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Abstract: A generalized model predictive control (MPC)
formulation is derived that extends the existing theory to a
multi-vehicle formation stabilization problem. The vehicles
are individually governed by nonlinear and constrained dy-
namics. The extension considers formation stabilization to
a set of permissible equilibria, rather than a unique equi-
librium. Simulations for three vehicle formations with in-
put constrained dynamics on configuration space SE(2) are
performed using a nonlinear trajectory generation (NTG)
software package developed at Caltech. Preliminary results
and an outline of future work for scaling/decentralizing the
MPC approach and applying it to an emerging experimental
testbed are given.

1 Introduction
Interest in stabilizing and maneuvering a formation of mul-
tiple vehicles has grown in recent years. Application areas
include grid searching by coordinating robots, surveillance
using multiple unmanned air or ground vehicles, and syn-
thetic aperture imaging with clusters of micro-satellites. The
existing literature contains methods for pre-computing con-
trol laws to achieve coordinated objectives. Methods utiliz-
ing potential functions for coordinating formations include
[5] and [10], where graph theoretic tools are also effectively
used in the latter reference. In both cases, individual vehi-
cle dynamics correspond to fully actuated second order point
masses. The same individual vehicle dynamics are consid-
ered by Young et al [13], where a leader-follower architecture
is experimentally validated on wheeled robots. Stability and
controllability by distributed local feedbacks is examined by
Yamaguchi et al [12] for formations of kinematic robots. A
contribution of our paper is that the individual vehicles may
be governed by nonlinear and constrained dynamics.

A generalized multi-vehicle formation stabilization problem,
free from a leader-follower architecture, is defined in this pa-
per. The problem is similar, in the formation definition and
use of a virtual leader, to that given by Egerstedt and Hu [4]
who consider velocity control of kinematic robots. The dif-
ference is that the desired formation here is not necessarily
a unique state for each vehicle in the formation. Moreover,
we provide the necessary definitions and appropriate proofs
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for stability to a set of equilibria. The results in this paper
are new in that model predictive control (MPC) is applied to
the formation stabilization problem that we define. Another
optimization based approach is explored in [11], where the
problem is cast as a linear program subject to mixed integer
constraints.

MPC is the most natural and in some cases the only method-
ology for control of systems that are governed by constrained
dynamics. A recent thorough survey of nonlinear MPC sta-
bility theory is given by Mayne et al in [7]. The generalized
formulation and conditions for stability stated in [7, 6] are
used as a guide for the formulation here. Controller design
for a multi-vehicle experimental testbed being developed at
Caltech, where the individual vehicle dynamics are nonlinear
and constrained, is a key motivation for this paper [2].

The organization of the paper is as follows. Section 2 details
the MPC formulations in a generalized multi-vehicle settings
and Section 3 focuses on multi-vehicle simulation examples.
The first example considers the constrained dynamics of the
testbed vehicles described in [2] and the second example
considers simplified dynamics but examines distributed, syn-
chronized MPC computations with the effects of model error
between vehicles. The software used in the simulations is
the Nonlinear Trajectory Generation (NTG) software pack-
age [8]. Conclusive remarks are given in Section 4.

2 MPC for vehicle formation stabilization
In this section, a multi-vehicle problem is posed and a gen-
eral MPC formulation is stated as a solution. The formation
problem definition is motivated by an objective of stability
to a set of equilibria and by the requirement that all vehicles
have equivalent roles relative to the formation, i.e. there is
no leader/follower architecture. MPC stability results given
in [7] are then extended to this new objective. The extension
is much like the discrete-time robust MPC (to bounded dis-
turbances) formulated in [6], where stability is guaranteed to
a control invariant set.

2.1 MPC Problem Statement
The model predictive formulation given in this section is
generalized in the incorporation of constraints and/or costs
to achieve nominal asymptotic stability for nonlinear con-
strained systems. Consider a common state space for each
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vehicle X as either T (SE(2)) or R
4. More generally, X may

be a constraint space that is a convex and closed subset of R
n.

Consider the k vehicles with system models ẋi = fi(xi, ui),
given xi(t0) = xi0, t ∈ [t0,∞) for i = 1, ..., k. The set U is
the input space and fi is a vector field on X for all i = 1, ..., k.
For notational ease later, introduce the vector notation

ẋ = f(x,u), x ∈ X
k, u ∈ U

k. (1)

The vehicles are dynamically decoupled, which permits the
statement that x lives in the Cartesian product space X

k. At
any current time t and for current state x(t) = x, the general
(multi-vehicle) optimal control problem P

mv
T (x) is

inf
u(·)

∫ t+T

t

q(x(τ),u(τ)) dτ + V (x(t+ T )) (2)

subject to equation (1) and terminal constraint

xu(t+ T ;x) ∈ Xf .

Inside Xf we assume there exist (decentralized) local stabi-
lizing controllers κf (x) = [κ1

f (x1), ..., κ
k
f (xk)]. The cost

optimal cost and control trajectory are denoted J∗(x, T ) and
u∗(τ ;x, T ), τ ∈ [t, t + T ], respectively. In equation (2) we
can set t = 0 as f(·), V (·) and q(·) are time-invariant.

The MPC Problem is to: 1) solve P
mv
T (·) from state x at

current time t, 2) implement the optimal input trajectory
κ(τ ;x, T ) , u∗(τ ;x, T ) for τ ∈ [0, δ], where 0 ≤ δ < T ,
and 3) repeat step 1) from state x ← x∗(δ;x, T ) at current
time t ← t + δ until x ∈ Xf . Henceforth we assume the
following

A1 The minimum of J∗(·, T ), T ≥ 0, is attained.

A2 Perfect knowledge of each vehicles dynamics gov-
erned by equation (1) (including initial condition) is
available to all other vehicles.

A3 Computation times are negligible.

Assumption A1 does not imply uniqueness of the optimal so-
lution, provided local minima have equal cost. Assumption
A2 is typical and A3 almost universal in the MPC literature.
By ignoring uncertainty (absence of disturbances included)
we can proceed by incorporating all vehicles in one (central-
ized) optimization over each horizon. Having more than one
copy of such an optimization, say one per vehicle, would be
redundant since they would all produce the same result. In the
limit, assumption A3 permits δ = 0, in which case P

mv
T (·) is

continuously resolved. The MPC controller in this case is
denoted κ(x, T ) and the closed-loop system becomes

ẋ =

{

f(x,κ(x, T )), ∀x ∈ XT −Xf

f(x,κf (x)), ∀x ∈ Xf
, (3)

where XT denotes the set of states x that can be steered to
Xf by an admissible control in time T . The theoretical re-
sults that follow are stated in terms of equation (3), but hold
for practical MPC controllers (δ > 0). In the next sections we
define a multi-vehicle formation and give generalized condi-
tions on (q, V,Xf ) for proving stability.

2.2 Multi-vehicle formation objective
The control objective is to steer the set of states R 3 t 7→
{x1, . . . , xk} ∈ X

k to an equilibrium formation, which will
be defined. The general formation set includes non unique
permissible states at any given t, rather than precise loca-
tions for each vehicle at any t. Naturally, the equilibrium
formation satisfies equilibrium conditions for all of the ve-
hicles in the formation. Although modelled separately, the
vehicle (closed-loop) dynamics become coupled by virtue of
the formation objective.

Partitioning the state vector in terms of position and velocity
subvectors will be useful for notational reasons. When X =
T (SE(2)) or X ⊆ R

4 denote, respectively,

xi =
[

zi, θi, żi, θ̇i

]

or xi = [zi, żi] , ∀i = 1, ..., k,

where zi and żi live in R
2 and (θi, θ̇i) ∈ TS1.

A precise definition of a formation of vehicles is now given.
A U

k-controlled positively invariant set M of equation (1)
defines a subset of X

k for which ∀x(t0) ∈ M , there exits
u(t) ∈ U

k, ∀t ≥ t0 such that x(t) ∈M,∀t ≥ t0.

Definition 1 Given a U
k-controlled positively invariant set

M ⊂ X
k of equation (1) and a formation reference Xr(t) ∈

X, ∀t ≥ t0, a k-vehicle formation associated with equation
(1) is denoted F(M,k,Xr(t)) and defined as

F(M,k,Xr(t)) =
{

x ∈ X
k | (x(t)−Xr(t)) ∈M, ∀t ≥ t0

}

where Xr is a column vector with k copies of Xr for each
component.

The formation reference can be considered a virtual leader
[4, 3]. In sub-vector notation, Xr is denoted (Zr, θr, Żr, θ̇r)
or (Zr, Żr) depending on X. In general, the incorporation of
F(M,k,Xr) in P

mv
T may be done by enforcing constraints

over the entire horizon time, by design of the integrated cost
or a combination of both. To be consistent with the existing
theory of stabilizing MPC, only the case of designing the in-
tegrated cost q to accommodate the desired formation is con-
sidered here. An appropriate set that includes the restriction
of F(M,k,Xr(t)) to equilibrium conditions is now given.

Definition 2 An equilibrium formation Seq ≡ SX
eq × SU

eq as-
sociated with F(M,k,Xr(t)) is the subset of X

k × U
k de-

fined as

Seq =
{

(x,u) ∈ X
k × U

k | ẋ = 0, x ∈ F(M,k,Xr(t)),

Żr(t) = θ̇r(t) = 0, ∀t ≥ t0
}

(4)

By definition, SX
eq is a SU

eq-controlled invariant set with re-
spect to equation (1). Either SX

eq is M or, if the constants
(Zr, θr) are nonzero, it is a translated and rotated version of
M with respect to an inertial frame in X

k. Thus, the design
of the formation determines the invariant set M . Examples
for M are given in Section 3.1 and [3].
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2.3 Stability
MPC of constrained systems is nonlinear, warranting the use
of Lyapunov stability theory. The value function is typically
employed as a Lyapunov function for stability analysis for
nonlinear (constrained or not) and constrained linear systems.
The generalized conditions in [7] regarding the terminal cost
V (·), terminal constraint set Xf and local controller κf (·)
are here used as a guide. We make the following assumptions

A4 f is C2 and fi(xi, ui) linearized around any (xi, ui) in
the equilibrium set is controllable for any i = 1, ..., k.

A5 For all t of interest, u(t) ∈ U
k, a convex compact sub-

set of R
km containing SU

eq and SU
eq ≡ {0}. If ẋ = 0

requires a constant u 6= 0, assume we can translate the
equilibrium input to the origin.

A6 SX
eq ⊂ X

k and for all t of interest x(t) ∈ X
k.

A7 q(·) isC2 and u 7→ q(x,u) is convex for each x ∈ X
k.

A8 q(·) is positive definite in u and semi-definite in x, sat-
isfying q(Seq) = 0.

From A5 and Definition 2, f(x,0) = 0 for each x ∈ SX
eq .

Since controllability is assumed, linear control techniques
may be used for κf when Xf is local. The stability con-
ditions will require a Lyapunov function with stabilizing
properties toward a set. An appropriate lemma, combining
Lyapunov’s stability theorem and LaSalle’s theorem, is now
given for the system in equation (1) with closed loop state-
feedback control

ẋ = f(x,v(x)). (5)

Lemma 1 LetM and Ω be positively invariant sets for equa-
tion (5) with M ⊂ Ω ⊂ X

k and Ω is compact. Let
V : Ω → R be a continuously differentiable function such
that

V (x) = 0 in M and V (x) > 0 ∀x ∈ Ω−M (6)

V̇ (x) = 0 in M and V̇ (x) < 0 ∀x ∈ Ω−M (7)

Then, M is an asymptotically stable invariant set.

An appropriate choice for Ω is the largest bounded level of V
contained in X

k, containing M and satisfying equation (7).
We now state a theorem based upon conditions B1-B4 in [7]
that incorporates a generalized MPC implementation for sta-
bilization of multiple vehicles to an equilibrium formation.

Theorem 1 Assume that J∗(·) is C1 and that XT is com-
pact. If (V (·), Xf , κf ) satisfy

1. Xf ⊂ X
k, Xf compact, SX

eq ⊆ Xf .

2. κi
f (Xf ) ⊂ U, ∀i = 1, ..., k.

3. Xf is positively invariant for ẋ = f(x,κf (x)).

4. V : Xf → R is C1, satisfies equation (6) with M =

SX
eq and

[

V̇ + q
]

(x,κf (x)) < 0, ∀x ∈ Xf − SX
eq ,

then SX
eq is an asymptotically stable invariant set of equation

(3) with region of attraction XT .

The proof of this theorem and the various cost/constraint
based variants of MPC contained in conditions 1-4 are de-
tailed in [3]. Constraints may invalidate the assumption that
J∗ is C1; there are proofs that do not require this assumption
[1]. Also, if J∗ is radially unbounded and XT is taken as a
large level set of J∗ (subset of XT originally defined), then
XT is compact and we can delete this assumption.

3 MPC Coordinated Multi-Vehicle Simulations
This section details simulation examples of multi-vehicle co-
ordinated control problems solved using MPC. The first ex-
ample considers vehicle dynamics on configuration space
SE(2) with constrained inputs. A simple formation refer-
ence and the effects of adding a local terminal cost to an
integrated cost for stabilization of the formation are inves-
tigated. The second example considers vehicles with linear,
2-D second order dynamics with only an integrated cost and
no constraints. This example investigates what happens when
assumption A2 is no longer true, i.e. when the (neighboring)
vehicle models are no longer perfect and the MPC compu-
tations are distributed on each vehicle. The simulations are
done using the NTG software package developed at Caltech
[8].

3.1 Desired Formation and Reference
In the examples, the following invariant sets will be refer-
enced for k = 3 vehicles. For X = T (SE(2)) or X ⊆ R

4,

M1
3 =

{

x ∈ X
3

∣

∣

∣
||zi|| = 1, ||zi − zj || =

√
3, żi = 0,

∀i, j = 1, 2, 3, i 6= j
}

.

For X = T (SE(2)),

M2
3 =

{

x ∈M1
3

∣

∣

∣
θ̇i = 0, θi = 0, ∀i = 1, 2, 3

}

,

M3
3 = {x̂(α, ξ)}, for some x̂ ∈M2

3 ,

where (α, ξ) are scheduling parameters, defined in Section
3.2, based on the locations of the vehicles at the end of the
optimization horizon. The state space X for each vehicle in
the simulations is T (SE(2)) for Example 1 and R

4 for Ex-
ample 2.

3.2 Example 1
The dynamics of the individual vehicles are taken from the
multi-vehicle wireless testbed [2] (schematic and pictures
given). Denoting the configuration (w, y, θ) ∈ SE(2) and
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assuming viscous friction, the equations of motion of a vehi-
cle are:

mẅ = −ηẇ + (Fs + Fp) cos θ
mÿ = −ηẏ + (Fs + Fp) sin θ

Jθ̈ = −ψθ̇ + (Fs − Fp)r.
(8)

The starboard and port fan forces are denoted Fs and Fp,
respectively, and r denotes the (common) moment arm of
the forces. To match the previous notation, zT

i = [wi, yi].
An equilibrium point for the dynamics in equation (8) is any
constant position and orientation (wc, yc, θc) with zero ve-
locity. However, the linearized dynamics are not controllable
around any equilibrium (uncontrollable subspace has rank 2).
To achieve controllability, we can look at the error dynamics
around tracking a constant velocity ẇnom and heading θnom

reference, where Xr(t) is defined as

[wr(t0) + tẇnom, yr(t0) + tẏnom, θnom, ẇnom, ẏnom, 0] ,

ẏnom = ẇnom tan(θnom) and t ≥ t0. The error state and
inputs are (xei, Fsei, Fpei) = (xi − Xr, Fsi − Fnom, Fpi −
Fnom), i = 1, 2, 3, and the error dynamics are

mẅei = −η(ẇei + ẇnom) + (Fsi + Fpi) cos(θei + θnom)
mÿei = −η(ẏei + ẏnom) + (Fsi + Fpi) sin(θei + θnom)

Jθ̈ei = −ψθ̇ei + (Fsei − Fpei)r,

(9)

with Fnom = (ηẇnom)/(2 cos θnom). No state constraints
are enforced, so X = T (SE(2)). The inputs (Fs, Fp) live
in the constraint space U = [0, 6] × [0, 6] ⊂ R

2. The reach-
able space of the inputs is used to determine that the control-
lable equilibrium of equation (9) is now any constant position
(wc, yc) with θ and velocity equal to zero. For the desired
formation with three vehicles, the integrated cost function
q(x,u) is

3
∑

i=1

{

Wi

[

√

w2
ei + y2

ei − 1

]2

+ Vi

[

ẇ2
ei + ẏ2

ei

]

+ Ui

[

F 2
sei + F 2

pei

]

}

+

3
∑

i,j=1,i6=j

Wij

2

[

√

(wei − wej)
2

+ (yei − yej)
2 −
√

3

]2

(10)

In the simulations, Wi = Vi = 1.0, Ui = 0.05, and
Wij = Wji is 1.0 or 2.0 for all i, j. With respect to as-
sumption A7, q is not C1 or C2 at the origin. Replacing the
distance error-squared penalties above with distance squared
error squared penalties (4th-order), e.g. (z2 − ρ2)2, restores
continuity as is done in [4]. Instead, equation (10) was im-
plemented with a small constant under every radical to sat-
isfy assumption A7. It was noted that since the formation is
not near the origin, problems were seldom encountered with-
out the small constant term and that performance was supe-
rior to the cost with 4th order distance penalty. The cost q
is positive in (X3 − M1

3 ) × U
3. Any element of Seq must

be an equilibrium point of equation (9), i.e. of the form
((wc, yc, 0, 0, 0, 0), (0, 0)), so an appropriate terminal cost
function must be designed for stability.

3.2.1 A Formation Terminal Cost Function: A ter-
minal cost that satisfies Theorem 1 with (Ω,M) = (Xf ,M

3
3 )

is now given. For an LQR problem associated with the lin-
earization of equation (9) around any equilibrium, denote
the corresponding positive-definite Riccati matrix as P . The
terminal cost designed for this formation is a (schedula-
ble) quadratic penalty on an error state ei, for each vehicle
i = 1, 2, 3, with P as a weighting matrix. Specifically

V (x) = γ
(

eT
1 Pe1 + eT

1 Pe1 + eT
3 Pe3

)

, (11)

where γ is a positive, scalar weighting and the error state ei

for vehicle i = 1, 2, 3 is
[

wei − gi1(wi, yi), yei − gi2(wi, yi), θei, ẇei, ẏei, θ̇ei

]

.

The functions gi1, gi2 are defined as

gi1(wi, yi) = cos
(

ξ̄ + αi

)

, gi2(wi, yi) = sin
(

ξ̄ + αi

)

,

ξ̄ = (ξ1 + ξ2 + ξ3)/3, ξi = arctan

(

yei

wei

)

,

for each i = 1, 2, 3 and the scheduling variable αi is defined
(∀i 6= j) as

αi =







0, for |ξi − ξ̄| < |ξj − ξ̄|
2π/3, for |ξi − (ξ̄ + 2π/3)| < |ξj − (ξ̄ + 2π/3)|
−2π/3, for |ξi − (ξ̄ − 2π/3)| < |ξj − (ξ̄ − 2π/3)|.

(12)

If ξi = ξj for some i 6= j, then αk, k /∈ {i, j} is identi-
fied according to equation (12) and αi and αj are arbitrarily
chosen to be (distinctly) what is left of {0, 2π/3,−2π/3}. If
ξ1 = ξ2 = ξ3, then each αi is arbitrarily chosen to be one of
{0, 2π/3,−2π/3}, not equal to any other αj .

The idea behind this terminal cost is as follows: at the end
of each optimization horizon, the vehicles are in some loca-
tion relative to each other and the formation set. Calculat-
ing the angle ξi for each vehicle gives its angular location in
the relative formation set frame. Taking the average of these
locations (ξ̄), one desired vehicle state is on the circle with
angular location ξ̄ and all other state variables matching the
reference. This is the desired state for the vehicle with an-
gular location closest to ξ̄, according to condition 1 for αi

in equation (12). The desired states for the other vehicles,
equilaterally spaced on the set, are chosen also according to
equation (12). Thus, the terminal cost penalizes the weighted
2-norm of the error between each vehicle’s state and it’s de-
sired state. The cost V is C1 as long as (wei, yei) 6= (0, 0)
for all i = 1, 2, 3, which can be incorporated in the domain
Xf . Given the LQR-based design of the terminal cost above,
there exists a corresponding local set Xf in which κf can
be taken to be the LQR controller. Instead of estimating Xf

and enforcing it as a terminal constraint set, the effects of the
integrated cost with and without the terminal cost are inves-
tigated. Without enforcing a terminal constraint set, stability
via Theorem 1 is guaranteed if T is large enough (see [3])
and, when the terminal cost in equation (11) is employed, if
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scheduling occurs only at the initial optimization. Provably
stable reconfigurable MPC, e.g. that might incorporate equa-
tion (11) with αi changing at each optimization, is also an
interesting topic for future research. A reconfigurable MPC
would be attractive for multi-vehicle missions [9].

3.2.2 Simulation Cases and Results: In the simula-
tions, the horizon and update times are 5.0 and 1.0, respec-
tively. In addition to matching the appropriate initial condi-
tion for the state at each update, continuity of the input forces
is implemented. Most simulations with only an integrated
cost were observed to be stabilizing without collisions of the
vehicles. Figure 1 shows an initial condition that resulted in
stability but two vehicles passed through each other (an unac-
ceptable scenario resulting in collision for real vehicles). The

0 5 10 15 20
−4

−2

0

2

x (m)

y 
(m

)

Evolution of Formation: T = 5.0, δ = 1.0, W
ij
 = 1.0

Figure 1: MPC formation with integrated cost: collision occurs.

(black) vehicle in the center of the circle represents the for-
mation reference and the x’s along the trajectories of the for-
mation vehicles represent the updates in the MPC controller.
The affect of adding the scheduled terminal cost in equation
(11), keeping the relative weight at 1.0, is shown in Figure
2. Other simulations cases for various initial conditions and
cost weight values are detailed in [3].

0 5 10 15 20
−4

−2

0

2

x (m)

y 
(m

)

Evolution of Formation: T = 5.0, δ = 1.0, with Terminal Cost

Figure 2: Addition of terminal cost to stabilize formation.

3.3 Example 2
In this example, individual vehicle dynamics are simplified
to observe how a stabilizing global MPC policy is affected
when it becomes distributed and there is model uncertainty
between the vehicles in the formation. The dynamics for
each (point mass) vehicle are linear, double-integrators on
state space X = R

4 and input space R
2. The same cost func-

tion in equation (10) is used. In the global version, one (cen-
tralized) optimization is performed to compute the MPC law
for every vehicle at every update time δ. In the local ver-
sion, there are 3 separate MPC optimizations at each update
time, one for each vehicle. Each local optimization incorpo-
rates the correct model for the host vehicle and assumes that
the other vehicles go in straight lines according to the shared
initial conditions. In both cases, a nontrivial reference is im-
plemented (see [3] for details).

The horizon length is T = 2.0 seconds and update time
δ = 0.5 seconds. In the plots, the vehicles are represented
as triangles, where each triangle points in the direction of
it’s velocity vector, and the reference is represented as a red
square. As before, the reference trajectory is marked by a
dashed red line. The global (full info) MPC solution vehicles
are represented by the three triangles in black, with colored
squares at the center of each triangle. The local info vehicles
are represented by triangles in full color, with matching col-
ors corresponding to matching initial conditions for the first
optimization. Each triangle’s trajectory is marked by a line
and each figure shows the formation at points in time along
the entire time history. A global and local model predictive
result is shown in Figure 3 for a velocity error weighting of
Vi = 1.0, i = 1, 2, 3. The top plot corresponds (roughly) to
the first half of the time history and the bottom plot shows the
remaining portion. The global formation is stable throughout
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Figure 3: Global and local MPC simulations (Vi = 1.0)

the entire time history, while the local formation is very un-
stable. In fact, some of the local vehicles are observed to
intersect each other, resulting in collision in a real implemen-
tation.

The response from the same set of initial conditions but with
increased weight on the velocity error penalty (20.0) is shown
in Figure 4. For the particular choice of local models (and
formation reference) there is a large degree of sensitivity to
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Figure 4: Global and local MPC simulations (Vi = 20.0)

such weighting changes, as is evident by the local formation
responses in Figure 4. The global formation appears on the
other hand to be insensitive to the weighting change. The
degree of sensitivity of the local formation could likely be re-
duced by making a more “educated” model for the reduced
order vehicles. A good choice might be to assume that the
other vehicles travel at constant acceleration, perhaps equal
to the known initial value of the reference acceleration. De-
velopment of the theory of distributed MPC would likely
guide the model classes from which distributed models could
be chosen, given the full (nominal) models of actual vehicles.

4 Conclusions and Extensions
A generalized constrained and nonlinear MPC formulation
with guaranteed stability has been detailed in this chapter for
asymptotic stabilization of multiple vehicles to an equilib-
rium formation. A multi-vehicle coordination problem that
admits a generalized formation objective was then posed.
The objective allows that vehicles are stabilized to a set of
permissible equilibria, rather than a precise location for each
vehicle in the formation. There is also no particular role as-
signment in this formulation, although a formation reference
is defined and could be considered a virtual leader. The the-
ory of MPC is continuing to branch out to address uncertain
environments and recent results have investigated real-time
issues associated with this methodology [3]. It is realistic to
assume that computational tools for MPC will only improve
with time. The extension of MPC to a distributed problem
adds new elements of complexity to the theory, from which
many new interesting problems can be examined. Of par-
ticular interest is computational uncertainty (distributed and
local) and reduced order model effects of the environment, as
explored in Section 3.

The unification of these topics is related to a multi-vehicle
experimental testbed being developed at Caltech [2]. The

individual vehicle dynamics and inputs are subject to con-
straints and the objectives include real-time formation ma-
neuvers while avoiding collision and obstacles. The MPC
framework outlined in this paper is thus a natural choice to
meet these objectives. The testbed will be subject to the is-
sues that arise from applying MPC real-time, e.g. model-
uncertainty and non-trivial computation times. These topics
as well as exploring other variants of MPC and the theoretic
implications of distributing the computations over networks
will be explored in future work.
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