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Abstract

In this paper, we introduce a class of triangulated graphs for algebraic representation of
formations that allows us to specify a mission cost for a group of vehicles. This representation
plus the navigational information allows us to formally specify and solve tracking problems
for groups of vehicles in formations using an optimization-based approach. The approach is
illustrated using a collection of six underactuated vehicles that track a desired trajectory in
formation.

1 Introduction

Coordination of multi-vehicle systems in a cooperative or competitive manner is a challenging
problem with a variety of applications. This includes formation flight of unmanned air vehicles
(UAVs), control of clusters of satellites and telescopes, search and rescue operations, distributed
sensory networks, and control of dynamic multi-agent systems in interactive games and animation
environments [1, 2].

The use of potential functions and graph theoretic tools in coordination of multi-vehicle systems
has greatly increased over the past few years by researchers in the field of control and robotics. In
[3], distance-based potential functions and gradient-based flows that depend on spatial neighbors of
each vehicle are used for coordination of multi-vehicles with linear dynamics. A similar framework
is also used in [4] to perform missions by translational and rotational maneuvers of a group of
vehicles. Coordination of a group of nonholonomic kinematic mobile robots using a graph theoretic
framework is considered in [5]. The use of graph rigidity and Delaunay triangulations for multi-
vehicle formations is discussed in [6]. A combination of graph theoretic and LMI-based frameworks
are applied to control of leader–follower type architectures in [7]. In [8], a behavioral approach is
used for control of leader–follower formations of multiple (kinematic) mobile robots.

In this paper, we create a theoretical framework that allows automatic cost specification for
a given mission for a group of vehicles. The obtained optimization problem is then solved using
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the nonlinear trajectory generation (NTG) software package [9] in a centralized way. The issues
regarding the distribution of this optimization problem is also discussed.

In [10], we introduced the notion of formation graphs and their importance in unique (and unam-
biguous) representations of multi-vehicle formations. These graphs are used to obtain bounded and
distributed control laws for formation stabilization of vehicles with linear (i.e. double-integrator)
dynamics. Later, in [11], we formalized the notion of formations of multiple agents/vehicles and
minimal requirements, in terms of the number of edges, for uniquely specifying a formation. This is
done based on the tools from combinatorial graph rigidity [12, 13, 14, 15]. Here, we add specifica-
tion of foldability [10] to the definition of a formation graph. In addition, we explicitly specify the
required cost for navigation and tracking in formation for a group of vehicles. In [16], for the special
case of three vehicles, the problem of formation stabilization is addressed using Model Predictive
Control (MPC). Here, we aim at developing a rather general framework to do task specification for
performing a mission by multiple vehicles in a coordinated fashion.

The outline of the paper is as follows. In Section 2, we define formation graphs and provide
some background on graph theoretic notions used in this paper. The main optimization problem
is formulated in Section 3. The method for construction of the costs for formation stabilization,
collision avoidance, and tracking is given in Section 4. The dynamics of the vehicles is explained
in Section 5. In Section 6, the simulation results for six vehicles are presented. In Section 7, issues
regarding the distribution of the main optimization problem of the paper are discussed. Finally,
concluding remarks are made in Section 8.

2 Formation Graphs and Deviation Variables

In this section, we provide some background on graph theory with application to representation
and manipulation of formations of multiple vehicles. We denote a graph by G = (V, E) where V
is the set of vertices and E ⊂ V × V is the set of edges of the graph. Throughout this paper, we
assume all the graphs are undirected (unless stated otherwise) with no edges (vi, vi),∀i ∈ I from a
node to itself. Each edge is denoted by eij = (vi, vj) ∈ E or ij ∈ E for simplicity of notation where
i, j ∈ I = {1, . . . , n}. An orientation of the edges of the graph, Eo ⊂ E , is the set of edges of the
graph which contains one and only one of the two permutations of ij ∈ E (ij or ji) for all the edges
ij ∈ E .

A triangulated graph is a graph G = (V, E ,F) with the set of faces F ⊂ V×V×V with elements
fijk = (vi, vj , vk) or simply ijk (i, j, k ∈ I) satisfying the following consistency condition:

fijk = (vi, vj , vk) ∈ F → (vi, vj) ∈ E , (vj , vk) ∈ E , (vk, vi) ∈ E ,∀fijk ∈ F . (1)

Similarly, an orientation of the faces of a triangulated graph G is a set of faces Fo ⊂ F that contains
one out of the six permutations of each face ijk ∈ F . Define the dual graph D(G) of a triangulated
graph G as a graph with |Fo| number of nodes, one corresponding to each (oriented) face of G.
There is an edge between For two distinct faces f1, f2 ∈ Fo if and only if f1 and f2 share a common
edge e ∈ E . A triangulated formation graph is a quintuple

G = (V, E ,D,F ,A), (2)

with a connected dual graph D(G). Let qi = (xi, yi)T ∈ R2 denote the position of the node vi.
Here, D is the set of distances ‖qi− qj‖ and F is the set of triangular faces with the corresponding
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set of areas A = {aijk} defined by

aijk = det

 xi yi 1
xj yj 1
xk yk 1

 = (qk − qi)TS(qj − qi), (3)

where

S =
[

0 −1
1 0

]
. (4)

We use Delaunay triangulation [17, 18, 19] of a set of points to obtain our triangulated graphs. In
Figure 1 a triangulated V–formation is shown with

V = {1, 2, 3, 4, 5, 6, 7},
Eo = {21, 31, 32, 42, 43, 53, 54, 64, 65, 75, 76},
Fo = {312, 432, 534, 654, 756}.

(5)

1

2 3

4 5

6 7

.

Figure 1: A triangulated V–formation.

Fix the edge and face orientation of the triangulated graph G such that for all the faces aijk ≥ 0,
i.e. if for the face ijk ∈ Fo ⊂ F , aijk < 0 then replace the triplet (vi, vj , vk) ∈ Fo by (vj , vi, vk)
to change the sign of the determinant in (3). The following edge and face deviation variables (also
known as shape variable [11]) associated with the edges and faces of the triangulated graph G are
defined, respectively, as

ηij = ‖qj − qi‖ − dij , ∀ij ∈ Eo

δijk = qik ⊗ qij := (qk − qi)TS(qj − qi)− aijk, ∀ijk ∈ Fo,
(6)

where qrs := qs − qr and the tensor product ⊗ is defined by α⊗ β := αTSβ for α, β ∈ R2.
Let pi = q̇i denote the velocity of each node vi ∈ V. Then, the edge and face deviation rate

variables (also known as shape velocities [11]) associated with the set of edges and faces of the
graph G are defined, respectively, as follows:

νij := η̇ij =
(pj − pi)T · (qj − qi)

‖qj − qi‖
= nT

ij · (pj − pi), ∀ij ∈ Eo

ξijk := δ̇ijk = (pk − pi)TS(qj − qi) + (qk − qi)TS(pj − pi), ∀ijk ∈ Fo,

(7)
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where nij = qij/‖qij‖ for qi 6= qj . Using the notation prs = ps − pr and α⊥ := Sα (thus α ⊗ β =
αT · β⊥), we can simplify the expression for the shape velocities as

νij := nT
ij · pij , ∀ij ∈ Eo

ξijk := pik ⊗ qij + qik ⊗ pij = pT
ik · q⊥ij − pT

ij · q⊥ik, ∀ijk ∈ Fo.
(8)

3 Formulation of the Optimization Problem

In this paper, we are interested in constructing a meaningful integrated cost function and ter-
minal cost (respectively, L(x, u) and G(x) in (9)) for the purpose of performing a mission in a
coordinated fashion using multiple vehicles with underactuated dynamics and constrained controls.
More precisely, here, the mission of interest is tracking in formation for a group of underactuated
hovercraft-type mobile robots with dynamics given in (31) and bounded control (i.e. ui ∈ U ,∀i ∈ I
where U 3 0 is a compact set (i.e. U = [0 umax]2 ⊂ R2)). The overall optimization problem can be
expressed as the following:

J (x0) = min
ẋi = f(xi, ui),

ui ∈ U

∫ T

0
L(x, u)dt+G(x(T )), x(0) = x0, i ∈ I, (9)

where x = col(x1, . . . , xn) and G(x) is a control Lyapunov function (CLF) for the concatenated
dynamics of all vehicles ẋ = F (x, u) (the ith element of F is f(xi, ui)). To construct L(x, u)
and G(x), we need to add several cost functions that each have a specific role in achieving our
coordinated tracking objective. In the following, we explain how we obtain the terms that constitute
L(x, u) and G(x). The optimal control resulting from (9) is implemented in a receding horizon
fashion.

4 Formation/Tracking Cost Decomposition

We demonstrate that the integrated cost for the problem of tracking in formation is constructed
by decomposition of the task to formation stabilization with collision avoidance plus tracking.

4.1 Formation Cost

Let σ(x) : R → R be a continuous and locally Lipschitz function satisfying the following properties:
i) σ(0) = 0, ii) (x−y)(σ(x)−σ(y)) > 0,∀x 6= y. Then, based on ii), xσ(x) > 0 and φ(x) =

∫ x
0 σ(s)ds

is a positive definite and convex function which we refer to as a cost function. As an example,
consider

σ(x) =
x√

x2 + 1
→ φ(x) =

√
x2 + 1− 1 (10)

We define the potential-based cost and the kinetic-based cost associated with the formation
graph G = (V, E ,D,F ,A), respectively, as the following

VG(q) :=
∑

ij∈Eo
φ1(ηij) +

∑
ijk∈Fo

φ2(δijk),
TG(q, p) :=

∑
ij∈Eo

φ3(νij) +
∑

ijk∈Fo
φ4(ξijk),

(11)
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where φi(x) =
∫ x
0 σi(s)ds, i = 1, 2, 3, 4 and the σi’s satisfy conditions i) and ii). For the special case

where all the σi’s are equal to the identity function, φi(x) = x2/2 and both VG , TG are quadratic
functions of the shape variables and velocities. Here, we use φ1(x) = φ2(x) = φ3(x) = φ4(x) = x2/2
(note that the choice of φ1(x) = φ2(x) =

√
x2 + 1− 1 is possible as well).

In general, corresponding to each edge shape variable ηij , there exists a cost function φij(x). Let
Φη,Φν ,Φδ,Φξ denote the set of cost functions associated with the set of variables ηij , νij , δijk, ξijk,
respectively. We refer to Φf = (Φη,Φν ,Φδ,Φξ) as the set of formation costs corresponding to graph
G. The pair (G,Φf ) is called a (formation) cost graph. We refer to the formation Hamiltonian [10]
given by

HG(q, p) = TG(q, p) + VG(q) (12)

as the formation cost induced by the cost graph (G,Φf ).

Definition 1. (equilibrium state) We say x∗ = col(q∗, p∗) ∈ R4n is an equilibrium state of the cost
graph (G,Φf ) if and only if HG(q∗, p∗) = 0.

Definition 2. (orbit) Let (R, b) ∈ SO(2)× R2 and satisfy the kinematic equations{
ḃ = v

Ṙ = Rω̂
(13)

Define the elements of the vectors q̄, p̄ as{
q̄i = Rqi + b
p̄i = Rpi +Rω̂qi + v.

(14)

The orbit of a point x = col(q, p) is defined as [x] := {x̄ ∈ R4n : x̄ = col(q̄, p̄)}.

Proposition 1. The formation cost HG is invariant along the orbit of any point x = col(q, p) ∈ R4n.

Proof. The proof is by direct calculation (the property RS = SR is the key in this proof).

4.2 Collision Avoidance Cost

One of the main challenges in formation stabilization for multiple vehicles regardless of any tracking
is collision avoidance between vehicles that get too close to each other. Let qi, qj be two vehicles
that are not necessarily neighbors of each other in graph G. Imagine a circular protection zone with
radius r0 around each vehicle. Define the safety variable between any two arbitrary vehicles vi and
vj as

µij = ‖qj − qi‖ − r0. (15)

Apparently, two vehicles collide if µij = −r0. The objective is to satisfy µij > −r0. Furthermore, if
two vehicles are already apart by r0, or µij ≥ 0, there is no need to worry about collision avoidance.
Since no vehicle can physically apply an infinite force to avoid another vehicle, it is not reasonable to
use potential (or barrier) functions of the type V (qi, qj) = − log(‖qi−qj‖) or V (qi, qj) = 1/‖qi−qj‖
between two vehicles with µij < 0. A numerically feasible alternative to applying forces with
singularities is to use a constant repelling force between two vehicles with µij < 0 and applying no
force when µij ≥ 0, i.e. we could use the potential function V (qi, qj) = ψ(‖µij‖) where

ψ(x) := −min{0, x} =
−x+ |x|

2
. (16)
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A smooth approximation of this function is given by

ψε(x) :
−x+

√
x2 + ε2

2
, 0 < ε� 1 (17)

Both ψ(x), ψε(x) are depicted in Figure 2. Notice that

−10 −5 0 5 10
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0

2

4

6

8

10

12 ψ(x)
ψε(x)

Figure 2: The function ψ(x) and its smooth approximation ψε(x).

fε(x) = −∇ψε(x) =
1
2
(1− x√

x2 + ε2
) =

1
2
(1− σ(

x

ε
)) > 0,∀x. (18)

This means that for x > ε0 = 5ε, fε(x) ≈ 0. Now, define the following continuous approximation
of fε(x)

f̃ε(x) :=
{
fε(x)− fε(ε0), x ≤ ε0
0, x > ε0,

(19)

which satisfies the property f̃ε(x) ≥ 0,∀x. Define the positive semidefinite function

ψ̃ε(x) := −
∫ x

ε0

f̃ε(s)ds, (20)

then, we have
ψ̃ε(x) = 0,∀x ≥ ε0, ψ̃ε(x) > 0,∀x < ε0. (21)

Let Ni denote all the spatial neighbors of vehicle vi defined as follows:

Ni := {j ∈ I : ‖qj − qi‖ ≤ r0 + ε0} (22)

By definition, we have Ni := {j ∈ I : µij ≤ ε1}. Let us define the following collision avoidance cost

Vcol(q) =
∑
i∈I

∑
j∈Ni

ψε(µij). (23)

If no two vehicles are spatial neighbor of each other, i.e. µij > ε0,∀i < j ∈ I, then the collision
avoidance cost is zero (Vcol(q) = 0).
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Remark 1. The method that is presented here for construction of Vcol(q) is a distributed way of
defining a collision avoidance cost for a multi-vehicle system as compared to a centralized approach.
In a centralized cost, there is a pair-wise potential function ψε(µij) between any two vehicle that will
never vanish no matter how far the vehicles are from each other. The cost Vcol(q) can be calculated
in a distributed manner because each vehicle needs to know about its local spatial neighborhood
Ni and not all other vehicles.

4.3 Tracking Cost

To perform the tracking, we choose a subgroup of vehicles called the core vehicles to be in charge of
doing the navigation and tracking in addition to trying to stay in formation with follower vehicles,
i.e. the vehicles that are not among the core vehicles. For doing so, we could choose a subgraph of
the triangulated graph G = (V, E ,D,F ,A) called Gc which contains a subset of the faces in F with
their corresponding edges and vertices. In its simplest form, Gc consists of a single triangle with the
set of vertices Vc = {v1, v2, v3}. For simplicity of notation, we assume all vehicles vi, i > 3 are the
followers. In general, the index set of the set of the core vehicles and the followers are denoted by
Jc and Jf , respectively. Notice that Jc ∪ Jf = I, Jc ∩ Jf = ∅. Among the core vehicles, we choose
one of the vehicles to be the attitude leader vj∗ [11], i.e. j∗ ∈ Jc. Define the position and attitude
of the core formation as

qc =
1
|Jc|

∑
j∈Jc

qj ,

rc =
qc − qj∗

‖qc − qj∗‖
,

(24)

where |Jc| denotes the number of members of the set Jc. Let Rc = [rc|r⊥c ] ∈ SO(2), then Ṙc = Rcω̂c

defines ωc satisfying θ̇c = ωc. Here, θc is the angle of rc with the horizontal axis of the reference
frame. Similarly, we can define the velocity of pc = q̇c

pc =
1
|Jc|

∑
j∈Jc

pj (25)

This allows us to view the whole set of core vehicles as a single vehicle called the aggregated vehicle
with the following dynamics:

aggregated vehicle:


q̇c = pc,
ṗc = uc,

θ̇c = ωc,
ω̇c = τc,

(26)

where xc = col(qc, pc, θc, ωc) ∈ R6, uc ∈ R2, and τc ∈ R. Both uc and τc can be directly calculated
from the vehicles dynamics and the definition of qc, θc (it turns out that this calculation is not
necessary to be done explicitly). Now, define a virtual vehicle called the navigator with the same
dynamics as the aggregated vehicle:

navigator:


q̇d = pd,
ṗd = ud,

θ̇d = ωd,
ω̇d = τd,

(27)
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with the initial conditions that are identical to the initial conditions of the aggregate vehicle. Let
yr(t) = col(qr(t), θr(t)) : R → R3 be a reference trajectory for the purpose of tracking. The
navigator applies the following control input to achieve asymptotic output tracking of yr:{

ud = −c1(qd − qr)− c2(pd − q̇r) + q̈r
τd = −c1(θd − θr)− c2(ωd − θ̇r) + θ̈r

(28)

with c1, c2 > 0. With the idea of trying to force the aggregated vehicle to follow the navigator, we
define the following tracking cost function:

Htr(xc, xd) := φ5(qc − qd) + φ6(pc − pd) + φ7(θc − θd) + φ8(ωc − ωd), (29)

where xd = col(qc, pc, θc, ωc), φ5(x) = φ6(x) = ‖x‖2/2, and φ7(x) = φ8(x) = x2/2. We take

L(x, xd, u) = L(x, xd) := HG(q, p) +Htr(xc, xd) + Vcol(q)
G(x, xd) = HG(q, p) +Htr(xc, xd)

(30)

The reason that the terminal cost G(x, xd) does not contain any collision avoidance cost is that
it is assumed that in the final desired formation no vehicle is in the protection zone of any other
vehicle, i.e. Ni = ∅,∀i ∈ I.

Definition 3. (tracking in formation) We say a group of vehicles achieve asymptotic tracking in
formation if and only if the following conditions hold:

i) The formation of the vehicles asymptotically converges to the desired formation which is the
equilibrium state of the cost graph (G,Φf ).

ii) The output yc = col(qc, θc) of the aggregated vehicle of the set of core vehicles asymptotically
tracks the output yr.

5 Underactuated Robot Dynamics

In this paper, we assume each vehicle is a hovercraft mobile robot with the following dynamics:
q̇i = pi

mṗi =
[

cos(θi)
sin(θi)

]
(u1

i + u2
i )− k1 · pi

θ̇i = ωi

I0ω̇i = r0(u1
i − u2

i )− k2 · ωi

(31)

where 0 ≤ k1/m, k2/I0 � 1 and m, I0, r0 > 0 are physical parameters of the vehicle dynamics. In
addition, the control inputs of each vehicle are positive and bounded or 0 ≤ u1

i , u
2
i ,≤ umax. In other

words, the control ui = (u1
i , u

2
i )

T belongs to a compact set U as

ui ∈ U = [0 umax]× [0 umax] (32)

For simplicity of notation, we represent the dynamics of each vehicle in (31) as the following

ẋi = f(xi, ui) = Axi +B(θi)ui, ui ∈ U , i ∈ I (33)
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with the state xi = col(qi, pi, θi, ωi) ∈ R6 and

A =


02×2 I2×2 0 0
02×2 −k1/mI2×2 0 0
02×2 02×2 0 1
02×2 02×2 0 −k2/I0

 , B(θi) =



0 0
0 0

cos(θi)/m cos(θi)/m
sin(θi)/m sin(θi)/m

0 0
r0/I0 −r0/I0


Clearly, the system in (31) is an underactuated system with 3 degrees of freedom (DOF) and 2
control inputs.

6 Simulation Results

In this section we present the simulation results for tracking in formation for a group of six underac-
tuated mobile robots with dynamics given in (31). The graph for the desired formation is shown in
Figure 3 (each edge is of length 1). In the simulations that follow, the horizon time is 6 seconds and

3

2

1

4

5

6
.

.

.

Figure 3: A triangulated six–vehicle formation.

the update time is 1 second. Figure 4 (a) shows a 6-vehicle formation tracking a reference moving
with constant velocity and heading. The vehicles are multi-colored and the reference vehicle is clear
(white). The trajectories of each vehicle are denoted by lines with “x” marks for each receding
horizon update.

The vehicles are initially lined up with a velocity of 1 in the horizontal direction, equal to the
reference velocity. Note that without the collision avoidance cost term, vehicles 4 and 3 collide
around 2.5 seconds. Figure 4 (b) shows snapshots of the evolution of the formation for the first 5
seconds of tracking.

Figures 5 (a) and (b) show the control inputs for vehicles 1 through 3 and vehicles 4 through 6,
respectively. It can be observed that vehicle 6 in particular performs a rather aggressive maneuver,
as the control goes to the constraint bounds for nearly 1 second. After 10 seconds, all vehicles reach
a steady-state behavior.

The desired distance between any two neighboring vehicles the formation is 1. Figure 6 shows
that vehicles 3 and 4 get close to each other without having a collision and eventually converge to
the desired distance

√
3 ≈ 1.73 from each other.
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7 Distributed Optimization: Remarks

The cost specification procedure detailed in the previous sections is beneficial not only because it is
scalable to an arbitrary number of vehicles, but it also lends itself to a distributed implementation.
We briefly describe such an implementation here, leaving the technical details for a future work.

The formation cost is additive, and consequently separable, with respect to the (edge and face)
deviation and deviation rate variables. Note that even a single deviation variable is non-separable
with respect to the positions of the end points of an edge. Assuming an agent is locally solving
an optimization for the purpose of computing its own control, each such local optimization must
account for the state of the neighbors of that agent on the graph. The tracking cost is induced by
a subgraph of the full triangulated graph. Although the local optimization corresponding to the
set of core vehicles must include a tracking cost, no new neighbors are introduced. The collision
avoidance cost does introduce the requirement that any local optimization be able to account for
the spatial neighbors of the corresponding agent, but this is a local requirement and the cost can
be calculated in a distributed manner.

A challenging issue for a distributed implementation is to appropriately account for the graph/spatial
neighbors in each local optimization. Of course, such an account must respect the appropriate
timing modes (synchronous/asynchronous) and communication limitations. Currently, we are ex-
ploring algorithms for distributing optimization problems with non-separable costs under various
timing and communication assumptions.

8 Conclusion

In this paper, we introduced a graph theoretic framework for algebraic specification of a formation
in an unambiguous way based on the notion of formation graphs. This specification allowed us
to construct cost functions for formation stabilization, collision avoidance, and tracking which
constitute three terms of the integrated cost and terminal cost of a finite horizon optimization
problem. We presented tracking simulation results for a formation of six underactuated mobile
robots. The obtained optimization problem is solved using the NTG software package. We also
discussed the issues regarding the distribution of the main optimization problem in this paper
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Figure 4: Trajectories of a six-vehicle formation: (a) the evolution and the path of the formation,
(b) snapshots of the evolution of the formation (note: the two cones at the sides of each vehicle
show the magnitudes of the control inputs).
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Figure 5: Control inputs applied by each vehicle for the purpose of tracking in formation: (a)
controls of vehicles 1 through 3, (b) controls of vehicles 4 through 6.
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