decomposable in such a way that the summation recovers
the centralized cost (multiplied by a factor) the approach is
applicable. The theory will ultimately be applied to the Cal-
tech Multi-Vehicle Wireless Testbed [5]. Other venues for
application of the theory may exist, for example, in dynamic
formulations of resource allocation problems in networks,

or in dynamic game theoretic settings. For instance, the ap-
proach by Baglietto et al [2], which involves stochastic ap-
proximations, for distributed dynamic routing in a network
could be compared to a discrete-time version of the our dis-
tributed receding horizon control law.

References

[1] L. Acar. Boundaries of the receding horizon control for
interconnected systems. Journal of Optimization Theory and Ap-
plications, 84(2), 1995.

[2] M. Baglietto, T. Parisini, and R. Zoppoli. Neural approxi-
mations and team theory for dynamic routing: A receding horizon
approach. In Proceedings of the IEEE Conference on Decision and
Control, Phoenix, AZ, 1999.

[3] D.P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed
Computation: Numerical Methods. Athena Scientific, 1997.

[4] H. Chen and F. Allgower. A quasi-infinite horizon nonlin-
ear model predictive scheme with guaranteed stability. Automat-
ica, 14(10):1205-1217, 1998.

[5]1 L. Cremean, W.B. Dunbar, D. van Gogh, J. Meltzer, R.M.
Murray, E. Klavins, and J. Hickey. The Caltech multi-vehicle wire-
less testbed. In Proceedings of the Conference on Decision and
Control, Las Vegas, NV, 2002.

[6] W. B. Dunbar. Distributed Receding Horizon Control of
Multi-Agent Systems: Theoretical and Numerical Algorithms (In
Preparation). PhD thesis, California Institute of Technology,
2004.

[7] W. B. Dunbar and R. M. Murray. Model predictive control
of coordinated multi-vehicle formations. In Proceedings of the
IEEE Conference on Decision and Control, Las Vegas, NV, 2002.

[8] W. B. Dunbar and R. M. Murray. Distributed reced-
ing horizon control with application to multi-vehicle formation
stabilization. Technical Report 04-001, Control and Dynami-
cal Systems, California Institute of Technology, 2004. Avail-
able online: http://www.cds.caltech.edu/ dunbar/
reports/DRHC_dunbar.pdf. Submitted to Automatica, Jan-
uary, 2004.

[9] D. Jia and B. H. Krogh. Distributed model predictive con-
trol. In Proceedings of the American Control Conference, 2001.
[10] D. Jia and B. H. Krogh. Min-max feedback model predic-
tive control for distributed control with communication. In Pro-
ceedings of the American Control Conference, 2002.

[11] T. Keviczky, F. Borrelli, and G. J. Balas. Model predictive
contorl for decoupled systems: A study of decentralized schemes.
In Submitted to the American Control Conference, Boston, MA,
2004.

[12] D.Q. Mayne, J.B. Rawlings, C.V. Rao, and P.O.M.
Scokaert. Contrained model predictive control: Stability and opti-
mality. Automatica, 36:789-814, 2000.

[13] M. B. Milam, K. Mushambi, and R. M. Murray. A new
computational approach to real-time trajectory generation for con-
strained mechanical systems. In Proceedings of the Conference on
Decision and Control, 2000.

[14] N. Motee and B. Sayyar-Rodsari. Optimal partitioning in
distributed model predictive control. In Proceedings of the Ameri-
can Control Conference, 2003.

[15] W.Renand R.W. Beard. A decentralized scheme for space-
craft formation flying via the virtual structure approach. Journal
of Guidance, Control and Dynamics, 27(1):73-82, January 2004.

p-8



