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Preface

Social and medical researchers have long been concerned about the need
properly to model complex data structures, especially those where there is
a hierarchical structure such as pupils nested within schools or measurements
nested within individuals. Statisticians, especially those involved in survey
sampling, recognise that failure to take account of such structures in standard
models can lead to incorrect inferences. What has been less well appreciated is
that a failure properly to model complex data structures makes it impossible
to capture that complexity that exists in the real world. It is only in the last 20
years or so, when appropriate and efficient model based methods have become
available to deal with this issue, that we have come to appreciate the power
that more complex models provide for describing the world and providing new
insights. This book sets out to present some of the most recent developments
in what has come to be known as multilevel modelling.

An introductory chapter by de Leeuw and Meijer gives a brief history
and a standard exposition of the basic multilevel model involving random
coefficients at level 2 and above, together with a discussion of some likelihood
based estimation procedures. This is followed by a chapter by Draper that
outlines a Bayesian approach to modelling multilevel structures using the
MCMC algorithm, with a clear exposition of the rationale for such an approach
and well worked through examples. This is as good an introduction as any to
Bayesian analysis and MCMC estimation. The next chapter by Snijders and
Berkhof deals with the important issue of diagnostics for multilevel models.
It takes the reader carefully through the various model assumptions and how
they can be examined, for example, making use of model elaborations and
residual analysis. There is also a useful section on smoothing models. Moer-
beek, van Breukelen and Berger look at ways of optimally sampling units in
multilevel models. It includes clear examples for Normal and generalised linear
models with useful discussions of repeated measures and schooling designs.
Raudenbush contributes a chapter where he looks at the inferential problems
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that can arise when, in a 2-level model, the number of level 1 units per level 2
unit is small. He gives some examples, such as matched pairs and cluster
randomised trials and explains how these can be interpreted and there is a
brief discussion of issues in generalised linear models. The Chapter by Hedeker
deals in detail with discrete responses, either ordered or nominal. It has a clear
exposition with useful examples. Skrondal and Rabe-Hesketh discuss models
for longitudinal repeated measures data, including those with serial depen-
dency structures, for Normal and discrete responses. Well motivated examples
are used for the exposition. Rasbash and Browne show how cross-classified
and multiple membership structures can be modelled. They provide examples
and a convincing exposition of why researchers should be looking beyond
mere hierarchies when analysing real life data. Rodriguez looks at generalised
linear models with particular reference to survival data and gives a detailed
discussion of various estimation algorithms, together with a useful example.
Longford provides a chapter on missing data, where he describes the use of
the EM algorithm and random multiple imputation. Van der Leeden, Meijer
and Busing, in a comprehensive account, take a careful look at bootstrap and
jackknife procedures for studying bias and for obtaining valid standard errors
and confidence intervals in multilevel models. Finally, the Du Toit’s present an
account of multilevel structural equation models with some useful examples
and detailed derivations.

The book covers a great number of important topics and there is a useful
amount of cross referencing with a good number of worked examples. The
amount of methodological activity now underway is very impressive and as
these become incorporated into software packages will hopefully persuade
researchers to undertake data analysis that more closely reflects the structure
of real world data than traditional methods assume. Most of the developments
discussed leave room for further work. As hardware becomes more powerful so
certain options will become more attractive. This is especially the case with
resampling methods such as the bootstrap, multiple imputation and MCMC
and these do seem to be where we may expect the most interesting future de-
velopments. In particular, given what is happening more generally, we should
expect MCMC methods to become more and more prevalent. Not only do they
allow proper Bayesian inference, especially for small samples, as emphasised
by Draper, they also have great potential because of the modularity of the
algorithm steps. This is clearly demonstrated in the Chapter by Rasbash and
Browne, where, as they point out, certain kinds of data simply cannot be
treated properly using maximum likelihood.

So, apart from the increasing adoption of MCMC methods what might
be useful future directions for research? Several of these areas are described
in this volume. I would single out cross classified and multiple membership
models that move us on from the consideration of simple hierarchies. It is
very rare in the real world to find structures that are purely hierarchical. In
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education students will typically belong to a school hierarchy at the same
time as a neighbourhood hierarchy, both of which may influence the outcome
variable of interest. In addition students may move among neighbourhoods or
schools so that assignment to a single higher level unit may be misleading and
lead to important biases. As Rasbash and Browne describe, many other areas
of the biological and social sciences have these structures and this provides
an exciting and fruitful challenge for multilevel techniques.

I would also emphasise missing data procedures with non random missing-
ness, since problems such as non-response in surveys are becoming acute in
many places. As Longford suggests, the existence of additional or ‘auxiliary’
information in surveys can be especially useful in allowing the application of
existing missing data procedures to handle informative non-response.

We also need good diagnostic procedures to test the assumptions of our
models and more work here would be very useful, for example in testing the
validity of the standard assumption of multivariate Normality. It is particu-
larly important that these procedures are brought within existing modelling
packages so that their use is encouraged.

Likewise, another large area of interest is in latent variable models of
all kinds, including complex ones such as latent growth trajectory models.
The application of multilevel latent structure models with binary and ordered
responses is an important area for psychometrics where much current activ-
ity under the heading of item response modelling often ignores the inherent
hierarchical structures.

Despite the wide coverage of the topics that are dealt with, there are also
areas that are not so well covered in this book, which is inevitable in a rapidly
changing field.

Thus, measurement and misclassification errors, while mentioned briefly,
are not treated in depth, yet we know that ignoring them can have pro-
found effects on inferences. In educational and medical research, for example,
they abound and are often correlated, and we need research on both how to
estimate measurement error variances and covariances and misclassification
probabilities and then how to incorporate these estimates into our models.

Multivariate models are not as well covered as I would wish, since they
are becoming more extensively used. An interesting problem is where there
are multiple responses at more than one level together. Such models have
important applications to prediction problems, multi-process modelling and
multiple imputation. An example of the first case is where we have both re-
peated measures data on individuals and subsequent individual level measures
we wish to predict, as in growth studies. Likewise, in multi-process models
we may wish to jointly model, say, pupil responses together with teacher
or school level variates, for prediction or adjustment purposes, as well as
moving us towards better causal understandings. For imputation procedures
we often need jointly to model responses at several levels if these variables
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have missing values. Additionally, in all these cases our responses may be
mixtures of continuous and discrete variables, and this presents an additional
challenge.

Whilst all these methodological developments are exciting and important,
the methodological community still has the task of communicating them to
potential users. As with all new techniques this requires a combination of
clear exposition together with suitable software tools. Many of the authors of
chapters in this book have themselves provided such combinations, but more
is needed as the methodology advances. Nevertheless we do need to be careful
that we are not promoting multilevel modelling as a kind of magic wand
that can transmute bad data into good or turn a poor design into a highly
efficient one. Sensitivity to assumptions and accessible ways of investigating
those assumptions are things we need continually to emphasise.

Finally, the editors are to be congratulated on bringing together a distin-
guished group of authors all of whom have interesting things to say. This
volume gives us an insight into much current research and will hopefully
attract others into this important area of activity.

November 2006 Harvey Goldstein
Professor of Social Statistics
University of Bristol
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1

Introduction to Multilevel Analysis

Jan de Leeuw1 and Erik Meijer2

1 Department of Statistics, University of California at Los Angeles.
2 University of Groningen, Faculty of Economics and RAND Corporation

1.1 History

A common assumption in much of classical statistics is that observations are
independently and identically distributed (or i.i.d.). In regression analysis,
using the linear model, we cannot insist on identical distributions, because
observations differ in expected value, but we generally continue to insist on
independence. In fact, we continue to assume that the stochastic parts of the
model, i.e., the errors or disturbance terms, are still i.i.d.

In educational statistics, and in various areas of quantitative sociology,
researchers early on began looking for statistical techniques that could incor-
porate both information about individuals and information about groups to
which these individuals belonged. They realized that one of the most challeng-
ing aspects of their discipline was to integrate micro and macro information
into a single model. In particular, in the applications educational statisticians
had in mind, students are nested in classes, and classes are nested in schools.
And perhaps schools are nested in districts, and so on. We have predictors for
variables of all these levels, and the challenge is to combine all these predictors
into an appropriate statistical analysis, more specifically a regression analysis.

Previously these problems had been approached by either aggregating indi-
vidual level variables to the group level or disaggregating group level variables
to the individual level. It was clear that both these two strategies were unpleas-
antly ad-hoc and could introduce serious biases. Trying to integrate the results
of such analyses, for instance by using group-level variables in individual-level
regressions, was known as contextual analysis [9] or ecological regression [42].
It resulted in much discussion about cross-level inference and the possibility,
or even the unavoidability, of committing an ecological fallacy [104].
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In school effectiveness research, which became popular in the 1970s follow-
ing the epochal studies of Coleman et al. [22] and Jencks et al. [62], educational
researchers realized early on that taking group structure into account could
result in dependencies between the individual observations. Economists and
biostatisticians involved in agriculture and breeding had realized this earlier,
and had designed variance and covariance component models for the Anal-
ysis of Variance. But in school effectiveness research a somewhat different
paradigm developed, which looked at dependencies in a more specific way.
The emphasis was on regression analysis and on data of two levels, let’s
say students and schools. Performing a regression analysis for each school
separately was not satisfactory, because often samples within schools were
small and regression coefficients were unstable. Also, these separate analyses
ignored the fact that all the schools were part of the same school system
and that consequently it was natural to suppose the regression coefficients
would be similar. This similarity should be used, in some way or another,
to improve stability of the regression coefficients by what became known as
borrowing strength. And finally, in large scale studies there were thousands of
schools and long lists of regression coefficients did not provide enough data
reduction to be useful.

On the other hand, requiring the regression coefficients in all schools to be
the same was generally seen as much too restrictive, because there were many
reasons why regressions within schools could be different. In some schools, test
scores were relatively important, while in others socio-economic status was a
much more dominant predictor. Schools clearly differed in both average and
variance of school success. Of course, requiring regression coefficients to be
constant did provide a large amount of data reduction, and a small sampling
variance, but the feeling was that the resulting regression coefficients were
biased and not meaningful.

Thus some intermediate form of analysis was needed, which did not result
in a single set of regression coefficients, but which also did not compute
regression coefficients separately for each school. This led naturally to the
idea of random coefficient models, but it left open the problem of combining
predictors of different levels into a single technique. In the early 1980s Burstein
and others came up with the idea of using the first-stage regression coeffi-
cients from the separate within-school regressions as dependent variables in a
second-stage regression on school-level predictors. But in this second stage, the
standard regression models that assumed independent observations could no
longer be used, mainly because they resulted in inefficient estimates of the re-
gression coefficients and biased estimates of their standard errors. Clearly the
first-stage regression coefficients could have widely different standard errors,
because predictors could have very different distributions in different schools.
The size of the school, as well as the covariance of the predictors within schools,
determined the dispersions of the within-school regression coefficients. Typical
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of this stage in educational research are Langbein [71], Burstein et al. [15],
and Burstein [14]. Attempts were made to estimate the second-stage regression
coefficients by weighted least squares techniques, or to adjust in some other
way for the bias in the standard errors [11, 50, 118]. These attempts were
not entirely successful, because at the time the statistical aspects of these
two-stage techniques were somewhat baffling. A more extensive historical
overview of contextual analysis and Burstein’s slopes-as-outcomes research
is in de Leeuw and Kreft [28] and Kreft and de Leeuw [67].

It became clear, in the mid-1980s, that the models the educational re-
searchers were looking for had already been around for quite some time in
other areas of statistics. Under different names, to be sure, and usually in a
slightly different form. They were known either as mixed linear models [51]
or, in a Bayesian context, as hierarchical linear models [72]. The realization
that the problems of contextual analysis could be imbedded in this classical
linear model framework gave rise to what we now call multilevel analysis. Thus
multilevel analysis can be defined as the marriage of contextual analysis and
traditional statistical mixed model theory.

In rapid succession the basic articles by Mason et al. [81], Aitkin and
Longford [2], de Leeuw and Kreft [28], Goldstein [44], and Raudenbush and
Bryk [100] appeared. And all these articles were subsequently transformed
into successful textbooks [46, 67, 76, 101]. The two major research groups
in educational statistics led, respectively, by Goldstein and by Raudenbush
produced and maintained major software packages [97, 102]. These textbooks
and software packages, together with subsequent textbooks, such as Snijders
and Bosker [111] and Hox [59], solidified the definition and demarcation of
the field of multilevel analysis.

1.2 Application Areas

We have seen that multilevel analysis, at least as we have defined it, started in
the mid-1980s in educational measurement and sociology. But it became clear
quite rapidly that once you have discovered ways to deal with hierarchical data
structures, you see them everywhere. The notion of individuals, or any other
type of objects, that are naturally nested in groups, with membership in the
same group leading to a possible correlation between the individuals, turned
out to be very compelling in many disciplines. It generalizes the notion of intra-
class correlation to a regression context. Moreover the notion of regressing
regression coefficients, or using slopes-as-outcomes, is an appealing way to
code interactions and to introduce a particular structure for the dependencies
within groups.
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Survey Data

Many surveys are not simple random samples from a relatively homogeneous
population, but are obtained from nested sampling in heterogeneous sub-
groups. Larger units (e.g., states) are drawn first, within these larger units,
smaller units (e.g., counties) are drawn next, and so forth. Large surveys
typically contain multiple levels of nesting. Sometimes, all units from a certain
level are included, as with stratification. See, e.g., Muthén and Satorra [84] for
some examples of the complicated sampling schemes used in survey design.
The reason for such a complicated nesting structure of surveys is, of course,
that it is assumed that the units are different in some respect. It is then natural
to model the heterogeneity between groups through multilevel models. See,
e.g., Skinner et al. [109] for a book-length discussion of many aspects of the
analysis of survey data.

Repeated Measures

In repeated measures models (including growth study models) we have mea-
surements on a number of individuals which are replicated at a number of
fixed time points. Usually there is only a single outcome variable, but the
generalization to multivariate outcomes is fairly straightforward. In addition
it is not necessary that all individuals are measured at the same time points.
There can be missing data, or each individual can be measured at different
time points. The number of books and articles on the analysis of repeated
measures is rapidly approaching infinity, but in the context of multilevel anal-
ysis the key publications are Strenio et al. [116] and Jennrich and Schluchter
[63]. Chapter 7 of this volume discusses models for longitudinal data. For an
extensive treatment of these longitudinal models in the more general context
of mixed linear models we refer to Verbeke and Molenberghs [122].

A different type of “repeated measures” is obtained with conjoint choice or
stated preference data. With such data, subjects are asked to choose between
several hypothetical alternatives, e.g., different products or different modes
of transport, defined by a description of their alternatives. When subjects
are given more than one choice task, a multilevel structure is induced by
the repeated choices of the same individual. The corresponding models for
such data are usually more straightforward multilevel models than in the case
of longitudinal data, where problems such as dynamic dependence, causing
non-interchangeability of the observations, and attrition (selective dropout of
the sample) often have to be faced. See, e.g., Rouwendal and Meijer [105] for
a multilevel logistic regression (or mixed logit) analysis of stated preference
data. Similar data are common in experimental psychology, where multiple
experiments are performed with the same subjects.
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Twin Studies

In school-based attainment studies we often deal with a fairly small number
of rather large groups. But the opposite can also occur, either by the nature
of the problem or by design. We can decide to use only a small number of
students from each class. Or, in repeated measures studies, we can only have
two measurements per individual (a “before” and “after”, for instance, with
a treatment in between). Another “small groups” example is the twin study,
in which group size is typically two. See chapter 5 for a discussion of this type
of data.

Meta-Analysis

Data, including historical data, are now much more accessible than in the
past. Many data sets are online or are included in some way or another with
published research. This makes it attractive to use previous data sets studying
the same scientific problem to get larger sample sizes and perhaps a larger
population to generalize to. Such (quantitative) analysis of data or results from
multiple previous studies is called meta-analysis. In Raudenbush and Bryk
[99] multilevel techniques specifically adapted to meta-analysis were proposed.
Compare also Raudenbush and Bryk [101, chap. 7].

Multivariate Data

There is a clever way, used by Goldstein [46, chap. 6], to fit general multi-
variate data into the multilevel framework. If we have n observations on m

variables, we can think of these m observations as nested in n groups with
m group members each. This amounts to thinking of the n×m data matrix
as a long vector with nm elements, and then building the model with the
usual regression components and a suitable specification for the dispersion of
the within-group disturbances. It is quite easy to incorporate missing data
into this framework, because having data missing simply means having fewer
observations in some of the groups. On the other hand, in standard multilevel
models, parameters such as regression coefficients are the same for different
observations within the same group, whereas in multivariate analysis this is
rarely the case. Thus, writing the latter as a multilevel model requires some
care.

1.3 Chapter Outline

In this first chapter of the Handbook we follow the general outline of de Leeuw
and Kreft [29]. After this introduction, we first discuss the statistical models
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used in multilevel analysis, then we discuss the loss functions used to measure
badness-of-fit, then the techniques used to minimize the loss functions, and
finally the computer programs written for these techniques. By using these
various steps in the development of multilevel statistical methods it is easy to
discuss the contributions of various authors. It can be used, for instance, to
show that the most influential techniques in the field carefully discuss (and
implement) all these sequential steps in the framework. After a section on
sampling weights, we give an empirical illustration, in which much of the the-
ory discussed in this chapter will be applied. We close with a few final remarks
and appendixes that discuss notation and other useful technical background.

1.4 Models

A statistical model is a functional relationship between random variables. The
observed data are supposed to be a realization of these random variables, or
of a measurable function of these random variables. In most cases, random
variables are only partly specified because we merely assert their distribution
belongs to some parametric family. In that case the model is also only partly
specified, and one of the standard statistical chores is to estimate the values
of the unknown parameters.

In this section we discuss the multilevel model in the linear case in which
there are, at least initially, only two levels. Nonlinear and multivariate gener-
alizations will be discussed in later chapters of this handbook. We also relate
it to variance components and mixed models, which, as we have mentioned
above, have been around much longer.

Notation is explained in detail in Appendix 1.A. Our main conventions are
to underline random variables and to write vectors and matrices in boldface.

1.4.1 Mixed Models

The mixed linear model or MLM is written as

y = Xβ +Zδ + ε (1.1)

with X[n, r], Z[n, p], and(
ε

δ

)
∼ N

((
∅
∅

)
,

(
Σ ∅
∅ Ω

))
.

To simplify the notation, we suppose throughout this chapter that both X
and Z have full column rank.

The regression part of the model has a component with fixed regression
coefficients and a component with random regression coefficients. Clearly
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y ∼ N (Xβ,V ),

with
V

∆=ZΩZ′ +Σ. (1.2)

This illustrates the consequences of making regression coefficients random. We
see that the effects of the predictors in Z are shifted from the expected values
to the dispersions of the normal distribution. We also see that MLM is a linear
regression model with a very specific dispersion structure for the residuals. The
form of the dispersion matrix for the residuals in (1.2) is somewhat reminiscent
of the common factor analysis model [63], and this similarity can be used in
extending multilevel models to covariance structure and latent variable models
(see chap. 12).

It is convenient to parametrize both dispersion matrices Σ and Ω using
vectors of parameters σ and ξ. From now on we actually assume that Σ
is scalar, i.e. Σ = σ2I. A scalar dispersion matrix means we assume the
disturbances ε are homoskedastic. This guarantees that if there are no random
effects, i.e., if δ is zero almost everywhere, then we recover the classical linear
model. We also parametrize Ω as a linear structure, i.e., a linear combination
of known matrices Cg. Thus

Ω = ξ1C1 + · · ·+ ξGCG =
G∑
g=1

ξgCg, (1.3)

and consequently V also has linear structure

V = ξ1ZC1Z
′ + · · ·+ ξGZCGZ

′ + σ2I =
G∑
g=1

ξgZCgZ
′ + σ2I.

The leading example is obtained when Ω = (ωkl) is completely free, apart
from symmetry requirements. Then

Ω = ω11(e1e
′
1) + ω21(e2e

′
1 + e1e

′
2) + · · ·+ ωpp(epe

′
p),

with ek the k-th unit vector, i.e., the k-th column of I, {ξ1, . . . , ξG} =
{ω11, ω21, . . . , ωpp}, and {C1, . . . ,CG} = {e1e

′
1, e2e

′
1 + e1e

′
2, . . . , epe

′
p}. An-

other typical example is a restricted version of this where ωkl is a given
constant (such as 0) for some values of (k, l). These two examples cover the
vast majority of specifications used in multilevel analysis.

In some cases it is useful to write models in scalar notation. Scalar notation
is, in a sense, more constructive because it is closer to actual implementation
on a computer. Also, it is useful for those who do not speak matrix algebra.
In this notation (1.1) becomes, for example,
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yi =
r∑
q=1

xiqβq +
p∑
s=1

zisδs + εi,

or
yi = xi1β1 + · · ·+ xirβr + zi1δ1 + · · ·+ zipδp + εi.

A two-level MLM, which explicitly takes the group structure into account, is
given by

y
j

= Xjβ +Zjδj + εj , (1.4a)

with j = 1, . . . ,m and (
εj
δj

)
∼ N

((
∅
∅

)
,

(
Σj ∅
∅ Ωj

))
. (1.4b)

and, using ⊥ for independence,

(εj , δj) ⊥ (ε`, δ`) (1.4c)

for all j 6= `.
As before, we assume that Σj = σ2

j I, while in addition we assume that
Ωj = Ω. Thus

y
j
∼ N (Xjβ,Vj),

with
Vj

∆=ZjΩZ
′
j + σ2

j I,

and the y
j

for different j are independent.
Observe that the assumption that the Xj and the Zj have full column

rank can be quite restrictive in this case, because we could be dealing with
many small groups (as in chap. 5).

In most applications of multilevel analysis, it is assumed that all σ2
j are

the same, so σ2
j = σ2 for all j. This is not always a realistic assumption

and therefore, most of our discussion will use separate variances. This has
its drawbacks as well, because obviously the number of parameters increases
with the number of groups in the sample. Thus, when the sample consists
of, say, 1000 schools, we would estimate 1000 variance parameters, which is
unattractive. Furthermore, consistent estimation of σ2

j requires group sizes
to diverge to infinity, and therefore in a practical sense, good estimators
of σ2

j would require moderate within-group sample sizes (e.g., nj = 30). In
applications with many small groups, this is obviously not the case.

We can view σ2
j = σ2 as a no-between-groups variation specification and

all σ2
j treated as separate parameters as a fixed effects specification. From

this, it seems that it would be in the spirit of multilevel analysis to treat σ2
j

as a random parameter, σ2
j , and use a specification like

log σ2
j = z′j,p+1γp+1 + δj,p+1,
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with, say, δj,p+1 ∼ N (0, ωp+1,p+1), which may be correlated with the other
random terms. Such a specification is uncommon in multilevel analysis, but it
would be particularly straightforward to incorporate in the Bayesian approach
to multilevel analysis (chap. 2). In the Bayesian approach, it is more com-
mon to use Gamma or inverse Gamma distributions for variance parameters
though, but adaptation of this specification to such distributions is fairly easy.

We will not further discuss specification of σ2
j as random parameters in

this chapter, and treat σ2
j as separate parameters. For a specification with

σ2
j = σ2, most expressions are unaltered except for dropping the j subscript.

However, there are some instances where the differences are a little bit more
pronounced, e.g., in the derivatives of the loglikelihood functions. Then we
will indicate how the expressions change. Thus, we cover both specifications.

1.4.2 Random Coefficient Models

The random coefficient model or RCM is the model with

y = Xβ + ε,

β = β + δ,

with (
ε

δ

)
∼ N

((
∅
∅

)
,

(
Σ ∅
∅ Ω

))
.

Obviously in an RCM we have

y = Xβ +Xδ + ε,

which shows that the RCM is an MLM in which Z = X.
The RCM in this form is not very useful, because without additional

assumptions it is not identified. We give it in this form here to introduce the
notion of random coefficients, and to prepare for the multilevel RCM.

The two-level RCM that has been studied most extensively looks like

y
j

= Xjβj + εj , (1.5a)

β
j

= β + δj , (1.5b)

with the same distributional assumptions as above for the two-level MLM.
Observe that the fixed part of β

j
is assumed to be the same for all groups.

This is necessary for identification of the model.
In this form the random coefficient model has been discussed in the econo-

metric literature, starting from Swamy [117]. It has also become more popular
in statistics as one form of the varying coefficient model, although this term
is mostly used for models with (partly) systematic or deterministic variation
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of the coefficients, such as a deterministic function of time or some other
explanatory variable [54, 61].

The fact that we are dealing with a two-level model here is perhaps more
clear if we use scalar notation. This gives

yij = xij1βj1 + · · ·+ xijpβjp + εij ,

β
js

= βjs + δjs,

An important subclass of the RCM is the random intercept model or RIM.
It is the same as RCM, except for the fact that we assume that all regression
coefficients that are not intercepts have no random component. Thus all slopes
are fixed. For a two-level RIM we consequently have, with some obvious
modifications of the notation,

y
j

= µ
j
1nj +Xjβ + εj ,

µ
j

= µ+ δj .

There is an extensive discussion of RIM ’s, with many applications, in Long-
ford [76]. The econometric panel data literature also discusses this model
extensively; see, e.g., Chamberlain [18], Wooldridge [126, chap. 10], Arellano
[4, chap. 3], or Hsiao [60, chap. 3]. Observe that for a RIM

Vj = ω2E + σ2
j I,

where E has all its elements equal to +1. This is the well-known intra-class
covariance structure, with intra-class correlation

ρ2
j =

ω2

ω2 + σ2
j

.

1.4.3 Slopes-as-Outcomes Models

We are now getting close to what is usually called multilevel analysis. The
slopes-as-outcomes model or SOM is the model with

y = Xβ + ε,

β = Zγ + δ,

with X[n, p], Z[p, r], and(
ε

δ

)
∼ N

((
∅
∅

)
,

(
Σ ∅
∅ Ω

))
.

The characteristic that is unique to this model, compared to others discussed
here, is that the random coefficients β are themselves dependent variables in
a second regression equation. Of course in a SOM we have
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y = XZγ +Xδ + ε,

which shows that the SOM is an MLM in which the fixed regressors are
X = XZ and the random regressors are X.

The two-level SOM is

y
j

= Xjβj + εj , (1.6a)

β
j

= Zjγ + δj , (1.6b)

again with the same distributional assumptions. HereXj [nj , p] and Zj [p, r]. It
is possible, in principle, to have different numbers of predictors in the different
Xj , but we shall ignore this possibility. The regression equations (1.6b) for the
random coefficients imply that differences between the regression coefficients
of different groups are partly explained by observed characteristics of the
groups. These equations are often of great substantive interest.

By substituting the second-level equations (1.6b) in the first-level equa-
tions (1.6a), and by stacking the resulting m equations we find

y = Uγ +Xδ + ε,

with

U
∆=

 X1Z1

...
XmZm

 , (1.7)

and with the remaining terms stacked in the same way, except X, which has
the direct sum form

X =
m⊕
j=1

Xj =

X1 ∅
. . .

∅ Xm

 .

Again this shows that the two-level SOM is just an MLM with some special
structure. We analyze this structure in more detail below.

In the first place, the dispersion matrix of y has block-diagonal or direct-
sum structure:

y ∼ N
(
Uγ,

m⊕
j=1

Vj

)
,

with
Vj

∆=XjΩjX
′
j + σ2

j I.

Second, the design matrix U in the fixed part has the structure (1.7). In fact,
there usually is even more structure than that. In the two-level SOM we often
have
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Zj =
p⊕
s=1

z′j , (1.8)

i.e., Zj is the direct sum of p row vectors, all equal to a vector z′j with q

elements. The vector zj describes group j in terms of q second-level variables.
More elaborately,

Zj =


z′j ∅ ∅ · · · ∅
∅ z′j ∅ · · · ∅
∅ ∅ z′j · · · ∅
...

...
...

. . .
...

∅ ∅ ∅ · · · z′j

 .

This is easily generalized to direct sums of different vectors, even if they have
different numbers of elements. It follows that, if we partition γ accordingly
into p subvectors of length q, we have

E (β
js

) = z′jsγs.

Also
Uj = XjZj =

[
xj1z

′
j1 xj2z

′
j2 · · · xjpz

′
jp

]
,

where xjs is the s-th column of Xj . Thus U is a block-matrix, consisting of
m by p blocks, and each block is of rank one. Consequently, we say the U is
a block-rank-one matrix.

From the point of view of interpretation, each column of a block-rank-one
matrix is the product of a first-level predictor from X and a second-level
predictor from Z. Because generally both X and Z include an intercept, i.e.,
a column with all elements equal to 1, this means that the columns of X and
Z themselves also occur in U , with Z disaggregated. Thus SOM models have
predictors with fixed regression coefficients that are interactions, and much
of the classical literature on interaction in the linear model, such as Cox [23]
and Aiken and West [1], applies to these models as well.

There is one additional consequence of the structure (1.8). We can write

[Uγ]ij =
p∑
s=1

xijsz
′
jγs =

p∑
s=1

q∑
v=1

xijsγsvzjv.

Now define the balanced case of SOM, in which allXj are the same. This seems
very far fetched if we are thinking of students in classes, but it is actually quite
natural for repeated measures. There X could be a basis of growth functions,
such as polynomials or exponentials. If measurements are made at the same
time points, then indeed all Xj are the same. Other situations in which this
may happen are medical or biological experiments, in which dosages of drugs
or other treatment variables could be the same, or psychological experiments,
in which the stimuli presented to all participants are the same.
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In the balanced case, we can rearrange SOM as

Y = ZΓX ′ +∆X ′ +E,

where the (j, i)-th element of Y is yij , the j-th row of Z is z′j , the j-th row
of ∆ is δ′j , the s-th column of Γ is γs, and the meaning of the other symbols
follows. Thus, the rows are independent. This shows that SOM in this case
is a random coefficient version of the classical growth curve model of Potthoff
and Roy [91]. Conversely, SOM can be seen as a far-reaching generalization
of these classical fixed-effect growth models.

1.4.4 Multilevel Models

Most of the classical multilevel literature, with its origins in education and
sociology, deals with the SOM. But in more recent literature multilevel anal-
ysis can refer to more general Hierarchical Linear Models or HLM ’s, of which
the two-level MLM (1.4) and the two-level RCM (1.5) are examples. A good
example of this more general use, which we also follow throughout the Hand-
book, is the discussion in Gelman [40].

1.4.5 Generalizations

We shall be very brief about the various generalizations of the multilevel
model, because most of these are discussed extensively in the subsequent
chapters of this Handbook.

Heteroskedasticity and Conditional Intra-Group Dependence

Heteroskedasticity is the phenomenon that residual variances are different
for different units. More specifically, it usually means that the variance of the
residual depends in some way on the explanatory variables. Heteroskedasticity
is a frequently occurring phenomenon in cross-sectional data analysis (and
some forms of time series analysis, in particular financial time series). There-
fore, we may expect that heteroskedasticity will also be prevalent in many
multilevel data analyses. This is indeed the case. In fact, heteroskedasticity
is an explicit part of most multilevel models. For example, in the model that
we focus on, the covariance matrix of the dependent variables for the j-th
group, y

j
, is Vj = XjΩX

′
j + σ2

j I. Clearly, this depends on Xj , so if Xj

contains more than just the constant and the corresponding elements of Ω are
not restricted to zero, this induces heteroskedasticity. Furthermore, allowing
different residual variances σ2

j is also a form of heteroskedasticity.
However, in this specification, the residual variances within the same group

are the same, i.e., Var(εij) = σ2
j , which is the same for all i. Thus, there is
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heteroskedasticity between groups, but not within groups. This may be unreal-
istic in many applications. In such cases, one may want to specify an extended
model that explicitly includes within-groups heteroskedasticity. Such a model,
and how it can be used to detect heteroskedasticity and thus misspecification
of the random part of the model, is described in chapter 3.

Another widespread phenomenon is lack of independence of observations.
Again, this is one of the features of a typical multilevel model: it is assumed
that observations within groups are dependent. This gives rise to the well-
known intraclass correlation. As we have seen, this is modeled in a typi-
cal multilevel model through the random coefficients, and more specifically,
through the random terms δj in our model specification. However, again this
feature does not extend to conditional within-groups comparisons. The units
are assumed conditionally independent within their groups, reflected in the
diagonality of the covariance matrix of εj . This assumption may also not
always be realistic. The leading example in which it is likely to be violated
is in longitudinal (or panel) data, where the within-groups observations are
different observations of the same subject (or object) over time. In such data,
residuals often show considerable autocorrelation, i.e., there is a high correla-
tion between residuals that are not far apart. This phenomenon, and how it
can be modeled, is discussed extensively in chapter 7. A similar situation is
encountered with spatial data, such as data on geographic regions. Then there
tends to be spatial autocorrelation, i.e., neighboring regions are “more similar”
than regions further apart. See, e.g., Anselin [3] for an overview of modeling
spatial autocorrelation. This type of model was integrated in a multilevel
model with random coefficients by Elhorst and Zeilstra [37].

More Levels and Different Dependence Structures

Slopes-as-outcomes models can be generalized quite easily to more than two
levels. One problem is, however, that matrix notation does not work any
more. Switching to scalar notation, we indicate how to generalize by giving
the multi-level model for student i1 in class i2 in school i3 and so on. For a
model with L levels, it is

β
(v)
iv,...,iv+L−1

=
p
(v)
L+1,...,v+L−1∑
iv+L=1

x
(v)
iv,...,iv+L

β
(v+1)
iv+1,...,iv+L

+ ε
(v)
iv,...,iv+L−1

,

where superscripts in parentheses indicate the level of the variable. In order to
complete the model we have to assume something about the boundary cases.
For level v = 1, βi1,...,iL is what we previously wrote as yij for a two-level
model, i.e., the value of the outcome for student ij. For the highest level
(L+ 1), the random coefficients are set to fixed constants, because otherwise
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we would have to go on making further specifications. Although the notation
becomes somewhat unwieldy, the idea is simple enough.

Other types of different dependence structures are cross-classifications and
multiple membership classifications. In the former, an observation is nested
in two or more higher-level units, but these higher-level units are not nested
within each other. An example is a sample of individuals who are nested within
the primary schools and secondary schools that they attended, but not all
students from a primary school necessarily attended the same secondary school
or vice versa. Multiple membership classifications occur when observations
are nested within multiple higher-level units of the same type. For example,
patients can be treated by several nurses. These two types of dependency
structure are discussed at length in chapter 8. The notation that is used in
that chapter can also be applied to “ordinary” (i.e., nested) multiple level
models, somewhat reducing the unwieldiness mentioned above.

Nonlinear Mixed Models

Nonlinear mixed models come in two flavors. And of course these nonlinear
generalizations specialize in the obvious way to random coefficient and slopes-
as-outcomes models.

First, we have nonlinear mixed models in which the linear combinations
of the predictors are replaced by nonlinear parametric functions, both for
the fixed part and the random part. An obvious variation, to reduce the
complexity, is to use a nonlinear combination of linear combinations. These
nonlinear mixed models are usually fitted with typical nonlinear regression
techniques, i.e., we linearize the model around the current estimate and then
use linear multilevel techniques. For details we refer to Pinheiro and Bates
[89]. Detection and nonparametric modeling of nonlinearities in the fixed part
of the model is discussed in more detail in chapter 3.

Second, we have generalized linear mixed models. In the same way as the
generalized linear model extends the linear model, the generalized linear mixed
model extends the mixed linear model. The basic trick is (in the two-level
case) to condition on the random effects, and to assume a generalized linear
model for the conditional distribution of the outcomes. Then the full model
is obtained by multiplying the conditional density by the marginal density of
the random effects and integrating. This is, of course, easier said than done,
because the high-dimensional integrals that are involved cannot be evaluated
in closed form. Thus sophisticated approximations and algorithms are needed.
These are discussed in many of the subsequent chapters, in particular chap-
ters 2, 5, and 9.

The leading case of applications of nonlinear models is the modeling of
nominal and ordinal categorical dependent variables. Several competing spec-
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ifications exist, and each has its advantages and disadvantages. These are
discussed and compared in detail in chapter 6.

Multivariate Models, Endogeneity, Measurement Errors, and
Latent Variables

In this chapter, we focus on models with one dependent variable, called y,
and explanatory variabes (generically called x and z) that are assumed to be
fixed constants. Instead of the latter, we can also assume that the explanatory
variables are strictly exogenous random variables, and then do our analysis
conditionally on their realizations. This does not change the treatment, the
results, or the notation.

In fact, most of the multilevel literature is based on a similar setup, so in
that sense this chapter reflects the mainstream of multilevel analysis. In many
practical situations, however, this setup is not sufficient, or even clearly incor-
rect, and extensions or modifications are called for. Here, we briefly mention
a few such topics that are somewhat related.

Of these, multiple dependent variables are often most easily accommo-
dated. In most situations, one can simply estimate the models for each of these
dependent variables separately. If the different equations do not share any
parameters, and the dependent variable of one equation does not enter another
as explanatory variable, this should be sufficient. Also, as mentioned earlier,
multivariate models can be viewed as univariate models with an additional
level, and thus be estimated within a relatively standard multilevel modeling
setup.

Endogeneity is the situation where (at least) one of the explanatory vari-
ables in a regression equation is a random variable that is correlated with
the error term in the equation of interest. Statistically, this leads to biased
and inconsistent estimators. Substantively, this is often the result of one or
more unobserved variables that influence both the explanatory variable and
the dependent variable in the equation. If it is only considered a statistical
nuisance, consistent estimators can usually be obtained by using some form
of instrumental variables method [e.g., 126], which has been developed for
multilevel analysis by Kim and Frees [65]. In many cases, however, it is of some
substantive interest to model the dependence more extensively. Examples of
such models are especially abundant in longitudinal situations. Chapter 7
discusses these in detail.

A special source of endogeneity that occurs frequently in the social sciences
is measurement error in an explanatory variable. Almost all psychological test
scores can be considered as at best imperfect measures of some concept that
one tries to measure. A notorious example from economics is income. Let us
assume that true (log) consumption c∗ of a household depends on true (log)
household income y∗ through a simple linear regression equation, but the
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measurements c and y of consumption and income are only crude estimates.
In formulas:

c∗ = β1 + β2y
∗ + ε

c = c∗ + v

y = y∗ + w,

where we assume that the error terms ε, v, and w are all mutually indepen-
dent and independent of y∗, and we have omitted the indices denoting the
observations. We can write the model in terms of the observed variables as

c = β1 + β2y + u,

where u = ε + v − β2w. Because w is part of both the explanatory variable
y and the error term u, these two are correlated and thus we have the en-
dogeneity problem. An extensive general treatment of measurement error, its
statistical consequences, and how to obtain suitable estimators, is given by
Wansbeek and Meijer [123]. Goldstein [46, chap. 13] discusses the handling of
measurement errors in multilevel models.

Models that include measurement errors explicitly are a subset of latent
variable models. Latent variable models typically specify a relationship be-
tween substantive concepts, the structural model, and a relationship between
these concepts and the observed variables (the indicators), which is the mea-
surement model. The concepts may be fairly concrete, like income above,
but may also be highly abstract theoretical concepts, like personality traits.
Most latent variable models are members of the class of structural equation
models. Because of the flexibility in selecting (multiple) observed variables
to analyze and the flexibility in defining latent variables, structural equation
models encompass a huge class of models. In particular, multivariate models,
endogeneity, measurement errors, and latent variables can all be combined into
a single structural equation model. Structural equation models for multilevel
data are described extensively in chapter 12.

Nonnormality

It is customary to specify normal distributions for the random terms in a
multilevel model. A normality assumption for error terms can typically be
defended by arguing that the error term captures many small unobserved influ-
ences, and a central limit theorem then implies that it should be approximately
normally distributed. However, normality of random coefficients is often not
at all logical. Empirically, in effectiveness studies of schools, hospitals, etc.,
we might find that many perform “average”, whereas there are a few that
perform exceptionally good or exceptionally bad. Such a pattern would suggest
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a distribution with heavy tails or a mixture distribution. Moreover, the normal
distribution has positive density for both positive and negative values, whereas
in many cases theory or common sense (which often coincide) says that a
coefficient should have a specific sign. For example, in economics, a higher
price should decrease (indirect) utility and in education, higher intelligence
should lead to higher scores on school tests.

In economics, marketing, and transportation, the lognormal distribution
has been proposed as a convenient alternative distribution for random coeffi-
cients in discrete choice models, perhaps after changing the sign of the explana-
tory variable. Meijer and Rouwendal [83] discuss this literature and compare
normal, lognormal, and gamma distributions, as well as a nonparametric
alternative. In their travel preference data, lognormal and gamma clearly
outperform normal and nonparametric, on the basis of fit and interpretability.
Chapter 7 further discusses the nonparametric maximum likelihood estimator.

For linear multilevel models, it is fairly straightforward that all the usual
estimators are still consistent if the random terms are nonnormally distributed
[121]. The standard errors of the fixed coefficients are still correct under non-
normality, but standard errors of the variance parameters must be adjusted.
This can be done by using a robust covariance matrix, which will be discussed
in section 1.6.3 below, or by using resampling techniques specifically developed
for multilevel data (see chap. 11).

Estimators of nonlinear multilevel analysis models are inconsistent if the
distribution of the random coefficients is misspecified. Robust covariance ma-
trices and resampling can give asymptotically correct variability estimators,
but it may be questionable whether these are useful if it is unclear whether
the estimators of the model parameters are meaningful under gross misspeci-
fication of the distributions.

An interesting logical consequence of the line of reasoning that leads to
nonnormal distributions is that it also suggests that in cases where the co-
efficient should have a specific sign, the functional form of the level-2 model
should also change. For example, if a level-1 random coefficient β should be
positive, then a specification β = z′γ + δ, even with nonnormal δ, may be
problematic, and a specification

log β = z′γ + δ

may make more sense, where now there is nothing wrong with a normal δ, be-
cause it induces a lognormal β. Remarkably, with this specification, although
both level-1 and level-2 submodels are linear in parameters, the combined
model is not.
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1.5 Loss Functions

Loss functions are used in statistics to measure the badness-of-fit of the model
and the given data. In most circumstances they measure the distance between
the observed and the expected values of appropriately chosen statistics such as
the means, the dispersions, or the distribution functions. It is quite common in
the multilevel literature to concentrate exclusively on the likelihood function
or, in a Bayesian context, the posterior density function. We shall pay more
attention than usual to least squares loss functions, both for historical and
didactic reasons.

1.5.1 Least Squares

A general least squares loss function for the multilevel problem (in particular
the SOM ) is of the form

ρ(γ) =
m∑
j=1

(yj −XjZjγ)′A−1
j (yj −XjZjγ), (1.9)

where the weight matrices Aj are supposed to be known (not estimated).
There is a simple trick that can be used to simplify the computations, and

to give additional insight into the structure of the loss function. Define the
regression coefficients

bj = (X ′
jA

−1
j Xj)

−1X ′
jA

−1
j yj

and the residuals
rj = yj −Xjbj

Then yj = Xjbj + rj , and X ′
jA

−1
j rj = ∅. Now for group j

ρj(γ) = (bj −Zjγ)′X ′
jA

−1
j Xj(bj −Zjγ) + r′jA

−1
j rj . (1.10)

This expression of the loss function is considerably more convenient than (1.9),
because it involves smaller vectors and matrices.

If we choose Aj of the form Vj = XjΩX
′
j + σ2

j I, again with Ω and σ2
j

assumed known, then we can simplify the loss function some more, using the
matrix results in Appendix 1.C. Let Pj

∆=Xj(X
′
jXj)

−1X ′
j , and Qj

∆= I − Pj .
We shall also write, in the sequel,

Wj
∆=Ω + σ2

j (X
′
jXj)

−1.

Observe that if bj
∆= (X ′

jXj)
−1X ′

jyj then Wj is the dispersion of bj . Ac-
cordingly, from now on we redefine bj

∆=(X ′
jXj)

−1X ′
jyj and rj

∆=yj −Xjbj ,
regardless of the of Aj .
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From Theorem 1.2 in the appendix,

V −1
j = Xj(X

′
jXj)

−1W−1
j (X ′

jXj)
−1X ′

j + σ−2
j Qj , (1.11)

and thus
r′jV

−1
j rj = σ−2

j r′jrj = (nj − p)s2j/σ2
j ,

and
X ′
jV

−1
j Xj = W−1

j .

Hence

ρj(γ) = (bj −Zjγ)′W−1
j (bj −Zjγ) + (nj − p)s2j/σ2

j . (1.12)

Computing least squares loss in this way is even more efficient than us-
ing (1.10).

1.5.2 Full Information Maximum Likelihood (FIML)

The least squares approach supposes that the weight matrix is known, but
of course in a more general case the weight function will depend on some
unknown parameters that have to be estimated from the same data as the
regression coefficients. In that case we need a loss function that not only
measures how close the fitted regression coefficients are to their expected
values, but measures at the same time how well the fitted dispersion ma-
trices correspond with the dispersion of the residuals. For this we use the
log-likelihood.

As is well-known, the method of maximum likelihood has a special position
in statistics, especially in applied statistics. Maximum likelihood estimators
are introduced as if they are by definition optimal, in all situations. Another
peculiarity of the literature is that maximum likelihood methods are intro-
duced by assuming a specific probability model, which is often quite obviously
false in the situations one has in mind. In our context, this means that typically
it is assumed that the disturbances, and thus the observed y, are realizations
of jointly normal random variables. Of course, such an assumption is highly
debatable in many educational research situations, and quite absurd in others.

Consequently, we take a somewhat different position. Least squares esti-
mates are obtained by minimizing a given loss function. Afterwards, we derive
their properties and we discover that they behave nicely in some situations.
We approach multinormal maximum likelihood in a similar way. The estimates
are defined as those values of γ,Ω and {σ2

j } that minimize the loss function

LF (γ,Ω, {σ2
j })

∆= log |V |+ (y −Uγ)′V −1(y −Uγ). (1.13)

This loss function, which is the negative logarithm of the likelihood function
(except for irrelevant constants), is often called the deviance. The important
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fact here is not that we assume multivariate normality, but that (1.13) defines
quite a natural loss function. It measures closeness of y to Uγ by weighted
least squares, and it measures at the same time closeness of R(γ) ∆= (y −
Uγ)(y −Uγ)′ to V .

This last property may not be immediately apparent from the form
of (1.13). It follows from the inequality log |A| + trA−1B ≥ log |B| + m,
which is true for all pairs of positive definite matrices of order m. We have
equality if and only if A = B. Thus, in our context, log |V | + trV −1R(γ)
measures the distance between V and the residuals R(γ). We want to make
residuals small, and we want the dispersion to be maximally similar to the
dispersion of the residuals. Moreover, we want to combine these two objectives
in a single loss function.

To find simpler expressions for the inverse and the determinant in (1.13)
we use the matrix results in Appendix 1.C, in the same way as they were used
in section 1.5.1. From Theorem 1.1 in the appendix,

log |Vj | = (nj − p) log σ2
j + log |X ′

jXj |+ log |Wj |.

If we combine this with result (1.12) we find for group j, ignoring terms that
do not depend on the parameters,

LFj (γ,Ω, σ2
j ) = (nj − p)

(
log σ2

j + s2j/σ
2
j

)
+ log |Wj |
+ (bj −Zjγ)′W−1

j (bj −Zjγ).

To distinguish the resulting estimators explicitly from the REML estimators
below, these ML estimators are called full information maximum likelihood
(FIML) in this chapter.

1.5.3 Residual Maximum Likelihood (REML)

In the simplest possible linear model yi = µ + εi, with εi
iid∼ N (0, σ2), the

maximum likelihood estimator of µ is the mean and that of σ2 is the sum
of squares around the mean, divided by the number of observations n. This
estimate of the variance is biased, and as a consequence the sample variance is
usually defined by dividing the sum of squares by n− 1. The same reasoning,
adjusting for bias, in the linear regression model leads to dividing the residual
sum of squares by n− s, where s is the number of predictors.

We can also arrive at these bias adjustments in a slightly different way,
which allows us to continue to use the log-likelihood. Suppose we compute
the likelihood of the deviations of the mean, or in the more general case the
likelihood of the observed regression residuals. These residuals have a singular
multivariate normal distribution, and the maximum likelihood estimate of
the variance turns out to be precisely the bias-adjusted estimate. Thus, in
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these simple cases, residual maximum likelihood (REML; also frequently called
restricted maximum likelihood) estimates can actually be computed from full
information maximum likelihood estimates by a simple multiplicative bias
adjustment.

In multilevel models, or more generally in MLM s, bias adjustment is not
that easy, but we can continue to use the same reasoning as in the simpler
cases, and then expect to get an estimator with smaller bias. Let us start with
the MLM y = Uγ +Xδ + ε. Suppose U is n × s and of full column-rank.
Also suppose K is any orthonormal basis for the orthogonal complement of
the column space of U , i.e., K is an n × (n − s) matrix with K ′K = I

and K ′U = ∅. Then define the residuals r ∆=K ′y ∼ N (∅,K ′V K). Thus the
negative loglikelihood or deviance of a realization of r is, ignoring the usual
constants,

LR(Ω, {σ2
j }) = log |K ′V K|+ r′(K ′V K)−1r.

Observe that this is no longer a function of γ. Thus we cannot compute max-
imum likelihood estimates of the fixed regression coefficients by minimizing
this loss function.

Now use Theorem 1.3 from Appendix 1.C, which shows that

r′(K ′V K)−1r = min
γ

(y −Uγ)′V −1(y −Uγ).

Harville [52] shows that

log |K ′V K| = log |V |+ log |U ′V −1U | − log |U ′U |,

and consequently, except for irrelevant constants,

LR(Ω, {σ2
j }) = log |U ′V −1U |+ min

γ
LF (γ,Ω, {σ2

j }).

It follows that the loss functions for FIML and REML only differ by the term
log |U ′V −1U |, which can be thought of as a bias correction. In SOM we can
use,

U ′V −1U =
m∑
j=1

Z ′jW
−1
j Zj ,

and, if (1.8) applies, then

U ′V −1U =
m∑
j=1

W−1
j � zjz

′
j .

1.5.4 Bayesian Multilevel Analysis

In the Bayesian approach to multilevel analysis, the parameters are treated
as random variables, so in our notation they would be written as γ, Ω, and
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{σ2
j}, jointly denoted as θ. Then a prior distribution for θ is specified, which

is completely known. The parameters of this prior distribution are called
hyperparameters and their values reflect the state of knowledge about θ.
In the absence of prior knowledge, this typically means that variances of
the parameters are chosen to be infinite or at least very large. Given the
specification of the prior distribution, the posterior distribution of θ, given
the observed sample, is found by application of Bayes’ theorem:

p(θ | y) =
f(y | θ)π(θ)

f(y)
= Cf(y | θ)π(θ),

where p(θ | y) is the posterior density, π(θ) is the specified prior density,
f(y | θ) is the conditional normal density that we have been using all along
(which is equal to the likelihood function), and C is a normalizing constant
that does not depend on θ. An explicit expression for C is rarely needed.
The posterior density contains all information about θ, all inferences about
θ are derived from it. It combines the prior information and the information
contained in the sample in a sound (and optimal) way.

From this description, it appears like the Bayesian approach does not
fit into our framework of specifying a loss function and then optimizing it.
However, in the Bayesian approach, it is common to use the posterior mode
or posterior mean as an “estimator” and to compute intervals that contain
100(1 − α)% (e.g., 95%) of the probability mass, which act as a kind of
“confidence interval”. The posterior mean µ̂g of parameter g is the argument
for which the loss function E [(θg − µg)2], where the expectation is taken
over the posterior distribution, attains its minimum, whereas the posterior
mode θ̂M is by definition the value for which the posterior density p(θ | y)
attains its maximum, or equivalently, the loss function −p(θ | y) attains
its minimum. Both are very natural loss functions and thus in this way the
Bayesian approach neatly fits within our framework. An important advantage
of the Bayesian “confidence intervals”, especially for the variance parameters,
is that they may be asymmetric, reflecting a nonnormal posterior distribution.
This is often more realistic for the variance parameters in small to moderate
samples.

An important reason for the increasing popularity of the Bayesian ap-
proach is that it is able to deal with nonlinear models in a fairly straightfor-
ward way, using Markov Chain Monte Carlo (MCMC) techniques. This gives
good results where non-Bayesian approaches often have great difficulty in ob-
taining good estimators. Chapter 2 is an extensive discussion of the Bayesian
approach, and in several other chapters, especially those dealing with non-
linear models, it is also discussed, applied, and compared to likelihood-based
approaches. Therefore, we will not discuss it in more detail in this chapter.
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1.5.5 Missing Data

It is implicit in the discussion thus far that we have assumed that there are no
missing data. In practice, the fact that there are missing data is a widespread
phenomenon and often a problem. We can distinguish between unit nonre-
sponse, in which no information is available for a targeted observation, and
item nonresponse, where information is available for some variables but not
for others. If we assume that unit nonresponse is not related to any of the
random variables (δ, ε) of interest for the missing unit, we can simply proceed
by analyzing the observed data set. If it is suspected that unit nonresponse
leads to distortions, weighting can be applied (and is often applied) to let
the sample distribution of some key variables match the (assumed known)
population distribution. See section 1.8 below for a discussion of sampling
weights in multilevel models.

With item nonresponse, the simplest and most frequently applied solution
is to simply omit all observations for which one or more variables are missing
(listwise deletion). Although widely used, it is generally considered a bad
method. It omits useful information, and thus gives inefficient estimators.
Even more importantly, it may easily lead to biases in the analyses, if the
missing data patterns are related to the variables of interest. Chapter 10 ex-
tensively discusses how missing data can be treated in a sound and systematic
way.

1.6 Techniques and Algorithms

If we have a loss function, then the obvious associated technique to estimate
parameters is to minimize the loss function. Of course for nonlinear opti-
mization problems there are many different minimization methods. Some are
general purpose optimization methods that can be applied to any multivariate
function, and some take the properties of the loss function explicitly into
account.

1.6.1 Ordinary and Weighted Least Squares

As we have see in a previous section the SOM model can be expressed in two
steps, as in

y
j

= Xjβj + εj , (1.14a)

β
j

= Zjγ + δj , (1.14b)

or in a single-step, as in

y
j

= XjZjγ +Xjδj + εj . (1.15)
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The one-step (1.15) and the two-step (1.14) specifications of the multilevel
model suggest two different ordinary least squares methods for fitting the
model. This was already discussed in detail by Boyd and Iversen [11]. We
follow the treatment of de Leeuw and Kreft [28].

The two-step method first estimates the βj by

bj = (X ′
jXj)

−1X ′
jyj , (1.16)

and then γ by

γ̂ =

(
m∑
j=1

Z ′jZj

)−1 m∑
j=1

Z ′jbj . (1.17)

Within the framework of section 1.5.1, this is obtained by choosing Aj =
XjX

′
j +Qj , so that A−1

j = Xj(X
′
jXj)

−2X ′
j +Qj .

The one-step method estimates γ directly from (1.15) as

γ̂ =

(
m∑
j=1

Z ′jX
′
jXjZj

)−1 m∑
j=1

Z ′jX
′
jyj .

By using (1.16) we see immediately, however, that the one-step method can
also be written as

γ̂ =

(
m∑
j=1

Z ′jX
′
jXjZj

)−1 m∑
j=1

Z ′jX
′
jXjbj . (1.18)

Thus the one-step estimate can be computed in two steps as well. Within
the framework of section 1.5.1, the one-step estimate is obtained by choosing
Aj = I.

Both methods provide unbiased estimators of γ, they are non-iterative,
and they are easy to implement. An expression for their dispersion matrices
is easily obtained by using Cov(bj) = Wj , which was obtained above. Hence,
the dispersion matrix of the two-step estimator is(

m∑
j=1

Z ′jZj

)−1( m∑
j=1

Z ′jWjZj

)(
m∑
j=1

Z ′jZj

)−1

and the dispersion matrix of the one-step estimator is(
m∑
j=1

Z ′jX
′
jXjZj

)−1( m∑
j=1

Z ′jX
′
jXjWjX

′
jXjZj

)(
m∑
j=1

Z ′jX
′
jXjZj

)−1

.

Despite their virtues, these least squares estimators have fallen into disgrace in
the mainstream multilevel world, because they are neither BLUE nor BLUP
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[43, 103]. This is somewhat supported by the simulations reported (for a
three-level model) in Cheong et al. [21], where especially for level-1 covariates
efficiencies of ML estimators are substantially higher (up to 55%). The one-
step OLS estimator still enjoys a great popularity in economics, though.

The next candidate that comes to mind applies if both Ω and {σ2
j } are

known. We can then compute the WLS estimate

γ̂ =

(
m∑
j=1

Z ′jX
′
jV

−1
j XjZj

)−1 m∑
j=1

Z ′jX
′
jV

−1
j yj . (1.19)

As we have seen this can be simplified to

γ̂ =

(
m∑
j=1

Z ′jW
−1
j Zj

)−1 m∑
j=1

Z ′jW
−1
j bj . (1.20)

Within the framework of section 1.5.1, the WLS estimate is obtained by
choosing Aj = Vj . The dispersion matrix of the WLS estimator is obtained
analogously to the ones above, and in this case it simplifies to(

m∑
j=1

Z ′jW
−1
j Zj

)−1

.

The formal similarity of (1.17), (1.18), and (1.20) is clear. They can all be
thought of as two-step methods, which first compute the bj , and then do a
weighted regression of the bj on the Zj . Of course (1.20) is mostly useless by
itself, because we do not know what σ2

j andΩ are, but we can insert consistent
estimators of these instead. A method to compute consistent estimators of the
elements of the variance parameters from the OLS residuals is discussed in de
Leeuw and Kreft [28], and is also discussed below. The resulting method for
estimating γ is fully efficient and non-iterative.

For WLS estimators with estimators of the variance parameters inserted,
the exact covariance matrix generally cannot be computed. However, it follows
from standard large sample theory (Slutsky’s Theorem; see, e.g., Ferguson [38]
or Wansbeek and Meijer [123, pp. 369–370]) that if the estimators of Ω and
σ2
j are consistent, then the asymptotic distribution of the WLS estimator of
γ is the same as the (asymptotic) distribution of the hypothetical estimator
(1.20) that uses the true values of Ω and σ2

j in the weight matrix, so we can
still use the covariance matrix given above, especially with larger sample sizes.

The BLUE and the BLUP

Consider the model y ∼ N (Uγ,V ). A linear estimator of the form γ̂ = L′y

is unbiased if L′U = I, and it has dispersion L′V L. The dispersion matrix
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is minimized, in the Löwner [77] ordering of matrices (i.e., A ≥ B if A −B
is positive semidefinite), by choosing L = V −1U(U ′V −1U)−1. Thus

γ̂ = (U ′V −1U)−1U ′V −1y

is the Best Linear Unbiased Estimator or BLUE. In the SOM

U ′V −1U =
m∑
j=1

Z ′jW
−1
j Zj

and

U ′V −1y =
m∑
j=1

Z ′jW
−1
j bj .

Thus the BLUE is given by (1.20).
We can also look at estimates of the error components. Of course this

means we are estimating random variables, and consequently the Best Linear
Unbiased Predictor or BLUP is a more appropriate term than the BLUE. To
find the BLUP we minimize the mean squared prediction error

MSPE ∆= E
[
(L′y + a− δ)(L′y + a− δ)′

]
(1.21a)

over L and a on the condition that

E (L′y + a− δ) = ∅. (1.21b)

From (1.21b) we obtain a = −L′Uγ, which means that the mean squared
prediction error (1.21a) is

MSPE = L′V L−L′XΩ −ΩX ′L+Ω

= (V L−XΩ)′V −1(V L−XΩ) +Ω −ΩZ ′V −1ZΩ

≥ Ω −ΩZ ′V −1ZΩ,

with equality if L = V −1XΩ, i.e., if

δ̂ = ΩX ′V −1(y −Uγ).

In the SOM, using (1.11),

δ̂j = ΩW−1
j (bj −Zjγ),

and thus
β̂j = Zjγ + δ̂j = ΩW−1

j bj + (I −ΩW−1
j )Zjγ. (1.22)

Thus the BLUP of the random effects is a matrix weighted average [19] of
the least squares estimates bj and the expected values Zjγ. The within-group
least squares estimates are shrunken towards the overall model based estimate
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Zjγ of the regression coefficients. This shrinking, which is common in BLUP
and related empirical Bayes procedures, is also the basis for the discussion of
borrowing strength, which has played a major role in the multilevel literature
[cf. 13, 101].

Of course (1.22) contains unknown parameters, and in order to use it in
practice we substitute whatever estimates we have for these unknown param-
eters.

Estimating the Variance Parameters

As we have seen, for the WLS estimator of γ and the BLUP of the random
effects we need consistent estimators of σ2

j and Ω. Moreover, estimating these
parameters is often one of the main goals of a multilevel analysis and the
focus on the random effects is perhaps the most salient difference between
multilevel analysis and ordinary regression analysis.

A simple unbiased estimator of σ2
j is of course the within-groups residual

variance s2j . Given the assumptions above,

(nj − p)s2j/σ2
j ∼ χ2

nj−p,

so that in addition to E (s2j ) = σ2
j , we also have Var(s2j ) = 2(σ2

j )
2/(nj−p). Fur-

thermore, s2j is independent of bj . However, the variance, chi-square distribu-
tion, and independence result depend critically on the normality assumption.
If all σ2

j are assumed equal, then its natural unbiased estimator is

s2
∆=

1
n− p

m∑
j=1

(nj − p)s2j ,

where n is total sample size. Under the model assumptions,

(n− p)s2/σ2 ∼ χ2
n−p,

so that E (s2) = σ2 and Var(s2) = 2(σ2)2/(n − p). Note that consistency of
s2j requires nj → ∞. This is a little problematic because in some standard
asymptotic theory for multilevel analysis (e.g., Longford [76, p. 252]; Verbeke
and Lesaffre [120, Lemma 3]), it is assumed that the group sizes are bounded.
However, close scrutiny of their theories reveals that the general asymptotic
theory should still be valid under a hypothetical sequence such that m→∞,
nj →∞, and nj/m→ 0. Maybe even weaker assumptions suffice. Of course,
with (many) small groups, nj →∞ may not be a useful assumption anyway.
On the other hand, consistency of s2 only requires n→∞, which is obviously
much weaker. However, the latter also requires the much stronger assumption
that all residual variances are equal.



1 Introduction to Multilevel Analysis 29

Observing that Ω = Cov(β
j
) = E

[
(β

j
−Zjγ)(β

j
−Zjγ)′

]
, a simple es-

timator of Ω is obtained by inserting the least squares estimators of β
j

and
γ in this expression:

Ω̂ =
1
m

m∑
j=1

(bj −Zj γ̂)(bj −Zj γ̂)′,

or perhaps with m − 1 instead of m in the denominator, and where γ̂ is
the one-step or two-step OLS estimator. Such an estimator is used in the
MLA program [16] as “least squares estimator” of Ω and as starting value
for the iterations for obtaining the ML estimators. However, this estimator is
biased for two reasons: The variability of γ̂ is not taken into account and the
covariance matrix of bj is not Ω, but Wj . The first cause of bias vanishes as
m→∞ and the second vanishes as nj →∞, so it is only a reasonably good
estimator if sample sizes at both levels are large. We can compute its exact
expectation and exact variances of its elements, but we will not do that here.
In addition to its simplicity, however, it has the virtue that it is guaranteed to
be positive (semi)definite. This may prevent numerical problems when used
as a starting value in an iterative procedure. Kovačević and Rai [66] propose
a similar estimator, with Zj γ̂ replaced by the sample average of the bj ’s, as
a “conservative approximation”.

Based on earlier formulas of Swamy [117], de Leeuw and Kreft [28] derive
an unbiased estimator ofΩ. The estimator ofΩ is derived element-wise. Thus,
we look at its (k, l)-th element ωkl and define an unbiased estimator of this
element. By doing this for all distinct elements of Ω, we obtain an unbiased
estinator of Ω.

Consider the k-th element of β
j
, β

jk
. According to the model assumptions,

β
jk

= z′jkγk + δjk,

where γk is a subvector of γ. The corresponding subvector of the two-step OLS
estimator γ̂ is γ̂k. Let Zk be the m× qk matrix with j-th row z′jk, where qk
is the number of elements of zjk, i.e., the number of explanatory variables for
the k-th random coefficient. Correspondingly, let bk be the vector of length
m with bjk as its j-th element. Then it follows straightforwardly from the
derivation of γ̂ and the structure of Zj that

γ̂k = (Z ′kZk)
−1Z ′kbk.

Let t̂k be the vector of length m with t̂jk = bjk − z′jkγ̂k as its j-th element.
Then we have

t̂k = Qkbk = Qk(bk −Zkγk) = Qktk,

where Qk = Im − Zk(Z ′kZk)−1Z ′k and tk is implicitly defined. Note that
E (bk) = Zkγk and
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Cov(bk, b
′
l) =

m⊕
j=1

(Wj)kl = diag[(Wj)kl] = ωklIm +Σ∇kl,

where Σ is the diagonal matrix with j-th diagonal element equal to σ2
j and

∇kl is the diagonal matrix with j-th diagonal element equal to [(X ′
jXj)

−1]kl.
It follows that E (t̂k) = ∅ and

E (t̂k t̂
′
l) = Cov(t̂k, t̂

′
l) = ωklQkQl +QkΣ∇klQl.

It is now natural to define the estimator

ω̂kl
∆=

tr
[
t̂k t̂

′
l −QkΣ̂∇klQl

]
tr(QkQl)

=
1
m∗

[
t̂′lt̂k − tr(Σ̂∇klQlQk)

]
,

where m∗ = tr(QkQl) and Σ̂ is the diagonal matrix with j-th diagonal
element equal to s2j . This estimator of ωkl is optimal in the least squares
sense and it is evidently unbiased. However, unbiasedness in this context is
not necessarily good, because it can easily lead to negative variance estimates.

Noticing that ω̂kl is a quadratic function of the data, its variance can be
found by using standard results about the expectations of quadratic forms in
normally distributed random variables. The resulting expression is

Var(ω̂kl) =
1

(m∗)2


m∑
i=1

m∑
j=1

[
(Wi)ll(Wj)kk(QlQk)2ij

+ (Wi)kl(Wj)kl(QlQk)ij(QlQk)ji]

+
m∑
j=1

2(σ2
j )

2

nj − p
[(X ′

jXj)
−1]2kl(QlQk)2jj

 .

An estimator of this variance is obtained by inserting the estimators s2j for σ2
j

and Ω̂ for Ω (the latter in Wj) in this formula.
A somewhat related but slightly different method for estimating the vari-

ance parameters uses the same ideas as the WLS estimator above, but reverses
the roles of the fixed coefficients and the variance parameters. In particular,
assume that γ is known and that Ω is written in the linear form (1.3). Then

E
[
(y −Uγ)(y −Uγ)′

]
= V

=
m⊕
j=1

(XjΩX
′
j + σ2

j Inj )

=
G∑
g=1

(
m⊕
j=1

XjCgX
′
j

)
ξg +

m∑
j=1

(eje
′
j � Inj )σ

2
j ,
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where ej is the j-th column of Im, and if all residual variances are equal,
the last summation reduces to σ2In. Clearly, this expectation is linear in the
parameters {ξg} and {σ2

j }.
Now, let U∗[n,G+m] be the matrix with g-th column equal to

U∗
g
∆=vec

(
m⊕
j=1

XjCgX
′
j

)

and (G+ j)-th column equal to

U∗
G+j

∆=vec(eje
′
j � Inj ).

Furthermore, let γ∗[G+m] be the vector with g-th element ξg (g = 1, . . . , G)
and (G + j)-th element σ2

j (j = 1, . . . ,m). If all σ2
j are equal, U∗ has G + 1

columns, the last one being vec In, and γ∗ has G + 1 elements, the last one
being σ2. The rest of the discussion is unaltered. Finally, let

y∗
∆=vec

[
(y −Uγ)(y −Uγ)′

]
. (1.23)

Then E y∗ = U∗γ∗, which suggests that the variance parameters in γ∗ can
be jointly estimated by a least squares method. Although an OLS method
would be computationally much easier, a WLS method is typically used, for
reasons that become clear in section 1.6.2 below. From the characteristics
of the normal distribution, it follows that the dispersion matrix of y∗ is
2Nn(V �V ) (e.g., Magnus and Neudecker [79, Lemma 9]), where Nn[n2, n2]
is a symmetric idempotent matrix of rank n(n+1)/2, which projects a column
vector of order n2 onto the space of vec’s of symmetric matrices. It is therefore
called the symmetrization matrix by Wansbeek and Meijer [123, p. 361]. Thus,
the dispersion matrix of y∗ is singular, the reason being that y∗ contains du-
plicated elements. We can remove the duplicated elements and then compute
the nonsingular dispersion matrix and use it in a WLS procedure. Due to the
structure of the problem, this is equivalent to computing the estimate

γ̂∗ =
(
(U∗)′(V ∗)−1(U∗)

)−1(U∗)′(V ∗)−1(y∗), (1.24)

where V ∗ = 2(V � V ). From the derivation, it follows immediately that

Cov(γ̂∗) =
(
(U∗)′(V ∗)−1(U∗)

)−1
,

where the symmetrization matrix drops out because of the structure of the
matrices involved.

It appears that (1.24) suffers from a few problems. The first is that the
right-hand side contains unknown parameters: not only γ, but also the very
parameters that the left-hand side estimates, through its dependence on V ∗.
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Thus, as before, we have to insert (preliminary) estimators of these. This leads
to the following typical estimation procedure: (1) compute the 1-step or 2-step
OLS estimate of γ; (2) use this to compute an estimate of y∗ and compute a
preliminary estimate of γ∗ from (1.24) with V ∗ = I; (3) use this to compute
an estimate Ṽ of V and compute the WLS estimator of γ from (1.20); (4) use
this to compute an improved estimate of y∗ and compute the WLS estimate
of γ∗ from (1.24) with V ∗ = 2(Ṽ � Ṽ ). Variations, e.g., using the estimators
of de Leeuw and Kreft [28] as preliminary estimators, are possible, but as it
is presented here, it suggests further iterating steps (3) and (4). Indeed, this
is typically done and leads to the IGLS algorithm discussed in section 1.6.2
below.

The second problem with direct application of (1.24) is that it is a com-
putational disaster. The matrix V ∗ is of order n2 × n2, so if n = 20, 000 as
in the application reported below, then we would have to store and invert a
400 million × 400 million matrix. Fortunately, however, the problem has so
much structure that this is not necessary: V ∗ = 2(V � V ), which reduces
the problem to n × n, but the direct sum form of V reduces this further to
nj × nj . Then, reductions like the ones used above to arrive at (1.20) as a
more convenient version of (1.19) further simplify the computations. Efficient
computational procedures are discussed in Goldstein and Rasbash [47].

A variant of (1.24) is obtained by recognizing that the WLS estimator γ̂
that is inserted in the computation of y∗ is not equal to γ, but is an unbiased
estimator with variance (U ′V −1U)−1, ignoring variance due to estimation
error in the preliminary estimate of V . More specifically, by writing

y −Uγ̂ =
[
I −U(U ′V −1U)−1U ′V −1

]
y,

it follows that

E
[
(y −Uγ̂)(y −Uγ̂)′

]
=
[
I −U(U ′V −1U)−1U ′V −1

]
V
[
I −U(U ′V −1U)−1U ′V −1

]′
= V −U(U ′V −1U)−1U ′,

or
E
[
(y −Uγ̂)(y −Uγ̂)′ +U(U ′V −1U)−1U ′] = V .

This suggests replacing (1.23) by

y∗
∆=vec

[
(y −Uγ̂)(y −Uγ̂)′ +U(U ′Ṽ −1U)−1U ′] (1.25)

and then proceed with the estimation process as described above. The term
U(U ′Ṽ −1U)−1U ′ can be viewed as a bias correction. The resulting estimator
is again consistent with the same expression for the asymptotic covariance
matrix, but is generally less biased in finite samples. The iteration procedure
described above with this estimator leads to RIGLS estimators, which are also
discussed in section 1.6.2 below.
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1.6.2 Maximum Likelihood

Except for some special cases, explicit closed-form expressions for the maxi-
mum likelihood estimators are not available. The loglikelihood function has to
be optimized by using some kind of numerical algorithm. This section discusses
several of the available algorithms. We can distinguish on the one hand generic
numerical optimization techniques that can be used for any well-behaved
function and on the other hands algorithms that are more specific to the
problem at hand.

Let f(θ) be a loss function of a parameter vector θ. We want to find the
value θ̂ of θ that minimizes f(θ). Throughout, we assume that f(θ) is well
behaved, i.e., that it is continuous and has continuous first and second partial
derivatives, is locally Lipschitz, etc. The loss functions for FIML and REML
satisfy these and other regularity conditions except in pathological situations
where the sample data have no variation or predictor matrices are not of full
rank. Thus, we assume these away.

For a short introduction to generic numerical optimization, we refer to
Appendix 1.B. The (modified) Newton-Raphson method mentioned there is
described for multilevel models by Jennrich and Schluchter [63] and Lindstrom
and Bates [73] and it is used in the BMDP5V program [107] for repeated
measures models and the nlme package [90] for multilevel analysis in R. The
BFGS method is implemented in most general-purpose optimization func-
tions and is used in the MLA program for multilevel analysis [16]. From
the discussion in Appendix 1.B, it is clear that we typically need at least
first partial derivatives of the loss function, and for Newton-Raphson also
the second partial derivatives. We will give their formulas for the FIML and
REML loss functions below.

Derivatives of FIML

Computing the partial derivatives of the loglikelihood function with respect
to the parameters is a straightforward, albeit tedious, application of (matrix)
calculus as developed by, e.g., Magnus and Neudecker [80]. Here we only give
the results, the derivations are available from us upon request. Throughout,
we will assume that Ω is parametrized as in (1.3). The first partial derivatives
are

∂LF

∂γ
= −2

m∑
j=1

Z ′jW
−1
j tj , (1.26a)

∂LF

∂σ2
j

= −(nj − p)

(
s2j − σ2

j

(σ2
j )2

)
− tr

[
Tj(X

′
jXj)

−1
]
, (1.26b)
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∂LF

∂ξg
= −

m∑
j=1

tr(TjCg), (1.26c)

where

tj
∆= bj −Zjγ

Tj
∆=W−1

j (tjt
′
j −Wj)W

−1
j .

It is easy to check that the expected values of these partials (when viewed
as functions of random variables) are zero, as they should be. It follows im-
mediately from (1.26a) that after convergence (first partials are zero), (1.20)
holds. Thus, the FIML estimator of γ is a WLS estimator based on the FIML
estimates of the variance parameters.

The second partial derivatives with respect to the parameters are

∂2LF

∂γ ∂γ′
= 2

m∑
j=1

Z ′jW
−1
j Zj

∂2LF

∂γ ∂σ2
j

= 2Z ′jW
−1
j (X ′

jXj)
−1W−1

j tj

∂2LF

∂γ ∂ξg
= 2

m∑
j=1

Z ′jW
−1
j CgW

−1
j tj

∂2LF

∂σ2
j ∂σ

2
j

= (nj − p)

(
2s2j − σ2

j

(σ2
j )3

)
+ tr

[
Υj(X

′
jXj)

−1
]

∂2LF

∂σ2
j ∂σ

2
k

= 0 for k 6= j

∂2LF

∂σ2
j ∂ξg

= tr(ΥjCg)

∂2LF

∂ξg ∂ξh
=

m∑
j=1

tr(TjChW
−1
j Cg +W−1

j ChTjCg +W−1
j ChW

−1
j Cg),

where

Υj
∆=Tj(X

′
jXj)

−1W−1
j +W−1

j (X ′
jXj)

−1Tj +W−1
j (X ′

jXj)
−1W−1

j .

As mentioned above, often it is assumed that all residual variances are the
same, σ2

j = σ2. This leads to fairly trivial changes in these formulas: every
explicit or implicit occurrence of σ2

j on the right-hand side is replaced by σ2,
and the derivatives with respect to σ2 are simply the sums over all groups of
the derivatives with respect to σ2

j as given here:
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∂LF

∂σ2
= −

m∑
j=1

{
(nj − p)

(
s2j − σ2

(σ2)2

)
+ tr

[
Tj(X

′
jXj)

−1
]}

(1.27)

∂2LF

∂γ ∂σ2
= 2

m∑
j=1

Z ′jW
−1
j (X ′

jXj)
−1W−1

j tj

∂2LF

∂σ2 ∂σ2
=

m∑
j=1

{
(nj − p)

(
2s2j − σ2

(σ2)3

)
+ tr

[
Υj(X

′
jXj)

−1
]}

∂2LF

∂σ2 ∂ξg
=

m∑
j=1

tr(ΥjCg).

The derivatives can now be used in a standard numerical optimization algo-
rithm to obtain the FIML estimates.

Derivatives of REML

The first partial derivatives of the REML loss function with respect to the
parameters are

∂LR

∂σ2
j

= −(nj − p)

(
s2j − σ2

j

(σ2
j )2

)
− tr

[
∆j(X

′
jXj)

−1
]

(1.28a)

∂LR

∂ξg
= −

m∑
j=1

tr(∆jCg), (1.28b)

where

∆j
∆=W−1

j (t̂j t̂
′
j −Wj +ZjAZ

′
j)W

−1
j

t̂j
∆= bj −Zj γ̂

γ̂
∆=A

m∑
j=1

Z ′jW
−1
j bj

A
∆=

(
m∑
j=1

Z ′jW
−1
j Zj

)−1

.

Note that there are no derivatives with respect to γ, because LR is not a
function of γ. We use γ̂ as a shorthand, but it is not a parameter, it is a
function of the data and the variance parameters. Of course, after convergence,
this same definition is used to obtain a WLS estimate of γ, but in deriving
statistical properties of the REML estimators, we must treat γ̂ as a function
and not as a mathematical variable.

The second partial derivatives of the REML loss function with respect to
the parameters are
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∂2LR

∂σ2
j ∂σ

2
j

= (nj − p)

(
2s2j − σ2

j

(σ2
j )3

)
+ tr

[
Θj(X

′
jXj)

−1
]

− 2û′jAûj − tr(ΛjAΛjA)

∂2LR

∂σ2
j ∂σ

2
k

= −2û′jAûk − tr(ΛjAΛkA) for k 6= j

∂2LR

∂σ2
j ∂ξg

= tr(ΘjCg)− 2û′jAτ̂g − tr(ΛjAΞgA)

∂2LR

∂ξg ∂ξh
=

m∑
j=1

tr(∆jChW
−1
j Cg +W−1

j Ch∆jCg +W−1
j ChW

−1
j Cg)

− 2τ̂ ′hAτ̂g − tr(ΞhAΞgA),

where

Θj
∆=∆j(X

′
jXj)

−1W−1
j +W−1

j (X ′
jXj)

−1∆j +W−1
j (X ′

jXj)
−1W−1

j

Λj
∆=Z ′jW

−1
j (X ′

jXj)
−1W−1

j Zj

ûj
∆=Z ′jW

−1
j (X ′

jXj)
−1W−1

j t̂j

Ξg
∆=

m∑
j=1

Z ′jW
−1
j CgW

−1
j Zj

τ̂g
∆=

m∑
j=1

Z ′jW
−1
j CgW

−1
j t̂j .

When all σ2
j are equal, the first partial derivative with respect to σ2 becomes

∂LR

∂σ2
= −

m∑
j=1

{
(nj − p)

(
s2j − σ2

(σ2)2

)
+ tr

[
∆j(X

′
jXj)

−1
]}

. (1.29)

and the second partial derivatives involving σ2 become

∂2LR

∂σ2 ∂σ2
=

m∑
j=1

{
(nj − p)

(
2s2j − σ2

(σ2)3

)
+ tr

[
Θj(X

′
jXj)

−1
]}

− 2û′Aû− tr(ΛAΛA)

∂2LR

∂σ2 ∂ξg
=

m∑
j=1

tr(ΘjCg)− 2û′Aτ̂g − tr(ΛAΞgA),

where

û
∆=

m∑
j=1

ûj



1 Introduction to Multilevel Analysis 37

Λ
∆=

m∑
j=1

Λj .

Standard Errors

For the standard errors, we need the expectations of the second derivatives
instead of the second derivatives themselves. This simplifies the formulas con-
siderably, because many terms have expectation zero and thus drop out. In
particular, using E (tj) = ∅, we obtain

E

(
∂2LF

∂γ ∂γ′

)
= 2

m∑
j=1

Z ′jW
−1
j Zj

E

(
∂2LF

∂γ ∂σ2
j

)
= ∅

E

(
∂2LF

∂γ ∂ξg

)
= ∅.

Hence, the matrix of expectations of the second derivatives of the FIML
loss function is a block-diagonal matrix with a diagonal block for the fixed
coefficients and a diagonal block for the variance parameters.

For the latter part, we observe that E (T j) = ∅ implies that

E (Υ j) = W−1
j (X ′

jXj)
−1W−1

j .

Consequently,

E

(
∂2LF

∂σ2
j ∂σ

2
j

)
=
nj − p
(σ2
j )2

+ tr
[
W−1

j (X ′
jXj)

−1W−1
j (X ′

jXj)
−1
]

E

(
∂2LF

∂σ2
j ∂σ

2
k

)
= 0 for k 6= j

E

(
∂2LF

∂σ2
j ∂ξg

)
= tr

[
W−1

j (X ′
jXj)

−1W−1
j Cg

]
E

(
∂2LF

∂ξg ∂ξh

)
=

m∑
j=1

tr(W−1
j ChW

−1
j Cg).

When all σ2
j are the same, the first three of these are replaced by

E

(
∂2LF

∂σ2 ∂σ2

)
=

m∑
j=1

{
nj − p
(σ2)2

+ tr
[
W−1

j (X ′
jXj)

−1W−1
j (X ′

jXj)
−1
]}

E

(
∂2LF

∂σ2 ∂ξg

)
=

m∑
j=1

tr
[
W−1

j (X ′
jXj)

−1W−1
j Cg

]
.



38 De Leeuw and Meijer

The information matrix IF is defined as

IF ∆=E

(
− ∂2`F

∂θ ∂θ′

)
,

where `F is the FIML loglikelihood function viewed as a random variable and
θ is the parameter vector. Up till now, we have ignored some constants that
do not affect the estimators, but we need to be a little more precise for the
standard errors. In fact, LFj = −2(`Fj −Kj), where Kj is a constant that does
not depend on the parameters. Hence, it follows that

IF = 1
2
E

(
∂2LF

∂θ ∂θ′

)
,

so we have to divide the formulas that have just been given by 2. Standard
maximum likelihood theory tells us that the standard errors of the estimators
are the square roots of the diagonal elements of (IF )−1. In particular, the
submatrix of IF corresponding to γ is

IFγγ =
m∑
j=1

Z ′jW
−1
j Zj .

Because of the block-diagonal structure of IF , it follows that the standard
errors of γ̂ are the square roots of the elements of

(IFγγ)−1 =

(
m∑
j=1

Z ′jW
−1
j Zj

)−1

,

which corroborates the results obtained earlier for the WLS estimator.
Analogously, for the REML estimators, the expressions are

E

(
∂2LR

∂σ2
j ∂σ

2
j

)
=
nj − p
(σ2
j )2

+ tr
[
W−1

j (X ′
jXj)

−1W−1
j (X ′

jXj)
−1
]

− tr(ΛjAΛjA)

E

(
∂2LR

∂σ2
j ∂σ

2
k

)
= − tr(ΛjAΛkA) for k 6= j

E

(
∂2LR

∂σ2
j ∂ξg

)
= tr

[
W−1

j (X ′
jXj)

−1W−1
j Cg

]
− tr(ΛjAΞgA)

E

(
∂2LR

∂ξg ∂ξh

)
=

m∑
j=1

tr(W−1
j ChW

−1
j Cg)− tr(ΞhAΞgA).
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When all σ2
j are the same, the first three of these are replaced by

E

(
∂2LR

∂σ2 ∂σ2

)
=

m∑
j=1

{
nj − p
(σ2)2

+ tr
[
W−1

j (X ′
jXj)

−1W−1
j (X ′

jXj)
−1
]}

− tr(ΛAΛA)

E

(
∂2LR

∂σ2 ∂ξg

)
=

m∑
j=1

tr
[
W−1

j (X ′
jXj)

−1W−1
j Cg

]
− tr(ΛAΞgA).

The information matrix IR is again obtained by dividing the formulas for the
expectations of the second derivatives by 2. Standard errors are the square
roots of the diagonal elements of the inverse of the information matrix.

As indicated above, after convergence we use the expression for γ̂ used
in the expressions for the REML derivatives as an estimator of γ. It is im-
mediately clear that this is a WLS estimator with Wj based on the REML
estimators for the variance parameters. Hence, the standard error formulas
given for WLS above apply directly to this estimator.

Scoring

We have seen above that expressions for the second derivatives of the ML loss
functions are rather unwieldy, whereas the expressions for their expectations
are much simpler. In fact, because the asymptotic covariance matrix of the
estimators is a positive constant times the inverse of the matrix of expected
second derivatives, the matrix of expected second derivatives must be a posi-
tive definite matrix. Furthermore, in large samples the exact second derivatives
should be close to the expected second derivatives. Combining these statistical
observations with the general theory of numerical optimization suggests that a
convenient alternative to the Newton-Raphson algorithm would be to replace
the Hessian by its expectation. Because the expected Hessian is guaranteed to
be positive definite, this does not need to be checked and modifications of it
are not necessary. Thus, an easier expression is used, which is computationally
less demanding, and due to block-diagonality of the expected Hessian reduces
the computational burden in computing the inverse as well.

The resulting algorithm, which is specific to loglikelihood functions (but
certainly not to multilevel models), is called Method of Scoring, Fisher scoring,
or simply Scoring. It was proposed for multilevel models by Longford [74] and
implemented in the VARCL program [75]. It tends to be very fast and stable.

Iteratively Reweighted Least Squares

In (1.20), we have seen a simple, yet statistically efficient estimator of the
fixed coefficients γ, given knowledge of the variance pameters. In practice,
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this means that consistent estimators of the variance parameters are plugged
in. Conversely, in (1.24), combined with either (1.23) or (1.25), we have given
a (conceptually) simple and statistically efficient estimator of the variance
parameters γ∗, given γ and a preliminary estimate of the variance parameters.
As noted there, this suggests an iterative algorithm, in which these two steps
are alternated.

This algorithm was introduced for multilevel models by Goldstein [44]
using (1.23) to compute y∗ and by Goldstein [45] using (1.25) to compute y∗.
In the former case, the algorithm is called iterative generalized least squares
(IGLS), whereas in the latter, it is called restricted iterative generalized least
squares (RIGLS). Similar procedures, also known as iterative reweighted least
squares (IRLS) are used in many branches of statistics. For example, the
standard estimation method for generalized linear models is IRLS [82] and it
can be used to compute estimators based on “robust” loss functions, which are
less sensitive to outliers [48]. An overview, relating IGLS to various numerical
optimization algorithms, is given by del Pino [32]. From these sources, it is
known that IGLS produces maximum likelihood estimators.

The equivalence of IGLS to FIML was shown explicitly for the multilevel
model by Goldstein [44]. Goldstein [45] showed that RIGLS gives REML
estimators. Parallelling his proofs, we can see here, as we have noted above,
that setting (1.26a) to zero is equivalent to the IGLS/RIGLS condition (1.20).
Furthermore, it is easy to show that (1.24) combined with (1.23) and (1.20)
implies that (1.26b) and (1.26c) are zero. Thus, after convergence of the IGLS
algorithm, the first partial derivatives of the FIML loglikelihood are zero, and
thus (assuming regularity) the IGLS estimates must be equal to the FIML
estimates. Analogously, it is equally easy to show that (1.24) combined with
(1.25) and (1.20) implies that (1.28a) and (1.28b) are zero, and thus that after
convergence, the RIGLS estimates are equal to the REML estimates.

EM Algorithm

The EM algorithm is an iterative method for optimizing functions of the
form f(θ) = log

∫
g(θ,z) dz with respect to θ. It was presented in its full

generality by Dempster et al. [33]. Typically, f(θ) is a loglikelihood function
and log g(θ,z) the complete-data loglikelihood function, i.e., the loglikelihood
function that would have been obtained if the realization of the random vari-
ables z would have been observed. Thus, both are also implicitly functions of
the observed data y. Maximization of f(θ) proceeds by iteratively maximizing
the expectation of the complete-data loglikelihood. That is, in each iteration,
the function

Q(θ | θ(i)) ∆=E
[
log g(θ,z) | y,θ(i)

]
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is maximized, where the expectation is taken over the conditional distribution
of z given the observed data y and the value θ(i) of the parameter vector after
the previous iteration. Appendix 1.D explains in more detail why this works.

For the multilevel model, z consists of the random effects {δj} and θ and
y have their usual meaning. As derived in Appendix 1.D, when applied to
the FIML loglikelihood, this means that in the expectation step, the following
quantities are computed:

µ
(i)
j = ΩW−1

j (bj −Zjγ)

Σ
(i)
j = σ2

jΩW
−1
j (X ′

jXj)
−1,

where the right-hand sides are evaluated in θ(i). If Ω is completely free (apart
from the requirements of symmetry and positive definiteness, of course), the
maximization step leads to the updates

Ω(i+1) =
1
m

m∑
j=1

(Σ(i)
j + µ(i)

j µ
(i)
j
′)

γ(i+1) =

(
m∑
j=1

Z ′jX
′
jXjZj

)−1 m∑
j=1

Z ′jX
′
jXj(bj − µ

(i)
j )

(σ2
j )

(i+1) =
1
nj

[
(nj − p)s2j + tr(X ′

jXjΛ
(i)
j )
]
,

or, instead of the latter,

(σ2)(i+1) =
1
n

m∑
j=1

[
(nj − p)s2j + tr(X ′

jXjΛ
(i)
j )
]
,

where

Λ
(i)
j

∆=Σ(i)
j + (bj − µ

(i)
j −Zjγ

(i+1))(bj − µ
(i)
j −Zjγ

(i+1))′.

If Ω is restricted, typically by (1.3) with G < p(p+ 1)/2 parameters, the up-
date of the variance parameters ξ is a bit more complicated, see Appendix 1.D.

A great advantage of the EM algorithm is that the loglikelihood is im-
proved in each iteration, i.e., the algorithm is monotonic. Furthermore, the
computations in each iteration are often very simple, much simpler than with
other numerical optimization algorithms. Another strength of the EM algo-
rithm is that it is able to deal with missing data in a very natural way (see
chap. 10). A drawback of EM is that it tends to converge very slowly. For-
mally, it converges linearly, whereas, for example, Newton-Raphson converges
quadratically when in the neighborhood of the optimum. On the other hand,
when far from the optimum, the EM algorithm shows more stable convergence
in the direction of the optimum. For this reason, the nlme package [90] uses
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EM for the initial iterations and switches to Newton-Raphson later on in the
algorithm. An incomplete list of other multilevel packages that use EM, either
as an option or for specific tasks, is BMDP-5V [107], MLA [16], and especially
HLM [102], which popularized the algorithm for multilevel analysis. The EM
algorithm is described for multilevel analysis and especially its special case
of repeated measures models in Dempster et al. [34], Laird and Ware [70],
Jennrich and Schluchter [63], Laird et al. [69], Lindstrom and Bates [73], and
Raudenbush and Bryk [101, chap. 14].

Further Numerical and Computational Issues

As we have seen, most formulas for computing estimates for multilevel models
can be expressed in different ways. Some of these are clearly computationally
inefficient, whereas others use the structure of the problem in better ways.
This pertains to usage of memory, sizes of inverses needed, and other ways to
compute the same expressions. Given the sizes of typical multilevel datasets
and the ways in which computations can be done inefficiently, implementing an
estimator for a multilevel model for general use needs considerable finetuning.

In many cases, we have presented results using Zj , Wj , bj , and a few
other matrices and vectors. These are of smaller sizes than Uj , Vj , and yj , so
that this already improves the computations considerably. Longford [74] gives
further computational formulas, such that the amount of storage needed is
further reduced (but dimensions of inverses do not become smaller).

However, our formulas still use expressions like bj = (X ′
jXj)

−1X ′
jyj .

Actually computing an estimator in this way is generally considered undesir-
able, because it exacerbates any numerical problems that may exist. A good
way to compute a least squares estimator is to use the QR decomposition.
Pinheiro and Bates [89] discuss these issues at length and present detailed
analyses in which the multilevel loglikelihood is transformed in a way that
makes computations fast, numerically stable, and memory efficient. We do
not present these here, but recommend their book to interested readers.

1.6.3 Robust Covariance Matrix Estimation

We have seen above that the two-step OLS estimator of γ is

γ̂ =

(
m∑
j=1

Z ′jZj

)−1 m∑
j=1

Z ′jbj = A

m∑
j=1

Z ′jbj ,

with A implicitly defined. Its covariance matrix is

C
∆=Cov(γ̂) = A

(
m∑
j=1

Z ′j Cov(bj)Zj

)
A.
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If m → ∞, γ̂ is a consistent estimator of γ, and instead of using the model-
based estimator of C presented earlier, C can be straightforwardly estimated
by the cluster-robust covariance matrix [e.g., 98]

Ĉcr = A

(
m∑
j=1

Z ′j t̂j t̂
′
jZj

)
A,

where t̂j = bj − Zj γ̂. When m is large, this is an accurate estimator, but
in moderately large samples, it tends to be biased because the variability in
estimation of γ is not taken into account. That is, the difference between t̂j
and tj

∆= bj −Zjγ is ignored. Inspired by similar problems with the (Eicker-
Huber-)White heteroskedasticity-consistent covariance matrix, and fairly suc-
cessful corrections thereof [25, pp. 552–556], corrections to the cluster-robust
covariance matrix can be computed, which take the form of multiplication by
a certain factor, e.g.,

m

m− 1
n− 1
n− r

,

where n is total sample size and r is the number of elements of γ. Cameron
and Trivedi [17, p. 834] mention this correction in the context of the one-step
OLS estimator.

Analogously, abusing the same notation for different estimators, the one-
step OLS estimator is

γ̂ =

(
m∑
j=1

U ′
jUj

)−1 m∑
j=1

U ′
jyj = A

m∑
j=1

U ′
jyj .

Thus, we can estimate its covariance matrix by the cluster-robust covariance
estimator

Ĉcr = A

(
m∑
j=1

U ′
j r̂j r̂

′
jUj

)
A,

[e.g., 126, p. 152], where r̂j = y
j
−Uj γ̂. As observed above, the one-step OLS

estimator can also be written as

γ̂ = A

m∑
j=1

Z ′jX
′
jXjbj ,

where A is now written as

A =

(
m∑
j=1

Z ′jX
′
jXjZj

)−1

.

Hence, the cluster-robust covariance estimator can be rewritten as
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Ĉcr = A

(
m∑
j=1

Z ′jX
′
jXj t̂j t̂

′
jX

′
jXjZj

)
A,

where it is now natural to use the one-step estimator of the coefficient vector
γ in the definition of t̂j .

In the same way, a straightforward cluster-robust covariance matrix of the
WLS estimator γ̂ is found to be

Ĉcr = Â

(
m∑
j=1

U ′
jV̂

−1
j r̂j r̂

′
jV̂

−1
j Uj

)
Â,

where now the WLS estimator of γ is used in the definition of r̂j ,

V̂ j = XjΩ̂X
′
j + σ̂2

jInj

Â =

(
m∑
j=1

U ′
jV̂

−1
j Uj

)−1

,

or, equivalently,

Ĉcr = Â

(
m∑
j=1

Z ′jŴ
−1
j t̂j t̂

′
jŴ

−1
j Zj

)
Â,

with

Ŵ j = Ω̂ + σ̂2
j (X

′
jXj)

−1

Â =

(
m∑
j=1

Z ′jŴ
−1
j Zj

)−1

,

and the WLS estimator of γ is used in the definition of t̂j . Note that for the
asymptotic results, it does not matter which estimators of Ω and σ2

j are used,
as long as they are consistent. Of course, in finite samples, it does matter and
we would expect that more precise estimators of Ω and σ2

j result in better
estimators of γ and C.

Robust Covariance Matrices for ML Estimators

A robust covariance estimator for the FIML estimator of γ is immediately
obtained from the one for the WLS estimator given above. The same applies
to the two-step ML (“REML”) estimator obtained as a WLS estimator that
uses the REML estimates of the variance parameters in computing the weight
matrix.
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It is also possible to compute a robust covariance matrix for the variance
parameters. However, because no closed-form expression for the estimators of
the variance parameters exists, this requires a bit more asymptotic statistical
theory. The basic idea starts from the first-order condition for ML estimators

m∑
j=1

∂Lj
∂θ

(θ̂) = ∅.

Then, a first-order Taylor series expansion of this, around the true value θ0,
is taken, giving

m∑
j=1

{
∂Lj
∂θ

(θ0) +
∂2Lj
∂θ ∂θ′

(θ0) (θ̂ − θ0) +Op‖θ̂ − θ0‖2
}

= ∅.

Under suitable regularity conditions, a form of the central limit theorem im-
plies that

1√
m

m∑
j=1

∂Lj
∂θ

(θ0)
L=⇒N (∅,Ψ)

from some finite positive definite matrix Ψ , and a form of the law of large
numbers implies that

1
m

m∑
j=1

∂2Lj
∂θ ∂θ′

(θ0)
P=⇒H

for some finite positive definite matrix H. Combining results, we obtain

√
m(θ̂ − θ0) = −H−1 1√

m

m∑
j=1

∂Lj
∂θ

(θ0) + op(1) L=⇒N (∅,H−1ΨH−1).

Obviously, consistent estimators of H and Ψ are

Ĥ =
1
m

m∑
j=1

∂2Lj
∂θ ∂θ′

(θ̂)

Ψ̂ =
1
m

m∑
j=1

∂Lj
∂θ

(θ̂)
∂Lj
∂θ′

(θ̂).

For computing a robust covariance matrix for θ̂, all factors of m drop out and
we obtain

Ĉcr =

(
m∑
j=1

∂2Lj
∂θ ∂θ′

(θ̂)

)−1( m∑
j=1

∂Lj
∂θ

(θ̂)
∂Lj
∂θ′

(θ̂)

)(
m∑
j=1

∂2Lj
∂θ ∂θ′

(θ̂)

)−1

. (1.30)

The theory underlying the robust covariance matrices for ML estimators in a
multilevel model is derived in detail, with appropriate regularity conditions,
in Verbeke and Lesaffre [120, 121].
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From (1.26), (1.27), (1.28), and (1.29), it follows that this theory should
work for the FIML and REML estimators of γ and ξg, and for the corre-
sponding estimators of σ2 if all residual variances are assumed to be the same.
However, if separate residual variances σ2

j are estimated, the corresponding
first-order conditions do not satisfy the central limit theorem as presented
here, because they have only one term. In that case, assuming that nj →∞,
it is still possible to derive some kind of robust variance estimators for the
variance estimators σ̂2

j , using within-groups asymptotics along the lines of
Browne [12], but this tends to require large within-group sample sizes, so this
may not work well in practice.

Note that when all the model assumptions are met, we have the well-known
result (correcting for our scaling of the loglikelihood)

1
2
H = 1

4
Ψ = lim

m→∞

1
m

I,

which leads to the standard (model-based) covariance matrix presented earlier.

Robust Versus Model-Based Covariance Matrices

With a few exceptions, the model-based covariance matrices are only correct
if the complete model is correctly specified (“true”). The robust covariance
matrices are consistent under a wider range of assumptions, including fairly
general forms of misspecification of the random part of the model, such as
intra-group dependence and heteroskedasticity. So if the main interest of the
analyses is the fixed part of the model (i.e., γ), a cluster-robust covariance
matrix may be preferred.

On the other hand, if the random part of the model is the main focus
of interest, i.e., modeling/explaining between-group variation is important,
then an estimator of the covariance matrix of the fixed part that is robust
to misspecification of the random part is only of secondary interest. If the
random part is (severely) misspecified, the primary aim of the analysis is not
met. This is even more salient for robust covariance matrices of the variance
parameters themselves. If the model is misspecified, it is generally unclear
what is estimated, and thus it is questionable whether a robust covariance
matrix is of any use [39].

There is, however, a leading example where the random part is misspec-
ified, but the estimators are still consistent estimators of meaningful param-
eters. This is the case when the model is correctly specified, except for the
distribution of the random variables. If these are nonnormally distributed,
the model-based covariance matrices for the estimators of γ are still correct,
but standard model-based covariance matrices of the variance paremeters are
incorrect. But Ω and σ2 are still meaningful parameters and their estimators
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are consistent. So then using a robust covariance matrix is clearly useful
[120, 121].

The robust covariance matrices are typically far less precise if the model is
(approximately) correctly specified and the sample size is small to moderate.
Therefore, in not-too-large samples, the model-based covariance matrices will
typically be preferred if the analyst believes that the random part of the
model is reasonably well specified. Maas and Hox [78] performed a simulation
study to investigate these issues for REML estimators and concluded that
the model-based standard errors of the estimator of σ2 performed well under
nonnormality, while the robust standard errors are often too large. However,
both model-based and robust standard errors of level-2 variance parameters
did not perform very well at small sample size, although the robust ones were
clearly better than the model-based ones. They conclude that at least 100
groups are needed for reliable robust standard errors. As a general strategy,
they recommend comparing the robust standard errors with the model-based
ones to diagnose possible misspecification of the model.

An alternative way for robust statistical inference under possible misspec-
ification is to use resampling methods. Moreover, the bootstrap in particu-
lar has the additional potential advantage that it can generate asymmetric
confidence intervals, thereby reflecting nonnormal finite-sample distributions
of especially the level-2 variance parameters. However, confidence intervals
based on resampling methods tend to perform less than satisfactory as well
with small or moderate level-2 sample sizes. See chapter 11 for a detailed
description of resampling methods for multilevel models and their empirical
properties.

1.7 Software

We will be brief about software here, if only because details about software are
likely to be quickly outdated. An overview of the history of the development
of software for multilevel analysis, and the state of affairs ca. 2000 is given in
de Leeuw and Kreft [30]. The overview is still broadly valid, except that the
details have changed, and there are some additions.

As mentioned earlier in this chapter, the software packages have largely
been developed by the same authors who pioneered the development of mul-
tilevel analysis as a statistical method and who have written successful text-
books about multilevel modeling. And, for that matter, are contributors to
this Handbook.

Two software packages dominate the market for dedicated multilevel anal-
ysis software. These are HLM [102] and MLwiN [97]. These packages offer a
broad range of linear and nonlinear specifications of multilevel models and
have user-friendly graphical user interfaces. There are some differences in the
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algorithms used, but these are not particularly interesting for the average
user. There are also some differences in the more advanced options or less
frequently used model specifications, so users with specific desires may prefer
one over the other for this reason.

Originally, VARCL [75] was also one of the major packages, but devel-
opment of this package has been terminated. There are many packages that
focus on more specific multilevel models, options, or other aspects. These tend
to be research software, with fewer options and less user-friendly interfaces,
and development of these progresses faster if the authors are working on new
directions in their research that requires additions to the programs. Examples
of these are MLA [16], which focuses on resampling methods (see chapter 11)
and PINT [10], which focuses on power calculations (see chapter 4). The
MIXFOO suite [55–57, etc.] also belongs in this category, although taken as
a whole, it is a fairly comprehensive multilevel package.

The BUGS program and its variants, most notably WinBUGS [113], are
programs for Bayesian data analysis. They offer extensive possibilities for
Bayesian multilevel analysis and are particularly useful for estimating nonlin-
ear multilevel models. See also chapter 2.

Many general purpose (or almost-all-encompassing) statistical packages
now have multilevel options as well. Important examples are SAS R© [106],
which has PROC MIXED and PROC NLMIXED, SPSS R© [114], which has
MIXED and several other procedures that can be used for multilevel analyses,
Stata R© [115], which has many “survey”, “cluster”, and “panel” programs and
options, and the extensive gllamm program [95], and R [93], for which the
lme4 and nlme packages are available [7, 90].

A relatively recent development is the incorporation of multilevel facilities
in programs for structural equation modeling, such as LISREL [35, 64], EQS
[8], and Mplus [85]. The possibilities of these programs are somewhat different
from the standard multilevel programs. They often have less extensive options
for estimating nonlinear models and models with three or more levels, but are
better equipped for estimating multivariate models and models with latent
variables and measurement errors, i.e., multilevel structural equation models
(see chapter 12). Thus, they complement traditional multilevel packages.

Throughout this Handbook, other software packages (perhaps less well
known or more specialized) are mentioned where appropriate and useful.

1.8 Sampling Weights

Surveys are often nonrepresentative of the population of interest, in the sense
that persons (or more generally, units) with certain characteristics are more
prevalent in the data than in the population. There are essentially two reasons
for this: deliberate oversampling of certain groups and different nonresponse
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rates. An example of the former is the oversampling of relatively small groups,
like minorities, to obtain more reliable information about these groups. An
example of the latter is the tendency to obtain an overrepresentation of women
in a study that was designed to be neutral, which may happen because women
tend to be more often at home than men.

Agencies that collect such surveys typically provide sampling weights with
the data set. The idea is that applying these sampling weights in the analysis
corrects for the nonrepresentativeness of the data by giving underrepresented
groups more weight and overrepresented groups less weight. For example,
assume that we are interested in the mean height of adults in a country of
interest. Assume further that we have a sample of 1000 adults, 600 of which are
women, whereas in the population 50% of adults is female. Height is expected
to be related to sex, so if we simply computed the sample average, we would
likely obtain an underestimate of our parameter of interest. However, if we
give women a weight of wi = 5/6 and men a weight of wi = 5/4, then the
weighted average

h̄w
∆=
∑1000
i=1 wihi∑1000
i=1 wi

(1.31)

=
600 · (5/6) · h̄f + 400 · (5/4) · h̄m

600 · (5/6) + 400 · (5/4)

= 0.5h̄f + 0.5h̄m

is clearly (the realization of) an unbiased estimator of average height in the
population, where hi is the height of the i-th observation in the sample,
and h̄f and h̄m are the average heights of females and males in the sample,
respectively. (Note that apparently some software packages define weights as
the reciprocals of the definition we use here, so check your manuals.)

For regression models, there is some discussion in the literature about
whether weights should be applied, even if the sample is nonrepresentative and
weights are available. In fact, if the standard regression model yi = x′iβ + εi,
with εi i.i.d., holds and the nonrepresentativeness is possibly related to x
but not to ε, then OLS is still the most efficient estimator, and all statistical
inference is correct. However, in many circumstances it is quite likely that the
error term represents the influence of a large number of variables that each
have a fairly small effect, most of which are unknown and/or unobserved, but
some of which may be somehow related to the probabilities of being included
in the sample. In such cases, OLS would be biased, whereas a weighted analysis
would still give an unbiased estimator.

An important special case where a weighted analysis gives simple con-
sistent estimators and an unweighted analysis does not is in the analysis
of so-called choice-based samples or more generally endogenously stratified
samples. In this case, samples are drawn from strata defined by the dependent
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variable. An example is a sample consisting of 500 bus passengers sampled on
board bus lines and 500 car drivers sampled along the road, and the dependent
variable is mode choice. Another important example is a medical study, where
a sample of people having a rare disease is drawn from hospital records and
a similar-sized sample of people not having the disease is drawn from the
general public, and the dependent variable in the study is whether or not one
has the disease.

These issues are extensively discussed in Cameron and Trivedi [17, pp. 817–
829] and Wooldridge [124, 125, 127], who also give detailed derivations and
explanations, showing why unweighted analyses are sometimes inconsistent
and under different circumstances consistent and efficient. For the remainder
of this section, we assume that a weighted analysis is desired.

For multilevel analysis, an additional complication is how to deal with units
at different levels. To continue our example, assume that we have a two-level
sample, where level-1 is individuals and level-2 is counties. Perhaps heights are
correlated within counties because of environmental factors, different socio-
economic composition, different ethnic composition or more specifically family
relations, and therefore a multilevel approach is desired, but still females are
overrepresented. Furthermore, let us assume that we know the population
percentages of males and females in each county (not necessarily 50%). Then
a straightforward adaptation of (1.31) gives an estimate of the within-county
mean height:

h̄wj
∆=
∑nj

i=1 wi|jhij∑nj

i=1 wi|j

in obvious notation. If each county had the same population size (or height
was unrelated to population size) and the sample of counties is representative
of all counties in whatever way this is defined, a simple average of the county
averages gives an unbiased estimate of the parameter of interest. More gener-
ally, however, we also have a county weight wj , and the overall weighted mean
is computed as

h̄w·
∆=

∑m
j=1 wj h̄wj∑m
j=1 wj

.

Determining the value of wj depends on the sampling scheme and the result-
ing representativeness at the county level. For example, if the counties are a
simple random sample of all counties in the country, then counties with small
population size are overrepresented given that we are interested in the mean
height of individuals. It is easy to see then that wj should be proportional to
county population size Nj . Often, however, sampling at county level is done
proportional to size, so that wj should be the same for each county.

When a survey data set is given, it typically contains an individual weight
wij and the clusters are defined by the researcher. Then the multilevel weights
can be computed as
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wj
∆=

nj∑
i=1

wij

wi|j
∆=wij/wj .

See, however, Potthoff et al. [92], Pfeffermann et al. [88], Grilli and Pratesi
[49], Asparouhov [6], and Rabe-Hesketh and Skrondal [94] for a discussion
of different definitions of weights and empirical studies of their properties.
Chantala et al. [20] provide software that computes appropriate multilevel
sampling weights for usage in several software packages.

Let us now assume that we have a set of weights, and we would like to
compute the weighted version of the within-groups OLS estimate bj . The
formula for the latter can be written as

bj
∆=(X ′

jXj)
−1X ′

jyj =

(
1
nj

nj∑
i=1

xijx
′
ij

)−1(
1
nj

nj∑
i=1

xijyij

)
.

Clearly, each of the two factors contains some kind of average, so that the
analogy with average height mentioned above gives the following weighted
estimate:

bwj
∆=

(∑nj

i=1 wi|jxijx
′
ij∑nj

i=1 wi|j

)−1(∑nj

i=1 wi|jxijyij∑nj

i=1 wi|j

)

=

(
nj∑
i=1

wi|jxijx
′
ij

)−1( nj∑
i=1

wi|jxijyij

)
= (X ′

jWjXj)
−1X ′

jWjyj ,

where Wj (not to be confused with Wj) is the diagonal matrix with elements
wi|j on its diagonal. A corresponding suitable estimator of σ2

j is obtained by
a properly scaled version of the weighted sum of squared residuals. For the
unbiased estimator, the denominator in this is a bit more complicated than
in the unweighted case. The resulting formula is

s2wj
∆=(yj −Xjbwj)

′Wj(yj −Xjbwj)/(n
∗
j − p∗),

where

n∗j
∆=

nj∑
i=1

wi|j = tr Wj

p∗
∆=tr

[
(X ′

jWjXj)
−1(X ′

jW
2
jXj)

]
.

Then, paraphrasing our earlier discussion and simplifying somewhat, for esti-
mating γ, least squares loss functions incorporating sampling weights can be
defined as
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ρw(γ) ∆=
m∑
j=1

wj(bwj −Zjγ)′B−1
j (bwj −Zjγ),

leading to the estimators

γ̂w,B
∆=

(
m∑
j=1

wjZ
′
jB

−1
j Zj

)−1 m∑
j=1

wjZ
′
jB

−1
j bwj .

Because

Wwj
∆=Cov(bwj) = Ω + σ2

j (X
′
jWjXj)

−1(X ′
jW

2
jXj)(X

′
jWjXj)

−1,

the covariance matrices of these least squares estimators are(
m∑
j=1

wjZ
′
jB

−1
j Zj

)−1( m∑
j=1

w2
jZ

′
jB

−1
j WwjB

−1
j Zj

)(
m∑
j=1

wjZ
′
jB

−1
j Zj

)−1

.

The estimators corresponding to the 1-step and 2-step OLS estimators are
obtained by choosingBj = (X ′

jWjXj)
−1 andBj = I, respectively. The most

logical analog of the WLS estimator seems to be the one based on Bj = Wwj ,
but the optimality properties of the unweighted version do not hold and the
covariance matrix does not simplify considerably. A different WLS estimator
for data with sampling weights,

γ̂w,KR
∆=

(
m∑
j=1

wjU
′
jV

−1
j Uj

)−1 m∑
j=1

wjU
′
jV

−1
j y

j

=

(
m∑
j=1

wjZ
′
jW

−1
j Zj

)−1 m∑
j=1

wjZ
′
jW

−1
j bj ,

using the unweighted within-groups estimates bj and Wj , was proposed by
Kovačević and Rai [66]. This also does not have the optimality properties of
the WLS estimator without sampling weights.

Generally, we need an estimate of Ω as well. The estimators discussed
earlier can be adapted relatively straightforwardly, but we omit this here,
with the exception of a general treatment of ML with sampling weights.

The loglikelihood function for a two-level model that is not necessarily
linear can be written as

L =
m∑
j=1

log
∫

exp(Lj|δj
) fδ(δj) dδj ,

where we have suppressed the dependence on the parameter vector θ. The
function fδ(·) is the density function of δj and Lj|δj

is the loglikelihood of
the j-th group conditional on δj . Thus,
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Lj|δj
=

nj∑
i=1

log fy | δ(yij | δj)

in obvious notation. From this form, the adaptation for sampling weights is
straightforward, leading to

Lw,j|δj

∆=
nj∑
i=1

wi|j log fy | δ(yij | δj)

Lw
∆=

m∑
j=1

wj log
∫

exp(Lw,j|δj
) fδ(δj) dδj =

m∑
j=1

wjLwj ,

with Lwj implicitly defined. Thus, the first-order condition for the ML esti-
mator with sampling weights is

m∑
j=1

wj
∂Lwj
∂θ

= ∅, (1.32)

so that, adapting (1.30), the covariance estimate for the resulting estimator θ̂
becomes(

m∑
j=1

wj
∂2Lwj
∂θ ∂θ′

(θ̂)

)−1( m∑
j=1

w2
j

∂Lwj
∂θ

(θ̂)
∂Lwj
∂θ′

(θ̂)

)(
m∑
j=1

wj
∂2Lwj
∂θ ∂θ′

(θ̂)

)−1

.

Unlike the covariance matrix without sampling weights, this formula does
not simplify considerably even if all model assumptions are met. Thus, this
illustrates that the resulting estimators are not proper ML estimators and the
weighted loglikelihood function is not a proper loglikelihood. The estimators
can, however, be viewed as generalized estimating equation (GEE) estimators
based on the estimating equations (1.32), and under weak regularity condi-
tions have desirable statistical properties (consistency, asymptotic normality).
From this theory, it also follows that it is immaterial whether the weights are
predetermined (by the sampling scheme) or estimated afterwards (because of
differential nonresponse), in which case they would be random variables. The
estimating equations are still valid, unless the nonresponse is related to the
dependent variable of interest (“nonignorable”), in which case analyzing the
data becomes much more complicated and perhaps consistent estimators do
not exist.

Of course, the formulas for the ML estimators with sampling weights sim-
plify considerably for the linear multilevel model. This is straightforward and
we do not give the expresssions here.

More extensive discussions of how to treat sampling weights in survey data
in general and with multilevel models in particular can be found in Skinner
[108], Pfeffermann [87], Pfeffermann et al. [88], and Asparouhov [5, 6].
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1.9 A School Effects Example

In this section, we apply some of the techniques discussed in this chapter by
analyzing the well-known NELS-88 data. These have been used to illustrate
multilevel techniques by several authors, and of course they have been used
in substantive research as well.

The part of the NELS -data that we use contains information about the
score on a mathematics test, which will be our dependent variable, and the
amount of time spent on homework, which will be our level-1 explanatory
variable, and the student-teacher ratio of the school, which will be our level-2
explanatory variable. The math test score is a continuous variable having a
sample average of 51, with a range of 27–71. Homework is coded from 0 =
“None” to 7 = “10 or more hours per week”. This is a slightly nonlinear
transformation of the hours, reflecting expected diminishing returns from ad-
ditional hours of homework. Both the average and the median of this variable
are 2. The student-teacher ratio varies from 10 to 30, with mean and median
approximately equal to 17. The data set consists of 21,580 students in 1003
schools, so the average number of observations per school is about 22. The
number of observations per school varies from 1 to 67.

Kreft and de Leeuw [67] have previously analyzed this data set with mul-
tilevel analysis. We base our analyses on the model they describe in their
chapter 4. However, whereas their goal is to discuss different model specifi-
cations and the choice between them, we focus on comparing results for the
same model obtained with different estimators.

In line with the description in this chapter, we start by computing the
within-school regressions. This immediately illustrates a drawback of our focus
on two-step estimators: in 10 schools, the within-groups regression coefficients
bj and/or the within groups residual variance s2j cannot be computed because
the sample size is too small (nj ≤ p = 2) or because Xj is not of full column
rank, which is presumably also due to small sample size. Thus, we drop these
10 schools and proceed with the 993 remaining schools, leaving us with 21,558
observations. We do not expect that this seriously affects the results, and this
is confirmed by the closeness of our results with the corresponding ones in
Kreft and de Leeuw [67]. However, this also indicates that models that use
different within-groups residual variances (σ2

j ) will not reliably estimate these
parameters for schools with small numbers of observations.

After these disclaimers, we report the within-schools results for the first
30 successfully analyzed schools in Table 1.1. It shows considerable variation
both in the regression coefficients and in the residual variances. This is cor-
roborated by summary statistics for the whole sample: The within-groups
intercept varies from 34 to 72, with mean and median approximately equal to
48, and the regression coefficient for homework varies from −12 to +15, with
mean and median equal to 1.3, but more than 75% are positive. Finally, the
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residual variance varies from 5 to 180, with mean and median approximately
equal to 71. It is the goal of the second step of the analysis to model at least
some of the variation in the regression coefficients.

Of course, a negative coefficient for time spent on homework does not make
sense substantively. Rather, in addition to the possibility of sheer random
fluctuation, this points to a possible endogeneity problem, caused by students
who have more problems with mathematics spending more time on their
homework. That is, it may be the result of a partial reversal of causality. For
the analysis here, we will ignore this possibility, given that we are primarily
interested in differences between estimators.

We proceed by computing the one-step and two-step OLS estimates of
the regression coefficients γ. These are reported in the first two columns of
Table 1.2. The estimates are in the first panel, model-based standard errors
(computed using the de Leeuw and Kreft [28] estimate of Ω) in the second
panel, and robust standard errors in the third panel. Unlike a similar com-
parison for different data in de Leeuw and Kreft [28], we see some important
differences between these estimates. The estimated main effect of the student-
teacher ratio is twice as large for the two-step estimator, whereas the main
effect of homework is less than half as large and the interaction term is also
considerably less important, even statistically insignificant.

By using the within-groups and two-step OLS estimates, we can estimate
Ω by the method of de Leeuw and Kreft [28] discussed above. The estimate is
denoted by “DLK” in Table 1.3. Fortunately, this is positive definite, so we do
not encounter the problems faced by de Leeuw and Kreft for their example.
Thus, we can use this estimate to compute the WLS estimates of γ. They are
given in the third column of Table 1.2. They are very similar to the two-step
estimates. As mentioned above, the estimate ofΩ is also be used in computing
the model-based standard errors of the one-step and two-step OLS and WLS
estimates, which are given in the second panel of Table 1.2. The third panel
contains standard errors obtained from the cluster-robust covariance matrices.

Next, we compute ML estimates. There are four of them: FIML and
REML, each with a common variance parameter σ2 or with separate variances
σ2
j . The results for the fixed coefficients are listed in the last four columns of

Table 1.2. As argued before, these REML results are better called “WLS based
on REML estimates of the variance parameters”, but for convenience we call
them REML here, and similarly WLS based on the DLK variance parameter
estimates will be simply called WLS. The model-based standard errors for
the ML estimators are obtained from the information matrix, whereas the ro-
bust standard errors are obtained from the cluster-robust covariance matrices
described above. An exception is formed by the robust standard errors accom-
panying FIML with separate residual variances. These have been computed by
formulas based on a combination of within-groups and between-groups asymp-
totics, as briefly mentioned but not worked out above (details are available
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Table 1.1. Within-school statistics for the first 30 successfully analyzed schools:

school identifier, number of pupils, student-teacher ratio, regression coefficients, and

residual variance.

regression coefficient residual
school ID observations s-t ratio constant homework variance

1249 24 21 54.0969 −0.5760 66.6295

1755 14 16 45.9339 0.3330 60.6991

1806 15 25 45.8242 3.0579 70.4722

1846 36 28 45.3300 1.5674 62.4661

2114 19 13 57.5974 −0.6658 83.7773

2335 19 11 60.0461 0.5249 16.1703

2666 20 14 43.0026 3.1134 69.1364

2759 17 10 57.3730 −2.8981 86.0793

2861 21 17 52.5275 2.6298 73.8099

2888 20 30 53.5131 0.4496 71.1451

2988 23 22 51.0928 0.5839 99.0531

6043 10 23 57.0538 0.5509 54.7340

6044 24 23 55.4732 0.1090 65.2169

6053 44 18 51.6696 2.0880 75.1713

6091 8 22 47.7969 −0.3928 108.5720

6185 3 19 47.9300 0.7850 41.3438

6327 8 23 63.8000 −8.6350 25.8185

6358 10 28 60.6133 0.5409 16.9813

6375 4 20 57.5608 0.4358 21.8832

6420 7 25 53.0421 0.2061 70.3876

6442 11 12 48.8171 0.1168 101.7292

6467 5 19 41.0639 6.9128 11.8384

6518 21 29 60.2006 0.9153 64.9436

6631 5 20 68.5750 −7.4025 40.5725

6641 29 15 50.2446 1.5950 70.2012

6656 4 16 37.7940 3.9710 10.9923

6738 3 26 54.9100 −6.0000 10.7648

6868 18 13 52.3958 0.9523 63.7598

7000 24 13 41.6905 1.2020 72.8585

7011 20 24 45.9697 1.6501 62.8256

upon request). This is intended to avoid the problems with the cluster-based
estimator of the variance of the first derivatives of the loglikelihood, because its
σ part is based on only 1 independent observation. However, the within-groups
asymptotics involve sample fourth-order moments, which are highly inaccurate
for the many small within-groups sample sizes. Nevertheless, the numerical
results are similar to the ones for the other ML estimators, and also very
similar to the two-step OLS and WLS results.
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Table 1.2. Estimates of fixed regression coefficients for the NELS-88 data and their

standard errors.

OLS OLS WLS FIML REML FIML REML

(1-step) (2-step) (DLK) (1 σ) (1 σ) (sep. σ’s) (sep. σ’s)

Estimates

constant 49.1477 52.1147 52.1062 51.4428 51.4434 51.9983 51.9988

s-t-ratio −0.1113 −0.2217 −0.2290 −0.2006 −0.2006 −0.2242 −0.2242

homework 2.8520 1.2834 1.2785 1.5272 1.5272 1.3557 1.3561

hw × ratio −0.0522 −0.0003 0.0058 −0.0030 −0.0030 0.0028 0.0028

Model-based standard errors

constant 0.7857 0.7303 0.6913 0.7003 0.7011 0.7307 0.7314

s-t-ratio 0.0428 0.0398 0.0378 0.0382 0.0382 0.0399 0.0400

homework 0.2642 0.2362 0.1875 0.1823 0.1825 0.1781 0.1783

hw × ratio 0.0142 0.0127 0.0103 0.0100 0.0100 0.0098 0.0099

Robust standard errors

constant 0.8176 0.8287 0.8862 0.8077 0.8049 0.8751 0.8639

s-t-ratio 0.0433 0.0437 0.0469 0.0428 0.0427 0.0462 0.0457

homework 0.2166 0.2225 0.1922 0.1828 0.1782 0.1961 0.1767

hw × ratio 0.0117 0.0118 0.0105 0.0098 0.0097 0.0105 0.0097

Note that the robust s.e.’s of the REML estimator are simply the WLS
formulas, and thus are not affected by this problem. Given that the FIML
estimators of γ are also WLS estimators, based on the FIML estimates of the
variance parameters, we could have done the same for FIML. On the other
hand, these WLS-based variance estimates essentially ignore any variability in
the estimators of the variance parameters, which is also only asymptotically
warranted.

The DLK and ML estimates of the elements of the level-2 covariance ma-
trixΩ are given in Table 1.3. The ML estimates using a single residual variance
parameter are very similar to the DLK estimates (which are, incidentally,
based on separate residual variances). The standard errors are a bit smaller,
reflecting the higher precision of ML. When separate residual variances are
estimated with ML, the estimates of Ω are noticeably larger.

For both ML estimators with a single residual variance parameter, the
estimate of σ2 is 71.74 with a model-based standard error of 0.72 and a robust
standard error of 0.85. The value of 71 corresponds closely with the average
of the within-groups residual variance estimates.

For FIML with separate variances, the estimates of the residual variances
vary from 8 to 161, with mean and median again approximately equal to
71. Similarly, for REML with separate variances, the estimates of the residual
variances vary from 8 to 157, with mean and median also approximately equal
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Table 1.3. Estimates of level-2 variance parameters for the NELS-88 data and their

standard errors.

DLK FIML REML FIML REML

(1 σ) (1 σ) (sep. σ’s) (sep. σ’s)

Estimates

constant, constant 23.9283 23.2633 23.3326 27.8982 27.9745

homework, constant −0.9319 −0.9105 −0.9197 −1.6088 −1.6197

homework, homework 0.8678 0.5190 0.5243 0.6828 0.6878

Model-based standard errors

constant, constant 1.8298 1.5125 1.5172 1.6826 1.6826

homework, constant 0.6159 0.3138 0.3149 0.3296 0.3296

homework, homework 0.3691 0.0993 0.0998 0.0971 0.0971

Robust standard errors

constant, constant — 1.5646 1.5591 1.7509 1.7509

homework, constant — 0.2983 0.2931 0.3197 0.3197

homework, homework — 0.1048 0.1047 0.1262 0.1262

Note: Robust standard errors are not available for the DLK [28] estimator.

to 71. This range is slightly more narrow than the range of the within-groups
estimates of the residual variances, but otherwise seems to confirm that the
residual variances are not equal.

We can compute a likelihood ratio test statistic comparing the model
with a common residual variance with the model with separate variances. For
both FIML and REML, its value is approximately 1500, with 992 degrees of
freedom, which gives a hugely significant p-value of approximately 2.2×10−23.
Even though the chi-square approximation is possibly inaccurate with such
a large number of degrees of freedom and such small within-groups sample
sizes, it clearly points in the direction of heterogeneous variances.

This leaves us with the conclusion that a model with a common variance is
likely misspecified and a model with separate variances cannot be estimated
reliably. Thus, this is a case in point for a more genuine multilevel approach in
which the residual variance is modeled with a systematic part and a random
residual, as suggested earlier.

Fortunately, however, the estimates and standard errors of the fixed coeffi-
cients, and to a lesser degree also the results for the level-2 covariance matrix,
appear fairly insensitive to the specification of the level-1 random part. Thus,
substantive conclusions would also be largely unaffected by this issue.

Clearly, this single empirical example is only an illustration and cannot be
viewed as representative of all multilevel analyses. Many more examples, show-
ing various issues in model specification and estimation, are discussed in detail
in the textbooks [46, 59, 67, 76, 89, 101, 110, 111], the program manuals, and
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many empirical articles cited here and in the mentioned textbooks. Finally,
the remaining chapters of this Handbook contain many empirical applications
as well, although for more complicated models.

1.10 Final Remarks

In this final section, we would like to briefly mention a few topics that have
not been addressed in the previous sections. The first is hypothesis tests. Of
course, this is one of the main topics of statistics (and typically the one
that gives statistics its bad reputation among students in the social sciences).
However, there is almost nothing that is specific to multilevel analysis. Thus,
the general theory of hypothesis testing as presented in, e.g., Cameron and
Trivedi [17, chap. 7], and in particular, the well-known Wald, likelihood ratio,
and Lagrange multiplier tests, can be directly applied. The only thing worth
mentioning is that the REML loglikelihood cannot be used to test hypotheses
concerning γ, i.e., exclusion of certain variables from the fixed part of the
model, because when viewed as a proper loglikelihood, it does not contain γ.

More generally, model fit is an important subject. In addition to formal
hypothesis tests, this typically involves certain more descriptive indexes of
model fit, like R2 in linear regression. Several such indexes have been proposed
for multilevel analysis, but these tend to have serious drawbacks. Sometimes it
is not guaranteed that the fit index improves as variables (or, more generally,
parameters) are added to the model, whereas other fit indexes do not have
a clear intuitive interpretation. Thus, the literature does not seem to have
converged on this topic. See, e.g., Snijders and Bosker [111, chap. 7], Hox
[59, section 4.4], Spiegelhalter et al. [112], Xu [128], and Gelman and Pardoe
[41] for some proposed indexes and their properties. A systematic approach
to diagnosing model (mis)specification, directed at various directions of mis-
specification, is given in chapter 3 of this volume.

An important issue in multilevel model specification is centering. In social
science data, variables typically do not have a natural zero point, and even
if there is a natural zero, it may still not be an important baseline value.
Therefore, in regression analysis and other multivariate statistical analysis
methods, variables are often centered, so that the zero point is the sample
average, which is an important baseline value. This tends to ease the in-
terpretation of the parameters, especially the intercept, and it sometimes has
some computational advantages as well. This practice has also been advocated
for multilevel analysis, but the consequences for multilevel analysis are not as
innocuous as for ordinary linear regression analysis. Moreover, in multilevel
analysis, there are two possibilities for centering the data. The first is grand
mean centering, i.e., the sample average of all observations is subtracted,
and the second is within-groups centering, where the sample average of only
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the observations within the same group is subtracted. Generally, grand mean
centering does not change the model and is thus innocuous, but within-groups
centering implicitly changes the model that is estimated, unless the sample
averages of all level-1 predictor variables are included as level-2 predictors.
For an extensive analysis, see Kreft et al. [68], Van Landeghem et al. [119], de
Leeuw [27], and the references therein.

We close by noting that the quality of every data analysis crucially depends
on the quality of the data. Most issues in data quality are not specific to
multilevel analysis and are thus not discussed here. One important aspect,
however, is the sampling design. Because a multilevel data set has observa-
tions at different levels, deciding on issues like sample size and randomization
becomes more complicated than with single-level data. This subject is treated
in detail in chapter 4 in this volume.

Appendix

1.A Notational Conventions

This appendix describes the notation used in this chapter. The notation
throughout this Handbook has been made as consistent as possible, so that
this appendix also serves as a reference for the other chapters. However, the
reader may occasionally discern slight differences in notation between the
chapters.

1.A.1 Existing Notation

We used the most common books on mixed, random coefficient, and multilevel
models to find a compromise notation [24, 46, 67, 76, 89, 101, 111]. There is a
substantial agreement on notation in these books, although there are of course
many differences of detail.

1.A.2 Matrices and vectors

Matrices are bold-face capitals, vectors are lower-case bold. In general we use
Greek symbols for unknowns and unobservables, such as parameters or latent
variables (disturbances, variance components).

As another convention we write X[n, r] for “X is an n × r matrix”, and
y[n] for “y is an n-element vector”. Also X = (xij) is used to define a matrix
in terms of its elements.

Two special matrix symbols we use are � for the direct sum and � for the
direct (or Kronecker) product. If A1, . . . ,Ap are matrices, with As[ns,ms],
then the direct sum is the

∑p
s=1 ns ×

∑p
s=1ms matrix
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p⊕
s=1

As = A1 � · · ·�Ap =


A1 ∅ ∅ . . . ∅
∅ A2 ∅ · · · ∅
∅ ∅ A3 · · · ∅
...

...
...

. . .
...

∅ ∅ ∅ · · · Ap

 ,

where ∅ denotes a (sub-)matrix with all elements equal to zero. The direct
product is a

∏p
s=1 ns×

∏p
s=1ms matrix, which we can best define recursively

starting with two matrices A and B. If A is n×m then

A�B =


a11B a12B a13B · · · a1mB

a21B a22B a23B · · · a2mB

a31B a32B a33B · · · a3mB
...

...
...

. . .
...

an1B an2B an3B · · · anmB

 ,

and, by recursion,

p⊗
s=1

As = A1 � (A2 � · · ·�Ap).

Superscripted delta is the Kronecker delta, i.e.

δst =

{
1 if i = j

0 if i 6= j.

The identity matrix is I, a vector with all elements equal to one is 1. The
matrix E has all elements equal to one. The size of these matrices and vectors
will often be clear from the context. If we need to be explicit we can always
write, for instance, E[n,m], but we also use the forms In and 1n. Unit vectors
ei have all elements equal to zero, except for element i which is equal to one.
Thus 1 is the sum of the ei.

1.A.3 Special Symbols

We use the following special symbols:
∆= is defined as
∼ is distributed as
N normal distribution
L=⇒ convergence in law (distribution)
a.d.= has the same asymptotic distribution
P=⇒ convergence in probability
iid∼ i.i.d. with given distribution
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1.A.4 Underlining Random Variables

A non-standard part of our notation is that we underline random vari-
ables [28]. Thus vector or matrix random variables are both underlined and
bold.

The advantage of distinguishing between random variables and fixed
known or unknown constants in the context of mixed models is clear. We use
constants (the design matrix, unknown parameters) and random variables (the
outcome variables, of which we observe a realization, and the random effects,
which we do not observe at all). We also estimate parameters. Estimates are
fixed values, realization of estimators, which are random variables. Underlining
gives us an extra alphabet, it also gives us a method to indicate how constants
and random variables are related, because we can use y for a realization of
y. The advantages of underlining, known as the Dutch Convention or Van
Dantzig Convention, are discussed in more detail in Hemelrijk [58].

As a simple example, the classical linear model is

y = Xβ + ε,

with
ε ∼ N (∅, σ2I).

Thus
y ∼ N (Xβ, σ2I).

We observe y and X, and we compute

β̂ = (X ′X)−1X ′y, (1.33)

which is a realization of a random variable β̂, satisfying

β̂ ∼ N (β, σ2(X ′X)−1).

It obviously makes sense to write E (β̂) = β, and it does not make sense to
write E (β̂) = β.

Equation (1.33) also illustrates the convention of writing the estimate of
a parameter by putting a hat on the parameter symbol. We also use this
convention for “estimating” a random component, for instance,

ε̂ = y −Xβ̂.

For conditional expectations we can both have E (x | y) and E (x | y), because
we can condition on both a random variable and its realization. The first
expression defines a deterministic function of y, the second a function of y,
i.e., a random variable.
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It is important to emphasize some basic consequences of our conventions.
Anything we actually compute cannot be underlined, because we only compute
with realizations, not with random variables. Anything that is underlined
is by definition part of a statistical model, because it implies a framework
of replication or a degree of belief. In Bayesian models there will be more
underlining than in Empirical Bayes models, and Empirical Bayes models have
more underlining than classical frequentist models. Ultimately, of course, even
fully Bayesian models will have fixed hyper-parameters, because otherwise the
specification of the model will never stop.

1.B Generic Numerical Optimization

The most common starting point for numerical optimization of a generic well-
behaved function is a second order Taylor series expansion around a point
θ1:

f(θ) = f1 + g′1(θ − θ1) + 1
2
(θ − θ1)′H1(θ − θ1) + o‖θ − θ1‖2,

where f1, g1, and H1 are the function f(·), its gradient g(·) (vector of first
partial derivatives with respect to θ), and its Hessian H(·) (matrix of second
partial derivatives with respect to θ), all evaluated in θ1.

Thus, if we ignore the approximation error reflected by the last term, we
find that the function is minimized for

θ̂ = θ1 −H−1
1 g1,

provided thatH1 is positive definite. Of course, in practice the approximation
error is not zero, so that this does not minimize the loss function immediately.
But we can assert that we have come closer and repeat the process, leading
to the algorithm

θi+1 = θi −H−1
i gi,

where i denotes the iteration number. This algorithm defines the well-known
Newton-Raphson method, also known simply as Newton’s method. In practice,
two modifications are often necessary to ensure that this algorithm works well.
The first is that the search direction −H−1

i gi is only guaranteed to point in
the direction of smaller function values if Hi is positive definite. Hence, if
the loss function is not globally convex, Hi may have to be modified in some
iterations to ensure that it is positive definite. This is typically done by adding
a positive multiple of the identity matrix until all eigenvalues are positive. The
second modification that is often used is to insert a step size αi, with which
the search direction is multiplied, so that the algorithm becomes

θi+1 = θi − αiH−1
i gi, (1.34)
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where it is understood that Hi may be the modified version to make it pos-
itive definite. Even though it is guaranteed that the search direction points
towards smaller function values, the unmodified update may “overshoot” if the
function decreases slowly in the neighborhood of the current point, but then
increases sharply. Therefore, the factor αi is chosen such that the function
value in the next point is smaller than in the current point. A value of αi
that ensures this always exists if Hi is positive definite and gi is nonzero.
Typically, one would start with αi = 1, halving step size until such a point
is reached. The (modified) Newton-Raphson method is implemented in most
general-purpose optimization functions.

There exist many alternative generic numerical optimization methods,
most of which use the same form (1.34) of an iteration, but with H−1

i re-
placed by another positive (semi)definite matrix. The reason for this is that
it is often computationally demanding to compute H−1

i , and places a larger
burden on the researcher and/or programmer, because the second derivatives
have to be computed and programmed. In principle, these methods converge
more slowly, because in the neighborhood of the minimum, the loss function
is closely approximated by a quadratic function, so that Newton-Raphson
converges very fast. In contrast, the steepest descent method, which simply
replaces H−1

i by the identity matrix, tends to converge extremely slowly. In
many cases, however, the better alternative methods are not noticeably worse
(in terms of speed and accuracy) than Newton-Raphson. A good and popular
method is the BFGS method, which replaces H−1

i by the matrix Gi. The
latter matrix is computed using the update formula

Gi+1 = (I − ρi4θi4g′i)Gi(I − ρi4gi4θ′i) + ρi4θi4θ′i,

where 4θi = θi+1−θi, 4gi = gi+1−gi, and ρi = 1/4g′i4θi. Clearly, if Gi is
positive semidefinite, then Gi+1 is also positive semidefinite. Moreover, it can
be proved that if Gi is positive definite, then Gi+1 is also positive definite.
Typically, the starting valueG0 is the identity matrix, which is clearly positive
definite, or an informed guess of H−1. When BFGS is applied to a (convex)
quadratic function of an n-element vector θ, and the step size is chosen to
minimize the function along the line defined by the update formula, the global
minimum is attained in n iterations and Gn+1 = H−1 (which is a constant
matrix). Therefore, unless the number of parameters is large, BFGS tends to
converge quickly in the neighborhood of the minimum, where the loss function
is approximately quadratic. The BFGS method is also implemented in most
general-purpose optimization functions.

An extensive treatment of many generic numerical optimization proce-
dures, including Newton-Raphson and BFGS, with derivations of their prop-
erties, can be found in Nocedal and Wright [86].
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1.C Some Matrix Expressions

Here we collect some convenient results to deal with two-level linear models.
The first two results have been known for a long time [26, 36, 117]. Proofs of
the first three results are given, for example, in de Leeuw and Liu [31]. Many
additional useful matrix results are provided by Wansbeek and Meijer [123,
appendix A] and Harville [53].

Theorem 1.1. If A = B + TCT ′ with A and B positive definite, then

log |A| = log |B|+ log |C|+ log |C−1 + T ′B−1T |.

If, in addition, T is of full column rank, then

log |A| = log |B|+ log |T ′B−1T |+ log |C + (T ′B−1T )−1|.

Theorem 1.2. If A = B + TCT ′ with A and B positive definite, then

A−1 = B−1 −B−1T (C−1 + T ′C−1T )−1T ′B−1.

If, in addition, T is of full column rank, then

A−1 = T (T ′T )−1(C + (T ′B−1T )−1)−1(T ′T )−1T ′

+ {B−1 −B−1T (T ′B−1T )−1T ′B−1}.

Theorem 1.3. If A = B + TCT ′ with A and B positive definite,then

y′A−1y = min
x
{(y − Tx)′B−1(y − Tx) + x′C−1x}.

The fourth result was proved by de Hoog et al. [26] by letting C−1 → ∅ on
both sides of Theorem 1.2.

Theorem 1.4. If B is positive definite and T is of full column-rank, then

B−1 −B−1T (T ′B−1T )−1T ′B−1 = (QBQ)+,

where Q = I − T (T ′T )−1T ′ and superscript + denotes the Moore-Penrose
inverse.

1.D The EM Algorithm

The EM algorithm of Dempster et al. [33] is a general method to optimize
functions of the form f(θ) = log

∫
g(θ,z) dz over θ, where g(θ,z) > 0 for all

θ and z in the domain. It is usually presented in probabilistic terminology, but
the reason why it works is the concavity of the logarithm, which is obviously
not a probabilistic result.
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Define h(θ) ∆=
∫
g(θ,z) dz and k(z | θ) ∆= g(θ,z)/h(θ). Then, by the con-

cavity of the logarithm, it follows from Jensen’s inequality [96, p. 58] that for
all θ and θ̃

f(θ) ≥ f(θ̃) +
∫

log g(θ,z) k(z | θ̃) dz −
∫

log g(θ̃,z) k(z | θ̃) dz, (1.35)

with equality if and only if g(θ,z) = g(θ̃,z) almost everywhere.
In each iteration of the EM algorithm we take θ̃ to be our current best

approximation to the optimum and improve it by maximizing the right-hand
side of (1.35) over θ for this given θ̃. In other words, we find θ(i+1) by
maximizing

Q(θ | θ(i)) ∆=
∫

log g(θ,z) k(z | θ(i)) dz

over θ. The algorithm is monotone, in the sense that f(θ(i+1)) > f(θ(i))
and in many cases this is enough to guarantee (linear) convergence to a local
maximum of f(·).

In the probabilistic interpretation, f(θ) is a loglikelihood function and
EM stands for expectation-maximization. The E-step computes Q(θ | θ(i)),
which is the conditional expectation of the complete-data loglikelihood g(θ,z),
given the observed data and the current parameter value θ(i), and the M-step
maximizes the resulting function.

We can now apply the EM algorithm to the multilevel FIML loglikelihood.
Here, z consists of all the random effects δj , and θ is the usual parameter
vector. The complete-data loglikelihood has the form

g(θ, δ) =
m∏
j=1

gj(θ, δj),

where gj(θ, δj) is the joint density of y
j

and δj . Using standard probability
theory, we can write

gj(θ, δj) = fδ |y(δj | yj)fy(yj)

hj(θ)
∆=
∫
gj(θ, δj) dδj = fy(yj)

kj(δj | θ)
∆= gj(θ, δj)/hj(θ) = fδ |y(δj | yj)

Qj(θ | θ(i)) ∆=
∫

log gj(θ, δj) kj(δj | θ(i)) dδj

Q(θ | θ(i)) =
m∑
j=1

Qj(θ | θ(i)).

The joint distribution of y
j

and δj is normal,
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y
j

δj

)
∼ N

((
Ujγ

∅

)
,

(
Vj XjΩ

ΩX ′
j Ω

))
,

from which we obtain the conditional distribution of δj given yj as

δj | yj ∼ N (µj ,Σj),

with

µj = ΩX ′
jV

−1
j (yj −Ujγ) = ΩW−1

j (bj −Zjγ)

Σj = Ω −ΩX ′
jV

−1
j XjΩ = σ2

jΩW
−1
j (X ′

jXj)
−1.

By writing gj(θ, δj) = fy | δ(yj | δj)fδ(δj), and observing that the marginal
distribution of δj is normal with mean zero and covariance matrix Ω, and the
conditional distribution of y

j
given δj is normal with mean Ujγ +Xjδj and

covariance matrix σ2
j Inj , we obtain after some simplification

log gj(θ, δj) = −nj + p

2
log(2π)− nj

2
log σ2

j −
1

2σ2
j

(nj − p)s2j

− 1
2σ2

j

(bj −Zjγ)′X ′
jXj(bj −Zjγ) +

1
σ2
j

(bj −Zjγ)′X ′
jXjδj

− 1
2

log |Ω| − 1
2

tr
[
(σ−2
j X ′

jXj +Ω−1)δjδ
′
j

]
.

The function Qj(θ | θ(i)) is obtained by integrating the product of this with
kj(δj | θ(i)). That is, it is obtained as the expectation of log gj(θ, δj) when
viewed as a function of the random variable δj that is normally distributed
with mean µ(i)

j and covariance matrix Σ(i)
j , which are µj and Σj evaluated

in θ(i). For this distribution, we evidently have E (δj) = µ
(i)
j and E (δjδ

′
j) =

Σ
(i)
j + µ(i)

j µ
(i)
j
′, so that, after some simplification, we obtain

Qj(θ | θ(i)) =
(
−nj + p

2
log(2π)

)
− 1

2

(
log |Ω|+ tr

[
Ω−1(Σ(i)

j + µ(i)
j µ

(i)
j
′)
])

− nj
2

log σ2
j −

1
2σ2

j

(nj − p)s2j −
1

2σ2
j

tr(X ′
jXjΣ

(i)
j )

− 1
2σ2

j

(bj − µ(i)
j −Zjγ)′X ′

jXj(bj − µ
(i)
j −Zjγ).

Consequently, the parameter values that optimize Q(θ | θ(i)) are

Ω(i+1) =
1
m

m∑
j=1

(Σ(i)
j + µ(i)

j µ
(i)
j
′)

γ(i+1) =

(
m∑
j=1

Z ′jX
′
jXjZj

)−1 m∑
j=1

Z ′jX
′
jXj(bj − µ

(i)
j )

(σ2
j )

(i+1) =
1
nj

[
(nj − p)s2j + tr(X ′

jXjΛ
(i)
j )
]
,
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or, instead of the latter,

(σ2)(i+1) =
1
n

m∑
j=1

[
(nj − p)s2j + tr(X ′

jXjΛ
(i)
j )
]
,

where

Λ
(i)
j

∆=Σ(i)
j + (bj − µ

(i)
j −Zjγ

(i+1))(bj − µ
(i)
j −Zjγ

(i+1))′.

Note that when Ω is not completely free (apart from the requirements of
symmetry and positive definiteness, of course), then the M-step with respect
to the parameters {ξg} is nontrivial. We then need to minimize the function

F (ξ) ∆= log |Ω|+ tr
(
Ω−1S(i)

)
with respect to ξ ∆= (ξ1, . . . , ξG)′, where

S(i) ∆=
1
m

m∑
j=1

(Σ(i)
j + µ(i)

j µ
(i)
j
′).

Assuming (1.3), the first-order conditions are

tr[Ω−1(S(i) −Ω)Ω−1Cg] = 0.

Letting C∗ be the matrix with g-th column equal to vec(Cg), these can be
jointly written as

C∗′(Ω−1 �Ω−1)(vecS(i) −C∗ξ) = ∅,

which is a nonlinear equation that does not generally have a closed-form
solution. However, it strongly suggests that one or more IGLS iterations of
the form

ξ(i+1,k+1) =
[
C∗′(Ω−1 �Ω−1)C∗]−1

C∗′(Ω−1 �Ω−1) vecS(i),

where in the right-hand side vecS(i) is held fixed throughout these subit-
erations, but Ω is the value from the previous (k-th) subiteration, should
also increase the loglikelihood, so that full optimization in this step is not
necessary.
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Bayesian Multilevel Analysis and MCMC

David Draper

Department of Applied Mathematics and Statistics, Baskin School of Engineering,

University of California Santa Cruz

2.1 Introduction

Multilevel models have gained wide acceptance over the past 20 years in many
fields, including education and medicine [e.g., 26, 43, 45], as an important
methodology for dealing appropriately with nested or clustered data. The idea
of conducting an experiment in such a way that the levels of one factor are
nested inside those of another goes back all the way to the initial development,
in the 1920s, of the analysis of variance (ANOVA; [34]), so there’s nothing new
in working with nested data; the novelty in recent decades is in the methods for
fitting multilevel models, the ability to work with data possessing many levels
of nesting and multiple predictor variables at any or all levels, and an increased
flexibility in distributional assumptions. The earliest designs featured one-way
ANOVA models such as1

yij = µ+ αTj + aSij , j = 1, . . . , J, i = 1, . . . , nj ,
J∑
j=1

nj = N,

J∑
j=1

αTj = 0, aSij
iid∼ N (0, σ2

S),
(2.1)

in which the subject factor S (indexed by i), treated as random, is nested
within the treatment factor T (indexed by j), treated as fixed. Under the
normality assumption in (2.1) such models required little for the (frequentist)
estimation of the parameters µ, σ2

S , and the αTj beyond minor extensions of
the least squares methods known since the time of Legendre [51] and Gauss
[36]. Regarding the treatment factor as random, however, by changing the
αTj to aTj

iid∼ N (0, σ2
T ) (with the aTj and aSij mutually independent), created

substantial new difficulties in model fitting—indeed, as late as the 1950s, one
1 Note that random variables are not underlined in this chapter.
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of the leading estimation methods [e.g., 65] was based on unbiased estimates
of the variance components σ2

T and σ2
S , the former of which can easily, and

embarrassingly, go negative when σ2
T is small. Fisher [33] had much earlier pi-

oneered the use of maximum likelihood estimation, but before the widespread
use of fast computers this approach was impractical in random-effects and
mixed models such as

yij = β0 + β1(xij − x̄) + aTj + aSij , j = 1, . . . , J, i = 1, . . . , nj ,
J∑
j=1

nj = N, aTj
iid∼ N (0, σ2

T ), aSij
iid∼ N (0, σ2

S),
(2.2)

(where the xij are fixed known values of a predictor variable and x̄ is the
sample mean of this variable), because the likelihood equations in such models
can only be solved iteratively. Multilevel modeling entered a new phase in the
1980s, with the development of computer programs such as ML3, VARCL, and
HLM using likelihood-based estimation approaches based on iterative general-
ized least squares [42], Fisher scoring [52], and the EM algorithm [e.g., 15],
respectively. In particular, the latest versions of MLwiN (the successor to ML3;
[60]) and HLM [66] have worldwide user bases in the social and biomedical sci-
ences numbering in the thousands, and likelihood-based fitting of at least some
multilevel models is also now obtainable in more general-purpose statistical
packages such as SAS [64] and Stata [71].

However, the use of the likelihood function alone in multilevel modeling
can lead to the following technical problems:

• Maximum-likelihood estimates (MLEs) and their (estimated asymptotic)
standard errors (SEs) can readily be found by iterative means for the
parameters in Gaussian multilevel models such as (2.2), but interval es-
timates of those parameters can be problematic when J , the number of
level-2 units, is small. For example, simple “95%” intervals of the form
σ̂2
T ± 1.96 ŝe(σ̂2

T ) (based on the large-sample Gaussian repeated-sampling
distribution of σ̂2

T ) can go negative and can have actual coverage levels
substantially below 95%, and other methods based only on σ̂2

T and ŝe(σ̂2
T )

(which are the default outputs of packages such as MLwiN and HLM) are not
guaranteed to do much better, in part because (with small sample sizes)
the MLE of σ2

T can be 0 even when the true value of σ2
T is well away from

0 [e.g., 12].
• The situation becomes even more difficult when the outcome variable y in

the multilevel model is dichotomous rather than Gaussian, as in random-
effects logistic regression (RELR) models such as

(yij | pij)
indep∼ Bernoulli(pij), where

logit(pij) = β0 + β1(xij − x̄) + uj , uj
iid∼ N (0, σ2

u).
(2.3)
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Here the likelihood methods that work with Gaussian outcomes fail; the
likelihood function itself cannot even be evaluated without integrating out
the random effects uj from (2.3). Available software such as MLwiN fits
RELR models via quasi-likelihood methods [7]; this approach to fitting
nonlinear models such as (2.3) proceeds by linearizing the second line of
the model via Taylor series expansion, yielding marginal and penalized
quasi-likelihood (MQL and PQL) estimates according to the form of the
expansion used. These are not full likelihood methods and would be better
termed likelihood-based techniques. Browne and Draper [12] have shown
that the actual coverage of nominal 95% interval estimates with this
approach in RELR models can be far less than 95% when the intervals
are based only on MQL and PQL point estimates and their (estimated
asymptotic) SEs; see section 2.3.3 below. Calibration results of this kind for
other methods which attempt to more accurately approximate the actual
likelihood function [e.g., 1, 50, 53, 57, 61] are sparse and do not yet fully
cover the spectrum of models in routine use, and user-friendly software for
many of these methods is still hard to come by.

This chapter concerns the Bayesian approach to fitting multilevel models,
which (a) attempts to remedy the above problems (though not without in-
troducing some new challenges of its own) and (b) additionally provides
a mechanism for the formal incorporation of any prior information which
may be available about the parameters of the multilevel model of interest
external to the current data set. A computing revolution based on Markov
chain Monte Carlo (MCMC) methods, and the availability of much faster
(personal) computers, have together made the Bayesian fitting of multilevel
models increasingly easier since the early 1990s. In this chapter I (1) describe
the basic outline of a Bayesian analysis (multilevel or not), in the context of a
case study, (2) motivate the need for simulation-based computing methods, (3)
describe MCMC methods in general and their particular application to mul-
tilevel modeling, (4) discuss MCMC diagnostic methods (to ensure accuracy
of the computations), and (5) present an MCMC solution to the multilevel
modeling case study.

2.1.1 A Case Study

In the spring of 1993 a survey was taken of bicycle and other traffic in the
vicinity of the University of California, Berkeley, campus [37]. Ten city blocks
were selected at random in each of the six cells of a 2 × 3 table that cross-
tabulates presence or absence of a bike route on a street against whether the
street was residential, fairly busy, or busy. This street classification was made
before the data were gathered. Each block was observed for one hour at the
same time and day of the week on a randomly chosen day, and a record was
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Table 2.1. Raw data from the Berkeley traffic survey. Entries are of the form p/n,

where p is the proportion of bicycle traffic (PBT) and n is the number of vehicles

in each block. Data from two (No, Residential) blocks are missing, and one bicycle

was added to the starred block in the (No, Fairly Busy) cell to avoid a zero PBT

value.

Bike Street Type

Route? Residential Fairly Busy Busy

.216/ 74 .091/ 99 .216/ 37 .078/ 450 .037/1605 .033/1550

.172/ 58 .186/ 70 .068/ 456 .311/ 61 .035/1656 .105/ 562

Yes .156/122 .260/ 77 .174/ 218 .065/ 722 .115/ 460 .044/1562

.173/104 .132/129 .066/ 664 .091/ 481 .042/1626 .034/1766

.114/308 .462/119 .382/ 76 .038/ 480 .130/ 547 .077/ 815

.096/125 .053/ 19 .018/ 567 .033/1301 .006/1256 .007/1255

.125/ 16 .083/ 48 .010/ 504 .023/ 615 .004/1602 .005/1774

No .041/217 .095/ 74 .048/1221 .021/ 715 .015/1309 .024/2559

.237/ 38 .049/162 .011/ 91∗ .041/1140 .013/2377 .024/3176

.034/1510 .029/1118 .007/1932 .011/2343

kept of the numbers of bicycles and other vehicles traveling in the sampled
blocks. The data for two of the residential blocks without a bike route were
lost. The study was observational—for instance, no attempt was made to
assign bike routes to streets at random to see what that would do to vehicular
traffic in Berkeley—but interest nevertheless focuses on the “effects” of (a)
having or not having a bike route and (b) street type on the proportion of
bicycle traffic (PBT).

Table 2.1 presents the raw data from this study, and Table 2.2 offers
summaries of the means and standard deviations (SDs) of the block-level
PBT values on the raw and logit (log-odds) scales. It’s clear from these tables
that

• the street type classifications are fairly accurate as to volume of traffic,
although there is overlap; for instance, 8 of the 18 residential streets were
busier during the chosen observation periods than 4 of the 20 fairly busy
streets;

• street type and bike route both have strong effects on PBT in the intu-
itively reasonable directions (e.g., it’s 16 times more likely that a vehicle
will be a bicycle on residential streets with bike routes than busy streets
without them), although there is substantial (unexplained) between-block
variation within cells of the 2× 3 table;

• there is a strong relationship between the cell means and SDs on the raw
PBT scale, and this is substantially diminished when the log-odds of the
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Table 2.2. Summaries of the Berkeley traffic survey data. Entries are means and

(SDs) of the block-level PBT values, on the raw (top table) and logit (bottom table)

scales.

Bike Street Type

Route? Residential Fairly Busy Busy Total

Yes .196 (.105) .149 (.112) .065 (.038) .137 (.106)

No .097 (.063) .026 (.014) .012 (.007) .041 (.049)

Total .152 (.100) .087 (.103) .038 (.038) .091 (.096)

Bike Street Type

Route? Residential Fairly Busy Busy Total

Yes −1.50 (.598) −2.01 (.917) −2.81 (.598) −2.11 (.884)

No −2.38 (.639) −3.71 (.541) −4.63 (.634) −3.66 (1.08)

Total −1.89 (.746) −2.86 (1.14) −3.72 (1.11) −2.85 (1.25)

PBT values are considered, suggesting either additive modeling on the
logit scale or multiplicative modeling on the raw scale2; and

• there is a fairly strong interaction between street type and bike route (e.g.,
on the logit scale the effect of having or not having a bike route is about
half as large for residential streets as it is for busier streets).

These data have a multilevel (or hierarchical) character: bike route R and
street type T are fully crossed, city block B is nested in R×T , and vehicle V
is nested in B (and therefore also in R×T ). It’s natural in this study to treat
R and T as fixed factors (at 2 and 3 levels, respectively) and to regard B and
V as random. Letting yijkl be 1 if vehicle i observed in block j of bike route
status k and street type l is a bicycle and 0 otherwise, one possible model for
these data is

(yijkl | pijkl)
indep∼ Bernoulli(pijkl), where

logit(pijkl) = µ+ αRk + αTl + αRTkl + aBjkl, aBjkl
iid∼ N (0, σ2

B),
(2.4)

with appropriate side conditions on the fixed effects such as
∑K
k=1 α

R
k = 0. The

normal distribution for the random effects aBjkl in (2.4) and the choice of the
logistic link function in this RELR model are both conventional assumptions,
not automatically motivated by the real-world details of this case study, and

2 40 of the 58 PBT values are less than 0.1, and for p close to 0, logit(p)
∆
= log

`
p/(1−

p)
´ .

= log(p); thus the log transform, which is routinely used to produce approxi-

mate additivity of multiplicative (raw-scale) treatment effects, and the logit have

almost the same effect here.
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would require checking (see chapter 3 of this volume for multilevel diagnostic
methods).

An alternative formulation equivalent to (2.4) would define yjkl to be the
number of bicycles among the njkl vehicles in block j with R×T status (k, l)
and would then take

(yjkl | pjkl)
indep∼ Binomial(njkl, pjkl), where

logit(pjkl) = µ+ αRk + αTl + αRTkl + aBjkl, aBjkl
iid∼ N (0, σ2

B),
(2.5)

with the analysis conditional on the observed njkl. One final class of models
for these data begins as in the first line of (2.5) but makes distributional
assumptions about the pjkl on the raw scale, e.g., by replacing the second line
of (2.5) by

pjkl ∼ Beta(αjkl, βjkl) (2.6)

and then linking the αjkl and βjkl values for different (k, l) to the levels of the
R and T factors3. Exact small-sample likelihood inferences for functions of the
αjkl and βjkl such as the mean of pjkl, αjkl/(αjkl + βjkl), would be difficult
in this model, but (as will be seen below) such inferences are straightforward
with Bayesian fitting via MCMC methods.

2.1.2 Prior, Likelihood, Posterior, and Predictive Distributions

To motivate the ingredients of a Bayesian analysis (not necessarily of mul-
tilevel data), consider the first residential city block with a bike route in
Table 2.1, where s = y111 = 16 of the n = n111 = 74 vehicles observed
were bicycles (with the data gathered, say, on a Tuesday afternoon from
3 to 4 pm), and suppose that these were the only data available. For ease
of notation in this section let the individual indicators (y1,111, . . . , y74,111) of
bicycle-or-not be denoted (b1, . . . , bn). In the predictivist approach to Bayesian
statistics that makes the most sense to me [23], I’m encouraged to consider
the binary observables bi before the data have arrived and to quantify my un-
certainty about them by means of a joint (predictive) probability distribution,
p(b1, . . . , bn). I notice that my predictive uncertainty is the same for (say) b17
as it is for (say) b31, which is another way of saying that my p(b1, . . . , bn) would
be unchanged under any permutation of the indices i = 1, . . . , n; de Finetti
called this a judgment of exchangeability4 of (my predictive distribution for)

3 (2.5) accomplishes something similar by means of what might be called the logit-

normal distribution, which models the behavior of p when logit(p) is assumed to

follow a N (µ, σ2) distribution. The logit-normal family exhibits a range of shapes

similar to that of the Beta family.
4 See Draper et al. [28] for an exploration of how data are used to make such

judgments in practice in more complicated situations.
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the bi. de Finetti [22] showed that if I’m willing to regard (b1, . . . , bn) as the
beginning of an indefinitely long sequence of exchangeable binary observables,
this judgment is functionally equivalent to assuming the hierarchical model

θ ∼ p(θ)

(bi | θ)
iid∼ Bernoulli(θ)

(2.7)

(for i = 1, . . . , n), or equivalently the model

θ ∼ p(θ)
(s | θ) ∼ Binomial(n, θ),

(2.8)

where in both models n is treated as fixed and known. Here

• θ is interpretable both (a) as the marginal probability Pr(bi = 1) that any
vehicle in the indefinitely long sequence is a bicycle and (b) as the long-run
average of the bi, which could also be thought of in this case study as the
underlying PBT value for this city block (previously denoted p111) during
other periods (e.g., Tuesday afternoons from 3–4 pm) judged similar to the
day on which the data were gathered; and

• logically θ is a fixed (unknown) constant, but to use model (2.7) or (2.8)
it’s necessary to regard it as a random quantity possessing a probability
distribution p(θ). This is my prior distribution for θ, and represents an
opportunity to quantitatively summarize what (if anything) I know about
θ external to the present data set.

Notice that in de Finetti’s formulation θ is not the primitive construct; pre-
diction of future observables is the fundamental operation, and θ arises as a
quantity which makes this prediction easier, by rendering the bi conditionally
IID5 given θ.

Once the bi are observed my state of knowledge about θ will change.
Denoting the data vector by b = (b1, . . . , bn), it can be shown [e.g., 2] that—to
avoid internal inconsistencies in my probability assessments—this new state
of knowledge must be given by the (conditional) posterior distribution p(θ | b)
for θ given b, and that passing from the prior to posterior states of knowledge
must be accomplished via Bayes’ Theorem6:
5 Exchangeability and IID are not the same thing. IID implies exchangeability,

and exchangeable random variables do have identical marginal distributions, but

they’re not independent: If you didn’t know anything about θ, the knowledge of

how some of the bi turn out would help you to predict the other bi, whereas if you

somehow knew the exact value of θ in (2.7) or (2.8), the bi become conditionally

independent given this knowledge, because information about any of the bi (given

θ) would be irrelevant in predicting any of the other bi.
6 Here, p(·) denotes a probability density or probability mass function, i.e., in this

chapter the same symbol is used for a distribution, e.g., p(θ) = Beta(α, β), and

its density function, e.g., p(θ) = c θα−1 (1− θ)β−1.
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p(θ | b) =
p(θ) p(b | θ)

p(b)
. (2.9)

After the data have arrived the left side of (2.9) is a probability distribution
for θ with b a known quantity, so the same must be true of the right side.
This means that (i) the p(b) term in the denominator is just a constant7

and (ii) p(b | θ), which before the data were gathered would be recognizable
as the joint sampling distribution p(b1, . . . , bn | θ) for the bi given θ, needs
to be interpreted, after the data are known, as a function of θ for fixed b.
Fisher [33] called this the likelihood function l(θ | b); more precisely he noticed
that this function is only determined up to a constant multiple and defined
l(θ | b) = c p(b | θ) (here and below I’ll use c > 0 as a generic positive
constant). In Bayesian work it’s often useful to choose this constant so that
the likelihood integrates to 1; call the result the likelihood distribution for θ
given b. Then (2.9) can be rewritten as

p(θ | b) = c p(θ) l(θ | b). (2.10)

This provides a prescription for calculating a posterior distribution when the
parameter θ in (2.10) is univariate: multiply the prior and likelihood distribu-
tions pointwise (in θ) and normalize the product to integrate to 1.

The first step in applying (2.10) in the case of the model (2.7) is to compute
the likelihood distribution, which is obtained by writing out the joint sampling
distribution p(b1, . . . , bn | θ) for the Bernoulli model and reinterpreting it as
a function of θ for fixed b. Here, because the bi are conditionally IID given θ,
this is just the product of the marginal Bernoulli sampling distributions

p(bi | θ) =

{
θ if bi = 1
1− θ if bi = 0,

and, since this can be written p(bi | θ) = θbi(1− θ)1−bi , the result is

p(b1, . . . , bn | θ) =
n∏
i=1

p(bi | θ) =
n∏
i=1

θbi(1− θ)1−bi = θs(1− θ)n−s, (2.11)

where s =
∑n
i=1 bi counts the number of bicycles among the n vehicles. Thus

in this case8 l(θ | b) = c θs(1−θ)n−s, with c chosen to make l a density in θ for
fixed s. This is recognizable as the Beta(s+1, n−s+1) distribution. It’s worth
noting that the likelihood here depends on the data vector b only through s;
according to Fisher’s [33] definition, this makes s a sufficient statistic for

7 In fact, it’s a normalizing constant, determined by the condition that for all

possible data vectors b,
R 1

0
p(θ | b) dθ = 1.

8 The same result is immediate from (2.8): by definition the Binomial sampling

distribution is p(s | θ) = c θs(1− θ)n−s with c = n!/
`
s! (n− s)!

´
.
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θ in the Bernoulli/Binomial model9, and this additionally implies that the
posterior for θ given b also depends only on s: p(θ | b) = p(θ | s).

What should I take for my prior distribution p(θ)? As long ago as in the
work of Laplace [49] it was observed that in this problem a computational
simplification arises from assuming that the prior has the same Beta form as
the likelihood: if p(θ) = c θα−1(1− θ)β−1 for some α, β > 0 then

p(θ | b) = c
[
c θα−1(1− θ)β−1

] [
c θs(1− θ)n−s

]
= c θα+s−1(1− θ)β+n−s−1

= Beta(α+ s, β + n− s).

The Beta prior is said to be conjugate to the Bernoulli/Binomial likelihood10,
and this choice of a conjugate prior leads to a simple updating rule:

θ ∼ Beta(α0, β0)

(bi | θ)
iid∼ Bernoulli(θ),

i = 1, . . . , n

⇒ (θ | b) = (θ | s) ∼ Beta(α0+s, β0+n−s). (2.12)

It’s important to note that this line of reasoning has only demonstrated that
the Beta distribution is computationally convenient, not necessarily that it’s
scientifically compelling (by which I mean an accurate reflection of my prior
information), although the Beta family does exhibit a wide variety of (uni-
modal and U-shaped11) behaviors as α and β range freely over (0,∞).

The choice of a conjugate prior brings with it interpretational as well as
computational advantages. For example, the mean of the Beta(α0, β0) distri-
bution is α0/(α0 + β0); from this, having used a Beta prior, it’s possible to
write the posterior mean E (θ | b) as a weighted average of the prior mean
E (θ) and the data mean b̄ = s/n:
9 Fisher was interested in dimensionality reduction, and it appealed to him that

(conditional on the “truth” of model (2.7)) you don’t have to carry around the

full n-dimensional data vector b to draw inferences about θ; the one-dimensional

summary s is enough. In fact he would have called s a minimal sufficient statistic,

meaning that all other sufficient statistics are of dimensionality at least as large as

that of s. For example, (
Pk

i=1 bi,
Pn

i=k+1 bi) for any k = 1, . . . , n− 1 is sufficient

but not minimal sufficient here.
10 Informally, a prior p(θ) is conjugate to a likelihood l(θ | y) if the resulting

posterior p(θ | y) has the same distributional form as p(θ); see Bernardo and

Smith [2] for a formal definition.
11 Other shapes can be achieved by using Beta distributions as building blocks; in

fact, Diaconis and Ylvisaker [24] have shown that all possible prior distributions

for parameters of models that can be expressed as members of the exponential

family can be approximated arbitrarily closely by mixtures of conjugate priors

(see, e.g., Bernardo and Smith [2] for a thorough discussion of the exponential

family).
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E (θ | b) =
α0 + s

α0 + β0 + n

=
(

α0

α0 + β0

)(
α0 + β0

α0 + β0 + n

)
+
( s
n

)( n

α0 + β0 + n

)
= E (θ)

(
α0 + β0

α0 + β0 + n

)
+ b̄

(
n

α0 + β0 + n

)
.

Thus the data mean s/n receives n votes and the prior mean gets α0 + β0

votes in the posterior compromise between data and prior information, and
since the data sample size is n it’s natural to refer to n0 = α0 + β0 as the
prior sample size: as far as the prior-to-posterior updating is concerned it’s
as if the prior information were equivalent to a prior data set consisting of α0

1s and β0 0s which is merged with the current data set consisting of s 1s and
(n− s) 0s to yield the posterior data set12.

Consider two seemingly rather different sets of prior information/beliefs
in this problem:

• In the first set, before the data arrive I’d be quite surprised if θ, the
proportion of bicycle traffic in the residential city block with a bike route
at issue here, were less than 5% or greater than 50%;

• In the second set, before b is observed I wish to express comparative
ignorance about θ across the entire range of its possible values from 0
to 1.

One way to make the first set of prior information/beliefs operational within
the conjugate Beta family is to take the phrase “quite surprised” to mean, e.g.,
Pr(0.05 ≤ θ ≤ 0.5) = 0.9, and to split the remaining 10% of prior probability
equally between the two tails, leading to the two equations

Pr(θ < 0.05) =
∫ 0.05

0

Beta(θ;α0, β0) dθ = 0.05,

Pr(θ > 0.5) =
∫ 1

0.5

Beta(θ;α0, β0) dθ = 0.05,
(2.13)

where Beta(θ;α, β) = c θα−1(1 − θ)β−1 is the Beta density13 with hyperpa-
rameters α and β. The equations in (2.13) may be solved numerically in a
package such as Maple [74] or R [58] to yield (α0, β0)

.= (2.0, 6.4). With this
specification (a) the prior mean for θ is 2.0/(2.0 + 6.4) .= 0.24, (b) its prior
standard deviation14 (SD) is about 0.14, and (c) the corresponding prior data
12 This idea provides a direct bridge between Bayesian and frequentist analyses of

the same data: if I conduct the Bayesian analysis described here and instead you

feed the posterior data set based on my prior into the likelihood machinery of

section 2.1.3 below, you and I will draw the same conclusions.
13 The normalizing constant is c = Γ (α+ β)/

`
Γ (α)Γ (β)

´
.

14 The variance of the Beta(α, β) distribution is αβ/
`
(α+ β)2(α+ β + 1)

´
.
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set has 2.0 + 6.4 .= 8 observations worth of data in it.
As for the second specification above in the Beta family, complete prior

ignorance would correspond to a prior sample size of n0 = 0, which would be
obtained by letting both α0 and β0 tend to 0. The result is an improper prior
which cannot be normalized to integrate to 1 (because its integral is infinite).
However, any positive small choice of α0 and β0, e.g., α0 = β0 = 0.1 or 0.5
or 1.0, will yield a proper prior with a small prior sample size, and all such
choices should lead to similar posterior distributions because the data sample
size (n = 74) is so much larger than the resulting n0. The choice α0 = β0 = 1
yields the familiar Uniform U(0, 1) distribution, with prior mean 0.5 and SD
1/
√

12 .= 0.29.
Figure 2.1 illustrates prior-to-posterior updating with the two prior spec-

ifications examined above. The top panel plots the prior, likelihood, and
posterior distributions with the first specification (Beta(2.0, 6.4)); the bottom
panel plots the Beta(0.1, 0.1) and Beta(1, 1) = U(0, 1) prior distributions,
the likelihood (which is also the posterior with the U(0, 1) prior), and the
posterior with the Beta(0.1, 0.1) prior. For technical reasons the Beta(0.1, 0.1)
distribution has regrettable asymptotic behavior near 0 and 1, but this does
not affect the posterior because the likelihood is so close to zero in those
regions that the spikes are irrelevant. It’s clear from this figure and the form
of (2.10) that any prior that is locally (nearly) uniform in the region in which
the likelihood is appreciable will have negligible effect on the posterior15. The
terms noninformative, diffuse, and flat tend to be used interchangeably to
describe the second type of prior specification examined here (the meaning of
the terms diffuse and flat is motivated by plots such as Figure 2.1), but—given
that all choices of prior specification embody one prior information base or
another—“noninformative” seems a less satisfactory term.

It’s also evident from Figure 2.1 that a piece of prior information like that
embodied in the first specification has little effect in this problem with a data
sample size as large as n = 74. For example, the posterior mean, SD, and cen-
tral 95% interval16 for θ are 0.218, 0.045, and (0.137, 0.313), respectively, under
the Beta(2.0, 6.4) prior; the corresponding values from the Beta(0.1, 0.1) prior
are 0.217, 0.048, and (0.132, 0.317). Notice that the data sample size is large
enough here that the likelihood and posterior distributions are fairly close to
Gaussian (by the Central Limit Theorem (CLT)): an approximate 95% central
interval for θ under the Beta(2.0, 6.4) prior using this normal approximation
would run from 0.218−(1.96)(0.045) .= 0.124 to 0.218+(1.96)(0.045) .= 0.310.

The language of this section has emphasized that the Bayesian approach
to uncertainty quantification is personal, or subjective: my prior is mine, and
may differ from yours, because you and I have different knowledge bases or

15 This is the basis of what Edwards et al. [31] called the stable estimation principle.
16 This can also readily be obtained numerically in Maple or R.
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Fig. 2.1. Prior-to-posterior updating with two prior specifications in the single-city-

block data set.

we invoke different types of judgment to bring that knowledge to bear on the
issue at hand. People have sometimes tried to argue in the past that personal
judgments have no valid part to play in science, a position which would cast
doubt on the relevance of Bayesian inference in scientific reasoning. But in
situations of realistic complexity, particularly in the modeling of observational
data, it’s equally true—under all forms of statistical inference in current use,
not just Bayesian—that my likelihood is mine, and may differ from yours: you
and I may legitimately disagree in our judgments about what is appropriate
to assume about the structure of the model17 (consider, for example, the
range of possibilities mentioned in (2.4) to (2.6) above for the full Berkeley
traffic survey dataset), and it’s not always possible to definitively settle these
differences with data-driven model diagnostics. Personal judgment cannot be
eradicated from complex statistical work in science; the laudable-sounding
goal of “objectivity,” as the word is generally used18, is unattainable in actual
scientific practice. In light of this, attention should evidently focus—in all
statistical inference, Bayesian or not19—on the stability or robustness of the

17 See Draper [25] for a Bayesian approach to the quantification of structural model

uncertainty.
18 In Bayesian language saying that a probability assessment is objective just means

that many people would agree with it, at least approximately.
19 The Bayesian approach highlights the need/opportunity to quantify prior infor-

mation about parameters conditional on model structure, and any such choice

should be justified, but—given that likelihood analyses correspond to Bayesian
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mapping from assumptions to conclusions. Figure 2.1 is a simple example of
one such robustness investigation: if I’m trying to quantify relatively diffuse
prior beliefs, I need to convince myself (and you, if I want you to be a willing
consumer of my conclusions) that a variety of plausible attempts at diffuse
prior specification all lead to essentially the same findings, as is true in this
case20.

This section began with a predictive motivation of Bayesian inference; a
good way to end it is to examine how one would construct the posterior predic-
tive distribution p(bn+1 | b) for the next observable bn+1, given the n binary
indicators seen so far and assuming the Bayesian model (2.12). This predic-
tive distribution initially seems a bit difficult to compute formally, although
intuition says that (a) in this simple subset of the full case study it has to
be a Bernoulli distribution and (b) the posterior predictive mean E (bn+1 | b)
cannot be anything other than the current posterior mean (α0+s)/(α0+β0+n)
of θ. The formal reasoning proceeds as follows.

(1) It’s hard to say what I know about bn+1 by itself, but I know quite a lot
about (bn+1 | θ), so it would help to introduce θ into the calculation. By
the law of total probability

p(bn+1 | b) =
∫ 1

0

p(bn+1, θ | b) dθ.

(2) Now I want to move the θ to the other side of the conditioning bar. By
the definition of conditional probability∫ 1

0

p(bn+1, θ | b) dθ =
∫ 1

0

p(bn+1 | θ, b) p(θ | b) dθ. (2.14)

(3) p(θ | b) in (2.14) is recognizable as the posterior distribution for θ given
the data seen so far, namely Beta(α0 + s, β0 + n− s).

(4) (and this step is crucial) Given θ, there’s no useful information in b =
(b1, . . . , bn) for predicting bn+1 (informally, “the past and the future are
conditionally independent given the truth”), so p(bn+1 | θ, b) = p(bn+1 | θ),
and this last expression is just the sampling distribution for observation
n+ 1, which under model (2.12) is Bernoulli(θ).

(5) Therefore

answers with a particular form of diffuse prior—it would seem that the imperative

to think about (and justify) priors is not unique to the Bayesian paradigm.
20 In a careful analysis I should also plausibly vary my 0.9 translation of the phrase

“quite surprised” and the θ values 0.05 and 0.5 in (2.13), for instance by increasing

and decreasing each of these specifications by (say) 10% to see what happens, but

you can see from Figure 2.1 that all such variations would lead to essentially the

same posterior here.
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p(bn+1 | b) =
∫ 1

0

p(bn+1 | θ) p(θ | b) dθ.

In other words, the posterior predictive distribution for bn+1 given b is a
weighted average, or mixture, of Bernoulli(θ) sampling distributions, with
the mixing weights given by the current posterior distribution p(θ | b) for
θ given b.

With α∗ = α0 + s and β∗ = β0 + n − s, calculation in this example reveals
that

p(bn+1 | b) =
∫ 1

0

θbn+1(1− θ)1−bn+1
Γ (α∗ + β∗)
Γ (α∗)Γ (β∗)

θα
∗−1(1− θ)β

∗−1 dθ

=
Γ (α∗ + β∗)
Γ (α∗)Γ (β∗)

∫ 1

0

θ(α
∗+bn+1)−1(1− θ)(β

∗−bn+1+1)−1 dθ (2.15)

=
[
Γ (α∗ + bn+1)

Γ (α∗)

] [
Γ (β∗ − bn+1 + 1)

Γ (β∗)

] [
Γ (α∗ + β∗)

Γ (α∗ + β∗ + 1)

]
.

Recalling that for any real number x, Γ (x+ 1)/Γ (x) = x, (2.15) agrees with
intuition: for example, Pr(bn+1 = 1 | b) = E (bn+1 | b) = α∗/(α∗ + β∗). With
any of the prior distributions examined above, I predict that the next vehicle
in this block on the sampled day of the week and time of day will be a bicycle
with probability about 0.22.

2.1.3 A Comparison with Likelihood Inference

A likelihood inferential21 analysis of the single-city-block data would begin
by computing the MLE for θ, which may be found by maximizing either the
likelihood function or its logarithm (the latter tends to be mathematically
easier and more numerically stable to work with, since likelihood functions
like (2.11) are typically products of a (possibly large) number of values not
far from zero). Here log l(θ | s) = log c+ s log θ+ (n− s) log(1− θ), a concave
function with a single maximum at the value of θ for which

∂

∂θ
log l(θ | s) =

s

θ
− n− s

1− θ
= 0, namely θ = θ̂MLE =

s

n
= b̄. (2.16)

Fisher [33] showed that the estimated asymptotic variance of the MLE (in
repeated sampling) is given by

V̂ar(θ̂MLE) = Î−1,

where Î is the observed information content of the sample:
21 Prediction is often more difficult with the repeated-sampling approach to prob-

ability, especially in small-sample non-Gaussian situations; this is a distinct ad-

vantage for the Bayesian approach.
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Î = −
[
∂2

∂θ2
log l(θ | s)

]
θ=θ̂MLE

.

Here the sampling variance of the MLE reduces to the familiar expression

V̂ar(θ̂MLE) =
[
s

θ2
+

n− s
(1− θ)2

]−1

θ=s/n

=
θ̂MLE(1− θ̂MLE)

n
.

In this example θ̂MLE
.= 0.216 with estimated asymptotic standard error

ŝe(θ̂MLE) =
√

V̂ar(θ̂MLE) .= 0.048, and an approximate 95% confidence in-
terval for θ based on the CLT would run from 0.216 − (1.96)(0.048) .= 0.122
to 0.216 + (1.96)(0.048) .= 0.310. These results are similar to those from the
Bayesian analyses above with both prior specifications, which is typical of
situations with fairly large n and relatively diffuse prior information. Note,
however, that the interpretation of the results from the two approaches differs:

• In the (frequentist) likelihood approach θ is fixed but unknown and b̄

is random, with the analysis based on imagining what would happen if
the random sampling of the observed vehicles in the chosen city block
were hypothetically repeated, and appealing to the fact that across these
repetitions (b̄− θ) .∼ N (0, .0482); whereas

• In the Bayesian approach b̄ is fixed at its observed value and θ is treated
as random, as a means of quantifying uncertainty about it: (θ − b̄ | b̄) .∼
N (0, .0482).

This means among other things that, while it’s not legitimate with the fre-
quentist approach to say that Prf (.12 ≤ θ ≤ .31) .= .95, which is what
many users of confidence intervals would like them to mean, the corresponding
statement PrB(.12 ≤ θ ≤ .31 | b,diffuse prior information) .= .95 is a natural
consequence of the Bayesian approach. In the case of diffuse prior information
this justifies the fairly common practice of computing inferential summaries
in a frequentist way and then interpreting them in Bayesian language.

2.2 The Need for Simulation-Based Bayesian
Computation

The example above illustrates two approaches to Bayesian computation in a
situation where the parameter of interest is one-dimensional:

• conjugate analysis—showing that some prior family of distributions is
conjugate to the likelihood in the model under investigation, and finding a
member of that conjugate family which (at least approximately) expresses
the relevant prior information; and
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• asymptotic analysis—appealing to the fact that when n is large (a) the
likelihood and posterior distributions will be similar because the prior
sample size n0 will be negligible in relation to n, and (b) both these
distributions will be close to normal by the CLT, so that

(θ | y) .∼ N (θ̂MLE, Î−1). (2.17)

In (2.17) y is a generic data vector of length n and θ is a generic one-
dimensional regular22 parameter.

Asymptotic analysis extends directly to situations where the unknown θ
is a vector of dimension (say) k > 1, with three main differences: finding the
MLE often then involves solving (perhaps iteratively) a system of k equations
like (2.16) in the k unknowns θ1, . . . , θk; the normal distribution in (2.17) is
multivariate; and the analogue of observed information Î then becomes the
negative Hessian (matrix of second partial derivatives) of the log likelihood
evaluated at θ̂MLE. Conjugate analysis also has a direct extension to cases
with k > 1: Bayes’ Theorem (2.9) is still valid when θ is a vector. However,
it’s far easier to find a conjugate family when k = 1 than in problems of higher
dimension, and a new set of Bayesian challenges arises when k > 1: interest
often focuses on the marginal posterior distributions of individual components
of θ, and these require calculating (k − 1)-dimensional integrals of the form

p(θj | y) =
∫
· · ·
∫
p(θ1, . . . , θk | y) dθ1 . . .dθj−1 dθj+1 . . .dθk . (2.18)

Moreover, four other kinds of high-dimensional integrals also arise when k is
large: (a) with a generic data vector y = (y1, . . . , yn) in place of b in Bayes’
Theorem (2.9), the normalizing constant in that equation is

c−1 = p(y) =
∫
p(y,θ) dθ =

∫
p(y | θ) p(θ) dθ, (2.19)

and this is a k-dimensional integral; (b) as was noted at the end of sec-
tion 2.1.2, the predictive distribution for the next observation yn+1 is

p(yn+1 | y) =
∫
p(yn+1 | θ) p(θ | y) dθ, (2.20)

22 In most Bayesian work there are three main types of parameters: location, scale,

and range-restricting. Location and scale parameters typically pin down the center

and spread of a sampling distribution and are regular in the sense of this footnote;

as an example of a range-restricting parameter, consider basing the likelihood

function on the Uniform(0, θ) sampling distribution for unknown θ > 0. Range-

restricting parameters are irregular in the sense of this footnote because a different

type of asymptotics than (2.17) typically applies to them; in (2.17) the asymptotic

posterior variance Î−1 typically goes down as the amount of data increases at a

1/n rate, whereas with range-restricting parameters this rate is typically 1/n2.

See Bernardo and Smith [2] and Draper [27] for more details.
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which is another k-dimensional integral; (c) it’s often useful to summarize a
marginal distribution like p(θj | y) with a few of its low-order moments, such
as its mean

E (θj | y) =
∫
θj p(θj | y) dθj , (2.21)

and you can see from (2.18) that this also involves calculating a k-dimensional
integral; and (d) inference about a function of the parameters, such as the
coefficient of variation σ/µ in the N (µ, σ2) sampling model for positive data
distributed well away from 0, also requires complicated manipulations with
high-dimensional integrals. Accurate numerical evaluation of integrals of this
type for large k has been the central technical challenge of Bayesian statistical
work for the past two and a half centuries23.

The conjugate and asymptotic approaches to Bayesian computation are
useful as far as they go, but conjugate priors are rarely (if ever) available
for the complicated likelihoods arising in multilevel models, and asymptotic
analysis can be highly misleading when the sample sizes are small. Consider,
for instance, one of the simplest multilevel settings, a variance components
model, arising (for example) in the measurement of the quality of hospital
care: I choose a random sample of J hospitals in (say) California in (say)
January 2007 and a random sample of nj patients in the chosen hospitals (a
single-stage cluster sample), and initially I fit the model

yij = β0 + aHj + aPij , j = 1, . . . , J, i = 1, . . . , nj ,
J∑
j=1

nj = N, aHj
iid∼ N (0, σ2

H), aPij
iid∼ N (0, σ2

P )
(2.22)

(with the aHj and aPij mutually conditionally independent given the parame-
ters) as a way of quantifying how much of the variation in the quality of care
scores yij is within and between hospitals24. The parameter vector θ in this
model has three components: the intercept β0 and the variance components
σ2
H and σ2

P , measuring variability at the hospital and patient levels, respec-
tively, with both the hospital factor H and the patient factor P treated as
random because interest focuses on the populations of hospitals and patients
in California in January 2007 from which the cluster sample was drawn.
23 More than 200 years ago Laplace [48] developed an approach, based on a clever

use of Taylor series, to approximating integrals of the form (2.18)–(2.21) which

can work well when n is large; his method was ignored/forgotten for a long time

until it was independently reinvented under the name saddlepoint approximations

[e.g., 20]. See Raudenbush et al. [61] for an application of Laplace approximations

to multilevel models.
24 (2.22) is also sometimes called a random-intercepts regression model, because it’s

like a regression with no predictor variables in which the intercept β0 + aH
j is

allowed to vary randomly from hospital to hospital.



94 Draper

Conjugate analysis of variance-components models is impossible: there
is no conjugate prior for the parameters of model (2.22). The success of
asymptotic analysis would depend on the sizes J and N of the hospital- and
patient-level samples and the values of the variance components: if J were
on the order of (say) 50 (or more) and N were in the hundreds (or more),
and if additionally both σ2

H and σ2
P were well away from zero, large-sample

normal approximations for the marginal posterior distributions of all three
parameters (given fairly diffuse priors) could well be adequate. However, it’s
important to note that the usual intuitions about sample size require some
modification in multilevel modeling: data sets in this quality of care example
with N = 1, 000 could still be “small samples” as far as the accuracy of (at
least one of) the asymptotic approximations is concerned. A large value of N
will typically translate into approximately normal marginal posteriors for β0

and σ2
P , but the behavior of the marginal posterior for σ2

H depends on J , N ,
and the intraclass (or intracluster) correlation

ρ =
σ2
H

σ2
H + σ2

P

,

which is just the ordinary correlation between any two patients yij and yi′j
(i 6= i′) in the same hospital (a measure of the degree to which patients in
any given hospital receive care of similar quality). It’s intuitively evident that
the effective sample size of the sampling plan as far as σ2

H is concerned will
be much closer to J than to N if ρ is large25, and if J is small the marginal
posterior for σ2

H can be far from normal.
The bottom line from all of this is that the Bayesian approach to multilevel

modeling was severely restricted as long as asymptotic analysis was the only
computational way forward. This situation changed suddenly in the early
1990s, with the introduction (to the discipline of statistics, at least) of a new
class of simulation-based computational tools, Markov Chain Monte Carlo
(MCMC) methods.

2.3 Markov Chain Monte Carlo (MCMC) Methods

The evolution of ideas toward the current set of MCMC methods began
with the efforts of two mathematicians, Nick Metropolis and Stanislav Ulam,
near the end of World War II, in their work on the project that led to the
development of the atomic bomb. For reasons unrelated to those of Bayesian

25 For example, in the limit as ρ → 1, having chosen 50 patients from each of 20

hospitals is the same as having chosen only 1 patient in each hospital, so a sample

of 1,000 patients produces only 20 independent observations for learning about

σ2
H .
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statistics they needed accurate approximations to integrals like the right-hand
side of (2.18), and (through their work on the bomb, and parallel efforts in
England at about the same time by Alan Turing and others to break the
German Enigma codes) they could see that high-speed computers were about
to become a reality. Metropolis and Ulam [55], in a visionary paper that laid
the groundwork for an explosion of new scientific activity decades later, made
two fundamental observations:

• Anything you want to know about a probability distribution p(θ) of es-
sentially arbitrary complexity can be learned to arbitrary accuracy by
sampling a large enough number of random draws from it; and

• If performed correctly, it’s not necessary for the validity of this approach
that the draws from p(θ) be made in an IID fashion.

They called this technique the Monte Carlo method, a reference to the Euro-
pean principality of the same name famous for its gambling casinos.

Suppose, for example, that you’re interested in a k-dimensional posterior
distribution p(θ | y) which can’t be worked with (easily) in closed form. Three
types of things of direct interest to you about p(θ | y) would be

• the marginal means µj = E (θj | y) and the marginal standard deviations
σj =

√
Var(θj | y) of the components of θ,

• the shapes of these marginal distributions (basically you’d like to be able
to trace out the entire density curves), and

• one or more of the quantiles of the marginal distributions (e.g., to construct
a 95% central posterior interval for θj you need to know its 2.5% and 97.5%
quantiles, and sometimes the posterior median (the 50th percentile) is of
interest too).

Suppose you could take an arbitrarily large random sample from p(θ | y),
say θ∗1 , . . . ,θ

∗
m, where each θ∗i is a vector of sampled values of (θ1, . . . , θk).

Imagine collecting these vectors together into an m× k matrix or table {θ∗ij},
with individual sampled vectors as rows and components of θ as columns; call
this the Monte Carlo (MC) data set. Then each of the above three aspects of
p(θ | y) can be estimated from this data set, in straightforward fashion:

• µ̂j = Ê(θj | y) = θ̄∗j =
1
m

m∑
i=1

θ∗ij , and

σ̂j =
√

V̂ar(θj | y) =

√√√√ 1
m− 1

m∑
i=1

(
θ∗ij − θ̄∗j

)2;
• the marginal posterior density of (θj | y) can be estimated by a histogram

or kernel density estimate based on the values in column j of the MC data
set; and
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• percentiles for θj can be estimated by counting how many of the θ∗ij values
fall below a series of specified points. For example, to find an estimate of
the 2.5% quantile you solve the equation

F̂θj |y(q) =
1
m

m∑
i=1

I(θ∗ij ≤ q) = 0.025 (2.23)

for q, where I(A) is the indicator function (1 if A is true, 0 otherwise).26

This simple idea beautifully solves the marginalization problem—and the low-
order moments problem—posed by having to calculate integrals like (2.18) and
(2.21): to learn anything you want about θj you just use simple descriptive
methods on the values in column j of the MC data set, ignoring all other
columns. Moreover,

• if you’re interested in the relationship between two of the parameters in
the posterior, for instance as summarized by their correlation, you can just
compute the sample correlation coefficient based on the relevant columns
in the MC data set;

• if there’s some function of the parameters that interests you, such as η =
f(θ2, θ5, θ10) = (θ2 + θ10)/

√
θ5, all you have to do to learn about it is

to monitor η by creating a new column in the MC data set with values
η∗i = (θ∗i,2 + θ∗i,10)/

√
θ∗i,5 and then apply the usual descriptive summaries

to η∗; and

26 Notice how literally all of these estimates do their job, e.g., θ̄∗j = 1
m

Pm
i=1 θ

∗
ij is

an estimate of
R
θj p(θj | y) dθj—the integral is asking us to compute a weighted

average of θj values with weights given by p(θj | y), which is exactly what θ̄∗j does

when the rows of the MC data set are random draws from p(θ | y). More formally,

if (θj | y) is a real-valued random variable with density pθj |y(q) (in a change of

notation) and cumulative distribution function (CDF) Fθj |y(q) = Pr(θj ≤ q | y),

so that pθj |y(q) = dFθj |y(q)/dq and pθj |y(q) dq = dFθj |y(q), the posterior mean

is

µj =

Z
q pθj |y(q) dq =

Z
q dFθj |y(q),

and it’s reasonable to estimate this with the empirical CDF F̂θj |y(q) used to

compute quantiles in (2.23):

µ̂j =

Z
q dF̂θj |y(q) =

Z
q d

"
1

m

mX
i=1

I(θ∗ij ≤ q)

#

=
1

m

mX
i=1

Z
q dI(θ∗ij ≤ q) =

1

m

mX
i=1

θ∗ij ,

from basic properties of step functions and the (Dirac) delta function; see, e.g.,

Butkov [16].
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• this approach also solves the problem of calculating the predictive distri-
bution p(yn+1 | y) for future data, as follows. As noted above, the integral
in (2.20) expresses the predictive distribution as a mixture (in θ) of the
sampling distributions p(yn+1 | θ) weighted by the posterior distribution
p(θ | y). This indicates that to sample a draw from p(yn+1 | y) you just
sample a θ∗ from p(θ | y) and then sample a yn+1 from p(yn+1 | θ∗).
In this way the predictive distribution can simply be monitored as a new
column in the MC data set.

In fact, straightforward use of the Monte Carlo method solves all of the difficult
integration problems mentioned in section 2.2 except the calculation of the
normalization constant c that makes p(θ) integrate to 1, and this problem will
disappear with the introduction of the Markov chain Monte Carlo methods
examined below.

There’s just one question: what do we have to assume about the nature
of the random sampling of the θ∗ values from p(θ | y) for this idea to work?
Basic repeated-sampling theory based on the (weak) Law of Large Numbers
(see, e.g., Bickel and Doksum [5] for details) shows that figuring out how to
draw the θ∗i in an IID fashion would be sufficient: with IID sampling the
above Monte Carlo estimates of the true summaries of p(θ | y) are consistent,
meaning that they can be made arbitrarily close to the truth with arbitrarily
high probability asm→∞. The problem, of course, is that it can be extremely
difficult to figure out how to make IID draws in an efficient manner from a
high-dimensional distribution. Metropolis and Ulam [55] sketched a possi-
ble solution to this problem by noting that IID sampling is not necessary:
dependent draws from p(θ | y) will also work if the dependence takes a
particular form. Think of iteration number i in the Monte Carlo sampling
process as a discrete index of time t, so that the columns of the MC data set
can be viewed as time series. IID draws from p(θ | y) correspond to white
noise: a time series with zero autocorrelations at all lags (time intervals)27

k 6= 0. However, it can be shown [e.g., 32] that all of the above descriptive
summaries are still consistent as long as the columns of the MC data set
form stationary time series, in the sense that the joint distributions of any
blocks {θ∗n1+t,j

, θ∗n2+t,j
, . . . , θ∗nr+t,j} of MC data in any given column j are

invariant under time shifts (i.e., these distributions should be independent
of t). It might not seem readily apparent how relaxing the IID assumption
in this way constitutes progress, but Metropolis again helped to provide the
breakthrough a few years after his paper with Ulam, this time working with
a different set of colleagues in 1953 [54].

27 The autocorrelation ρk of a stationary time series θ∗t at lag k (see, e.g., Chatfield

[18]) is γk/γ0, where γk = Cov(θ∗t , θ
∗
t+k), the covariance of the series with itself k

iterations in the future (or past).



98 Draper

2.3.1 IID Monte Carlo Sampling

Consider first how to implement the Monte Carlo method with IID sam-
pling, and for simplicity in this section assume that θ is real-valued. If
θ̄∗ = 1

m

∑m
t=1 θ

∗
t is based on an IID sample of size m from p(θ | y), you

can use the frequentist fact that in repeated sampling Var(θ̄∗) = σ2/m, where
(as above) σ2 is the variance of p(θ | y), to construct a Monte Carlo standard
error (MCSE) for θ̄∗:

ŝe(θ̄∗) =
σ̂√
m
,

where σ̂ is the sample SD of the θ∗ values. This can be used, possibly after
some preliminary experimentation, to decide on m, the Monte Carlo sample
size, which will also be referred to below as the length of the monitoring run.

As an unrealistically simple first example, consider employing the Monte
Carlo approach to estimate the posterior mean in the conjugate Beta-Bernoulli
example of section 2.1.2: I want to simulate draws from the Beta(α0 + s, β0 +
n−s) distribution with (α0, β0, s, n) = (2.0, 6.4, 16, 74) (pretend here that you
don’t know the formulas for the mean and variance of this distribution). One
of the most computationally efficient ways to generate random draws from
a given density function is rejection sampling, which was first developed by
von Neumann [73]. The idea is as follows. Suppose the target density p(θ | y)
is difficult to sample from, but you can find an integrable envelope function
G(θ | y) such that (a) G dominates p in the sense that G(θ | y) ≥ p(θ | y) ≥ 0
for all θ and (b) the density g obtained by normalizing G—later to be called
the proposal distribution—is easy and fast to sample from. Then to get a
random draw from p, make a draw θ∗ from g instead and accept or reject
it according to an acceptance probability αR(θ∗ | y); if you reject the draw,
repeat this process until you accept. von Neumann showed that the choice
αR(θ∗ | y) = p(θ∗ | y)/G(θ∗ | y) correctly produces IID draws from p, and
you can intuitively see that he’s right by the following argument. Making a
draw from the posterior distribution of interest is like choosing a point at
random (in two dimensions) under the density curve p(θ | y) in such a way
that all possible points are equally likely, and then writing down its θ value. If
you instead draw from G so that all points under G are equally likely, to get
correct draws from p you’ll need to throw away any point that falls between
p and G, and this can be accomplished by accepting each sampled point θ∗

with probability p(θ∗ | y)/G(θ∗ | y), as von Neumann said. A summary of
this method28 is as follows.

28 After having absorbed the idea that Algorithm 2.1 works for univariate θ, notice

that there’s nothing about it that makes this restriction necessary: the algorithm

is valid when θ is a vector of length k for any k ≥ 1.
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Algorithm 2.1 (Rejection sampling). To make m draws at random from
the density p(θ | y), select an integrable envelope function G—which when
normalized to integrate to 1 is the proposal distribution g—such that G(θ |
y) ≥ p(θ | y) ≥ 0 for all θ; define the acceptance probability αR(θ∗ | y) =
p(θ∗ | y)/G(θ∗ | y); and

Initialize t← 0
Repeat {

Sample θ∗ ∼ g(θ | y)
Sample u ∼ Uniform(0, 1)
If u ≤ αR(θ∗ | y) then { θt+1 ← θ∗; t← (t+ 1) }

}
until t = m.

Figure 2.2 demonstrates this method on the Beta(18.0, 64.4) density arising in
the Beta-Bernoulli case study examined earlier. Rejection sampling permits
considerable flexibility in the choice of envelope function. Here, borrowing an
idea from Gilks and Wild [41], I’ve noted that the relevant Beta density is
concave on the log scale, meaning that it’s easy to construct an envelope on
that scale in a piecewise linear fashion, by choosing points on the log density
and constructing tangents to the curve at those points. The simplest possible
such envelope involves two line segments, one on either side of the mode. The
optimal choice of the tangent points would maximize the marginal probability
of acceptance of a draw in the rejection algorithm, which can be shown to
be
[∫
G(θ) dθ

]−1; in other words, you should minimize the area under the
(un-normalized) envelope function subject to the constraint that it dominates
the target density p(θ | y). Here this optimum turns out to be attained by
locating the two tangent points at about 0.17 and 0.26, as in Figure 2.2; the
resulting acceptance probability of about 0.75 could clearly be improved by
adding more tangents. Piecewise linear envelope functions on the log scale
are a good choice because the resulting envelope density on the raw scale is
a piecewise set of scaled exponential distributions (see the bottom panel in
Figure 2.2), from which random samples can be taken quickly.

A preliminary sample of m0 = 500 IID draws from the Beta(18.0, 64.4)
distribution using the above rejection sampling method yields θ̄∗ = 0.2197
and σ̂ = 0.04505, meaning that the posterior mean has already been estimated
with an MCSE of only σ̂/

√
m0 = 0.002 even with just 500 draws. Suppose,

however, that I wanted θ̄∗ to differ from the true posterior mean µ by no more
than some (perhaps even smaller) tolerance T with Monte Carlo probability
at least 1− ε:

Pr(|θ̄∗ − µ| ≤ T ) ≥ 1− ε,
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Fig. 2.2. Rejection sampling from the Beta(18.0, 64.4) distribution. The top panel

shows the construction of a piecewise linear envelope function on the log scale; the

bottom panel is on the raw (density) scale.

where Pr(·) here is based on the (frequentist) Monte Carlo randomness inher-
ent in θ̄∗. By the CLT, for large m in repeated sampling θ̄∗ is approximately
normal with mean µ and variance σ2/m; this leads to the inequality

m ≥
σ2

[
Φ−1

(
1− ε

2

)]2
T 2

, (2.24)

where Φ−1(·) is the standard normal inverse CDF. To pin down three signif-
icant figures (sigfigs) in the posterior mean in this example with high Monte
Carlo accuracy I might take T = 0.0005 and ε = 0.05, which yields a rec-
ommended IID sample size of (0.045052)(1.96)2/0.00052 .= 31, 200. So I take
another sample of 30,700 (which is virtually instantaneous at contemporary
computing speeds) and merge it with the 500 draws I already have; this yields
θ̄∗ = 0.21827 and σ̂ = 0.04528, meaning that the MCSE of this estimate of
µ is 0.04528/

√
31200 .= 0.00026. I might announce that I think E (θ | y) is

about 0.2183, give or take about 0.0003, which accords well with the true
value 0.2184.

Of course, other aspects of p(θ | y) are equally easy to monitor; for exam-
ple, if I want a Monte Carlo estimate of Pr(θ ≤ q | y) for some q, as noted
above I just work out the proportion of the sampled θ∗ values that are no
larger than q. Or, even better, I recall that Pr(A) = E [I(A)] for any event
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or proposition A, so to the MC data set consisting of 31,200 rows and one
column (the θ∗t ) I add a column monitoring the values of the derived variable
which is 1 whenever θ∗t ≤ q and 0 otherwise; the mean of this derived variable
is the Monte Carlo estimate of Pr(θ ≤ q | y), and I can attach an MCSE to it
in the same way I did with θ̄∗. By this approach, for instance, the Monte Carlo
estimate of Pr(θ ≤ 0.15 | y) based on the 31,200 draws examined above comes
out p̂ = 0.0556 with an MCSE of 0.0013. Percentiles are typically harder to
pin down with equal Monte Carlo accuracy (in terms of sigfigs) than means
or SDs, because the 0/1 scale on which they’re based is less information-rich
than the θ∗ scale itself; if I wanted an MCSE for p̂ of 0.0001 I would need an
IID sample of more than 5 million draws (which would still only take a few
seconds at contemporary workstation speeds).

2.3.2 Metropolis-Hastings and Gibbs Sampling

As mentioned above, IID sampling of p(θ | y) for θ of length k is fine as far
as it goes but can be difficult to implement when k is large. Metropolis et al.
[54] accepted this unpleasant truth and proposed relaxing independence of the
draws in favor of the next simplest random behavior—allowing the draws to
form a (first-order) Markov chain—in combination with von Neumann’s idea
of rejection sampling, which had itself only been published a few years earlier
in 1951.

Here’s a quick review of all necessary facts about Markov chains to appre-
ciate the basic Metropolis et al. idea. A stochastic process is just a collection
of random variables {θ∗t , t ∈ T } for some index set T ; when T stands for time
the resulting process is a time series. In practice T can be either discrete,
e.g., {0, 1, . . .}, or continuous, e.g., [0,∞). Markov chains are a special kind
of stochastic process that can either unfold in discrete or continuous time;
discrete-time Markov chains are all that’s needed for MCMC. The possible
values that a stochastic process can take on are collectively called the state
space S of the process—in the simplest case S is real-valued and can also either
be discrete or continuous. Intuitively speaking, a Markov chain [e.g., 32, 35, 62]
is a time series unfolding in such a way that the past and future states of the
process are independent given the present state—in other words, to figure out
where the chain is likely to go next you don’t need to pay attention to where
it’s been, you just need to consider where it is now. More formally, a stochastic
process {θ∗t , t ∈ T }, T = {0, 1, . . .}, with state space S is a Markov chain if,
for any set A contained in S,

Pr(θ∗t+1 ∈ A | θ∗0 , . . . ,θ∗t ) = Pr(θ∗t+1 ∈ A | θ∗t ).

The most nicely-behaved Markov chains satisfy three properties:
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• They’re irreducible, which basically means that no matter where it starts
the chain has to be able to reach any other state in a finite number of
iterations with positive probability;

• They’re aperiodic, meaning that for all states i the set of possible sojourn
times, to get back to i having just left it, can have no divisor bigger than
1. This forces the chain to mix freely among its possible states rather than
oscillating back and forth within a subset of S; and

• They’re positive recurrent, meaning that (a) for all states i, if the process
starts at i it will return to i with probability 1, and (b) the expected length
of waiting time until the first return to i is finite. Notice that this is a bit
delicate: wherever the chain is now, we insist that it must certainly come
back here, but we don’t expect to have to wait forever for this to happen.

Imagine running a “nice” Markov chain (which satisfies the three properties
above) for a long time, and look at the distribution of the states it visits—over
time this distribution should settle down (converge) to a kind of limiting,
steady-state behavior. Formally, a positive recurrent and aperiodic chain is
called ergodic, and it turns out that chains of this type which are also irre-
ducible possess a unique stationary (or equilibrium, or invariant) distribution
π, characterized (in the case of discrete state spaces) by the relation

π(j) =
∑
i

π(i)Pij(t)

for all states j and times t ≥ 0, where Pij(t) = Pr(θ∗t = j | θ∗0 = i) is
the transition matrix of the chain. Informally, the stationary distribution
summarizes the behavior that the chain will settle into after it’s been run
for a long time, regardless of its initial state.

I bring all of this up because Metropolis et al. were driven by the difficulty
of creating IID samplers from complex probability distributions to seek a
solution among the class of samplers with a Markov character (hence the
name Markov chain Monte Carlo (MCMC)). Given a parameter vector θ and
a data vector y, the Metropolis et al. idea is to simulate random draws from
the posterior distribution p(θ | y) by constructing a Markov chain with the
following three properties:

• It should have the same state space as θ,
• It should be easy to simulate from, and
• Its stationary distribution should be p(θ | y).

If you can do this, you can run the Markov chain for a long time, generating
a huge sample from the posterior, and then (as noted at the beginning of
section 2.3) use simple descriptive summaries (means, SDs, correlations, his-
tograms or kernel density estimates) to extract any features of the posterior
you want. The Markov aspect of the sampler will induce a (typically positive)
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autocorrelation in the random draws, but (as noted above) this affects only
the efficiency of the sampling scheme, not its validity : if {θ∗t , t = 1, 2, . . .}
is a stationary time series then, e.g., the sample mean θ̄∗ = 1

m

∑m
t=1 θ

∗
t is a

consistent estimate of the mean µ of the stationary distribution, the sample
SD

σ̂ =

√√√√ 1
m− 1

m∑
t=1

(θ∗t − θ̄∗)2

is consistent for the SD of the stationary distribution, and so on. The only
change from IID sampling is that if the draws from the target distribution
p(θ) are positively autocorrelated, you’ll learn about p via MCMC at a slower
rate than you would have if you could have figured out how to sample from p

in an IID fashion (intuitively if the θ∗t are positively autocorrelated then each
time you get a new observation you’re getting a bit of new information and
some old information over again, so the effective sample size (in IID terms)
of m positively correlated draws will be smaller than m).

Metropolis et al. were able to create what people would now call a success-
ful MCMC algorithm by the following means (see the excellent book edited
by Gilks et al. [40] for many more details about the MCMC approach).
Consider the rejection sampling method given above in Algorithm 2.1 as a
mechanism for generating realizations of a time series (where as above time
indexes iteration number). At any time t in this process you make a draw θ∗

from the proposal distribution g(θ) (the normalized version of the envelope
function G) and either accept a “move” to θ∗ or reject it, according to the
acceptance probability p(θ∗)/G(θ∗); if accepted the process moves to θ∗, if
not you draw again until you do make a successful move. The stochastic
process thus generated is an IID (white noise) series of draws from the target
distribution p(θ). Metropolis et al. had the following beautifully simple idea
for how this may be generalized to situations where IID sampling is difficult:
they allowed the proposal distribution at time t to depend on the current value
θt of the process, and then—to make things work out right—if a proposed
move is rejected, instead of discarding it the process is forced to stay where
it is for one iteration before trying again. The resulting process is a Markov
chain, because (a) the draws are now dependent but (b) all you need to know
in determining where to go next is where you are now.

Letting θt stand for where you are now and θ∗ for where you’re thinking
of going, in this approach there is enormous flexibility in the choice of the
proposal distribution g(θ∗ | θt,y), even more so than in ordinary rejection
sampling. The original Metropolis et al. idea was to work with symmetric pro-
posal distributions, in the sense that g(θ∗ | θt,y) = g(θt | θ∗,y), but Hastings
[46] pointed out that this could easily be generalized; the resulting method
is the Metropolis-Hastings (MH) algorithm. Building on the Metropolis et al.
results, Hastings showed that you’ll get the correct stationary distribution



104 Draper

p(θ | y) for your Markov chain29 by making the following choice for the
acceptance probability:

αMH(θ∗ | θt,y) = min

{
1,
p(θ∗ | y)/g(θ∗ | θt,y)
p(θt | y)/g(θt | θ∗,y)

}
. (2.25)

A summary of the method is as follows.

Algorithm 2.2 (Metropolis-Hastings sampling). To construct a Markov
chain whose equilibrium distribution is p(θ | y), choose a proposal distribution
g(θ∗ | θt,y), define the acceptance probability αMH(θ∗ | θt,y) by (2.25), and

Initialize θ0; t← 0
Repeat {

Sample θ∗ ∼ g(θ | θt,y)
Sample u ∼ Uniform(0, 1)
If u ≤ αMH(θ∗ | θt,y) then θt+1 ← θ∗

else θt+1 ← θt

t← t+ 1
}

It’s instructive to compare Algorithms 2.1 and 2.2 to see how heavily the
MH algorithm borrows from ordinary rejection sampling, with the key dif-
ference that the proposal distribution is allowed to change over time. Notice
how (2.25) generalizes von Neumann’s acceptance probability ratio p(θ∗ |
y)/G(θ∗ | y) for ordinary rejection sampling: the crucial part of the new MH
acceptance probability becomes the ratio of two von-Neumann-like ratios,
one for where you are now and one for where you’re thinking of going (it’s
equivalent to work with g or G since the normalizing constant cancels in the
ratio). When the proposal distribution is symmetric in the Metropolis et al.
sense, the acceptance probability ratio reduces to p(θ∗ | y)/p(θt | y), which
is easy to motivate intuitively: whatever the target density is at the current
point θt, you want to visit points of higher density more often and points
of lower density less often, and (2.25) does this for you in the natural and
appropriate way.

A Metropolis-Hastings Example

As an example of the MH algorithm in action, consider one of the simplest
possible Gaussian non-multilevel models: normal data with known mean µ

29 The proposal distribution g(θ∗ | θt,y) can be virtually anything and you’ll get

the right equilibrium distribution using the acceptance probability (2.25); see,

e.g., Roberts [62] and Tierney [72] for the mild regularity conditions necessary to

support this statement.
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and unknown variance σ2. The likelihood function for σ2, derived from the
sampling model (yi | σ2) iid∼ N (µ, σ2) for i = 1, . . . , n, is

l(σ2 | y) = c

n∏
i=1

(σ2)−1/2 exp
[
− (yi − µ)2

2σ2

]
= c (σ2)−n/2 exp

[
−
∑n
i=1(yi − µ)2

2σ2

]
.

This is recognizable as a member of the Scaled Inverse χ2 family χ−2(ν, s2)
[e.g., 37] of distributions, which is a rescaled version of the Inverse Gamma
family30 chosen so that s2 is an estimate of σ2 based upon ν “observations”:
if θ ∼ χ−2(ν, s2) then θ has density

p(θ) = c θ−(ν/2+1) exp
(
−νs

2

2θ

)
,

so that

l(σ2 | y) = χ−2

[
n− 2,

∑n
i=1(yi − µ)2

n− 2

]
. (2.26)

You can now convince yourself that if the prior for σ2 in this model is taken
to be χ−2(ν, s2), then the posterior for σ2 will also be Scaled Inverse χ2: with
this choice of prior

p(σ2 | y) = χ−2

[
ν + n,

νs2 +
∑n
i=1(yi − µ)2

ν + n

]
. (2.27)

This makes good intuitive sense: the prior estimate s2 of σ2 receives ν votes
and the sample estimate σ̂2 = 1

n

∑n
i=1(yi−µ)2 receives n votes in the posterior

weighted average estimate (νs2 + nσ̂2)/(ν + n).
Equation (2.27) provides a satisfying closed-form solution to the Bayesian

updating problem in this model (e.g., it’s easy to compute posterior moments
analytically, and you can use numerical integration or well-known approxi-
mations to the CDF of the Gamma distribution to compute percentiles). For
illustration purposes suppose instead that you want to use MH sampling to
summarize this posterior. Then your main choice as a user of the algorithm is
the specification of the proposal distribution (PD) g(σ2 | σ2

t ,y). The goal in
choosing the PD is getting a chain that mixes well (moves freely and fluidly
among all of the possible values of θ = σ2), and nobody has (yet) come up
with a sure-fire strategy for always succeeding at this task. Having said that,
here are two basic ideas that often tend to promote good mixing:

30 The simplest way to sample from the Scaled Inverse χ2 distribution is to use

any of a variety of methods for drawing from Gamma distributions, since if θ ∼
χ−2(ν, s2) then 1/θ ∼ Γ ( 1

2
ν, 1

2
νs2).
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(1) Pick a PD that looks like a somewhat overdispersed version of the posterior
you’re trying to sample from [e.g., 72]. Some work is naturally required
to overcome the circularity inherent in this choice: If I fully knew p(θ | y)
and all of its properties, why would I be using this algorithm in the first
place?

(2) Set up the PD so that the expected value of where you’re going to move
to (θ∗), given that you accept a move away from where you are now (θt),
is to stay where you are now31: E g(θ∗ | θt,y) = θt. That way, when
you do make a move, there will be an approximate left-right balance, so
to speak, in the direction you move away from θt, which will encourage
rapid exploration of the whole space.

Using idea (1), a decent choice for the PD in the Gaussian model with
unknown variance might well be the Scaled Inverse χ2 distribution: g(σ2 |
σ2
t ,y) = χ−2(ν∗, σ

2
∗). This distribution has mean σ2

∗ ν∗/(ν∗ − 2) for ν∗ > 2.
To use idea (2), then, I can choose any ν∗ greater than 2 that I want, and as
long as I take σ2

∗ = σ2
t (ν∗ − 2)/ν∗ that will center the PD at σ2

t as desired.
So I’ll use

g(σ2 | σ2
t ,y) = χ−2

(
ν∗, σ

2
t

ν∗ − 2
ν∗

)
.

This leaves ν∗ as a kind of potential tuning constant—the hope is that I can
vary ν∗ to improve the mixing of the chain.

Figure 2.3, motivated by an analogous plot in Gilks et al. [40], presents
some typical output of the MH sampler with ν∗ = 2.5, 20, 500. The acceptance
probabilities with these values of ν∗ are 0.07, 0.44, and 0.86, respectively. The
SD of the χ−2

(
ν∗, σ

2
t (ν∗ − 2)/ν∗

)
distribution is proportional to ν2

∗/
[
(ν2
∗ −

2)2
√
ν∗ − 4

]
, which decreases as ν∗ increases, and this turns out to be crucial:

when the proposal distribution SD is large (small ν∗, as in the top panel in
Figure 2.3), the algorithm tries to make big jumps around θ space (good), but
almost all of them get rejected (bad), so there are long periods of no movement
at all, whereas when the PD SD is small (large ν∗; see the bottom panel of the
figure), the algorithm accepts most of its proposed moves (good), but they’re
so tiny that it takes a long time to fully explore the space (bad). Gelman et al.
[37] have shown that in simple canonical problems with approximately normal
target distributions the optimal acceptance rate for MH samplers like the one
illustrated here is about 44% when the vector of unknowns is one-dimensional,
and this can serve as a rough guide: you can modify the proposal distribution
SD until the acceptance rate is around the Gelman et al. target figure. The
central panel of Figure 2.3 displays the best possible MH behavior in this
problem in the family of PDs chosen. Even with this optimization you can see
that the mixing is not wonderful, but contemporary computing speeds enable
huge numbers of draws to be collected in a short period of time, compensating
31 This makes the output of the MCMC sampler a martingale; see, e.g., Feller [32].
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Fig. 2.3. Metropolis-Hastings sampling in the Gaussian model with known mean

and unknown variance, and using a Scaled Inverse χ2 proposal distribution with

tuning constant ν∗. The top, middle, and bottom panels give typical output of the

sampler for ν∗ = 2.5, 20, 500, respectively.

for the comparatively slow rate at which the MH algorithm learns about the
posterior distribution of interest.

In this example the unknown quantity θ = σ2 was real-valued, but there’s
nothing in the MH method that requires this; in principle it works equally
well when θ is a vector of any finite dimension (look back at Algorithm 2.2 to
verify this). Notice, crucially, that to implement this algorithm you only need
to know how to calculate p(θ | y) up to a constant multiple, since any such
constant will cancel in computing the acceptance probability (2.25). Thus
you’re free to work with unnormalized versions of p(θ | y), and this solves
the final high-dimensional integration problem not already addressed above
by the general Monte Carlo approach.

There’s even more flexibility in this algorithm than might first appear:
it’s often possible to identify a set A of auxiliary variables—typically these
are latent (unobserved) quantities—to be sampled along with the parameters,
which have the property that they improve the mixing of the MCMC output
(even though extra time is spent in sampling them). When the set (θ,A) of
quantities to be sampled is a vector of length k, there is additional flexibility:
you can block update all of (θ,A) at once, or with appropriate modifications
of the acceptance probability you can divide (θ,A) up into components, say
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(θ,A) = (λ1, . . . ,λl), and update the components one at a time (as Metropo-
lis et al. originally proposed in 1953). As an example, consider data from the
Junior School Project [e.g., 11], a longitudinal study of N = 887 students
chosen randomly from J = 48 randomly sampled Inner London Education
Authority (ILEA) primary schools in 1980 (see Mortimore et al. [56] for the
original, and larger, data set). One focus of interest in this project was the
relationship between mathematics test scores at year 3 and year 5 (xij and yij ,
respectively, for student i in school j). School-level scatterplots of these two
variables indicated approximate bivariate normality, but with a fair amount
of variation in the slopes and intercepts of the school-specific regression lines;
moreover, the numbers nj of pupils per school varied from 5 to 62 in this
data set, with about a third of the schools having 12 pupils or less, so many
of the school-level regressions were quite unstably estimated. It’s natural to
seek a balance between global regression fitting (which incorrectly ignores the
cluster sampling) and noisy local linear estimation, by fitting a random-slopes
regression model such as

yij = (β0 + u0j) + (β1 + u1j)(xij − x̄) + eij ,

uj =
(
u0j

u1j

)
iid∼ N2(∅,Vu), Vu =

(
σ2
u0 γ01

γ01 σ
2
u1

)
, eij

iid∼ N (0, σ2
e),

(2.28)

where j = 1, . . . , J , i = 1, . . . , nj ,
∑J
j=1 nj = N , and x̄ is the mean of

the math scores at year 3 over all N pupils. Centering the predictor in
this way improves MCMC fitting by reducing the positive autocorrelation
of the sampled draws. This model accounts properly for the clustering by
regarding the schools as having been drawn randomly from the population
of ILEA schools, each having its own slope and intercept, and the result of
fitting (2.28) will be to shrink the local estimates of these parameters toward
the global (population) regression. The parameter vector in this model is
θ = (β0, β1, σ

2
u0, γ01, σ

2
u1, σ

2
e), but it will become clear below that, in models

like (2.28) involving random effects (such as the u0j and u1j) at levels other
than the subjects at the bottom of the nesting structure, it can greatly aid the
MCMC sampling to treat the random effects as latent auxiliary variables to
be sampled along with the parameters. An efficient division of the quantities
(θ,A) = (β0, β1, σ

2
u0, γ01, σ

2
u1, σ

2
e ,u1, . . . ,uJ) to be sampled in this model

has been shown (see, e.g., Browne and Draper [11]) to involve l = 4, with
λ1 = (β0, β1); λ2 = (u1, . . . ,uJ); λ3 = Vu (as a matrix); and λ4 = σ2

e .
The idea in this component-by-component version of the algorithm, which

Gilks et al. [40] call single-component MH sampling, is to have l different
proposal distributions, one for each component of θ. Each iteration of the
algorithm (indexed as usual by t) has l steps, indexed by i; at the beginning
of iteration t you scan along, updating λ1 first, then λ2, and so on until you’ve
updated λl, which concludes iteration t. Let λt,i stand for the current state
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of component i at the end of iteration t, and let λ−i stand for the (θ,A)
vector with component i omitted. (The notation gets awkward here; it can’t
be helped.) The proposal distribution gi(λ∗i | λt,i,λt,−i,y) for component i
is allowed to depend on the most recent versions of all components of (θ,A);
here λt,−i is the current state of λ−i after step i − 1 of iteration t + 1 is
finished, so that components 1 through i− 1 have been updated but not the
rest. The acceptance probability for the proposed move to λ∗i that creates the
correct equilibrium distribution turns out to be

αMH(λ∗i | λt,−i,λt,i,y)

= min
[
1,
p(λ∗i | λt,−i,y) gi(λt,i | λ∗i ,λt,−i,y)
p(λt,i | λt,−i,y) gi(λ∗i | λt,i,λt,−i,y)

]
. (2.29)

The distribution p(λi | λ−i,y) appearing in (2.29), which is called the full
conditional distribution for λi, has a natural interpretation: it represents the
posterior distribution for the relevant portion of (θ,A) given y and the rest
of (θ,A). The full conditional distributions act like building blocks in con-
structing the complete posterior distribution p(θ | y), in the sense that any
multivariate distribution is uniquely determined by its set of full conditionals
[3].

Gibbs Sampling in Gaussian Multilevel Models

An important special case of single-component MH sampling arises when the
proposal distribution gi(λ∗i | λt,i,λt,−i,y) for component i is chosen to be the
full conditional p(λ∗i | λt,−i,y) for λi: you can see from (2.29) that when this
choice is made a glorious cancellation occurs and the acceptance probability
is 1. This is Gibbs sampling, independently (re)discovered by Geman and
Geman [39]: the Gibbs recipe is to sample from the full conditionals and
accept all proposed moves. Even though it’s just a version of MH, Gibbs
sampling is important enough to merit a summary of its own. Single-element
Gibbs sampling, in which each real-valued coordinate θ1, . . . , θk gets updated
in turn, is probably the most frequent way Gibbs sampling gets used, so that’s
what I’ll summarize32.

Algorithm 2.3 (Single-element Gibbs sampling). To construct a Markov
chain whose equilibrium distribution is p(θ | y) with θ = (θ1, . . . , θk),

Initialize θ∗0,1, . . . , θ
∗
0,k; t← 0

Repeat {

32 Algorithm 2.3 details Gibbs sampling in the case with no auxiliary variables A,

but the algorithm works equally well when θ is replaced by (θ,A) in the summary.
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Table 2.3. The MCMC data set generated by single-element Gibbs sampling applied

to the variance-components model (2.22).

Phase of Iteration Simulated Quantity

Sampling t β0 aH
1 · · · aH

J σ2
H σ2

P

Initialization 0 (β0)
∗
0 (aH

1 )∗0 · · · (aH
J )∗0 (σ2

H)∗0 (σ2
P )∗0

1 (β0)
∗
1 (aH

1 )∗1 · · · (aH
J )∗1 (σ2

H)∗1 (σ2
P )∗1

Burn-in
...

...
...

. . .
...

...
...

b (β0)
∗
b (aH

1 )∗b · · · (aH
J )∗b (σ2

H)∗b (σ2
P )∗b

b+ 1 (β0)
∗
b+1 (aH

1 )∗b+1 · · · (aH
J )∗b+1 (σ2

H)∗b+1 (σ2
P )∗b+1

Monitoring
...

...
...

. . .
...

...
...

b+m (β0)
∗
b+m (aH

1 )∗b+m · · · (aH
J )∗b+m (σ2

H)∗b+m (σ2
P )∗b+m

Sample θ∗t+1,1 ∼ p(θ1 | y, θ∗t,2, θ∗t,3, θ∗t,4, . . . , θ∗t,k)
Sample θ∗t+1,2 ∼ p(θ2 | y, θ∗t+1,1, θ

∗
t,3, θ

∗
t,4, . . . , θ

∗
t,k)

Sample θ∗t+1,3 ∼ p(θ3 | y, θ∗t+1,1, θ
∗
t+1,2, θ

∗
t,4, . . . , θ

∗
t,k)

...
...

...

Sample θ∗t+1,k ∼ p(θk | y, θ∗t+1,1, θ
∗
t+1,2, θ

∗
t+1,3, . . . , θ

∗
t+1,k−1)

t← (t+ 1)
}

To really see what’s going on it’s instructive to visualize the MC data set,
which from now on I’ll call the MCMC data set. Table 2.3 illustrates this data
set when Gibbs sampling is applied to the variance-components model (2.22).
The MH algorithm creates a Markov chain whose stationary distribution
is p(θ | y), but you have to start the chain off somewhere and there’s no
guarantee that the chain will already be in equilibrium at the beginning of
the sampling. The usual way to run an MH sampler is to try to (i) start it off
at a vector of initial values which is close to a measure of center for the target
distribution, such as the posterior mean or mode; (ii) run the chain until it’s
shrugged off its dependence on the initial values and reached equilibrium (this
is called the burn-in phase); and then (iii) monitor the quantities of interest for
a long enough period of time to get whatever Monte Carlo accuracy you want
in the descriptive summaries of the MCMC draws. Thus MCMC sampling
can be divided into three phases, which are usually called (i) initialization
(iteration 0), (ii) burn-in (iterations 1, . . . , b), and (iii) monitoring (iterations
b + 1, . . . , b + m). The draws in phases (i) and (ii) (rows 0 through b in the
MCMC data set) are typically discarded.
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Returning to the variance-components model (2.22), as was the case with
the random-slopes regression model (2.28), Gibbs sampling proceeds most
smoothly by treating the hospital random effects aHj as latent auxiliary vari-
ables to be sampled along with the parameters (β0, σ

2
H , σ

2
P ). For the algorithm

to work correctly it doesn’t matter in what order the elements of (θ,A) are
updated; the ordering from left to right in Table 2.3 is as good as any. Having
chosen initial values (β0)

∗
0, (aH1 )∗0, . . . , (aHJ )∗0, (σ2

H)∗0, (σ2
P )∗0 in some way (I’ll

address this in more detail in the section below on MCMC diagnostics), row
t = 1 in the MCMC data set is filled in as follows:

• Sample (β0)
∗
1 from p

[
β0 | y, (aH1 )∗0, . . . , (a

H
J )∗0, (σ

2
H)∗0, (σ

2
P )∗0
]
,

• Sample (aH1 )∗1 from p
[
aH1 | y, (β0)

∗
1, (a

H
2 )∗0, . . . , (a

H
J )∗0, (σ

2
H)∗0, (σ

2
P )∗0
]
,

• Sample (aH2 )∗1 from p
[
aH2 | y, (β0)

∗
1, (a

H
1 )∗1, (a

H
3 )∗0, . . . , (a

H
J )∗0, (σ

2
H)∗0, (σ

2
P )∗0
]
,

and so on down to

• Sample (aHJ )∗1 from p
[
aHI | y, (β0)

∗
1, (a

H
1 )∗1, . . . , (a

H
J−1)

∗
1, (σ

2
H)∗0, (σ

2
P )∗0
]
,

• Sample (σ2
H)∗1 from p

[
σ2
H | y, (β0)

∗
1, (a

H
1 )∗1, . . . , (a

H
J )∗1, (σ

2
P )∗0
]
, and

• Sample (σ2
P )∗1 from p

[
σ2
H | y, (β0)

∗
1, (a

H
1 )∗1, . . . , (a

H
J )∗1, (σ

2
H)∗1

]
.

The key idea is always to use the most recent value of each component of
(θ,A), which will always be either in the current row in the MCMC data set
or the one above it.

An important practical detail not yet addressed is how to calculate the
full conditional distributions. In the VC model (2.22), for example, taking β0

first and letting aH = (aH1 , . . . , a
H
J ), the definition of conditional probability

gives

p(β0 | y,aH , σ2
H , σ

2
P ) =

p(β0,y,a
H , σ2

H , σ
2
P )

p(y,aH , σ2
H , σ

2
P )

. (2.30)

Notice, however, from the acceptance probability (2.29) that the full condi-
tionals only need to be computed up to a constant multiple, as was true with
the complete posterior distribution in (2.25). This means that anything that
doesn’t involve β0 in the right-hand side of (2.30), such as the denominator,
can simply be absorbed into a generic constant:

p(β0 | y,aH , σ2
H , σ

2
P ) = c p(β0,y,a

H , σ2
H , σ

2
P ).

Next, again using the definition of conditional probability, and thinking about
the hierarchical nature of how the model (2.22) defines its knowns and un-
knowns,

p(β0 | y,aH , σ2
H , σ

2
P ) = c p(β0, σ

2
H , σ

2
P ) p(aH | β0, σ

2
H , σ

2
P )

× p(y | β0,a
H , σ2

H , σ
2
P ).
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Now (a) little of value is usually lost in multilevel modeling by taking the fixed
effects and the random-effects variances to be independent33 in the prior, so
that p(β0, σ

2
H , σ

2
P ) = p(β0) p(σ

2
H) p(σ2

P ), which can be taken to be c p(β0)
in this calculation; (b) the conditional distribution of aH given (β0, σ

2
H , σ

2
P )

depends only on σ2
H and again can be taken to be constant in this calculation;

and (c) the conditional (sampling) distribution34 of yij given (β0,a
H , σ2

H , σ
2
P )

is N (β0 + aHj , σ
2
P ). Thus, after a bit more simplification,

p(β0 | y,aH , σ2
H , σ

2
P ) = p(β0 | y,aH , σ2

P )

= c p(β0) exp

− 1
2σ2

P

J∑
j=1

nj∑
i=1

(yij − β0 − aHj )2

. (2.31)

The full conditional likelihood for β0—the exponential expression in (2.31),
viewed as a distribution in β0 for fixed (y,aH , σ2

P )—is

l(β0 | y,aH , σ2
P ) = c exp

− 1
2σ2

P

J∑
j=1

nj∑
i=1

(yij − β0 − aHj )2


= N

 1
N

J∑
j=1

nj∑
i=1

(yij − aHj ),
σ2
P

N

.
(2.32)

This demonstrates that the conditional conjugate choice for the prior distri-
bution for β0 in this model, as far as Gibbs sampling is concerned, is normal:
with this choice you can verify that the full conditional for β0 will also be
normal. Prior distributions in multilevel modeling will be discussed more fully
below; for now it’s enough to note that if you want to specify a diffuse prior
for β0 you can do so in a conditionally conjugate way by choosing a normal
distribution with any mean you like and a huge variance σ2

β0
. In the limit as

σ2
β0
→∞ (the ultimate in diffuseness) the prior distribution β0 would tend to a

constant and the full conditional for β0 would just be the Gaussian distribution
in (2.32). Of course there’s no such thing as a proper distribution which is
constant on (−∞,∞), because the area under such a curve would be infinite.

33 Typically the data set will be sufficiently informative that the appropriate degree

of correlation between these parameters in the posterior will be learned via the

likelihood.
34 You can begin to see why it’s useful in multilevel MCMC to sample the random

effects aH along with the parameters: computing the sampling distribution of the

yij without conditioning on the aH
j would require integrating over the random

effects, and while this can be done analytically in Gaussian random-effects models

(because a mixture of Gaussians is still Gaussian) it gives a hint of how difficult

things can become in non-Gaussian random-effects models if you don’t sample

the random effects.
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p(β0) = c is another example of an improper prior (like the Beta(0, 0) prior
in section 2.1.2); this topic will be examined in more detail in section 2.3.3.

A similar calculation reveals that the aHj are conditionally independent
given (y, β0, σ

2
H , σ

2
P ) and that

p(aHj | y, β0, σ
2
H , σ

2
P ) = N

[
Vj
σ2
P

nj∑
i=1

(yij − β0), Vj

]
,

where Vj = (nj/σ2
P + 1/σ2

H)−1. As for σ2
H , logic similar to that underlying

the full conditional for β0 (and again assuming independence of β0, σ
2
H , and

σ2
P in the prior) yields

p(σ2
H | y, β0,a

H , σ2
P ) = c p(σ2

H ,y, β0,a
H , σ2

P ) = c p(σ2
H) p(aH | σ2

H)

(because p(y | β0,a
H , σ2

H , σ
2
P ) = N (β0 +aHj , σ

2
P ) doesn’t depend on σ2

H), and
this is

p(σ2
H | y, β0,a

H , σ2
P ) = p(σ2

H | aH)

= c p(σ2
H)

J∏
j=1

(σ2
H)−1/2 exp

[
−

(aHj )2

2σ2
H

]

= c p(σ2
H) (σ2

H)−J/2 exp

[
−
∑J
j=1(a

H
j )2

2σ2
H

]
. (2.33)

Leaving aside the prior p(σ2
H) for the moment, the rest of (2.33)—the full

conditional likelihood for σ2
H given aH—is recognizable as a member of the

Scaled Inverse χ2 family:

l(σ2
H | aH) = χ−2

[
J − 2,

∑J
j=1(a

H
j )2

J − 2

]
.

As noted below (2.26), the Scaled Inverse χ2 family is conditionally conju-
gate for Gibbs sampling in Gaussian models of this type; taking p(σ2

H) =
χ−2(νH , s

2
H), the full conditional for σ2

H becomes

p(σ2
H | aH) = χ−2

[
νH + J,

νHs
2
H +

∑J
j=1(a

H
j )2

νH + J

]
.

Finally, a similar calculation shows that

p(σ2
P | β0,y,a

H , σ2
H)

= c p(σ2
P ) (σ2

P )−N/2 exp

[
−
∑J
j=1

∑nj

i=1(yij − β0 − aHj )2

2σ2
P

]

= c p(σ2
P )χ−2

[
N − 2,

∑J
j=1

∑nj

i=1(yij − β0 − aHj )2

N − 2

]
,
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so that the conditional conjugate prior for σ2
P is also Scaled Inverse χ2, and

with the choice p(σ2
P ) = χ−2(νP , s

2
P ) the full conditional for σ2

P is35

p(σ2
P | β0,y,a

H) = χ−2

[
νP +N,

νP s
2
P +

∑J
j=1

∑nj

i=1(yij − β0 − aHj )2

νP +N

]
.

It would evidently not be pleasant to be forced routinely to make detailed
calculations of full conditional distributions to perform Gibbs sampling in
multilevel models. Fortunately, at least two rather general-purpose computer
programs are available at this writing which make these calculations for you
automatically: WinBUGS [70] and MLwiN [60]36. WinBUGS can fit a broader class
of Bayesian models than MLwiN, but the coding in MLwiN has been optimized
in such a way that it often takes less CPU time than WinBUGS to achieve
the same level of MCMC accuracy (some efficiency comparisons will be given
below).

It’s clear from Algorithm 2.3 and the discussion surrounding it that the
single-component Metropolis-Hastings (MH) sampler offers immense flexibil-
ity in implementation: for example, you’re free to use Gibbs updating for
some components of the vector (θ,A) of unknowns-plus-auxiliary-variables,
and Metropolis or MH updating for other components. This is sometimes
referred to as a hybrid Metropolis-Gibbs approach (even though it’s all really
MH sampling). WinBUGS generally attempts to use Gibbs sampling whenever
possible, often employing adaptive rejection sampling (ARS), a method de-
veloped by Gilks and Wild [41], to sample from the full conditionals. If the
distributions needed for Gibbs sampling are concave on the log scale, envelope
functions can be created in a piecewise linear fashion, using tangents to the
log full conditionals as in Figure 2.2. ARS proceeds adaptively to create an
increasingly tighter envelope by adding a new tangent line at each sampled
point, so that the rejection probability goes down as the sampling unfolds.
If some of the full conditionals are not log concave, WinBUGS uses a hybrid
approach based on Gibbs sampling via ARS when possible and MH sampling
otherwise. MLwiN typically uses a different hybrid strategy, which I’ll now
describe in the context of random-effects logistic regression (RELR) models.

35 The conditionally conjugate choices for the prior distributions for β0, σ
2
H , and σ2

P

examined here have been motivated by computational convenience; other priors

could of course be used, but (a) diffuse prior choices are easy to make in the

conditionally conjugate families and (b) these families will often also be adequate

approximations in a wide variety of situations when stronger prior information is

available.
36 Bill Browne (at the University of Bristol) and I were the co-developers of the

Bayesian MCMC capabilities in version 1.0 of MLwiN in 1998. Bill has since gone

on to greatly enhance the range of models that can be fit via MCMC in MLwiN;

see Browne et al. [14] for details.
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Metropolis and Hybrid Sampling Strategies in Multilevel Models
with Dichotomous Responses

When the outcome variable in a multilevel investigation is binary and random-
effects models are called for—an example is the RELR model (2.3)—the
MCMC fitting process becomes more involved, because Gibbs sampling in
RELR models is not straightforward. For instance, in the even simpler version
of (2.3) in which no predictor variable x is available, and taking all prior
distributions to be uniform for simplicity, the full conditional distribution for
β0 is

p(β0 | y,u, σ2
u) = c

∏
ij

(
1 + e−β0−uj

)−yij
(
1 + eβ0+uj

)yij−1
.

This distribution does not lend itself readily to direct sampling. Rejection
sampling [75] is possible, and (as mentioned above) WinBUGS employs adaptive
rejection sampling. MLwiN uses a hybrid Metropolis-Gibbs approach in RELR
models which involves two steps: (a) a particular form of adaptive Metropolis
sampling for the fixed effects, such as β0 in (2.3), and the random effects uj ,
treated as latent auxiliary variables as usual, and (b) Gibbs sampling for the
random-effects variances.

Since the fixed and random effects live on the whole real line, the simplest
choice for the proposal distributions (PDs) in the Metropolis sampling, if all
of the fixed and random effects are to be updated one at a time, is a series of
univariate Gaussian distributions, but it still remains to specify the location
and scale of these PDs. Consider (as an example) the intercept β0 in model
(2.3), and imagine that the sampler is at some value β0(t) at time t. A simple
way to specify a Gaussian PD for this parameter would be to use the normal
distribution N (β∗0 | β0(t), σ

2
β0

) centered at where the sampler is now, β0(t),
and with some PD variance σ2

β0
. This PD has the property that it depends

on β∗0 and β0(t) only through the distance |β∗0 − β0(t)| between them, which
is the defining characteristic of a random-walk Metropolis sampler, and this
idea fixes the location of the PDs.

MLwiN uses random-walk Metropolis on the fixed and random effects in
RELR models, and chooses the PD variances adaptively to avoid the extremes
illustrated by Figure 2.3: in the top panel of this figure the PD variance is too
big, leading to an acceptance probability that’s too low, and in the bottom
panel the scale of the PD is too small, resulting in an acceptance probability
that’s too high. I mentioned in section 2.3.2 that the optimal acceptance
rate for one-dimensional (random-walk) MH samplers with Gaussian PDs
when the target distribution is approximately normal is about 44%; Browne
and Draper [11–13] used this fact to equip MLwiN with the following simple
adaptive method for choosing the PD variances. From starting values based
on the estimated covariance matrices of the MLEs for the parameters in the



116 Draper

given model, the method first employs a sampling period of random length
(but with an upper bound) during which the proposal distribution variances
are adaptively tuned and eventually fixed for the remainder of the run; this is
followed by a burn-in period (see section 2.4.1); and then the main monitoring
run from which posterior summaries are calculated occurs. The tuning of the
proposal distribution variances is based on achieving an acceptance rate for
each parameter that lies within a specified tolerance interval (r − δ, r + δ).

The algorithm examines empirical acceptance rates in batches of 100 it-
erations, comparing them for each parameter with the tolerance interval and
modifying the proposal distribution appropriately before going on to the next
batch of 100. With r∗ as the acceptance rate in the most recent batch and
σp as the proposal distribution SD for a given parameter, the modification
performed at the end of each batch is as follows:

If r∗ ≥ r then σp → σp

(
2− 1− r∗

1− r

)
else σp →

σp
2− r∗/r

.

This modifies the proposal standard deviation by a greater amount the farther
the empirical acceptance rate is from the target r. If r∗ is too low, the proposed
moves are too big, so σp is decreased; if r∗ is too high, the parameter space
is being explored with moves that are too small, and σp is increased. If the
r∗ values are within the tolerance interval during three successive batches of
100 iterations, the parameter is marked as satisfying its tolerance condition,
and once all parameters have been marked the overall tolerance condition
is satisfied and adapting stops. After a parameter has been marked it’s still
modified as before until all parameters are marked, but each parameter only
needs to be marked once for the algorithm to end. To limit the time spent
in the adapting procedure an upper bound is set (the MLwiN default is 5,000
iterations) and after this time the adapting period ends regardless of whether
the tolerance conditions are met (in practice this occurs rarely). Values of
(r, δ) = (0.5, 0.1) appear to give near-optimal univariate-update Metropolis
performance for a wide variety of multilevel models [11–13].

To give some examples of MCMC efficiency comparisons, Browne and
Draper [11–13] and Browne [10] have gathered information in a wide variety
of multilevel models that can be fit both by WinBUGS using Gibbs sampling
via ARS37 and by MLwiN using adaptive hybrid Metropolis-Gibbs sampling. In
addition to univariate Metropolis updating in multilevel modeling, as noted in
the discussion surrounding (2.28), it’s also possible to update parameters in L
sets of blocks with multivariate proposal distributions, where L is the number
of levels in the model. In models with Gaussian responses, MLwiN uses (a)
Gibbs sampling on the random-effects variances and (b) multivariate normal

37 WinBUGS version 1.4.1 allows the user to specify MH sampling instead of Gibbs

sampling via ARS, but the latter is still the default.
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PDs on everything else, with the fixed effects forming one block and the other
L − 1 groups of nl blocks of size nrl comprising all of the random effects at
level 2, . . . , L, respectively, where nl is the number of blocks at level l and nrl
is the number of random effects per block at level l.

• In the two-level RELR models examined in the work summarized here,
Gibbs sampling via ARS was the most efficient method per MCMC it-
eration (in the sense of producing MCMC output with smaller levels of
positive autocorrelation), but ARS was much slower per iteration than
Metropolis; the winner in CPU time to achieve the same level of MCMC
accuracy (as measured by the default Raftery-Lewis MCMC diagnostic;
see section 2.4.2) was multivariate Metropolis, by factors ranging from 1.7
to 9.0;

• In multilevel models involving heteroscedasticity (unequal random-effects
variances, which may be modeled as a function of predictor variables) at
one or more levels of the hierarchy, Metropolis sampling was 4.1–9.1 times
faster than ARS to achieve default Raftery-Lewis accuracy in the examples
studied;

• In multilevel models with multivariate Gaussian responses, MLwiN’s ap-
proach based on Gibbs sampling with block updating was 3.3 times faster
than ARS; and

• In one particular example involving a multilevel measurement error model,
MLwiN’s version of Gibbs sampling was 67 times faster than the WinBUGS
Gibbs implementation (the clock time comparison was 1 hour 14 minutes
versus 1.1 minutes to obtain 50,000 monitoring iterations on a 3GHz PC).

These results are anecdotal but are typical of many examples studied. The
principal reason for these efficiency findings appears to be that ARS’s gener-
ality is bought at the price of considerable computational overhead in creat-
ing and adaptively improving the rejection-sampling envelope function. (Of
course, none of these comparisons reflect the fact that the class of models
that can currently be fit with WinBUGS is considerably larger than the range
of models available at present via MLwiN; see www.mrc-bsu.cam.ac.uk and
www.cmm.bristol.ac.uk/MLwiN/index.shtml for details.)

2.3.3 Prior Distributions for Multilevel Analysis

As with all Bayesian inference, broadly speaking two classes of prior dis-
tributions are available for multilevel models: (a) diffuse and (b) non-diffuse,
corresponding to situations in which (a) little is known about the quantities of
interest a priori or (b) substantial prior information is available, for instance
from previous studies judged relevant to the current data set. In situation
(a), on which I’ll focus here, it seems natural to seek prior specifications
that lead to well-calibrated inferences [e.g., 21], which I’ll take to mean point
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estimates with little bias and interval estimates whose actual coverage is close
to the nominal level (in both cases in repeated sampling). As mentioned in
footnote 33, when the goal is a diffuse prior specification it’s customary (and
often does little harm) to take all parameters to be independent in the prior
for convenience (on the ground that the likelihood will provide the appro-
priate correlation structure in the posterior), and—with one exception to be
discussed below—I’ll follow that practice here.

There is an extensive literature on the specification of diffuse priors [e.g.,
2, 37, 70], leading in some models to more than one intuitively reasonable
approach. It’s sometimes stated in this literature that the performance of the
resulting Bayesian estimates is broadly insensitive, with moderate to large
sample sizes, to how the diffuse prior is specified. In preliminary studies in
joint work with Bill Browne, we found this to be the case for fixed effects in
a wide variety of multilevel models; as a result MLwiN uses (improper) priors
that are uniform on the real line R for such parameters (these are functionally
equivalent to proper Gaussian priors with huge variances). As others [e.g.,
29] have elsewhere noted, however, we found noticeable differences in perfor-
mance across plausible attempts to construct diffuse priors for random-effects
variances in both model classes. Intuitively (as mentioned toward the end of
section 2.2) this is because the effective sample size for the level-2 variance in
a two-level analysis with J level-2 units (e.g., hospitals) and N total level-1
units (e.g., patients; typically J � N) is often much closer to J than to N ;
in other words, in the language of the example near (2.22), even with data on
hundreds of patients the likelihood information about the between-hospital
variance can be fairly weak when the number of hospitals is modest, so that
prior specification can make a real difference in such cases.

The off-the-shelf (improper) choice for a diffuse prior on a variance in
many Bayesian analyses is p(σ2) = c/σ2, which is equivalent to assuming that
log(σ2) is uniform on R. This is typically justified by noting that the posterior
for σ2 will be proper even for very small sample sizes; but [e.g., 30] this choice
can lead to improper posteriors in random-effects models. MLwiN avoids this
problem by using two alternative diffuse (but proper) priors, both of which
produce proper posteriors:

• A locally uniform prior for σ2 on (0, 1/ε) for small positive ε [17, 38], which
is equivalent to a Pareto(1, ε) prior for the precision τ = 1/σ2 [70]; and

• A Γ−1(ε, ε) prior for σ2 [70], for small positive ε.

Both of these priors are members of the χ−2(ν, s2) family: the Uniform and
Inverse Gamma priors just mentioned are formally specified by the choices
(ν, s2) = (−2, 0) and (2ε, 1), respectively (in the former case in the limit as ε→
0). We have found that results are generally insensitive to the specific choice of
ε in the region of 0.001. (Earlier versions of the examples manual for WinBUGS
[69] frequently employed Γ (0.001, 0.001) marginal priors for quantities (such
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as precisions) which live on the positive part of the real line, and more recent
versions still give results with this prior for comparison. Evidence is beginning
to emerge that uniform priors on the standard deviation scale may have even
better calibration properties than those described below; see [12] and the
discussion therein.)

The exception I mentioned above to the idea of making all the parameters
independent in the prior arises in models, such as the random-slopes regression
formulation (2.28), in which random effects at more than one level are jointly
modeled with a covariance matrix V . In the same way that priors for a
variance are typically either expressed on the scale of σ2 or its reciprocal,
priors for covariance matrices are usually either specified in terms of V or
V −1. With Gaussian random effects the conditionally conjugate prior choice
for the inverse of a covariance matrix is the Wishart family, a multivariate
generalization of the Gamma distribution. In the parameterization used, for
example, by Gelman et al. [37], the Wishart distribution Wk(ν,S) for a k× k
matrix W has density

p(W ) = c |W |(ν−k−1)/2 exp
[
− tr(S−1W )

2

]
;

in this expression |A| and tr(A) denote the determinant and trace of the
matrix A, respectively, and the density is only defined over positive definite
matrices W and for ν ≥ k. This distribution has mean E (W ) = νS, so (by
analogy with the χ−2(ν, s2) distribution) specifying Wk(ν,S) as a prior for
V −1 is roughly equivalent to supplying S as a prior estimate of V based
on ν prior “observations.” Small values of ν thus lead to relatively diffuse
specifications; for example, the default prior for a k × k covariance matrix V
in MLwiN is p(V −1) = Wk(k, V̂ ), where V̂ is the MLE for V . This is gently
data-determined, but usually the effective sample size in the data for learning
about V is so much larger than k that all reasonable choices of S in the
Wk(k,S) distribution as a prior for V yield essentially the same conclusions.

There’s relatively little information in the literature about the calibration
performance of diffuse priors in multilevel modeling. An exception is Browne
and Draper [12], which presents results from large simulation studies in two
multilevel settings: the variance-components model (2.22) and the three-level
RELR model38

(yijk | pijk) ∼ Bernoulli(pijk), with

logit(pijk) = β0 + β1x1k + β2x2jk + β3x3ijk + vk + ujk ,
(2.34)

where yijk is a binary outcome variable and in which vk ∼ N (0, σ2
v) and

ujk ∼ N (0, σ2
u). The RELR model in this work involved a design configuration

based on a medical study (Rodŕıguez and Goldman [63]) of 2,449 births by
38 Browne and Draper [11] offers similar results in random-slopes regression models.
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1,558 women living in 161 communities in Guatemala; the VC simulation
study, motivated by an educational example with pupils nested in schools,
permitted the number of schools to range from 6 to 48 and the numbers of
pupils per school to vary from 5 to 62 in such a way that the average number of
pupils per school was 18 (the resulting total numbers of pupils varied from 108
to 864). The parameters in (2.34) in the RELR simulation were set to values
similar to those in the original Rodŕıguez-Goldman study; the random-effects
variances in the VC simulations were chosen to span a wide range of intraclass
correlation values from 0.012 to 0.5.

A comparison was made between likelihood-based and Bayesian diffuse-
prior methods, using bias of point estimates and nominal versus actual cov-
erage of interval estimates in repeated sampling as evaluation criteria. As
mentioned in section 2.1, maximum likelihood estimates (and restricted ML
(REML) estimates which attempt to achieve approximate unbiasedness) are
readily found in VC models but are considerably more difficult to compute
in RELR models, because numerical integration is required over the random
effects to evaluate the likelihood function; as a result the likelihood-based
methods in most frequent use at present are quasi-likelihood techniques based
on linear approximations to the nonlinear RELR model. The results of the
simulations were as follows.

• In two-level VC models (a) both likelihood-based and Bayesian approaches
can be made to produce approximately unbiased estimates, although the
automatic manner in which REML achieves this is an advantage, but (b)
both approaches had difficulty achieving nominal coverage of interval esti-
mates in small samples and with small values of the intraclass correlation.

• With the three-level RELR model examined, (c) quasi-likelihood meth-
ods for estimating random-effects variances perform badly with respect to
bias and coverage in the example studied, and (d) Bayesian diffuse-prior
methods lead to well-calibrated point and interval RELR estimates.

One important likelihood-Bayesian comparison I’ve not yet addressed is com-
putational speed, where likelihood-based approaches have a distinct advantage
(for example, quasi-likelihood fitting of model (2.34) to the original Rodŕıguez-
Goldman data set takes 2.7 seconds on a 3 GHz PC versus 1.8 minutes using
MCMC with 25,000 monitoring iterations). It’s common practice in statistical
modeling to examine a variety of models on the same data set before choosing
a small number of models for reporting purposes (although this practice by
itself encourages underpropagation of model uncertainty, e.g., Draper [25]).
The results in Browne and Draper [12] suggest a hybrid modeling strategy,
in which likelihood-based methods like those described here are used in the
model exploration phase and Bayesian diffuse-prior methods are used for
the reporting of final inferential results. Other analytic strategies based on
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less approximate likelihood methods are also possible but would benefit from
further study of the type summarized above.

2.4 MCMC Diagnostics

While MCMC methods offer a promising path toward a solution to the numer-
ical integration problem at the heart of Bayesian computations, it’s evident
from section 2.3.2 that some new technical challenges arise in implementing
such methods: What should you use for starting values? How long should the
burn-in period be? (Equivalently, how do you know when the Markov chain
has reached equilibrium?) How long do you need to monitor the chain to get
results of sufficient Monte Carlo accuracy? A burgeoning literature on MCMC
diagnostics to help answer these questions has developed over the last 15 years;
see, e.g., Cowles and Carlin [19] and Brooks and Roberts [9] for good reviews.
A number of the most promising diagnostics have been distributed by Best
et al. [4] in a collection of programs called CODA (written in the S-PLUS R© [47]
and R languages). I’ll confine my coverage of this topic here to a discussion
of a few of the most useful diagnostic methods in multilevel modeling; these
tend to be methods (a subset of the techniques in CODA) available in software
such as MLwiN and WinBUGS.

2.4.1 Starting Values and the Length of the Burn-In Period

On the subjects of where to start the chain and how long the burn-in phase
should be (which are of course related: the worse the starting values, the
longer the burn-in needs to be), it helps to reach equilibrium quickly if you
can initialize the chain somewhere near a measure of center of the relevant
posterior distribution, such as its mean or mode. With diffuse priors this
suggests using maximum-likelihood estimates for initial values, since the mode
of the posterior and the maximum of the likelihood distribution will then be
close. This strategy is particularly well-suited to a package like MLwiN which
permits both maximum-likelihood and MCMC fitting of multilevel models,
and in fact the MLEs are the default starting values in MLwiN. Browne and
Draper [11] have demonstrated anecdotally that a short burn-in period of
only 500 iterations from MLE starting values is more than adequate to reach
equilibrium in a remarkably wide variety of multilevel models; this is the
default burn-in behavior in MLwiN. WinBUGS (and other software) users who
do not have ready access to the MLEs often try generic starting values, such as
0 for any parameter whose range is the entire real line (fixed-effects regression
coefficients, for example) and 1 for any parameter which lives only on (0,∞)
(such as random-effects variances or precisions); this approach may fail in the
sense that the MCMC software is unable to begin sampling from such a poor
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starting place, and even when this type of failure does not occur a longer
burn-in period may be necessary.

The only real possibility, in Bayesian inference via MCMC, of obtaining
a truly inaccurate summary of the correct posterior distribution arises when
the posterior is multimodal and, for whatever reason, the sampler is run in
such a way that not all of the modes are discovered. Suppose, for example,
that the posterior has two modes which are far apart in parameter space, and
your sampling strategy (Metropolis, say) is as follows: you start the chain
off near one of the modes and (unknown to you) the proposal distribution
standard deviation you’re using is too small to permit discovery of the other
mode quickly. Theoretically your sampler will still (with probability 1) find
the other mode eventually, but this may not occur until millions of iterations
have been performed, and nothing in the output of the sampler in the first
50,000 or 100,000 iterations will give you any clue that there’s anything wrong.
Gelman and Rubin [38] have developed a simple diagnostic (implemented
in CODA and WinBUGS) for detecting multimodality based upon the idea of
running multiple chains from widely dispersed starting values and performing
an analysis of variance to see if the between-chain variability is large in relation
to the average variation within the chains (if so this would indicate more
than one mode). Fortunately multimodality is rare when fitting multilevel
models in situations which typically arise in practice; this problem should
not arise when the data provide substantial likelihood information about the
parameters of interest and the prior information is relatively diffuse in relation
to the likelihood.

2.4.2 The Required Length of the Monitoring Run

Once equilibrium has been reached it may still be true that an optimized
version of an approach such as Metropolis sampling will produce output with
sufficiently high autocorrelation that tens of thousands of iterations may be
needed to achieve respectable Monte Carlo accuracy. I’ll examine one possible
approach to determining how long the monitoring run should be by looking
at some output of the MLwiN package in a simple variance components model.
Figure 2.4 presents results from MCMC fitting of the model

yij = β0 + β1xij + aSj + aPij , j = 1, . . . , J, i = 1, . . . , nj ,
J∑
j=1

nj = N, aSj
iid∼ N (0, σ2

S), aPij
iid∼ N (0, σ2

P )
(2.35)

to a 2-level data set from education obtained by Goldstein et al. [44]; these
authors chose a random sample of J = 65 schools (factor S) from the Inner
London Education Authority in the late 1980s and then sampled a total of
4,059 16-year-old pupils (factor P ) at random from the chosen schools (a
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single-stage cluster sample). Here yij is a normalized examination score at
age 16 and xij is a score on a standardized reading test at age 11 (both
variables were linearly transformed to have mean 0 and SD 1). Figure 2.4
summarizes where things stand after MLwiN’s default hybrid Metropolis-Gibbs
sampler (described in section 2.3.2) has performed a burn-in of 500 iterations
from the maximum-likelihood estimates in (2.35) and an initial monitoring
run of 5,000 iterations. The Equations window in the lower right corner
gives the current posterior means and SDs of the model parameters (based on
the 5,000 monitoring iterations): in the notation of (2.35), and regarding the
posterior means as point estimates, the current values (with posterior SDs in
parentheses) are β̂0 = 0.005 (0.042), β̂1 = 0.563 (0.012), σ̂2

S = 0.097 (0.021),
and σ̂2

P = 0.566 (0.013). The Trajectories window in the upper left corner
presents time series traces of the most recent 500 iterations for each of the
four parameters in the model (plus the deviance—a value based on the log
likelihood of the model evaluated at the current parameter estimates—which
can be used to assess the fit of the model; see, e.g., Spiegelhalter et al. [68]
for applications of the deviance to this task, some of which are controversial).
It’s evident that some parameters are mixing better than others; the rate of
MCMC learning about β0 is particularly slow, but that doesn’t matter here
because the linear transformations of both x and y in this model mean that
β0 should be zero, rendering this parameter effectively ignorable.

Consider σ2
S , which is referred to in MLwiN as σ2

u0. Clicking on this pa-
rameter in the Trajectories window yields the default set of MLwiN MCMC
diagnostics about σ2

S , presented in Figure 2.5. Five plots are given, together
with a variety of numerical diagnostics and summaries. The upper left plot
is a time series trace of all 5,000 monitoring iterations for σ2

S , and the upper
right plot is a kernel density trace (an estimate of the marginal posterior
p(σ2

S | y); see, e.g., Silverman [67] for details), which has a gentle degree of
skewness that’s about what you’d expect for a variance parameter (note that
the posterior mode, median, and mean for σ2

S , all of which are given in the
Summary Statistics part of the display, are estimated as 0.092, 0.095, and
0.097, respectively, a pattern that’s consistent with modest right skewness).
The left-hand graph in the second row of the figure is a plot of the estimated
autocorrelation function (ACF) for σ2

S ; as indicated in footnote 27, this mea-
sures the degree to which σ2

S at lag t is correlated with itself at lags t − 1,
t− 2, and so on (a purely IID time series would have autocorrelation 1 at lag
0 and estimated autocorrelations near zero at all other lags).

The remaining two plots require a brief digression on the subject of autore-
gressive models for time series [e.g., 18]. Letting et denote an IID (white-noise
or purely random) process with mean 0 and variance σ2

e , the time series θ∗t is
said to be an autoregressive process of order p (AR(p)) if

θ∗t = α1 θ
∗
t−1 + · · ·+ αp θ

∗
t−p + et. (2.36)
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Fig. 2.4. Output of MLwiN initial MCMC fitting of model (2.35) to the Goldstein

et al. [44] educational data.

Fig. 2.5. MLwiN MCMC diagnostics for σ2
S in model (2.35), when fit to the educa-

tional data set examined in Figure 2.4.
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Equation (2.36) is like a multiple regression model except that θ∗t is being
regressed on past values of itself instead of on other predictor variables; this
gives rise to the term autoregressive. The right-hand graph in the second row
of Figure 2.5 is the estimated partial autocorrelation function (PACF) for σ2

S .
The PACF for a time series θ∗t measures the excess correlation between θ∗t
and θ∗t+k not accounted for by the autocorrelations at lags 1 through k − 1,
and is useful in diagnosing the order of an AR(p) process: if θ∗t is AR(p) then
the PACF at lags 1, . . . , p will be significantly different from 0 and then close
to 0 at lags larger than p. Evidently in this case the series for σ2

S behaves like
an AR(1) process with first-order serial correlation of about ρ̂1

.= +0.3 (the
height of the spike at lag 1 in both the ACF and PACF). The theoretical ACF
for an AR(1) series exhibits geometric decay, with the autocorrelation at lag
2 related to that at lag 1 by ρ2 = ρ2

1, followed by ρ3 = ρ3
1, and so on, and you

can see that the estimated ACF does have this behavior here.
The reason I bring this up is that when the output of an MCMC sampler

for any given variable is at least approximately AR(1), as will often be the case,
a simple generalization of (2.24)—the expression giving the required length of
the monitoring run in IID Monte Carlo sampling, when the goal is to specify
a target for the accuracy of the posterior mean—is available. It’s a standard
result from time series [e.g., 6] that if θ∗t is a stationary process with variance
σ2
θ and autocorrelation ρk at lag k, then in repeated sampling the standard

error (the square root of the variance) of the sample mean θ̄∗ = 1
m

∑m
t=1 θ

∗
t is

se(θ̄∗) =
σθ√
m

√√√√1 + 2
m−1∑
k=1

(
1− k

m

)
ρk , (2.37)

and a good approximation to this for large m is given by

se(θ̄∗) .=
σθ√
m

√
τ ,

where

τ = 1 + 2
∞∑
k=1

ρk (2.38)

is called the autocorrelation time for the series. In the special case of an AR(1)
process (2.37) reduces to

se(θ̄∗) .=
σθ√
m

√
1 + ρ

1− ρ
, (2.39)

where ρ = ρ1 is the autocorrelation at lag 1. This formula wraps up the bad
news arising from a poorly-mixing chain in a neat package: as ρ approaches +1
(i.e., as less and less new information is learned with each new Monte Carlo
draw from the posterior), (2.39) goes to +∞. The final plot in Figure 2.5,
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the left-hand graph in the third row of the figure, gives an estimated version
of (2.39)—using estimates of the posterior SD and first-order autocorrelation
of σ2

S based on the 5,000 monitoring iterations so far—plotted against m, to
indicate how long the chain needs to be run to achieve any particular target
value of ŝe(θ̄∗).

MLwiN also estimates the autocorrelation time τ̂ (by summing the ρ̂k in
(2.38) from k = 1 forward until they’re no longer statistically significantly
different from 0) and uses this to create a quantity called the effective sample
size ÊSS = m/τ̂ , which measures the efficiency of the MCMC sampler in
current use versus IID sampling; here the value ÊSS = 2,821 (printed in
the Summary Statistics section of the display) means that MLwiN’s default
sampler for this model has achieved a level of accuracy with 5,000 moni-
toring iterations that’s equivalent to what would have been achieved with
an IID sample from the posterior of size 2,821. (You can use the relation
τ̂ = (1 + ρ̂)/(1 − ρ̂) for AR(1) processes to solve backwards from the ÊSS
value, obtaining ρ̂ = (m− ÊSS )/(m+ ÊSS ). Here this yields ρ̂ .= 0.28, which
agrees well with the graphs in Figure 2.5.)

The current MCSE for the posterior mean of σ2
S with m = 5,000 is 0.0004

(this can be read off the graph, and is also printed in the Summary Statistics
section of the display). Given that the current posterior mean for σ2

S is 0.097,
this turns out not to be accurate enough to pin down the posterior mean µσ2

S
to

two sigfigs with high Monte Carlo probability; a calculation based on the CLT
approximation to the repeated-sampling distribution of 1

m

∑m
i=1(σ

2
S)∗i reveals

that a Monte Carlo confidence interval for µσ2
S

of the form (0.0965, 0.0975)
only has approximate confidence level 79%. A quantity referred to by MLwiN
as the Brooks-Draper (BD) diagnostic [8, 11] estimates the required length m̂
of a monitoring run to achieve at least k sigfigs, with Monte Carlo probability
at least 1 − α, in the posterior mean estimate for a quantity θ with current
sample mean θ̄∗ which can be written a · 10b for 1 ≤ a < 10; if the current
estimate of the posterior SD of θ is σ̂θ, and if the time series for θ behaves like
an AR(1) process with estimated first-order autocorrelation ρ̂, then m̂ must
satisfy

m̂ ≥ 4
[
Φ−1

(
1− α

2

)]2( σ̂θ
10b−k+1

)2(1 + ρ̂

1− ρ̂

)
. (2.40)

Here to achieve k = 2 sigfigs with at least 95% Monte Carlo probability
MLwiN evaluates (2.40) and obtains m̂ ≥ 11,365 (this is referred to as Nhat
in the Accuracy Diagnostics section of the display, next to the phrase
Brooks-Draper (mean)).

The final accuracy diagnostic routinely printed by MLwiN was developed
by Raftery and Lewis [59] to address a different aspect of the posterior than
that covered by the BD diagnostic: Raftery and Lewis were interested in the
accuracy of the quantiles defining (say) the 95% central interval estimate for
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a quantity θ, obtained by quoting the 2.5% and 97.5% points in the empirical
distribution for θ based on the m monitoring iterations so far (MLwiN denotes
this choice of relevant quantiles by q = (q1, q2) = (0.025, 0.975)). The Raftery-
Lewis (RL) diagnostic is expressed not on the scale of the data but on the
probability scale; in the case of the q1 point, for example, the diagnostic—when
used with its default settings—indicates how long the monitoring run needs to
be so that the actual amount of probability to the left of the quoted q1 point
in the true posterior distribution is within r = 0.005 of the nominal value q1
with at least s = 0.95 Monte Carlo probability. With these choices of q and
r the goal is for the actual probability content of the nominal 95% central
interval estimate for θ to be somewhere between 94% and 96% with at least
95% Monte Carlo probability. By default MLwiN reports RL values for both
of the q1 and q2 points; a natural way to use this output is to take the larger
of the two values as the recommended length of monitoring run from the RL
point of view. Here the default settings produce m̂ = (4199, 3996) (MLwiN
also calls these values Nhat), so the 95% central interval (0.063, 0.145) for
σ2
S reported in the Summary Statistics portion of the display exceeds the

default RL accuracy standards with the monitoring run of 5,000 iterations
already performed.

A natural strategy in MLwiN for choosing a final length of monitoring run
to produce publishable findings when the posterior distribution is multivariate
is to decide on the desired BD and RL accuracy standards for each parameter
(the defaults are easy to change) and to run the sampler for m∗ iterations,
where m∗ is at least as large as the maximum across the resulting BD and
RL recommendations for all parameters. In model (2.35) with the Goldstein
et al. data, ignoring the irrelevant parameter β0 and using the settings chosen
above, this yields m∗ = 11,365 (it turns out that the mixing for σ2

S is the
worst for the three main parameters in the model); rounding up to 12,000 and
running the sampler for an additional 7,000 iterations (which takes just a few
seconds at 3 GHz) yields good MCMC diagnostics and leads to final reportable
values (posterior means, with posterior SDs in parentheses) of β̂0 = 0.005
(0.041), β̂1 = 0.563 (0.013), σ̂2

S = 0.097 (0.020), and σ̂2
P = 0.566 (0.013). These

estimates differ little from the earlier values; in this model with this data set,
the initial monitoring run of 5,000 draws was already highly informative.

2.5 The Case Study Revisited

I’ll conclude this chapter by applying the ideas discussed in the previous
four sections to the Berkeley traffic case study in section 2.1.1. Figure 2.6
illustrates the MCMC fitting of the random-effects logistic regression (RELR)
model (2.5) to the data summarized in Tables 2.1 and 2.2, using WinBUGS
release 1.4.1. The fixed effects in (2.5) are written using an analysis-of-variance
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over-parameterization which employs slightly awkward side conditions (such
as
∑L
l=1 α

T
l = 0) to make the model identifiable; it’s arguably more natural

to fit a model like this by appealing to the duality between ANOVA and
regression, which is what I’ve done. There are K = 6 fixed-effects degrees of
freedom to fit in this model (in ANOVA language, one for the grand mean,
one for the bike-route effect, two for street type, and two for the interaction
between the two fixed factors), so I defined 6 dummy or indicator variables: x1

is 1 for all N = 82 rows in the data set (the intercept); x2 is 1 for streets with
a bike route (and 0 otherwise); x3 and x4 are 1 if street type is residential and
fairly busy, respectively; and x5 = x2 x3 and x6 = x2 x4 carry the interaction
information. With these definitions, in regression notation (2.5) becomes (for
i = 1, . . . , N)

(yi | pi)
indep∼ Binomial(ni, pi), where

logit(pi) =
K∑
k=1

βk xik + ei, ei
iid∼ N (0, σ2

e),
(2.41)

with the “errors” or residuals ei corresponding to the block-level random
effects aBjkl. The left-most window in Figure 2.6 specifies this regression model
in WinBUGS syntax, and the larger middle window in the figure gives the data.
I used diffuse priors for the βk (in WinBUGS the specification dflat( ) cor-
responds effectively to a normal distribution with mean 0 and huge variance,
or, equivalently, tiny precision), and I used a Γ (0.001, 0.001) diffuse prior for
the residual precision τe = 1/σ2

e (similar results are obtained here with other
diffuse priors). I also initialized all the parameters in (2.41) in a default manner
(see the small window at the bottom of Figure 2.6), by starting the Markov
chain off at 0 for all the βk and 1 for τe; this was lazy (and WinBUGS had to
generate initial values for all 82 of the residuals from this relatively inaccurate
starting point), but exploration revealed that the chain reached equilibrium
well within a quick burn-in of 500 iterations, so my laziness was not punished
in this case.

The dummy coding described above makes it easy to fit the model, but
some work is required to translate between the β (regression) and (µ, α)
(ANOVA) parameterizations. The top part of Table 2.4 gives the represen-
tation of each of the cells in the 2 × 3 table in this example in terms of the
xk (for example, membership in the (no bike route, busy) cell corresponds
to (x1, . . . , x6) = (1, 0, 0, 0, 0, 0)), and the representations of the row means,
column means, and the grand mean (on the logit scale) are then available by
simple averaging of the indicator codings in the cells (this ignores the slight im-
balance in the design in Table 2.1, with the two missing blocks in the (no bike
route, residential) cell, but a more precise analysis that corrects for this yields
almost exactly the same results). The bottom part of Table 2.4 records the ex-
pected logit(pjkl) values in model (2.5), in the ANOVA parameterization and
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Fig. 2.6. WinBUGS fitting of a regression reformulation of model (2.5) to the Berkeley

traffic data in section 2.1.1.

bearing in mind the usual side conditions. Given that the expected logit(pi)
values in (2.41) are of the form

∑K
k=1 βk xik with the xk values presented in the

top part of Table 2.4, it’s now possible to work out what functions of the βk in
the regression parameterization need to be monitored to obtain estimates of
the parameter values in the ANOVA representation. For example, the grand
mean µ in (2.5), which corresponds to the entry c′1 = (1, 1

2 ,
1
3 ,

1
3 ,

1
6 ,

1
6 ) in the

top part of the table, can be estimated by monitoring the linear combination
c′1β =

∑K
k=1 c1kβk of the βk; similarly αR1 = (µ + αR1 ) − µ corresponds to

c′2 = (1, 1, 1
3 ,

1
3 ,

1
3 ,

1
3 )− (1, 1

2 ,
1
3 ,

1
3 ,

1
6 ,

1
6 ) = (0, 1

2 , 0, 0,
1
6 ,

1
6 ); and so on. The data

file in Figure 2.6 displays the weight vectors c3 through c6 which permit the
monitoring of the other fixed-effect parameters (αT1 , αT2 , αRT1 , and αRT2 ) in
the ANOVA version of the model (the WinBUGS function inprod can be used
to create the desired linear combinations).

The online MCMC diagnostics in WinBUGS are not as extensive as those in
MLwiN, although it’s easy in WinBUGS to store the MCMC data set for offline
analysis with CODA; here I’ll illustrate a simple approach to determining how
long the Markov chain should be monitored using only the online diagnostics.
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Table 2.4. The top table gives the dummy coding of the cells in the 2 × 3 table

for the Berkeley traffic study of section 2.1.1; the bottom table records the expected

logit(pjkl) values in model (2.5), in the ANOVA parameterization and bearing in

mind the usual side conditions.

Bike Street Type

Route? Residential Fairly Busy Busy Mean

Yes (1, 1, 1, 0, 1, 0) (1, 1, 0, 1, 0, 1) (1, 1, 0, 0, 0, 0) (1, 1, 1
3
, 1

3
, 1

3
, 1

3
)

No (1, 0, 1, 0, 0, 0) (1, 0, 0, 1, 0, 0) (1, 0, 0, 0, 0, 0) (1, 0, 1
3
, 1

3
, 0, 0)

Mean (1, 1
2
, 1, 0, 1

2
, 0) (1, 1

2
, 0, 1, 0, 1

2
) (1, 1

2
, 0, 0, 0, 0) (1, 1

2
, 1

3
, 1

3
, 1

6
, 1

6
)

Bike Street Type
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Fig. 2.7. WinBUGS online summaries and MCMC diagnostics for the parameter αR
1

in model (2.5), as fit to the Berkeley traffic data.
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Table 2.5. Numerical summaries for a variety of unknown quantities (11 param-

eters and a future observable) in the Berkeley traffic case study. r.e is short for

route.effect.

After 5,000 Iterations After 120,000 Iterations

Unknown Mean (MCSE) SD ρ̂1 BD m̂ (sigfig) Mean (MCSE) SD

αR
1 0.72 (.007) 0.092 0.934 37800 (2) 0.72 (.002) 0.093

αT
1 0.88 (.009) 0.13 0.907 56400 (2) 0.87 (.002) 0.14

αT
2 0.02 (.009) 0.13 0.921 61100 (1) −0.01 (.002) 0.13

αRT
1 −0.24 (.01) 0.13 0.940 85800 (2) −0.26 (.003) 0.14

αRT
2 0.04 (.01) 0.13 0.953 115900 (1) 0.08 (.003) 0.13

β5 −0.88 (.04) 0.41 0.947 9610 (1) −0.87 (.01) 0.46

µ −2.85 (.006) 0.092 0.912 28200 (3) −2.84 (.001) 0.092

r.e 4.3 (.06) 0.80 0.934 28500 (2) 4.3 (.02) 0.80

p33 0.10 (.001) 0.047 0.537 1140 (2) 0.10 (.0003) 0.048

p35 0.048 (.0002) 0.013 0.361 5640 (2) 0.048 (.00005) 0.013

σe 0.63 (.002) 0.074 0.673 4290 (2) 0.63 (.0005) 0.074

ynew
33 1.6 (.02) 1.42 0.108 3850 (2) 1.6 (.006) 1.42

As an example of the method I’m describing, Figure 2.7 presents a variety of
plots and numerical summaries for the parameter αR1 in (2.5), which measures
(on the logit scale) the amount—on streets with a bicycle route—by which
bicycle traffic is more likely than average; the figure is based on an initial
monitoring run of 5,000 iterations after the burn-in of length 500 mentioned
above. The dynamic trace in the lower left corner of the figure (which tracks
the last 500 iterations in the current monitoring run) shows how slowly this
parameter is mixing with the default WinBUGS sampling strategy39, and the
time series trace of all 5,000 monitored iterations (in the center of Figure 2.7)
also looks like that of an AR(1) series with a high first-order autocorrelation,
an impression that’s confirmed by the autocorrelation plot in the lower right
corner. The running quantiles for αR1 in the right center of the figure show
that the estimates of the 2.5% and 97.5% points of the marginal posterior
distribution for this parameter at about iteration 700 (200 iterations into
the current monitoring run) are quite different than their values at iteration
5,500, and the kernel density trace in the upper right corner is quite jagged
with the WinBUGS default choice for smoothing of the density estimate; all of
this reinforces the sense that a longer monitoring run is needed.

Columns 2–6 in Table 2.5 summarize where things stand after the initial
5,000 monitoring iterations for a variety of unknown quantities (not all of

39 Other MCMC strategies are available in WinBUGS; I did not explore them.
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which I’ve yet discussed) in models (2.5) and (2.41), including αR1 ; column 5
estimates ρ1 for each of these quantities (ρ̂1 values are available in WinBUGS),
and column 6 records the corresponding estimated BD m̂ values, with target
numbers of sigfigs in parentheses. The first-order autocorrelations for the first
eight quantities in the table are all above +0.9, a typical result in RELR
models; across all the unknowns in the table this leads to m̂ recommendations
ranging from about 1,100 to more than 115,000, depending on the autocorre-
lation and the number of sigfigs desired. A parameter like αRT2 , which has an
estimated posterior mean near 0 but which nevertheless has substantial values
for both the posterior SD and ρ1, will need a fairly long monitoring run just
to be able to quote a single sigfig with decent Monte Carlo accuracy.

After looking at the results in Table 2.5 I decided to aim for a total mon-
itoring run of 120,000 iterations (by merging 115,000 new simulated draws
from the posterior with the previous 5,000); this took about 1 minute at
3 GHz. The last three columns in Table 2.5 summarize the posterior means
(with MCSEs) and SDs of the monitored quantities after 120,000 iterations.
All of the Monte Carlo estimates were quite stable in passing from the shorter
to the longer monitoring run except αRT2 , whose posterior mean doubled in
size (while still, of course, remaining close to 0). The following substantive
and statistical conclusions, some of which echo and reinforce the preliminary
impressions from Table 2.2 mentioned in section 2.1.1, may be drawn.

• Averaging over street type, a randomly chosen vehicle on a street with
a bike route is far likelier to be a bicycle than if the street had no
bike route: αR1 , the main effect of the bike route variable, has a pos-
terior mean of +0.72 on the logit scale, with a posterior SD of 0.093,
meaning that the mean difference (in logits) between the bike-route-yes
and bike-route-no blocks was 2αR1 = 1.43. Given that the average block
without a bike route had only about 4% bicycle traffic (from Table 2.2),
the “effect” of adding a bike route would be to roughly quadruple40 the
PBT (proportion of bicycle traffic; “effect” is in quotes because this is
an observational study, from which it would be bold to draw such a
strong causal conclusion). As a rough confirmation of this, I monitored
the quantity41 r.e = route.effect = exp

(
2αR1

)
along with everything

else in Table 2.5; its posterior mean (which does not adjust for bias arising
from the nonlinear transformation) was about 4.3, with a posterior SD of
0.80.

• Averaging over presence or absence of a bike route, street type also has a
strong effect on PBT; for example, αT1 , which contrasts residential streets

40 Starting with a no-bike-route PBT of p = 0.041, for which l = logit(p)
.
= −3.15,

and (naively) adding 1.43 yields l∗ = l + 1.43 = −1.72, from which p∗ = [1 +

exp(−l∗)]−1 .
= 0.15.

41 See footnote 2 for the reasoning behind this choice.



2 Bayesian Multilevel Analysis and MCMC 133

(on the logit scale) with average behavior, had a posterior mean and SD of
+0.87 and 0.14, respectively. Based on calculations similar to those given
above, residential streets were about four times as likely to have bicycles
on them as busy streets, and about twice as likely as fairly busy streets.

• However, fairly large interactions between the two fixed effects complicate
the picture; the “effect” of bike route on PBT is different according to
street type. This may be seen by looking at posterior summaries of the
interaction parameters (for example, on the logit scale αRT1 has posterior
mean (SD) −0.26 (0.14)), but the interaction comes into focus even more
clearly by contrasting what happens when you go from no-bike-route to
bike-route for each of the residential and busy street types. With (i, j)
denoting the cell in row i and column j of the basic 2×3 table, this involves
making a cell-means comparison of the form [(1, 1)−(2, 1)]−[(1, 3)−(2, 3)].
The relevant linear combination of the βk from Table 2.4 turns out to be
(0, 0, 0, 0, 1, 0); in other words, it suffices to monitor β5 to address this
question. From Table 2.5 you can see that its posterior mean and SD
came out −0.87 and 0.46, respectively. Since e0.87 .= 2.4, the interpretation
would be that the “effect” of bike route on PBT is more than twice as large
for busy streets as it is for residential ones.

• There is substantial unexplained heterogeneity between city blocks within
the cells of the 2 × 3 layout: the SD of the random effects at the block
level (σe in model (2.41) and σB in (2.5)) has a posterior mean on the
logit scale of 0.63 (with a posterior SD of 0.074). In an average cell with
a typical PBT of about 9%, this means (using calculations similar to that
in footnote 40) that it would not be surprising to see block-level PBT
values ranging from about 3% to 26%. Clearly, while model (2.5)/(2.41)
has made progress in explaining why some city blocks in Berkeley have
a lot of bicycle traffic and others do not, there is still some way to go in
achieving full causal understanding.

• In addition to parameters in both the ANOVA and regression formulations
of the RELR model at issue here, I also monitored the underlying pi values
in (2.41) for two city blocks in the (residential, no bike route) cell of the
2×3 table. These blocks, numbered 33 and 35 in the data set, had observed
PBT and nj values (written in the PBT/nj format of Table 2.1) of 0.125/16
and 0.041/217, respectively. Since the two blocks were both in the same
cell you might have thought that the posterior means of p33 and p35 would
be similar, but they’re not: from Table 2.5, in posterior (mean ± SD)
notation, p33

.= 0.10 ± 0.048 and p35
.= 0.048 ± 0.013. Recalling from

Table 2.2 that the overall PBT rate in this cell of the table was 0.097,
some reflection clarifies what’s going on here: under the random-effects
formulation in the model, the posterior means of both p33 and p35 will
shrink toward the cell mean 0.097 (this is the same phenomenon noted in
section 2.3.2), but the amount of the shrinkage will depend strongly on
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Fig. 2.8. Marginal posterior kernel density traces for six of the unknown quantities

in Table 2.5.

how much data is available for each city block. Block 33, which only had
16 vehicles, experiences substantial shrinkage, from a data value of 0.125
all the way to 0.10 (nearly the entire distance to 0.097), whereas block 35,
with 217 vehicles, hardly shrinks at all (the posterior mean moves only to
0.048 from a data value of 0.041).

• Finally, Figure 2.8 captures marginal posterior density estimates for a
variety of the unknowns of interest in Table 2.5, including a predictive
distribution for a future observable. Using the method described in sec-
tion 2.3, by adding the line y33.new ∼ dbin( p[ 33 ], n[ 33 ] ) to
the WinBUGS model (as in Figure 2.6), the MCMC approach correctly
calculates the predictive distribution for the number of bicycles in a future
sample of n33 = 16 vehicles from a location like city block 33 as a mixture
of binomial distributions, with the posterior distribution for p33 providing
the mixing weights. Some of the marginal posteriors in Figure 2.8 are
approximately Gaussian (the plots for µ and αRT1 on the left) and some
are skewed (the density traces for σe, p33, and route.effect); some are
discrete (the predictive for ynew

33 ) and some are continuous; and all are
correct up to a small (and controllable) amount of Monte Carlo noise.
Asymptotic posterior calculations, of the type on which Bayesian multi-
level analyses were necessarily based until the mid-1990s, would provide
poor approximations to the right answers here. In the last several years
MCMC has clearly opened a new door, and the many Bayesian multi-
level modeling applications that are now within easy reach are just the
beginning.
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3.1 Specification of the Two-Level Model

This chapter focuses on diagnostics for the two-level Hierarchical Linear Model
(HLM). This model, as defined in chapter 1, is given by

y
j

= Xjβ +Zjδj + εj , j = 1, . . . ,m, (3.1a)

with (
εj
δj

)
∼ N

((
∅
∅

)
,

(
Σj(θ) ∅

∅ Ω(ξ)

))
(3.1b)

and
(εj , δj) ⊥ (ε`, δ`) (3.1c)

for all j 6= `. The lengths of the vectors yj , β, and δj , respectively, are nj , r,
and s. Like in all regression-type models, the explanatory variables X and Z
are regarded as fixed variables, which can also be expressed by saying that the
distributions of the random variables ε and δ are conditional on X and Z.
The random variables ε and δ are also called the vectors of residuals at levels
1 and 2, respectively. The variables δ are also called random slopes. Level-two
units are also called clusters.

The standard and most frequently used specification of the covariance
matrices is that level-one residuals are i.i.d., i.e.,

Σj(θ) = σ2Inj , (3.1d)

where Inj is the nj-dimensional identity matrix; and that either all elements of
the level-two covariance matrix Ω are free parameters (so one could identify
Ω with ξ), or some of them are constrained to 0 and the others are free
parameters.
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Questioning this model specification can be aimed at various aspects: the
choice of variables included in X, the choice of variables for Z, the residuals
having expected value 0, the homogeneity of the covariance matrices across
clusters, the specification of the covariance matrices, and the multivariate
normal distributions. Note that in our treatment the explanatory variables X
and Z are regarded as being deterministic; the assumption that the expected
values of the residuals (for fixed explanatory variables!) are zero is analogous
to the assumption, in a model with random explanatory variables, that the
residuals are uncorrelated with the explanatory variables.

The various different aspects of the model specification are entwined, how-
ever: problems with one may be solved by tinkering with one of the other
aspects, and model misspecification in one respect may lead to consequences
in other respects. E.g., unrecognized level-one heteroscedasticity may lead to
fitting a model with a significant random slope variance, which then disap-
pears if the heteroscedasticity is taken into account; non-linear effects of some
variables inX, when unrecognized, may show up as heteroscedasticity at level
one or as a random slope; and non-zero expected residuals sometimes can be
dealt with by transformations of variables in X.

This presentation of diagnostic techniques starts with techniques that can
be represented as model checks remaining within the framework of the HLM.
This is followed by a section on model checking based on various types of
residuals. An important type of misspecification can reside in non-linearity
of the effects of explanatory variables. The last part of the chapter presents
methods to identify such misspecifications and estimate the non-linear rela-
tionships that may obtain.

3.2 Model Checks within the Framework of the
Hierarchical Linear Model

The HLM is itself already a quite general model, a generalization of the
General Linear Model, the latter often being used as a point of departure
in modeling or conceptualizing effects of explanatory on dependent variables.
Accordingly, checking and improving the specification of a multilevel model
in many cases can be carried out while staying within the framework of the
multilevel model. This holds to a much smaller extent for the General Linear
Model. This section treats some examples of model specification checks which
do not have direct parallels in the General Linear Model.

3.2.1 Heteroscedasticity

The comprehensive nature of most algorithms for estimating the HLM makes
it relatively straightforward to include some possibilities for modeling het-
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eroscedasticity, i.e., non-constant variances of the random effects. (This is
sometimes indicated by the term “complex variation”, which however does
not imply any thought of the imaginary number i =

√
−1.)

As an example, the iterated generalized least squares (IGLS) algorithm
implemented in MLwiN [18, 19] accommodates variances depending as linear
or quadratic functions of variables. For level-one heteroscedasticity, this is
carried out formally by writing

εij = vijε
0
ij

where vij is a 1× t variable and ε0ij is a t× 1 random vector with

ε0ij ∼ N
(
∅,Σ0(θ)

)
.

This implies
Var(εij) = vijΣ

0(θ)v′ij . (3.3)

The standard homoscedastic specification is obtained by letting t = 1 and
vij ≡ 1.

The IGLS algorithm works only with the expected values and covariance
matrices of y

j
implied by the model specification, see Goldstein [18, pp. 49–

51]. A sufficient condition for model (3.1a)–(3.1c) to be a meaningful repre-
sentation is that (3.3) is nonnegative for all i, j — clearly less restrictive than
Σ0 being positive definite. Therefore it is not required that Σ0 be positive
definite, but it is sufficient that (3.3) is positive for all observed vij . E.g., a
level-one variance function depending linearly on v is obtained by defining

Σ0(θ) =
(
σhk(θ)

)
1≤h,k≤t

with

σh1(θ) = σ1h(θ) = θh, h = 1, . . . , t

σhk(θ) = 0, min{h, k} ≥ 2

where θ is a t× 1 vector. Quadratic variance functions can be represented by
letting Σ0 be a symmetric matrix, subject only to a positivity restriction for
(3.3).

In exactly the same way, variance functions for the level-two random effects
depending linearly or quadratically on level-two variables are obtained by
including these level-two variables in the matrix Z. The usual interpretation
of a “random slope” then is lost, although this term continues to be used in
this type of model specification.

Given that among multilevel modelers random slopes tend to be more
popular than heteroscedasticity, unrecognized heteroscedasticity may show
up in the form of a fitted model with a random slope of the same or a corre-
lated variable, which then may disappear if the heteroscedasticity is modeled.
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Therefore, when a researcher is interested in a random slope of some variable
Zk and thinks to have found a significant slope variance, it is advisable to
test for the following two kinds of heteroscedasticity: the level-one residual
variance may depend (e.g., linearly or quadratically) on the variable Zk, or
the level-two intercept variance may depend on the cluster mean of Zk, i.e.,
on the variable defined by

z̄.jk =
1
nj

nj∑
i=1

zijk .

Given that one uses software that can implement models with these types of
heteroscedasticity, this is an easy (and sometimes disconcerting) model check.
Some examples of checking for heteroscedasticity can be found in Goldstein
[18, Chapter 3] and Snijders and Bosker [51, Chapter 8].

3.2.2 Random or Fixed Coefficients

A basic question in applying the HLM is whether a random coefficient model is
appropriate at all for representing the differences between the level-two units.
In other words, is it appropriate indeed to treat the variables δj in (3.1) as
random variables, or should they rather be treated as fixed parameters δj?

On a conceptual level, this depends on the purpose of the statistical infer-
ence. If the level-two units j may be regarded as a sample from some popu-
lation (which in some cases will be hypothetical or hard to circumscribe, but
nevertheless conceptually meaningful) and the statistical inference is directed
at this population, then a random coefficient model is in principle appropriate;
cf. Hsiao [30]. This is the case, e.g., when one wishes to test the effect of an
explanatory variable that is defined at level two, i.e., it is a function of the
level-two units only. Then testing this variable has to be based on some way
of comparing the variation accounted for by this variable to the total residual
variation between level-two units, and it is hard to see how this could be done
meaningfully without assuming that the level-two units are a sample from a
population.

If, on the other hand, the statistical inference aims only at the particular
set of units j included in the data set at hand, then a fixed effects model is ap-
propriate. Note that in the fixed effects model the only random effects are the
level-one residuals εj ; under the usual assumption (3.1d) of homoscedasticity,
this model can be analysed by ordinary least squares (OLS) regression, so
that the analysis is very straightforward except perhaps for the large number
of dummy variables. When the cluster sizes are very large, there is hardly a
difference between the fixed effects and the random effects specification for
the estimation of parameters that they have in common.

If the differences between the level-two units are a nuisance factor rather
than a point of independent interest, so that there is interest only in the
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within-cluster effects, the analysis could in principle be done either way. Then
the fixed effects estimates of the within-cluster regression coefficients, obtain-
able by OLS regression, achieve a better control for unexplained differences
between the level-two units, because they do not need the assumption that the
explanatory variables X are uncorrelated with the level-two random effects
δ. More generally, the fixed effects estimates have the attractive robustness
property that they are not influenced at all by the specification of the level-two
model. This can of course be generalized to models with more than two levels.
This robustness property is elaborated with a lot of detailed matrix calculus
in Kim and Frees [32].

On a practical level, the choice between random and fixed effects depends
strongly on the tenability of the model assumptions made for the random
coefficients and the properties of the statistical procedures available under
the two approaches. Such practical considerations will be especially impor-
tant if the differences between level-two units are a nuisance factor only. The
assumptions in model (3.1) for the random effects δj are their zero expecta-
tions, homogeneous variances, and normal distributions. The normality of the
distributions can be checked to some extent by plots of residuals (see below).
If normality seems untenable, one could use models with other distributions
for the random effects such as t-distributions (e.g., Seltzer, Wong, and Bryk
[48]) or mixtures of normal distributions (the heterogeneity model of Verbeke
and Lesaffre [54], also see Verbeke and Molenberghs [55]). Homogeneity of the
variances is very close to the assumption that the level-two units are indeed a
random sample from a population; in the preceding section it was discussed
how to model variances depending on level-two variables, which can occur,
e.g., if the level-two units are a sample from a stratified population and the
variances depend on the stratum-defining variables.

To understand the requirement that the expected values of the level-two
residuals are zero, we first focus on the simplest case of a random intercept
model, where Zj contains only the constant vector with all its nj entries
equal to 1, expressed as Zj = 1nj . Subsequently we shall give a more formal
treatment of a more general case.

The level-two random effects δj consist of only one variable, the random
intercept δj . Suppose that the expected value of δj is given by

E δj = z2jγ

for 1× u vectors z2j and a regression coefficient γ. Accordingly, δj is written
as δj = z2jγ + δ̃j . Note that a term in 1nj E δj which is a linear combination
of Xj will be absorbed into the model term Xjβ, so this misspecification is
non-trivial only if 1njz2j cannot be written as a linear combination XjA for
some weight matrix A independent of j.

The question now is in the first place, how the parameter estimates are
affected by the incorrectness of the assumption that δj has a zero expected
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value, corresponding to the omission of the term z2jγ from the model equa-
tion.

It is useful to split the variable Xj into its cluster mean X̄j and the
within-cluster deviation variable X̃j = Xj − X̄j :

Xj = X̄j + X̃j

where

X̄j = 1nj
(1′nj

1nj
)−11′nj

Xj .

Then the data-generating model can be written as

y
j

= X̄jβ + X̃jβ + 1nj
z2jγ + 1nj

δ̃j + εj ,

for random effects δ̃j which do satisfy the condition that they have zero
expected values.

A bias in the estimation of β will be caused by lack of orthogonality of
the matrices Xj = X̄j + X̃j and 1njz2j . Since the definition of X̃j implies
that X̃j is orthogonal to 1nj

z2j , it is clear that X̄j is the villain of the piece:
analogous to the situation of a misspecified General Linear Model, there will
be a bias if the cluster mean of X is non-zero, X̄ ′

j1nj
6= 0. If it is non-zero,

there is an obvious solution: extend the fixed part by giving separate fixed
parameters β1 to the cluster means X̄ and β2 to the deviation variables X̃,
so that the working model reads

y
j

= X̄jβ1 + X̃jβ2 + 1nj
δj + εj

(taking out the zero columns from X̄j and X̃j , which are generated by columns
in Xj which themselves are within-cluster deviation variables or level-two
variables, respectively). An equivalent working model is obtained by adding
to (3.1) the fixed effects of the non-constant cluster means X̄j . In this way,
the bias in the fixed effect estimates due to ignoring the term z2jγ is absorbed
completely by the parameter estimate for β1, and this misspecification does
not affect the unbiasedness of the estimate for β2. The estimate for the level-2
variance Var(δj) will be affected, which is inescapable if there is no knowledge
about z2j , but the estimate for the level-1 variance σ2 will be consistent.

In the practice of multilevel analysis, it is known that the cluster means
often have a substantively meaningful interpretation, different from the level-
one variables from which they are calculated (cf. the discussion in sections 3.6
and 4.5 of Snijders and Bosker [51] about within- and between-group regres-
sions). This often leads to a substance-matter related rationale for including
the cluster means among the variables with fixed effects.
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It can be concluded that in a two-level random intercept model, the sen-
sitive part of the assumption that the level-two random effects have a zero
expected value, is the orthogonality of these expected values to the cluster
means of the variables X with fixed effects. This orthogonality can be tested
simply by testing the effects of these cluster means included as additional
variables in the fixed part of the model. This can be interpreted as testing
the equality between the within-cluster regression coefficient and the between-
cluster coefficient. This test — or at least a test with the same purpose —
is often referred to as the Hausman test. (Hausman [26] proposed a general
procedure for tests of model specification, of which the test for equality of the
within-cluster and between-cluster coefficients is an important special case.
Also see Baltagi [3], who shows on p. 69 that this case of the Hausman test is
equivalent to testing the effect of the cluster means X̄.)

In econometrics, the Hausman test for the difference between the within-
cluster and between-cluster regression coefficients is often seen as a test for
deciding whether to use a random or fixed coefficient model for the level-
two residuals δj . The preceding discussion shows that this is slightly beside
the point. If there is a difference between the within-cluster and between-
cluster regression coefficients, which is what this Hausman test intends to
detect, then unbiased estimates for the fixed within-cluster effects can be
obtained also with random coefficient models, provided that the cluster means
of the explanatory variables are included among the fixed effect variables X.
Including the cluster means will lead to an increase of the number of fixed
effects by at most r, which normally is much less than the m− 1 fixed effects
required for including fixed main effects of the clusters. Whether or not to
use a random coefficient model depends on other considerations, as discussed
earlier in this section. Fielding [16] gives an extensive discussion of this issue,
and warns against the oversimplification of using this Hausman test without
further thought to decide between random effects and fixed effects models.

Now consider the general case that Z has some arbitrary positive di-
mension s. Let the expected value of the level-two random effects δj in the
data-generating model be given by

E δj = Z2jγ,

instead of the assumed value of ∅. It may be assumed that ZjZ2j cannot be
expressed as a linear combination XjA for some matrix A independent of
j, because otherwise the contribution caused by E δj could be absorbed into
Xjβ.

Both Xj and yj are split in two terms, the within-cluster projections ~Xj

and ~yj on the linear space spanned by the variables Zj ,

~Xj = Zj(Z
′
jZj)

−1Z ′jXj and ~yj = Zj(Z
′
jZj)

−1Z ′jyj ,
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and the difference variables

X̃j = Xj − ~Xj and ỹj = yj − ~yj .

The projection ~Xj can be regarded as the prediction of Xj , produced by the
ordinary least squares (OLS) regression of Xj on Zj for cluster j separately,
and the same for ~yj . The data-generating model now is written as

y
j

= Xjβ +ZjZ2jγ +Zj δ̃j + εj ,

where again the δ̃j do have zero expected values.
The distribution of y

j
is the multivariate normal

y
j
∼ N (Xjβ +ZjZ2jγ,Vj),

where
Vj = σ2Inj

+ZjΩ(ξ)Z ′j . (3.4)

Hence the log-likelihood function of the data-generating model is given by

− 1
2

∑
j

(
log det(Vj) + (yj −Xjβ −ZjZ2jγ)′V −1

j (yj −Xjβ −ZjZ2jγ)
)
.

The inverse of Vj can be written as [41, 44]

V −1
j = σ−2Inj

−ZjAjZ
′
j , (3.5)

for a matrix

Aj = σ−2(Z ′jZj)
−1 − (Z ′jZj)

−1
(
σ2(Z ′jZj)

−1 +Ω(ξ)
)−1(Z ′jZj)

−1.

This implies that

(yj −Xjβ −ZjZ2jγ)′V −1
j (yj −Xjβ −ZjZ2jγ)

=
(
~yj − ~Xjβ −ZjZ2jγ

)′
V −1
j

(
~yj − ~Xjβ −ZjZ2jγ

)
+ σ−2‖ỹj − X̃jβ‖2,

where ‖ · ‖ denotes the usual Euclidean norm. The log-likelihood is

− 1
2

∑
j

(
log det(Vj)

+
(
~yj − ~Xjβ −ZjZ2jγ

)′
V −1
j

(
~yj − ~Xjβ −ZjZ2jγ

)
+ σ−2‖ỹj − X̃jβ‖2

)
. (3.6)

This shows that the omission from the model of ZjZ2jγ will affect the esti-
mates only through the term ~Xjβ. If now separate fixed parameters are given
to ~X and X̃ so that the working model is
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y
j

= ~Xjβ1 + X̃jβ2 +Zjδj + εj ,

the bias due to neglecting the term Z2jγ in the expected value of δj will be
absorbed into the estimate of β1, and β2 will be an unbiased estimate for
the fixed effect of X. The log-likelihood (3.6) shows that the ML and REML
estimates of β2 are equal to the OLS estimate based on the deviation variables
~yj , and also equal to the OLS estimate in the model obtained by replacing
the random effects δj by fixed effects.

This discussion shows that in the general case, if one is uncertain about the
validity of the condition that the level-two random effects have zero expected
values, and one wishes to retain a random effects model rather than work with
a model with a large number (viz., ms) of fixed effects, it is advisable to add
to the model the fixed effects of the variables

~Xj = Zj(Z
′
jZj)

−1Z ′jXj , (3.7)

i.e., the predictions of the variables in X by within-cluster OLS regression of
Xj on Zj . The model term Zj E δj will be entirely absorbed into the fixed
effects of ~Xj , and the estimates of β2 will be unbiased for the corresponding
elements of β in (3.1). Depending on the substantive context, there may well
be a meaningful interpretation of the constructed level-two variables (3.7).

3.3 Residuals

Like in other regression-type models, residuals (which term now is used also
to refer to estimates of the residuals ε and δ in (3.1)) play an important
exploratory role for model checking in multilevel models. For each level there
is a set of residuals and a residual analysis can be executed. One of the
practical questions is, whether residual checking should be carried out upward
— starting with level one, then continuing with level two, etc. — or downward
— starting from the highest level and continuing with each subsequent lower
level. The literature contains different kinds of advice. For example, Rau-
denbush and Bryk [45] suggest an upward approach for model construction,
whereas Langford and Lewis [35] propose a downward approach for the pur-
pose of outlier inspection. In our view, the argument given by Hilden-Minton
[27] is convincing: level-one residuals can be studied unconfounded by the
higher-level residuals, but the reverse is impossible. Therefore, the upward
approach is preferable for the careful checking of model assumptions. However,
if one wishes to carry out a quick check for outliers, a downward approach
may be very efficient.

This section first treats the ‘internal’ standardization of the residuals.
Externally standardized residuals, also called deletion residuals, are treated
in section 3.3.5.
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3.3.1 Level-One Residuals

In this section we assume that level-one residuals are i.i.d. Residuals at level
one which are unconfounded by the higher-level residuals can be obtained,
as remarked by Hilden-Minton [27], as the OLS residuals calculated sepa-
rately within each level-two cluster. These are just the same as the estimated
residuals in the OLS analysis of the fixed effects model, where all level-two (or
higher-level, if there are any higher levels) residuals are treated as fixed rather
than random. These will be called here the OLS within-cluster residuals.
Consider again model (3.1) with the further specification (3.1d). When X̌j is
the matrix containing all non-redundant columns in (Xj Zj) and Pj is the
corresponding projection matrix (the “hat matrix”)

Pj = X̌j

(
X̌ ′
jX̌j

)−1
X̌ ′
j ,

the OLS within-cluster residuals are given by

ε̂j =
(
Inj
− Pj

)
y
j
.

The model definition implies that

ε̂j =
(
Inj
− Pj

)
εj , (3.8)

which shows that indeed these residuals depend only on the level-one residuals
εj without confounding by the level-two residuals δj .

These level-one residuals can be used for two main purposes. In the first
place, for investigating the specification of the within-cluster model, i.e., the
choice of the explanatory variables contained in X and Z. Linearity of the
dependence on these variables can be checked by plotting the residuals ε̂j
against the variables in X and Z. The presence of outliers and potential
effects of omitted but available variables can be studied analogously.

In the second place, the homoscedasticity assumption (3.1d) can be
checked. Equation (3.8) implies that, if the model assumptions are correct,

ε̂ij ∼ N
(
0, σ2(1− hij)

)
(3.9)

where hij is the i-th diagonal element of the hat matrix Pj . This implies that
the “semi-standardized residuals”

ε̌ij =
ε̂ij√

1− hij

have a normal distribution with mean 0 and variance σ2. For checking ho-
moscedasticity, the squared semi-standardized residuals can be plotted against
explanatory variables or in a meaningful order. This is informative only under
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the assumption that the expected value of the residuals is indeed 0. Therefore
these heteroscedasticity checks should be performed only after having ascer-
tained the linear dependence of the fixed part on the explanatory variables.

To check linearity and homoscedasticity as a function of explanatory vari-
ables, if the plot of the residuals just shows a seemingly chaotic mass of scatter,
it often is helpful to smooth the plots of residuals against explanatory vari-
ables, e.g., by moving averages or by spline smoothers. We find it particularly
helpful to use smoothing splines [cf. 21], choosing the smoothing parameter
so as to minimize the cross-validatory estimated prediction error.

If there is evidence of inhomogeneity of level-one variances, the level-one
model is in doubt and attempts to improve it are in order. The analysis of level-
one residuals might suggest non-linear transformations of the explanatory
variables, as discussed in the second half of this chapter, or a heteroscedastic
level-one model. Another possibility is to apply a non-linear transformation
to the dependent variable. Atkinson [2] has an illuminating discussion of
non-linear transformations of the dependent variable in single-level regression
models. Hodges [28, p. 506] discusses Box-Cox transformations for multilevel
models.

As an example, consider the data set provided with the MLwiN software
[19] in the worksheet tutorial.ws. This includes data for 4059 students in 65
schools; we use the normalized exam score (normexam) (mean 0, variance 1)
as the dependent variable and only the standardized reading test (standlrt)
as an explanatory variable. The two mentioned uses of the OLS level-one
residuals will be illustrated.

Table 3.1. Parameter estimates for models fitted to normalized exam scores.

Model 1 Model 2 Model 3

Fixed part

constant term 0.002 (.040) −0.017 (.041) −0.017 (.041)

standlrt 0.563 (.012) 0.604 (.021) 0.605 (.021)

standlrt2 0.017 (.009) 0.017 (.008)

standlrt3 −0.013 (.005) −0.013 (.005)

Random part

Level 2: ω11 0.092 (.018) 0.093 (.018) 0.095 (.019)

Level 1: σ2 0.566 (.013) 0.564 (.013) 0.564 (.013)

Level 1: θ2 −0.007 (.003)

deviance 9357.2 9346.2 9341.4

When the OLS within-cluster residuals are plotted against the explanatory
variable standlrt, an unilluminating cloud of points is produced. Therefore
only the smoothed residuals are plotted in Figure 3.1.
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Fig. 3.1. Smoothing spline approximation for OLS within-cluster residuals (ε̂) under

Model 1 against standardized reading test (standlrt).

This figure shows a smooth curve suggestive of a cubic polynomial. The
shape of the curve suggests to include the square and cube of standlrt as
extra explanatory variables. The resulting model estimates are presented as
Model 2 in Table 3.1. Indeed the model improvement is significant (χ2 = 11.0,
d.f. = 2, p < .005).

As a check of the level-one homoscedasticity, the semi-standardized residu-
als (3.9) are calculated for Model 2. The smoothed squared semi-standardized
residuals are plotted against standlrt in Figure 3.2.

This figure suggests that the level-one variance decreases linearly with the
explanatory variable. A model with this specification (cf. section 3.2.1),

Var(εij) = σ2 + θ2 standlrtij ,

is presented as Model 3 in Table 3.1. The heteroscedasticity is a significant
model improvement (χ2 = 4.8, d.f. = 1, p < .05).

3.3.2 Homogeneity of Variance across Clusters

The OLS within-cluster residuals can also be used in a test of the assumption
that the level-one variance is the same in all level-two units against the specific
alternative hypothesis that the level-one variance varies across the level-two
units. Formally, this means that the null hypothesis (3.1d) is tested against
the alternative
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ε̌2
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Fig. 3.2. Smoothing spline approximation for the squared semi-standardized OLS

within-cluster residuals (ε̌2) under Model 2 against the standardized reading test

(standlrt).

Σj(θ) = σ2
j Inj

,

where the σ2
j are unspecified and not identical.

Indicating the rank of X̌j defined in section 3.3.1 by rj , the within-cluster
residual variance is

s2j =
1

nj − rj
ε̂′j ε̂j .

If model (3.1d) is correct, (nj − rj)s2j/σ2 has a chi-squared distribution with
(nj−rj) degrees of freedom. The homogeneity test of Bartlett and Kendall [4]
can be applied here (it is also proposed in Raudenbush and Bryk [45, p. 264]
and Snijders and Bosker [51, p. 127]). Denoting

∑
nj = n+,

∑
rj = r+ and

lspooled =
1

n+ − r+

∑
j

(nj − rj) log(s2j ), (3.10)

the test statistic is given by

H =
∑
j

nj − rj
2

(
log(s2j )− lspooled

)2
. (3.11)

Under the null hypothesis this statistic has approximately a chi-squared dis-
tribution with m̃ − 1 degrees of freedom, where m̃ is the number of clusters
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included in the summation (this could be less than m because some small
clusters might be skipped).

This chi-squared approximation is valid if the degrees of freedom nj − rj
are large enough. If this approximation is in doubt, a Monte Carlo test can be
used. This test is based on the property that, under the null hypothesis, (nj−
rj)s2j/σ

2 has an exact chi-squared distribution, and the unknown parameter
σ2 does not affect the distribution of H because its contribution in (3.11)
cancels out. This implies that under the null hypothesis the distribution of H
does not depend on any unknown parameters, and a random sample from its
distribution can be generated by randomly drawing random variables c2j from
chi-squared distributions with (nj − rj) d.f. and applying formulae (3.10) and
(3.11) to s2j = c2j/(nj − rj). By simulating a sufficiently large sample from the
null distribution of H, the p-value of an observed value can be approximated
to any desired precision.

3.3.3 Level-Two Residuals

There are two main ways for predicting4 the level-two residuals δj : the OLS
method (based on treating them as fixed effects δj) and the empirical Bayes
(EB) method. The empirical Bayes ‘estimate’ of δj can be defined as its
conditional expected value given the observations y

1
, . . . ,y

m
, plugging in

the parameter estimates for β, θ, and ξ. (In the name, ‘Bayes’ refers to the
conditional expectation and ‘empirical’ to plugging in the estimates.)

The advantage of the EB method is that it is more precise, but the dis-
advantage is its stronger dependence on the model assumptions. The two
approaches were compared by Waternaux et al. [59] and Hilden-Minton [27].
Their conclusion was that, provided the level-one model (i.e., the assumptions
about the level-one predictors included inX and about the level-one residuals
εj) is adequate, it is advisable to use the EB estimates.

Basic properties of the multivariate normal distribution imply that the EB
level-two residuals are given by

δ̂j = E
{
δj | y1

, . . . ,y
m

}
(using parameter estimates β̂, θ̂, ξ̂)

= Ω̂Z ′jV̂
−1
j (y

j
−Xjβ̂)

= Ω̂Z ′jV̂
−1
j

(
Zjδj + εj −Xj(β̂ − β)

)
where

4 Traditional statistical terminology is to reserve the word ‘estimation’ for empirical

ways to obtain reasonable values for parameters, and use ‘prediction’ for ways

to empirically approximate unobserved outcomes of random variables. We shall

not consistently respect this terminology, since almost everybody writes about

estimation of residuals.
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Vj = Cov(y
j
) = ZjΩZ

′
j +Σj , (3.12a)

V̂ j = ZjΩ̂Z
′
j + Σ̂j , (3.12b)

with Ω̂ = Ω(ξ̂) and Σ̂j = Σj(θ̂).
Some more insight into the properties of these estimated residuals may be

obtained by defining the estimated reliability matrix

R̂j = Ω̂Z ′jV̂
−1
j Zj .

This matrix is the multivariate generalization of the reliability of estimation
of δjq, the ratio of the true variance of δjq to the variance of its OLS estimator
based on cluster j (not taking into account the component of variability due
to the estimation of β), as defined by Raudenbush and Bryk [45, p. 49].

The EB residuals can be expressed as

δ̂j = R̂jδj + Ω̂Z ′jV̂
−1
j εj − Ω̂Z

′
jV̂

−1
j Xj(β̂ − β). (3.13)

The first term can be regarded as a shrinkage transform of δj , the second
term is the confounding due to the level-one residuals εj , and the third term
is the contribution due to the estimation of the fixed parameters β.

Ignoring the contribution to the variances and covariances due to the
estimation of ξ and θ, the covariance matrix of the EB residuals is

Cov
(
δ̂j
)

= ΩZ ′jV
−1
j

(
Vj −Xj

( m∑
`=1

X ′
`V

−1
` X`

)−1

X ′
j

)
V −1
j ZjΩ. (3.14)

The second term in the large parentheses is due to the third term in (3.13) and
will be negligible if the number m of clusters is large. The resulting simpler
expression is

Cov
(
δ̂j
)
≈ ΩZ ′jV −1

j ZjΩ. (3.15)

Another relevant covariance matrix contains the variances and covariances of
the prediction errors. The same approximation leading to (3.15) yields

Cov
(
δ̂j − δj

)
≈ Ω −ΩZ ′jV −1

j ZjΩ. (3.16)

If all nj become very large, (3.16) tends to ∅. Expression (3.15) is the asymp-
totic covariance matrix for fixed nj , which tends to Ω if nj tends to infinity.
The variances in (3.14) and (3.15) are relevant for diagnosing properties of
the residuals δj and are called diagnostic variances by Goldstein [18]. The
variances in (3.16) are relevant for comparing residuals δj and are called
comparative (or conditional) variances.

It may be noted that the predictions δ̂j are necessarily uncorrelated with
the errors (δ̂j − δj), because otherwise a better prediction could be made.
This implies
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Cov
(
δj
)

= Cov
(
δj − δ̂j

)
+ Cov

(
δ̂j
)
,

which indeed is evident from the formulae.
For each of the s level-two random effects separately, various diagnostic

plots can be made. The explanation of the level-two random effects by level-
two variables, as reflected by the fixed main effects of level-two variables and
their cross-level interaction effects with the variables contained in Z, can be
diagnosed for linearity by plots of the raw residuals δ̂j against the level-two
explanatory variables. The normality and homoscedasticity assumptions for
δj can be checked by normal probability plots for the s residuals separately,
standardized by dividing them by the diagnostic standard deviations obtained
as the square roots of the diagonal elements of (3.14) or (3.15), and by plotting
the squares of these standardized residuals against the level-two variables.
Such plots were proposed and discussed by Lange and Ryan [34]. Examples
of these plots are given in Goldstein [18], Snijders and Bosker [51], and Lewis
and Langford [37].

Eberly and Thackeray [13] showed that it is very well possible that, when
such a plot shows deviations from normality, the cause is a misspecification of
the fixed effects model rather than of the distribution of the random effects.
This is in accordance with the general caveat that different aspects of the
specification of statistical models are entwined, and the particular importance
of this issue for assessing fit of multilevel models. It also supports the principle
to first try achieve a good specification of the level-one model, and assess the
level-two specification only after this has been done.

A diagnostic for the entire vector of level-two residuals for cluster j can
be based on the standardized value

δ̂
′
j

{
Ĉov(δ̂j)

}−1

δ̂j . (3.17)

If one neglects the fact that the estimated rather than the true covariance
matrix is used, this statistic has a chi-squared distribution with s degrees of
freedom.

With some calculations, using formula (3.5) and the approximate covari-
ance matrix (3.15), the standardized value (3.17) is seen to be given by

δ̂
′
j

{
Ĉov(δ̂j)

}−1

δ̂j ≈ δ̂
(OLS)′
j

(
σ̂2(Z ′jZj)

−1 + Ω̂
)−1

δ̂
(OLS)

j (3.18)

where
δ̂

(OLS)

j = (Z ′jZj)
−1Z ′j(yj −Xjβ̂j)

is the OLS estimate of δj , estimated from the OLS within-cluster residuals
y
j
−Xjβ̂j . This illustrates that the standardized value can be based on the

OLS residuals as well as the EB residuals, if one uses for standardization the
covariance matrix σ̂2(Z ′jZj)

−1 + Ω̂ of which the first part is the sampling



3 Diagnostic Checks for Multilevel Models 157

variance (level-one variance) and the second part the true variance (level-two
variance) of the OLS residuals. The name of standardized level-two residual
therefore is more appropriate for (3.18) than the name of standardized EB or
OLS residual, since the latter terminology suggests a non-existing distinction.

The ordered standardized level-two residuals can be plotted against the
corresponding quantiles of the chi-squared distribution with s d.f., as a check
for outliers and for the multivariate normality of the level-two random effects.

3.3.4 Multivariate Residuals

The fit of the model for level-two cluster j is expressed by the multivariate
residual

y
j
−Xjβ̂ . (3.19)

The covariance matrix of this residual, if we neglect the use of the estimated
parameter β̂ instead of the unknown true β, is given by Vj in (3.12a). Ac-
cordingly, the standardized multivariate residual is defined by

M2
j = (y

j
−Xjβ̂)′V̂ −1

j (y
j
−Xjβ̂).

This residual has, when the model is correct, approximately a chi-squared
distribution with nj degrees of freedom.

If all variables with fixed effects also have random effects, thenXj = Zj =
X̌j as defined in section 3.3.1, and rj = r = s. Using (3.5), it can be proved
that in this case

M2
j = (nj − r)

s2j

σ̂2 + δ̂
′
j

{
Ĉov(δ̂j)

}−1

δ̂j . (3.20)

In words, the standardized multivariate residual (with nj d.f.) is the sum of
the scaled within-cluster residual sum of squares (with nj − r d.f.) and the
standardized level-two residual (with r = s d.f.). If some of the variables with
fixed effects do not have a random effect, then the difference between the
left-hand side and the right-hand side of (3.20) is a test statistic for the null
hypothesis that the variables in Xj indeed have the effect expressed by the
overall parameter estimate β̂, i.e., the hypothesis that the variables in X and
not in Z have only fixed (and not random) effects. This then approximately
is a chi-squared variate with rj − s d.f.

This split implies that if the standardized multivariate residual for some
cluster j is unexpectedly large, it will be informative to consider its two (or
three) components and investigate whether the high value can be traced to
one of these components separately.
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3.3.5 Deletion Residuals

To assess the fit of the model and the possibility of outliers, it is better to
calculate and standardize residuals for cluster j using parameter estimates of
β and Vj calculated on the basis of the data set from which cluster j has
been omitted. Such measures are called externally studentized residuals [11]
or deletion residuals [2]. This means using the fixed parameter estimate β̂(-j)
obtained by estimating β from the data set from which cluster j has been
omitted and estimating (3.12a) by

V̂ (-j) = ZjΩ̂(-j)Z
′
j + Σ̂(-j), (3.21)

where Ω̂(-j) = Ω(ξ̂(-j)) and Σ̂(-j) = Σj(θ̂(-j)), while ξ̂(-j) and θ̂(-j) are the
estimates of ξ and θ based on the data set from which cluster j has been
omitted.

Using these ingredients, the deletion standardized multivariate residual is
defined by

M2
(-j) =

(
y
j
−Xjβ̂(-j)

)′
V̂ −1

(-j)
(
y
j
−Xjβ̂(-j)

)
. (3.22)

The deletion standardized level-two residual (for a model where Σj(θ) =
σ2Inj

) is defined by

δ̂
(OLS)′
(-j)

(
σ̂2

(-j)(Z
′
jZj)

−1 + Ω̂(-j)
)−1

δ̂
(OLS)

(-j) (3.23)

where
δ̂

(OLS)

(-j) = (Z ′jZj)
−1Z ′j

(
y
j
−Xjβ̂(-j)

)
and σ̂2

(-j) is the estimate for σ2 calculated from the data set from which cluster
j was omitted.

The general idea of model diagnostics is that they should be easy, or at
least quick, to compute. Elegant computational formulae have been derived
for deletion residuals in the General Linear Model (see Atkinson [2]), and
recently by Zewotir and Galpin [63] and Haslett and Dillane [23] also for
random coefficient models with uncorrelated random coefficients. This yields
the possibility of quick calculations of level-two deletion residuals. In the HLM
the assumption of uncorrelated higher-level residuals is trivially satisfied for
the random intercept model where δj is a column vector, but not if there
are random slopes. Therefore these formulae are not generally applicable for
random slope models.

Re-estimation of a multilevel model for a lot of different data sets, as
implied by the definition of deletion residuals, is not very attractive from the
point of view of quick computations. Two alternatives to full computation
have been proposed in the literature: Lesaffre and Verbeke [36] proposed
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influence statistics using an analytic approximation based on second-order
Taylor expansions, and Snijders and Bosker [51] proposed a computational
approximation based on a one-step estimator. The latter approximation will
be followed here because of its simple generalizability to other situations. This
approximation is defined as follows.

An iterative estimation algorithm is used, viz., Fisher scoring or (R)IGLS.
The initial value for the estimation algorithm is the estimate obtained from
the full data set. The one-step estimate is the result of a single step of the
algorithm, using the data set reduced by omitting all data for cluster j. It is
known from general statistical theory that such one-step estimates are asymp-
totically efficient. They can be quickly estimated by software that implements
Fisher scoring or (R)IGLS. Therefore, all estimates denoted here with the
suffix (-j) can be implemented as such one-step estimates obtained with the
full-data estimate as the initial value.

3.4 Influence Diagnostics of Higher-Level Units

Next to the direct study of residuals as proposed in the previous section,
another approach to model checking is to investigate the influence of individual
data points, or sets of data points, on the parameter estimates. In OLS regres-
sion, the most widely known technique in this approach is Cook’s distance,
explained, e.g., in Cook and Weisberg [11], Atkinson [2], and Weisberg [60]. A
natural way of performing such checks in multilevel models is to investigate
the separate influence of each higher-level unit. This means that the estimates
obtained from the total data set are compared to the estimates obtained from
the data set from which a particular higher-level unit is omitted.

An influence measure of level-two unit j on the estimation of the pa-
rameters should reflect the importance of the influence of the data for this
unit on the parameter estimates. First consider the regression coefficients β.
Recall that β̂ is the estimate obtained from the full data set, and β̂(-j) the
estimate obtained from the data set from which unit j has been omitted, or an
approximation to this estimate. The difference between these two estimates
should be standardized on the basis of the inherent imprecision expressed by
the covariance matrix of these estimates. In Lesaffre and Verbeke [36] and
Snijders and Bosker [51] it was proposed to use the estimated covariance
matrix of the estimators obtained from the full data set. Since the diagnostic
measure has the aim to detect unduly influential units, it should be taken
into account, however, that the unit under scrutiny also might have an undue
influence on this estimated covariance matrix. Therefore it is more appropriate
to use the estimated covariance matrix of the estimator obtained from the
reduced data set. It may be noted that the computation of this matrix is
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straightforward in the computational approach of Snijders and Bosker [51],
but does not fit well in the analytic approach of Lesaffre and Verbeke [36].

Denote by ŜF (-j) the estimated covariance matrix of β̂(-j) as calculated
from the data set from which level-two unit j has been omitted. Then a
standardized measure of the influence of this unit on the fixed parameter
estimates is

CFj =
1
r

(
β̂ − β̂(-j)

)′
Ŝ
−1

F (-j)
(
β̂ − β̂(-j)

)
. (3.24)

This formula is analogous to Cook’s distance for the General Linear Model.
For the parameters θ and ξ of the random part of the model, the same

procedure can be followed. Indicating these parameters jointly by η = (θ, ξ),
this leads to the influence measure

CRj =
1
p

(
η̂ − η̂(-j)

)′
Ŝ
−1

R(-j)
(
η̂ − η̂(-j)

)
, (3.25)

where the analogous definitions are used for η̂(-j) and ŜR(-j), and p is the total
number of parameters in η. Since the parameters of the fixed and random
parts are asymptotically uncorrelated [40], these two influence measures can
be combined in the overall influence measure

Cj =
1

r + p

(
rCFj + pCRj

)
. (3.26)

Comparisons with alternative definitions for diagnostics of the type of Cook’s
distance are given in Verbeke and Molenberghs [55] and Skrondal and Rabe-
Hesketh [49].

The influence of a part of the data set on the parameter estimates depends
on the fit of the model to this part of the data together with the leverage of
this part, i.e., its potential to influence the parameters as determined from
the amount of data and the distribution of the explanatory variables X
and Z. For a level-two unit, its size nj and the distribution of Xj and Zj
determine the leverage. The fit can be measured by the deletion standard-
ized multivariate residual (3.22). A poorly fitting cluster with small leverage
will not do much damage to the results of the data analysis. If the model
fits well, while there are no systematic differences between the clusters in
the distribution of Xj and Zj , and the nj are small compared to

∑
j nj ,

the diagnostics (3.24) – (3.26) will have expected values which are roughly
proportional to the cluster sizes nj . A plot of these diagnostics against nj
may draw the attention toward clusters that have an undue influence on the
parameter estimates. This information can be combined with the p-values
for the deletion standardized multivariate residuals (3.22) obtained from the
chi-squared distribution with nj degrees of freedom, which give information
on the fit of the clusters independently of their leverage.
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3.5 Simulation-Based Assessment of Model Specification

It was shown above that the specification of the level-one model can be inves-
tigated by considering within-cluster relations between variables or, equiv-
alently, by fixed effect models. These are analyses that effectively reduce
the HLM to the General Linear Model, for which distributional properties
of many statistics have been derived. These properties can be found in the
ample literature of model diagnostics in such models. Properties of higher-level
diagnostics cannot be derived by going back to the General Linear Model, and
tend to be approximate or unknown. Longford [42] elaborates how simulations
can be used to assess p-values of arbitrary statistics based e.g. on residuals or
influence measures. This is done by repeatedly simulating the data under the
tested model assumptions and considering the resulting distribution of the
statistic under consideration; such a procedure is also called the parametric
bootstrap, cf. Van der Leeden et al. [53].

Among such simulation-based procedures, the Monte Carlo test proposed
at the end of section 3.3.2 illustrates the relative simplicity of checking the
level-one model by the fact that the distribution of the statistic considered is
independent of any unknown parameters (it is said to be pivotal), contrasting
to the general case for higher-level diagnostics.

3.6 Non-linear Transformations in the Fixed Part

One of the purposes for which one can use the residuals discussed in the
preceding sections, is to give guidance of an informal kind when investigating
possible non-linear effects of explanatory variables. The remainder of this
chapter presents methods to examine non-linear fixed effects of explanatory
variables by incorporating them formally into the model.

We consider multilevel models for analyzing the effect of a predictor x on
a response variable y under the assumption that this effect is a non-linear
function f(x) with an unknown functional form. The latter situation is com-
mon, e.g., when x refers to time in longitudinal studies, since the effect of time
on the response is usually complex and not well understood. Then it seems
sensible to approximate f(x) by a flexible function that requires only minimal
prior knowledge about f(x) and still provides insight into the dependence
between y and x.

In the following sections, we will consecutively discuss multilevel mod-
els in which the non-linear function f(x) is approximated by a polynomial
function, a regression spline, and a smoothing spline. As a guiding model
in the discussion, we will use a two-level model for normal responses. Since
longitudinal data offer the main (but not only) applications of this approach,
clusters will be regarded as individual subjects, and level-one units as repeated
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measurements of the subjects. We assume that the responses of subject j are
generated by

y
j

= f(xj) +X2jβ +Zjδj + εj . (3.27)

The difference with respect to model (3.1) is that the fixed part is split into,
first, a real-valued variable x with a non-linear effect, and second, variables
X2 with linear effects.

3.7 Polynomial Model

The polynomial model for multilevel data was put forward by many authors
including Goldstein [17], Bryk and Raudenbush [8], and Snijders [50]. The use
of a polynomial approximation seems quite natural since it can be regarded as
a Taylor expansion of the true unknown function. The Q-th degree polynomial
equals

fpol(x) = α0 + α1x+ · · ·+ αQx
Q .

The smoothness of fpol(x) is controlled by the degree Q. The function fpol(x)
is a linear combination of polynomial terms x, x2, . . . , xQ and therefore this
model remains within the confines of the Hierarchical Linear Model, and
can be estimated straighforwardly like any other such model. The number
of parameters only depends on the degree Q so that the polynomial model
is easy to estimate also when xj differs among subjects. However, estimation
problems may arise when xj is badly scaled. In that case, a simple solution
that works for many data sets is to subtract the subject mean from xj . A
slightly more elaborate solution is to orthogonalize the polynomial terms using
the Gram-Schmidt method.

An attractive feature of the polynomial model is that the regression coeffi-
cients can be interpreted as growth parameters which often are of substantive
interest. The effect α1, for instance, can be interpreted as the rate of change
in the response at x = 0 which may be a useful parameter of a growth process.

The function f(x) is not always well approximated by a low-degree poly-
nomial, however. In human growth studies, for example, polynomials may fail
to produce a smooth and accurate fit because of strong growth during the
first year of age and early adolescence [5]. The underlying problem is that a
polynomial exhibits non-local behavior which means that a change in one of
the regression coefficients αq leads to a change in the estimated fpol(x) for
(nearly) all values of x. A consequence of non-local behaviour is that when
the fit at a certain value of x is improved by increasing Q, the fit may become
poorer at other values of x. In general, a polynomial with a high value of Q
tends to fit accurately in intervals of x with many observations but this may
be achieved at the cost of a poor fit at other values of x.
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3.8 Regression Spline Model

A regression spline [61] consists of piecewise polynomials that are joined at
locations on the x-axis named knots. At each knot, two Q-th degree polynomi-
als are connected such that the (Q− 1)-th derivative of the resulting function
exists and is itself a continuous function of x. A popular regression spline
in practical data analysis is the cubic or third-degree regression spline, the
second derivative of which is continuous at the knots. Regression splines are
more flexible than polynomials and often provide a better fit in the presence
of strong local non-linearity. However, regression splines are more difficult to
specify than polynomials because the number of knots and the positions of
the knots need to be determined. For selection of the number of knots, an ad
hoc approach can be adopted in which the number of knots is increased until
an accurate fit is obtained. This approach may lead to overfitting because
there is no penalty for model complexity. To limit the number of knots, a
possible approach is to optimize a model summary such as Akaike’s Infor-
mation Criterion (AIC ) or the cross-validated log-likelihood [47]. Regarding
the positions of the knots on the x-axis, common choices are equally spaced
points or quantile points of the empirical distribution of x.

A Q-th degree regression spline with L knots at a1, . . . , aL can be con-
structed by extending a Q-th degree polynomial with L truncated polynomial
terms (x− al)

Q
+ (l = 1, . . . , L), where the truncated term (x− al)

Q
+ is equal to

(x− al)Q if x > al and zero otherwise. The resulting function freg(x) can be
written as

freg(x) =
Q∑
q=0

αqx
q +

L∑
l=1

αQ+l(x− al)
Q
+ . (3.28)

This representation is easy to understand and the αq’s have a clear interpre-
tation. It shows that the regression spline is a linear function of polynomial
terms and therefore easy to handle, as it remains within a finite-dimensional
linear function space. For numerical reasons, however, the use of truncated
polynomials is not recommendable especially not when the knots are chosen
close together. It often is better to work with a different set of basis functions.
If freg(x) is a cubic regression spline, it is recommendable to write freg(x) as a
linear combination of so-called B-splines, which are a specific set of piecewise
cubic splines. Computation is stable because B-splines take nonzero values
over an interval with at most five knots [12]. If freg(x) contains one knot at
position a only (i.e., L = 1 in (3.28)), a simple method to improve scaling
of the design matrix is to replace the term xq in the truncated polynomial
formulation of freg(x) by the term (x − a)q− which equals (x − a)q if x < a

and 0 otherwise [51, p. 189]. Because the data columns of values of (x− a)q−
and (x− a)q+ are orthogonal, estimation is stable.
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The regression spline is more flexible than the polynomial and tends to
exhibit less non-local behavior. The knots are determined outside the model
and good placement on the x-axis may require some trial and error. Further-
more, if only a small number of knots is used, the regression spline will not
be free from non-local behavior while using too many knots is undesirable
since it induces non-smooth behavior. To prevent the spline from being either
non-smooth or insufficiently flexible, a possible strategy is to include a large
number of knots and at the same time penalize the regression coefficients so
that a smooth fit is obtained [14]. A limiting case is a function in which a
knot is placed at each distinct value of x in the data set. Splines of the latter
type are discussed in the next section.

3.9 Smoothing Spline Model

Suppose that the data set contains T ordered distinct values x1, . . . , xT . The
cubic smoothing spline, denoted by fcss(x), then is a cubic regression spline
with knots at x1, . . . , xT and it is a linear function outside the interval [x1, xT ].
The degree of smoothness is regulated by extending the log-likelihood function
with a roughness penalty that penalizes functions for having strong curvature,
that is, a large absolute second derivative |f ′′css(x)|. The definition of the
roughness penalty is

− 1
2λ

∫ xT+1

x0

{
f ′′(x)

}2 dx, (3.29)

where λ is a nonnegative smoothing parameter determining the degree of
smoothing, and x0 < x1 and xT+1 > xT .

The following basic properties of smoothing splines can be found in the
literature on this topic, such as Green and Silverman [21]. The fitted cubic
smoothing spline is obtained by maximizing the penalized log-likelihood, that
is, the sum of the log-likelihood and the roughness penalty. An additional
constraint to ensure that fcss(x) is a cubic smoothing spline does not have
to be included because among all functions fcss(x) with continuous second
derivatives, the unique minimizer of the penalized log-likelihood is the cubic
smoothing spline. If we substitute the cubic smoothing spline fcss(x) with
knots at x1, . . . , xT in (3.29), we can evaluate the roughness penalty as

− 1
2λf

′
cssKfcss ,

where fcss is the vector of values of fcss(x) at x1, . . . , xT . The T × T matrix
K equals

K = QR−1Q′,

where Q is a T × (T − 2) matrix having entries qi,i = 1/(xi+1 − xi), qi+2,i =
1/(xi+2−xi+1), qi+1,i = −(qi,i+qi+2,i) for i = 1, . . . , T−2, and zero otherwise.
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The (T −2)× (T −2) matrix R is symmetric tridiagonal with diagonal entries
ri,i = 1

3 (xi+2 − xi) for i = 1, . . . , T − 2. The non-zero off-diagonal entries are
ri,i+1 = ri+1,i = 1

6 (xi+2 − xi+1) for i = 1, . . . , T − 3.

3.9.1 Estimation

The model for the responses of subject j is obtained by substituting Njfcss

for f(xj) in (3.27), where Nj is an nj×T matrix of zeros and ones. Each row
of Nj contains a single one at the entry t for which xij = xt. The resulting
equation is

y
j

= Njfcss +X2jβ +Zjδj + εj , j = 1, . . . ,m. (3.30)

The model parameters to be estimated are the vector of spline values fcss,
the fixed regression coefficients β, the level-one variance σ2, and the level-
two variance parameters ξ. Given σ2 and ξ, the penalized log-likelihood is
maximized by

f̂ css =

(
m∑
j=1

N ′
jUX2,jNj + λK

)−1 m∑
j=1

N ′
jUX2,j yj , (3.31)

and

β̂ =

(
m∑
j=1

X ′
2jUN,jX2,j

)−1 m∑
j=1

X ′
2jUN,jyj , (3.32)

where

UN,j = V −1
j − V −1

j Nj

(∑
j

N ′
jV

−1
j Nj + λK

)−1

N ′
jV

−1
j ,

and
UX2,j = V −1

j − V −1
j X2j

(∑
j

X ′
2jV

−1
j X2j

)−1

X ′
2jV

−1
j ,

with Vj given in (3.4).
The parameters f and β can also be estimated by the Expectation Max-

imization (EM) algorithm. The EM algorithm is an iterative procedure for
locating the mode of the likelihood, or in Bayesian modeling for determining
the posterior mode, see section 1.D. In our case, we need to maximize the
penalized likelihood rather than the likelihood itself. From a Bayesian view-
point, this does not substantially alter the problem but is merely a choice of the
prior. Note that the modes of the log posterior and the penalized log-likelihood
coincide if a flat prior is taken for β, and the log-prior of fcss is, except for a
constant, equal to − 1

2λf
′
cssKfcss.
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The EM algorithm consists of an E-step and an M-step. To carry out
the E-step, we define the complete-data log-likelihood of y and the random
coefficients δ (treated in this algorithm as missing data) given the model
parameters, i.e. log p(y, δ | fcss,β, σ

2, ξ). We penalize the complete-data
log-likelihood with roughness penalty (3.29) and we further define the condi-
tional distribution of missing data δ given y and the model parameters, i.e.,
p(δ | y, f̃ css, β̃, σ

2, ξ). Here, fcss and β have been replaced by their current
estimates f̃ css and β̃. The variance components σ2 and ξ are assumed to
be known. The E-step consists of taking the expectation of the penalized
complete-data log-likelihood with respect to the conditional distribution of
the missing data. This involves computing the conditional expectations of δ
and δ δ′, where the former expectation is the empirical Bayes estimator of the
random effects.

In the M-step, we maximize the expected penalized complete-data log-
likelihood (retrieved from the E-step) with respect to the model parameters
fcss and β. The M-step is computationally expensive if the number of distinct
time points T is large because it involves inverting a T × T matrix. In that
case, it is better to update the estimates of fcss and β sequentially. First, we
maximize with respect to fcss and obtain the updated estimate

f̃ css =
(∑

j

(N ′
jNj) + σ2λK

)−1 ∑
j

(y
j
−X2jβ̃ −Zj δ̃j),

where δ̃j is the empirical Bayes estimate of δj at the current estimates of fcss

and β. Second, we maximize with respect to β only and obtain the update

β̃ =
(∑

j

X ′
2jX2j

)−1 ∑
j

(y
j
−Nj f̃ css −Zj δ̃j).

These two steps are computationally cheap: the number of numerical op-
erations to update the estimates of fcss and β is of order T . Although the
expression for f̃ css contains the inverse of a T×T matrix, efficient computation
is possible using the Cholesky factorization method as described for example
in Green and Silverman [21]. This algorithm where the M-step is replaced by
two sequential steps is known as the EC(onditional)M algorithm [43]. The two
sequential steps can also be viewed as steps of the backfitting algorithm as
described by Hastie and Tibshirani [24, p. 91].

An EM algorithm can also be constructed after having reparametrized the
model according to Green [20]. Using features of cubic splines, we can write
fcss in (3.30) via a one-to-one transformation as

fcss = γ01T + γ1x
∗ +Q(Q′Q)−1Lη, (3.33)

where γ0 and γ1 are scalars, x∗ = (x1, . . . , xT )′, η is a (T − 2)× 1 parameter
vector, and L satisfies LL′ = R. For the definition ofQ andR, see section 3.9.
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Because the columns of Q are orthogonal to 1T and x∗, it follows that η′η is
equal to f ′cssKfcss. Hence, the penalized log-likelihood of model (3.30) with
fcss replaced by (3.33) is equal to the sum of the log-likelihood and the term
− 1

2λη
′η. The E-step and M-step can be derived as before. When T is large,

the computational burden can again be lowered by replacing the M-step by
sequential steps.

So far, we have regarded the variance components σ2 and ξ as known.
Simple estimators of σ2 and ξ are obtained by fitting an overelaborated model
with in the fixed part T dummy predictors, one for each distinct time point
[55, p. 123]. If the model with dummy effects is estimated by restricted IGLS,
unbiased estimates are obtained for σ2 and ξ also when y in the true model is
associated to x by a smooth function f(x). For reasons of efficiency, it may be
preferable to use estimators that depend on the external smoothing parameter
λ. Several authors have suggested to consider η as a vector of random effects
η and to fit a crossed random effects model with model parameters γ0, γ1,
β, σ2, and ξ and random effects δ and η [52, 58, 64]. The formulation of the
crossed random effects model is attractive because it allows us to estimate
fcss using existing software. Estimates can be obtained with the restricted
IGLS algorithm implemented in MLwiN [19] and SAS [39]. Here, the variance
of η is set equal to the inverse of the roughness penalty λ. The restricted
IGLS estimator of σ2 performs well in simulation studies [64]. Besides, in a
single level situation (e.g., longitudinal data of one subject), this estimator
is equal to the classical estimate of σ2 described for example by Green and
Silverman [21, p. 39]. The estimation of the crossed random effects model via
restricted IGLS is computationally demanding if the number of distinct values
x1, . . . , xT is large because the number of crossed random effects is equal to
T − 2.

3.9.2 Inferences

A common approach to drawing inferences about fcss is to construct pointwise
correct confidence intervals at x1, . . . , xT . This requires an estimate of the
variance of f̂ css. Two common estimates will be discussed. The first estimate
is obtained by assuming that f̂ css is an estimate of the fixed, unknown fcss.
From (3.31) where f̂ css is written as a linear function of y, it follows that the
covariance matrix is given by

CovF(f̂ css) = W−1

(
m∑
j=1

N ′
jUX2,jNj

)
W−1 (3.34)

where

W =
m∑
j=1

N ′
jUX2,jNj + λK.
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The second estimate of the variance is the posterior variance obtained from
a Bayesian model where the logarithm of the prior of fcss is equal to
− 1

2λf
′
cssKfcss except for a constant. The posterior covariance matrix has

a simple form
CovB(f̂ css) = W−1. (3.35)

Zhang et al. [64] and Lin and Zhang [38] compare the frequentist and Bayesian
estimator in a simulation study in which a fixed nonparametric function f(x)
is postulated. The main conclusion in these studies is that both estimators are
accurate but that the Bayesian estimator sometimes performs slightly better
because it accounts for the bias in f̂ css. The Bayesian variances can also be
obtained from the model with crossed random effects. Software packages such
as MLwiN yield estimates of the variances of γ̂

0
and γ̂

1
and the comparative

variance of the empirical Bayes estimator η̂. The covariance between η̂ and
(γ̂

0
, γ̂

1
) is not always produced. However, the design matrices of (γ0, γ1) and η

are orthogonal if the points at which the measurements are taken are common
to all subjects. Therefore, the precision of the estimator of CovB

(
f̂ css

)
is in

general not substantially affected by the omission of the covariance between
(γ̂

0
, γ̂

1
) and η̂.

Besides the Bayesian model with a finite-dimensional prior for fcss, a model
with an infinite-dimensional prior for the continuous spline fcss(x) exists as
well [58, 64]. This model was put forward by Wahba [56] and is appealing
because a smoothing spline fcss(x) is defined for all x and not only for the
observed values. The finite- and infinite-dimensional formulation lead to the
same posterior variance of f̂ css.

3.9.3 Smoothing Parameter Selection

Several methods exist for selecting the smoothing parameter λ. In this section,
three are discussed. The first method is to maximize the cross-validated log-
likelihood as a function of λ. The cross-validated log-likelihood is an approxi-
mation to the expectation of the predictive log-likelihood which is the expected
log-likelihood of a new vector of observations y∗ at the penalized likelihood
estimators of the model parameters fcss, β, σ2, and ξ. The prediction process
is imitated by leaving out one subject at a time and predicting the omitted
subject on the basis of the other subjects’ data [46].

A drawback of cross-validation is that it is computationally expensive.
An alternative strategy is to estimate the expected predictive log-likelihood
by the sum of the log-likelihood and the trace of the matrix A that maps
y on the estimator f̂ css = Ay [24, p. 52; 21, p. 37]. This estimator, named
Mallows’ Cp, is cheap and unbiased if the (co)variance parameters σ2 and
ξ are known. For uncorrelated data, the unbiasedness proof is provided by
Hastie and Tibshirani [24, p. 48]. The proof in the case of multilevel data
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is analogous. In practice, σ2 and ξ are unknown and can be estimated by
the restricted IGLS estimators in the overelaborated model with dummy time
predictors (see section 3.9.1).

A limitation of applying criteria like the cross-validated log-likelihood
or Mallows’ Cp is that λ is not treated as a model parameter but as an
external variable. The smoothing parameter becomes a model parameter if
we adopt the crossed random effects model and estimate the variance of η
freely instead of constraining the variance to be equal to the inverse of λ.
It can be shown that if the crossed random effects model is estimated by
restricted IGLS implemented in MLwiN [19], then the estimate of λ is the
generalized maximum likelihood (GML) estimate [57, 64] which has good
performance in simulation studies [33]. It may also be sensible to examine
whether a model with smoothing spline fcss(x) fits better than a model with a
linear effect for x. Hastie and Tibshirani [25, p. 65] provide some approximate
F -tests based on residual sums of squares and Cantoni and Hastie [9] and
Guo [22] present likelihood ratio tests for H0 : λ−1 = 0 which is equivalent
to H0 : η = 0 (3.33). Instead of the likelihood ratio test, the score test may
also be considered. The score test is computationally cheap because estimates
of the model with crossed random effects are not required. The test is based
on the one-step estimator that is obtained when we start from the estimate
of the null model. The ratio of the one-step estimator to its standard error
has an asymptotic standard normal null distribution. The score test also has
good power properties in a small sample setting [6]. For testing against an
unspecified but monotonic effect of x, this test against a linear effect may be
expected to have good power against most non-linear effects.

3.10 Example: Effect of IQ on a Language Test

We fitted the three different functions that were discussed so far, i.e., the
polynomial function, the regression spline function, and the cubic smoothing
spline function, to a real data set. The estimations were done using MLwiN 1.1
[19] and Gauss 3.2 [1]. The data set is described in Snijders and Bosker [51]. It
contains language test scores of 2287 pupils within 131 elementary schools. We
modeled the test score (Y ) as a function of the grand-mean centered IQ of the
pupil (IQ), the gender of the pupil (SEX), the school average of IQ (IQ), and the
socio-economic status (SES) of the pupil. We assumed a non-linear effect for
IQ and linear effects for the other predictors. Note that in most applications
of models with functional non-linear effects, time is the ordering principle
but an ordering according to any other unidimensional variable is possible as
well. Between-school differences were modeled by including a random intercept
and a random slope of IQ at level two. Finally, we assumed that the level-one
measurement errors are homoscedastic and uncorrelated. The model can be
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written as

y
ij

= f(IQij) + β1 SESij + β2 SEXij + β3 IQj + δ0j + δ1jIQij + εij .

The estimated polynomial function, regression spline function, and cubic
smoothing spline function are presented in Figure 3.3. The chosen polynomial
function is of order three. We also considered a fourth-degree polynomial but
this did not yield a further improvement in fit. The chosen regression spline
is a quadratic spline with a knot at zero. This function was considered by
Snijders and Bosker [51, p. 113] as a flexible and parsimonious alternative
for the polynomial function. We determined the smoothness of the cubic
smoothing spline by maximizing GML. We also considered optimization of
the cross-validated log-likelihood and Mallows’ Cp but the three methods
rendered similar values for the smoothing parameter: λGML = 1.6, λCp

= 1.6,
λCV = 2.0.

The three fitted functions lead to similar predictions: the effect of IQ on Y
is larger in the middle than in the tails of the distribution of IQ. The smooth-
ing spline performs slightly better than the other two functions since it is
monotonically increasing whereas the polynomial function and the regression
spline have a negative slope at low and high values of IQ.

10

30

50

−5 0 5

y

IQ

Fig. 3.3. Language test score (y) against centered IQ score: raw data, cubic polyno-

mial estimate (thin), quadratic regression spline estimate (dashed), and smoothing

spline estimate (bold).
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We also estimated the pointwise standard errors of the fitted functions.
These are presented in Figure 3.4. We see that the standard errors of the
fitted functions are very similar. Data are sparse at the left and right end of
the window (Figure 3.4) and the standard errors are large there compared to
the middle part. We further see that the Bayesian standard error of the cubic
smoothing spline estimate is slightly larger than its frequentist counterpart,
as it should be according to (3.34) and (3.35) [cf. 64].

0
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1.5
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−5 0 5

se(f̂)

IQ
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Fig. 3.4. Standard errors of the cubic polynomial estimate (open circle) and the

quadratic regression spline estimate (closed circle), and Bayesian (bold line) and

frequentist (thin line) standard errors of the smoothing spline estimate.

3.11 Extensions

The model can be extended to a model with more than two levels or a model
with non-normal responses in the same way as multilevel models without a
functional effect can be extended. Another direction is to specify a model with
two functional effects, f(x) and g(v). This model is called an additive model
and is put forward by Hastie and Tibshirani [24]. Algorithms for estimating
additive multilevel models with cubic smoothing splines are provided by Lin
and Zhang [38]. A related model is a model in which the effect of predictor
w on y is described by function h(x) × w. This model is known as the vary-
ing coefficient model and has been used to describe time-varying effects of
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predictors in longitudinal studies [25]. A multilevel extension of the model is
presented by Hoover et al. [29]. The additive and varying coefficient models
can be formulated as random effects models with a separate random effect for
each functional effect. The estimation can be done in MLwiN but becomes
demanding if we have many functional effects. For varying coefficient models,
less demanding estimators are available [10, 15].

We have discussed functional effects to describe the mean pattern. Func-
tional effects for the random part of the model have been proposed as well.
In multilevel modeling, a common, simple choice is to include polynomial
functions in the random part of the model [cf. 8, 17, 50]. When adding spline
functions instead of polynomial functions to the random part, a possible ap-
proach is to define a separate smoothing spline for each level-two unit and to
use the mixed effects formulation to define a nested sample of curves [7, 22].
The mixed effects approach is appealing, but it is computationally demanding
when the number of distinct points is large. A somewhat different approach is
to explore the covariance structure by a principal components analysis yielding
functions that describe the main sources of variation among the individual
curves. These methods are particularly attractive when studying variability
between individual curves. Rice and Silverman [46] propose a principal compo-
nents model where the differences among individuals are described by cubic
smoothing splines. The model is applicable only when the points at which
measurements are taken are common to all level-two units. Rice and Wu [47]
and James et al. [31] use B-spline functions to allow for irregular spacing of
the data. Yao et al. [62] present a model for irregular data with functions
retrieved from a smooth estimate of the (continuous) covariance surface. For
the underlying functions, they also provide asymptotic confidence bounds.
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4.1 Introduction

The analysis of multilevel data with individuals nested within clusters is
complicated by the correlation between outcomes of individuals within the
same cluster. Ignoring this correlation and the use of traditional analysis
methods, like ordinary least squares regression, may sometimes lead to biased
parameter estimates and will generally lead to incorrect standard errors, and
consequently to incorrect tests and conclusions on effect sizes. The presence
of an intra-class correlation also complicates the design of multilevel studies.
Optimal designs calculated from standard formulae for non-nested data [5]
may be far from optimal for multilevel data. Moreover, these formulae only
specify the total number of individuals needed to gain a certain power on
statistical tests, and cannot specify the number of clusters and the number of
individuals per cluster.

Experiments and observational studies in the social and medical sciences
often involve large amounts of time, money, and labor. These efforts could be
somewhat wasted if the study was not designed optimally. Therefore, guide-
lines for the optimal design of multilevel studies are asked for. During the
last two decades a number of papers on the design of multilevel studies has
been published. Most have focussed on the optimal sample sizes for cluster
randomized trials [9, 10, 12, 18, 23, 25, 29, 34–36, 39, 42, 49, 55], and multisite
randomized trials where randomization to treatment conditions is done at the
patient level and treatment by site interaction may be present [50]. A compari-
son of cluster randomized trials and multisite trials with person randomization
shows that the latter are more efficient [30, 34–36]. However, control group
contamination may destroy this advantage of person randomization and call
for cluster randomization [32]. Snijders and Bosker [57] derive sample size
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formulae for two level designs with any number of explanatory variables at
each level. Cohen [7] derives optimal sample size formulae for surveys based
on several optimality criteria for the fixed and random part. Afshartous [1]
and Mok [41] compare designs with different sample sizes at both levels by
means of simulation studies.

For multilevel experiments four design issues may arise. The first three that
are listed may also arise for surveys with nested data. The first design issue
concerns the optimal allocation of units, or, in other words, the optimal sample
sizes at each level of the multilevel data structure. The optimal sample sizes are
restricted by the actual sample sizes in the study population, since the number
of clusters that are enrolled into the study cannot be larger than the number
of clusters that are available for the study. Likewise, the number of individuals
per cluster in the study cannot be larger than the actual cluster size. Sampling
individuals within an already selected cluster may be less expensive than
sampling in a new cluster. This can be expressed by a cost function that is
used as a precondition in the derivation of the optimal sample sizes.

The second design issue concerns the required budget to obtain a specified
power on the test of a certain parameter given the true value of that parameter
and a type I error rate. As we will see in the next section the power of
the test of a certain parameter is inversely related to the variance of that
parameter, which depends on the sample sizes at each level of the multilevel
data structure. Thus, the second design issue is closely related to the first one.

The third design issue concerns the robustness of optimal designs. A prior
specification of the values of the model parameters, in particular the intra-
class correlation coefficient, must be given to calculate optimal sample sizes,
and one may wonder if the optimal design is robust against incorrect prior
specifications.

A fourth design issue that may be considered is the efficiency of cluster
randomization versus randomization at the individual level. Although individ-
ual level randomization gives a higher power on statistical tests of a treatment
effect, randomization is often done in practice at the cluster level and one may
wonder what the loss in efficiency for this level of randomization is. Reasons
to favor a cluster randomized trial are often of an ethical, practical, logistical,
or administrative nature. Examples are the need to reduce costs and the need
to avoid control group contamination, which occurs when information leaks
from the intervention to the control group.

In this chapter we will give some guidelines for designing multilevel experi-
ments and surveys (observational studies). The contents of this chapter are as
follows. The next section focuses on optimality criteria and power calculation.
Section 4.3 deals with the optimal design of multilevel experiments. There-
after we focus on optimal experimental designs for models with covariates
(section 4.4), and for multilevel logistic models (section 4.5). Section 4.6 gives
results for optimal experimental designs with longitudinal data. Sections 4.7
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and 4.8 deal with optimal designs for surveys and variance parameters, respec-
tively. In section 4.9 the robustness of optimal designs against an incorrect
prior specification of the values of the model parameters is dealt with. This
chapter concludes with some remarks on the use of the optimal designs in
practice. Optimal designs will be derived for two levels of nesting, optimal
designs for three levels of nesting can be found elsewhere [30, 34]. For the
sake of concreteness, units at level one and two are called pupils and schools
in this chapter, but of course any other terminology may be substituted. We
will focus on optimal designs which minimize one optimality criterion at the
time; multiple-objective optimal designs are presented elsewhere [40].

4.2 Optimality and Power

4.2.1 Optimality Criteria

Choosing an optimal design means to choose the design ξ∗ among all designs ξ
in the design space χ that provides maximum information on the parameters
θ in the model. This information may be captured by the Fisher information
matrix M(X,θ), where X is the design matrix which contains the measures
on the predictor variables, and depends on the chosen regression model η
and the design ξ: X = X(η, ξ). The Fisher information matrix is defined as
minus the expectation of the second order derivatives of the logarithm of the
likelihood function L(X(η, ξ),θ) [e.g., 56]:

M(X(η, ξ),θ) = −E
(
∂2 logL(X(η, ξ),θ)

∂θ ∂θ′

)
,

and contains information on each parameter θ and each combination of pa-
rameters θ and θ′. The limit of its inverse is equal to the asymptotic covariance
matrix of the parameter estimators, and maximizing the Fisher information
matrix is equal to minimizing the covariance matrix of the parameter estima-
tors. Since matrices cannot be ordered in a unique way, different functions Φ of
the matrix M , which at least have to be convex and differentiable, have been
proposed as optimality criteria. Examples are A-, D-, and c-optimal designs
[e.g., 2, 56].

In this chapter we will use the variance of one single parameter θ as op-
timality criterion, since minimal variance leads to maximal statistical power
of the test of H0 : θ = 0. This variance will be minimized subject to the
precondition that the number of schools, n2, and the number of pupils per
school, n1, are at least equal to two, to be able to estimate the variance
components at both levels. Furthermore, the budget C for sampling schools
and pupils may not be exceeded by the costs for sampling, which are assumed
to be equal to the total number of schools times the costs c2 for sampling
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a school, plus the total number of pupils times the costs c1 for sampling an
pupil, i.e.,

C ≥ c1n1n2 + c2n2 (cl > 0, nl ≥ 2 for l = 1, 2). (4.1)

An optimal design which does not depend on the model parameters θ is called
a globally optimal design, whereas a locally optimal design is a design which
does depend on one or more of the model parameters. For the latter a prior
specification of the values of these model parameters needs to be given to
calculate the optimal sample sizes. The robustness of optimal designs against
incorrect prior specifications is discussed in section 4.9. The optimal design
ξ∗ may not always be feasible in practice and an alternative design ξ may be
chosen instead. The efficiency of the alternative design relative to the optimal
design is given by

relative efficiency =
Φ(M−1(X(η, ξ∗),θ))
Φ(M−1(X(η, ξ),θ))

, (4.2)

and this ratio is between zero and one. When the variance of one single
parameter is used as optimality criterion, the inverse of the relative efficiency
gives the number of times the suboptimal design ξ needs to be replicated to
be as efficient as the optimal design ξ∗.

4.2.2 Power Calculation

Suppose that we want to test the null hypothesis H0 : θ = 0, where θ is a
model parameter, against an alternative H1 that its value differs from zero.
This hypothesis may be tested with the test statistic z = θ̂/

√
Var(θ̂). If

θ is a regression coefficient and the error variance is assumed known, this
test statistic is asymptotically standard normally distributed under H0. For
one-sided alternatives H1 : θ > 0 and H1 : θ < 0 the power 1− γ, type I error
rate α, Var(θ̂) and the true value of θ are related by

1− γ = Φ

(
θ√

Var(θ̂)
− z1−α

)
, (4.3)

where Φ is the standard normal cumulative distribution function and z1−α is
the 100(1 − α) standard normal percentile. For two-sided alternatives H1 :
θ 6= 0, α is replaced by α/2. For a two-sided alternative hypothesis, the power
is derived from only one of the critical regions. The probability of a rejection
at the wrong side is always less than α/2, and is negligibly small in relation
to a rejection at the correct side. The only exception is an effect size (i.e.,
difference between H0 and H1) that is so small that the power is as large as
α. In trial designs we aim at power levels equal to 80% or higher, and the
error of the approximation is negligible.
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When the error variance is unknown the test statistic has approximately a
t-distribution under the null hypothesis, and the standard normal approxima-
tion works well for large degrees of freedom. As follows from (4.3), the power
increases with the true value of θ, since a large θ is easier to detect than a
small one. Furthermore, the power also increases with the type I error rate,
and decreases with the variance Var(θ̂), which in its turn is a function of the
sample size. Thus minimizing Var(θ̂) implies maximizing the power. Formula
(4.3) contains four unknowns. Once three of these are specified the fourth can
be calculated. In practice, a researcher often wishes to calculate the number of
individuals needed to obtain a certain power, which means that Var(θ̂) has to
be calculated from (4.3). For non-nested data the relationship between sample
size and variance is well known and can be found in, for example, Cochran
[5, section 4.1]. For nested data this relation depends on the sample sizes at
both the school and pupil level and will be presented in the next sections.

4.3 Optimal Designs for Experiments

In this section we focus on the comparison of two treatment conditions, for
example an intervention and a control. Randomization to these treatment
conditions may be done at the pupil or the school level. The latter is often
referred to as cluster randomization. We will assume a balanced design: the
number of pupils per school is constant across schools and denoted by n1,
whereas the number of schools is denoted by n2. If randomization is done at
the school level, 1

2n2 schools are randomized to the intervention group and
the others are randomized to the control group, assuming that n2 is even.
Likewise, 1

2n1 pupils per school are randomized to each treatment condition
for pupil level randomization, assuming that n1 is even. The model that relates
the outcome y

ij
for pupil i in school j to treatment condition xij is given by

y
ij

= β0 + β1xij + δ0j + δ1jxij + εij , (4.4)

where the treatment condition has values −1 for the control group and +1 for
the intervention group since this will simplify the formulae on optimal sample
sizes if covariates are added to the model. The random error terms δ0j ∼
N (0, τ2

0 ), δ1j ∼ N (0, τ2
1 ), and εij ∼ N (0, σ2) are assumed to be independent

of the treatment condition, and the covariance between δ0j and δ1j is denoted
by τ01. Note that xij may be replaced with xj for school level randomization
since all pupils within a school will then receive the same treatment condition.
In that case, τ2

0 and τ2
1 cannot be estimated separately. Instead their sum

τ2 = τ2
0 + τ2

1 is estimated. The covariance τ01 can be consistently estimated
for school level randomization, which is remarkable since τ2

0 and τ2
1 are not

identified. This is because τ01 is identified by the variances of the outcome in
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both conditions. Since xij is coded by −1 and +1, β1 is estimated unbiasedly
by 1

2 (ȳt − ȳc) where ȳt and ȳc are the mean outcomes in the intervention and
control group respectively, and thus β1 is equal to half the treatment effect.

For both levels of randomization the variance Var(β̂
1
) is given in the second

column of Table 4.1. For school level randomization this variance is larger than
would have been obtained when ignoring the nested data structure:

Var(β̂
1
) =

n1τ
2 + σ2

n1n2
=
τ2 + σ2

n1n2
[1 + (n1 − 1)ρ],

where ρ = τ2/(τ2 + σ2) is the intra-school correlation coefficient, which mea-
sures the amount of variation at the school level. The factor [1 + (n1 − 1)ρ]
is called the design effect and increases with n1 and ρ. Even for small ρ this
factor may already be considerable. For example, if ρ = 0.05, and n1 = 30
the design effect is equal to 2.45. On the other hand, when randomization
is done at the pupil level and there is no treatment by school interaction,
the Var(β̂

1
) obtained when ignoring the multilevel data structure is larger

than that obtained with the multilevel model. For randomization at the pupil
level and models with a random slope it may be smaller or larger than that
obtained with the multilevel model, depending on the number of pupils per
school and the values of the variance components [37].

Table 4.1. Var(β̂
1
), optimal sample sizes and Var(β̂

1
) given the optimal sample

sizes for two levels of nesting and a random slope. τ2 = τ2
0 + τ2

1 .

Level of

randomization Var(β̂
1
) n1 n2 optimal Var(β̂

1
)

Pupil (τ2
1 > 0)

n1τ
2
1 + σ2

n1n2

s
σ2c2
τ2
1 c1

Cs
σ2c1c2
τ2
1

+ c2

√̀
σ2c1 +

√
τ2
1 c2

´2

C

Pupil (τ2
1 = 0)

σ2

n1n2

C − 2c2
2c1

2
σ2c1

C − 2c2

School
n1τ

2 + σ2

n1n2

r
σ2c2
τ2c1

Cr
σ2c1c2
τ2

+ c2

√̀
σ2c1 +

√
τ2c2

´2

C

Optimal designs are calculated under the precondition that the pre-
specified budget for sampling is not exceeded by the total costs for sampling,
see section 4.2. When n1 is fixed to a constant, the optimal n2 can directly
be calculated from (4.1) and the Var(β̂

1
) follows from the second column of
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Table 4.1. The same method may be applied when n2 is fixed to a constant.
When both n1 and n2 are unrestricted, the optimal sample sizes can be
obtained by expressing n2 in terms of n1 and the costs and budget using
(4.1), substituting into the formula for Var(β̂

1
) and solving for n1. The optimal

sample sizes n1 and n2 thus obtained are given in the third and fourth column
of Table 4.1, and the Var(β̂

1
) obtained with these optimal sample sizes is given

in the last column of this table. Note that the optimal number of schools n2

should be larger than or equal to two in order to maintain the multilevel data
structure. In some studies the number of schools or pupils per school may
be limited. If the limited number of schools or pupils per school is smaller
than the optimal number, then this limited number should be used. Note that
the optimal sample sizes and the Var(β̂

1
) for pupil level randomization and

τ2
1 > 0 do not reduce to those for pupil level randomization and τ2

1 = 0. This
is a consequence of the fact that the optimal sample sizes for the latter case
were calculated such that both n1 and n2 are at least two. Otherwise, τ2

1 → 0
would lead to n2 → 0.

From Table 4.1 it follows that a higher budget C results in sampling more
schools, except when randomization is done at the pupil level and there is
no treatment by school interaction since then the optimal number of pupils
per school increases with the budget. Furthermore, this table shows that the
number of pupils to be sampled per school reaches its maximum in case of
pupil level randomization and τ2

1 = 0. This is obvious because when school
by treatment interaction is assumed to be absent, there is no point in adding
more schools. In fact, the optimal design is reached when just one school is
sampled, but in that case the variance component τ2

0 cannot be estimated
and therefore the number of schools is restricted to be at least two. Of course,
τ2
0 cannot be estimated very well when just two schools are sampled, but on

the other hand the Var(β̂
1
) does not depend on this variance component in

case of pupil randomization with τ2
0 = 0. For school level randomization and

for pupil level randomization with τ2
1 > 0 the optimal number of schools will

generally be larger than two. For these cases the number of pupils per school
increases with the pupil-level variance component σ2, which is obvious since
more pupils are needed in the experiment when there is much variation in
the outcome at the pupil level. Also, the optimal n1 increases with the costs
of sampling an extra school relative to the costs of sampling a pupil because
generally less schools will be sampled in favor of sampling more pupils per
school when it is relatively expensive to sample a school.

Table 4.1 shows that the pupil level is the optimal level of randomization.
The relative efficiency of school level versus pupil level randomization is given
by the ratio of the reciprocal of their optimal variances as given in the last
column of Table 4.1, which for models with a fixed slope (i.e., τ2

1 = 0) is
approximated by
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RE ≈ σ2c1(√
σ2c1 +

√
τ2
0 c2

)2 =
1− ρ(√

1− ρ+
√
ρc2/c1

)2 , (4.5)

and this approximation works well when C > 40c2. Equation (4.5) shows that
the relative efficiency decreases when ρ and/or the cost ratio c2/c1 increase.
The inverse of the relative efficiency gives the number of times the optimal
design for randomization at the school level needs to be replicated to be as
efficient as the optimal design for randomization at the pupil level assuming
τ2
0 = 0. Figure 4.1 shows the relative efficiency as a function of the intra-

school correlation coefficient and for c2/c1 = 10, 20, 40. As follows from this
figure the decrease in the relative efficiency is already considerable for small
ρ. When ρ = 0.05 it is equal to 0.34, 0.24, and 0.17 for c2/c1 = 10, 20, and
40, respectively. When ρ approaches unity the relative efficiency goes to zero.
The relative efficiency is larger when treatment by school interaction is present
(i.e., τ2

1 > 0).
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Fig. 4.1. Approximate relative efficiency of class versus pupil level randomization

as a function of the intra-class correlation coefficient and the cost ratio c2/c1. For

both levels of randomization the optimal Var(β̂
1
) is used.

Figure 4.2 gives an impression of the difference in power of two-sided tests
with significance level α = 0.05 obtained with randomization at the school
and pupil level as a function of the effect size, which is calculated as ES =
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2β1/
√
σ2 + τ2

0 + τ2
1 , where 2β1 is the true value of the treatment effect and

the denominator gives the standard deviation of the outcome yij . Values 0.2,
0.5, and 0.8 correspond to small, medium, and large effects, respectively [6].
From Figure 4.2 it follows that the difference in power is especially large for
effect sizes near 1. In order to draw this figure we used the following values
for the costs and budget: c1 = 10, c2 = 200, and C = 8000, which reflect
the fact that the costs for sampling schools are often larger than the costs for
sampling a pupil in an already sampled school. Furthermore, there is often
more variation in the outcome at the pupil level than at the school level, which
is reflected by the parameter values σ2 = 24, τ2

0 = 2, and τ2
1 = 1. For these

parameter values the optimal sample sizes for school level randomization are
n1 = 12.6, n2 = 24.5, and Var(β̂

1
) = 0.200. Rounding to even n2 such that the

budget C is not exceeded gives n1 = 13, n2 = 24, and Var(β̂
1
) = 0.202. For

randomization at the pupil level n1 = 21.9, n2 = 19.1, and Var(β̂
1
) = 0.110.

Rounding to even n1 such that the budget is not exceeded results in optimal
sample sizes n1 = 22, n2 = 19, and Var(β̂

1
) = 0.110, which is about half of

the variance that is obtained with school level randomization.
It should be noted that the comparison of randomization at the cluster

level and randomization at the person level as presented in this example is
based on the assumption that control group contamination is absent. This
assumption is not always true in practice. It is easily violated in intervention
studies where the clustering is such that persons within the same cluster meet
regularly, such as families, classes within schools, and work sites. When the
degree of the contamination is known, the two designs can still be compared
on basis of their relative efficiencies [32]. For large degrees of control group
contamination, a cluster randomized trial may be favored over a trial that
randomizes persons within clusters.

For both levels of randomization, the power levels of proposed designs can
be evaluated and compared using specialized software, such as the OPTDES
program by Raudenbush et al. [52]. This program allows to plot the power
levels as a function of the sample size per school (n1), number of sampled
schools (n2), intra-school correlation coefficient, and effect size. It also calcu-
lates optimal sample sizes for equal and unequal costs across the treatment
conditions.

4.4 Optimal Experimental Designs for Models with
Covariates

4.4.1 Effect of Including Covariates on the Optimality Criterion

So far we have considered optimal experimental designs for models without
covariates. In practice, however, covariates are often included into the mul-
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Fig. 4.2. Power of two sided tests as a function of the effect size.

tilevel model to decrease variances of treatment effect estimators and thus
to increase statistical power, and in observational studies also to correct for
confounding. For uncorrelated outcomes the formula for the variance of the
treatment effect estimator is equal to

Var(β̂
1
) =

σ2
r

N(1− r2xc)
,

if x is denoted −1 and 1 for the control and intervention group, respectively,
and both treatment groups are of equal size [e.g., 24, 47]. σ2

r = σ2 + τ2
0 + τ2

1

is the total residual variance in y
ij

and r2xc is the squared multiple correlation
coefficient between the treatment condition x and all covariates c. The term
1/(1 − r2xc) is often called the Variance Inflation Factor, abbreviated VIF.
Of course, σ2

r will decrease when a covariate is added to the model, leading
to a smaller variance of the treatment effect estimator, at least if treatment
condition and the covariates are uncorrelated.

Similar formulae have been derived for multilevel data [36]. Following
Neuhaus and Kalbfleisch [47] a grand-mean centered covariate cij can be
split into a component c̄.j that varies at the school level and a component
(cij − c̄.j) that varies at the pupil level. The fixed-slope multilevel model for
pupil i within school j is then given by
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y
ij

= β∗0 + β∗1xij + β∗2 c̄.j + β∗3(cij − c̄.j) + δ∗0j + ε∗ij , (4.6)

where δ∗0j ∼ N (0, τ∗20 ) and ε∗ij ∼ N (0, σ∗2). Note that the regression coeffi-
cients and random terms are superscribed with asterisks to stress that their
values may differ from those of the parameters in the model (4.4) without the
covariate. In the analysis stage, we condition on the values of the treatment
effect and the covariate, and these variables are treated as fixed. When the
covariate only varies at the school level the term β∗3(cij − c̄.j) is equal to
zero and may be removed from the model. Likewise, the term β∗2 c̄.j may be
removed when the covariate only varies at the pupil level. For the fixed slope
model in (4.6) the Var(β̂

1
) as given in the second column of Table 4.1 needs

to be multiplied by 1/(1− r2xc) [36], and thus Var(β̂
1
) is minimal for r2xc = 0.

For school-level randomization r2xc is equal to the correlation between xij and
c̄.j since xij and (cij − c̄.j) are automatically orthogonal, and for pupil level
randomization rxc is equal to the sample correlation between xij and (cij−c̄.j).
For a binary distributed variable xij and a normally or binary distributed
variable cij , rxc is approximately normally distributed with zero mean and
variance 1/n and thus r2xc ∈ [0, 4/n] with 95% probability [19], where n is
equal to n1n2 or n2 for pupil or school level randomization, respectively. Thus,
r2xc is small for large sample sizes, especially for pupil level randomization. A
zero sample correlation between treatment condition and covariate can also be
achieved by pre-stratification. For school level randomization pre-stratification
needs to be done on c̄.j and thus for each value of c̄.j half of the schools
must be randomized to the treatment condition and the others to the control
group. Similarly pre-stratification needs to be done on (cij − c̄.j) for pupil
level randomization. In the remainder we will assume that r2xc = 0, due to
pre-stratification or large sample sizes. Then, the optimal sample size formulae
and the Var(β̂

1
) as given in Table 4.1 hold when τ2

0 and σ2 are replaced with
τ∗20 and σ∗2, respectively, and it can be shown that this is also true for models
with a random slope with τ2

1 replaced with τ∗21 [30].

4.4.2 Effect of Including Covariates on the Values of the Variance
Components

The inclusion of a covariate will also lead to a change in the values of the
estimated variance components, given the total variance of the outcome. Sup-
pose that both components of the covariate are added to model (4.4) with
τ2
1 = 0 so that we obtain model (4.6). The changes in the estimated variance

components for the fixed slope model can be established as follows [58]. Note
that we turn from the data and the estimators to the population. The total
variance of an outcome y

ij
and the covariance of two outcomes y

ij
and y

i′j

within the same school are equal to
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Var(y
ij

) = Var(β1xij + δ0j + εij) (4.7)

Cov(y
ij
, y
i′j

) = Cov(β1xij + δ0j , β1xi′j + δ0j)

for model (4.4) with τ2
1 = 0, and

Var(y
ij

) = Var(β∗1xij + β∗2 c̄.j + β∗3(cij − c̄.j) + δ∗0j + ε∗ij) (4.8)

Cov(y
ij
, y
i′j

) = Cov
[
β∗1xij + β∗2 c̄.j + β∗3(cij − c̄.j) + δ∗0j ,

β∗1xi′j + β∗2 c̄.j + β∗3(ci′j − c̄.j) + δ∗0j

]
for model (4.6). Since Var(y

ij
) and Cov(y

ij
, y
i′j

) are given by the data and
are therefore independent of the chosen model, the Var(y

ij
) and Cov(y

ij
, y
i′j

)
given by (4.7) can be set equal to the Var(y

ij
) and Cov(y

ij
, y
i′j

) given by
(4.8). From these two equations the changes in the estimated variance compo-
nents can be derived and for both levels of randomization these are given in
Table 4.2. We assume that r2xc = 0 so that β̂

1
= β̂∗1, and that n1 is large. The

total change due to the inclusion of both components of the covariate is equal
to the sum of the change due to the inclusion of the separate components.
From Table 4.2 it follows that only the estimated variance component at the
level at which the covariate varies decreases when a covariate is added to the
model. Likewise, it can be shown that for models with a random slope of xij
only τ̂2

0 or σ̂2 change when the school or pupil level component of the covariate
are added to the model respectively under the assumption that r2xc = 0 within
each school [30, chap. 4].

Table 4.2. Changes in variance components due to the inclusion of a covariate to

the two-level model with a random intercept and a fixed slope. It is assumed that

n1 is not too small and that r2xc = 0.

Changes due to the inclusion of c̄.j Changes due to the inclusion of cij − c̄.j

τ̂2
0 − τ̂∗20 = β̂∗22 Var(c̄.j) > 0 τ̂2

0 − τ̂∗20 ≈ 0

σ̂2 − σ̂∗2 = 0 σ̂2 − σ̂∗2 ≈ β̂∗23 Var(cij − c̄.j) > 0

4.5 Optimal Experimental Designs for Multilevel
Logistic Models

When the responses yij are measured on a binary scale the multilevel logistic
model applies, see chapter 6. Assuming treatment by school interaction (i.e.,
a random slope) it is equal to
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y
ij

= πij + εij =
1

1 + exp[−(β0 + β1xij + δ0j + δ1jxij)]
+ εij ,

where πij is the probability of a response y
ij

= 1, and εij has zero mean
and variance πij(1 − πij). The independent variable xij is coded −1 for the
control group and +1 for the intervention group. Again we use the Var(β̂

1
)

as optimality criterion. An analytical expression for it can only be obtained
when the so-called first order Marginal Quasi-Likelihood [MQL, 14] estimation
method is used. It can then be shown [35] that the Var(β̂

1
) is equal to the

formulae given in Table 4.1 when σ2 is replaced with

1
2
(4 + eβ0+β1 + eβ0−β1 + e−β0+β1 + e−β0−β1). (4.9)

To calculate optimal sample sizes the variance components must be known or
a reasonable prior specification must be given.

First order MQL, however, produces biased estimates [15, 53], while Pe-
nalized Quasi-Likelihood [PQL, 15] and estimation by means of numerical
integration [16] perform better [54], and chapter 9. Only for second order PQL,
however, the test statistic to test the significance of β1 was shown to follow the
standard normal distribution [38]. Therefore a simulation study was done [35]
to investigate how the variance of the treatment effect estimator, Var(β̂

1
), is

affected when second order PQL with unknown variance components is used
instead of first order MQL with known variance components.

For models with a fixed slope (i.e., τ2
1 = 0) data sets were generated for

the following parameter values: β0 = 0; β1 = 1.5, 1, 0.5, or 0; and τ2
0 = 1, 0.5,

0.25, or 0. Three different allocations of units were used: (n1, n2) = (10, 40),
(n1, n2) = (20, 20), and (n1, n2) = (40, 10). Both levels of randomization
were considered. Thus there were 96 combinations of level of randomization,
allocation of units, and parameters values, which will be called simulation
combinations, and for each of these 200 data sets were simulated. Second
order PQL as implemented in the computer program MLwiN [48] was used
for parameter estimation. For each of the 96 simulation combinations the
Sampling Variance of β̂

1
was estimated by

Sampling Variance(β̂
1
) =

∑200
r=1(β̂1r

−
∑200
s=1 β̂1s

/200)2

199
,

where β̂
1r

is the estimate of β1 from the r-th simulated data set. Furthermore,
a correction factor was calculated, which is equal to the Sampling Variance(β̂

1
)

divided by the Var(β̂
1
) as obtained from first order MQL with known variance

components. This factor may be used as a multiplication factor to the ana-
lytical Var(β̂

1
) as given in Table 4.1 with σ2 replaced with (4.9) when second

order PQL is used instead of first order MQL.
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The results of the study show that the Sampling Variance(β̂
1
) increases

with τ2
0 , β1 and the number of pupils per school (given the total sample size

n1n2) when randomization is done at the school level. For pupil level random-
ization it only increases with β1. Furthermore, it is larger for randomization
at the school level, especially when τ2

0 and/or n1 are large. These conclusions
also hold for first order MQL with known variance components, see Table 4.1
with σ2 replaced with (4.9). The results of the simulation study suggest that
on average the Var(β̂

1
) as obtained with second order MQL needs to be

multiplied by 1.2 to get the Var(β̂
1
) for first order PQL. The correction factor

is fairly constant across allocations of units so that the optimal allocations
of units obtained with the formulae for first order MQL with known variance
components is also optimal for second order PQL.

A simulation study was also done for models with a random slope and ran-
domization at the pupil level. The following parameter values and allocations
of units were used: β0 = 0; β1 = 1.5, 1, 0.5, or 0; τ2

0 = 1, 0.5, 0.25, or 0; τ2
1 = 0,

or 0.25, and (n1, n2) = (10, 40), (n1, n2) = (20, 20), or (n1, n2) = (40, 10), so
there were 96 simulation combinations. As for first order MQL with known
variance components the Sampling Variance(β̂

1
) increases with τ2

1 and the
number of pupils per school, again given the total sample size n1n2. The
results of the study suggest that the correction factor is about 1.2 for second
order PQL.

4.6 Optimal Experimental Designs for Longitudinal Data

4.6.1 Sample Sizes, Duration, and Power

In longitudinal intervention studies persons are randomly assigned to the con-
trol or experimental condition, and their responses are measured at successive
points in time. The multilevel model is an appropriate tool for the analysis
of data obtained from experiments with longitudinal data. The model that
relates the response yij of person j to time point i is given by

y
ij

= β
0j

+ β
1j
ti + εij , (4.10)

assuming linear trend for the sake of simplicity. The intercept β
0j

and slope
β

1j
vary across persons and are predicted from the treatment condition xj :

β
0j

= β00 + β01xj + δ0j (4.11a)

β
1j

= β10 + β11xj + δ1j , (4.11b)

where the treatment condition has values −1 and +1 for the control and
intervention group, respectively. The random error terms δ0j ∼ N (0, τ2

0 ),
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δ1j ∼ N (0, τ2
1 ), and εij ∼ N (0, σ2) are assumed to be independent of the

treatment condition, and the covariance between δ0j and δ1j is denoted by
τ01. Substitution of (4.11) into (4.10) results in the single equation model

y
ij

= β00 + β01xj + β10ti + β11xjti + δ0j + δ1jti + εij . (4.12)

Aim of a longitudinal intervention study is to detect whether the linear time
effect varies across the two treatment conditions, that is, we want to test the
cross-level interaction effect β11. The variance of β̂

11
depends on the total

number of persons n, the number of measurements per person m, and the
duration of the study d. For equally spaced measurements between t1 = 0 and
tm = d, it is equal to

Var(β̂
11

) =
σ2

nms2
+
τ2
1

n
, with s2 =

1
m

m∑
i=1

(ti − t̄ )2, (4.13)

see Galbraith and Marschner [13]. The variance s2 of the time points is an
increasing function of the study duration d. From (4.13) it follows that the
Var(β̂

11
) decreases with increasing m, n, and d. However, increasing n will

have a larger effect on Var(β̂
11

) than increasing m and d, since m and s2 only
appear in the denominator of the first term of Var(β̂

11
).

The test statistic ẑ = β̂
11
/
√

Var(β̂
11

) is approximately normally dis-
tributed when the null hypothesis H0 : β11 = 0 is true. The relation between
study duration d, sample sizes m and n and power 1− γ is given by

σ2 +ms2τ2
1

nms2
=

β2
11

(z1−α/2 + z1−γ)2
. (4.14)

The power for the test depends on the true effect β11, of which a realistic
value may be difficult to specify. The standardized effect size for linear trend
is defined as the group difference in linear trend divided by the standard de-
viation of the linear trend: ES = β11/τ1 [51]. Substitution of the standardized
effect size into (4.14) results in

σ2/τ2
1 +ms2

nms2
=

ES 2

(z1−α/2 + z1−γ)2
,

which shows that only the ratio σ2/τ2
1 of the variances σ2 and τ2

1 needs to be
known to calculate the power level of a proposed design. It should be noted
that the comments on power calculations for tests with two-sided alternative
hypothesis in section 4.5 are also applicable to equation (4.6.1).

As an example consider a study for which it is expected that σ2/τ2
1 = 5,

and for which the power to detect a size ES = 0.5 in a two-sided test with
α = 0.05 should be at least 0.8. Figure 4.3 shows the power levels as a function
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of n and for two different values of the study duration d (d = 2, 4), and for
two different values of m (m = 5, 9). It follows that increasing m only has a
small effect on power relative to increasing d and n. For d = 4 the number of
persons to reach a power of 0.8 is about 42 (m = 9) and about 48 (m = 5).
For d = 2, a much larger number of persons is needed.
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Fig. 4.3. Power as a function of m, n, and d.

It should be noted that these results hold for linear growth. Results for
higher order polynomial growth can be found elsewhere [51]. As shown by
Laird and Wang [21], efficiency is gained by dropping in (4.12) the term β01x,
which reflects the group difference at time point 0 and is therefore equal to
zero in case of randomized trials. Model (4.12) implies a certain nonstationary
covariance structure for the repeated measures. For optimal designs under
different covariance structures, see, e.g., Winkens et al. [64]. Furthermore,
the extensions to studies with drop-out and missing data are presented by
others [13, 17, 33, 44, 45]. The computer programs Mplus [46] and OPTDES
[52] can be used to evaluate and compare alternative designs for studies with
longitudinal data.
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4.6.2 Some Other Results on Optimal Experimental Designs for
Longitudinal Data

The multilevel models with covariates as given in section 4.4 may also be used
for longitudinal designs in which two treatment conditions are compared and
the dependent variable is measured once at pre-test and once at post-test. The
outcome variable in our model (4.6) is the post-test measurement, whereas
the pre-test measurement is included as a covariate. One may also choose
to use a model in which the dependent variable is equal to the difference
between the pre- and post-test (i.e., the change score) and in which the pre-test
measurement of the dependent variable is not included as a covariate. Due
to randomization both approaches yield the same expected treatment effect.
The first approach, however, is preferred since due to the inclusion of the
pre-treatment measurement as a covariate a lower residual variance in the
outcome, and consequently more statistical power, is achieved. For a repeated
measures formulation of both methods, ANCOVA and ANOVA of change, see
Laird and Wang [21] and Van Breukelen [62].

The papers by Feldman and McKinlay [11] and McKinlay [29] also focus
on longitudinal designs. These papers are restricted to cluster randomization
and the change score is used as dependent variable. Two types of designs are
considered in these papers: cohort designs and cross-sectional designs, whereas
in the previous sections of this chapter we only focused on cohort designs.
In both cohort and cross-sectional designs a set of clusters is sampled. In a
cohort design the same individuals are measured at at least two time points.
In a cross-sectional design a new sample of individuals is drawn within each
cluster at every time point. Cohort designs are favored above cross-sectional
designs if the clusters contains relatively few subjects, if the population is
stable throughout the intervention period, if the intervention period is short
enough to prevent substantial dropout, and if the act of measurement does
not influence the subjects’ subsequent behavior.

The variance of the treatment effect estimator was used as optimality
criterion in the papers mentioned above. The relative efficiency of cohort
designs versus cross-sectional designs was studied [11, p. 68] as a function of
the subject autocorrelation (i.e., the correlation over time between individual
level means) denoted ρs. They show that a cohort design is more efficient than
a cross-sectional design for any ρs > 0, but the ρs has to be unrealistically
close to unity to provide noticeable gains in efficiency. Thus for weak sub-
ject autocorrelation the cross-sectional design may be preferred since for this
design memory effect and drop-out do not occur.

The optimal number of clusters per treatment condition and the optimal
number of individuals per cluster were calculated by McKinlay [29] for both
cohort and cross-sectional designs. The cost function that was used by McKin-
lay takes drop-outs and recovery of drop-outs in a cohort design into account,
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and allows the costs at the cluster level to vary across treatment conditions.
In an example McKinlay shows that cohort designs are more cost efficient for
short trials and high autocorrelations at both the cluster and individual level.

4.7 Optimal Designs for Surveys

In multilevel surveys generally more than one parameter is of main interest.
These parameters may be regression coefficients corresponding to level-one or
level-two predictors or cross-level interactions, as well as variance components
or the intra-school correlation coefficient. Designing multilevel surveys may
be very complicated since the values of the predictor variables are not under
experimental control, whereas their means, variances and covariances as ex-
pressed in the design matrix, as well as the covariance matrix of the random
effects need to be known in advance to design the survey optimally. We will
first derive optimal sample size formulae when there is just one explanatory
variable at either the pupil or school level, and thereafter focus on the case with
more than one explanatory variable. Optimal designs for variance parameters
are the subject of the next section.

Let us first assume that the multilevel model only contains a school level
explanatory variable xj :

y
ij

= β0 + β1xj + δ0j + εij .

For this model it can be shown [30, chap. 4] that the Var(β̂
1
) is equal to

Var(β̂
1
) =

σ2 + n1τ
2
0

n1n2s2x
,

where s2x is the variance of xj defined as
∑
j(xj − x̄.)2/n2. This variance

reduces to 1 if xj is treatment coded −1 and +1 with both values occurring
with 50% probability, as in Table 4.1. The optimal sample sizes for estimating
β1 as efficiently as possible are equal to those for optimal experimental designs
with school level randomization as given in Table 4.1.

Now suppose that the explanatory variable is a pupil level variable xij
with school mean zero and that treatment by school interaction is absent.
Then

Var(β̂
1
) =

σ2

n1n2s2x
, with s2x =

∑
j

∑
i

(xij − x̄.j)2/n1n2, (4.15)

see Moerbeek [30, chap. 4]. Again the optimal sample sizes can be found in
Table 4.1 and are equal to those for randomization at the pupil level and no
treatment by school interaction.
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Now suppose that the model also contains a random slope, i.e.,

y
ij

= β0 + β1xij + δ0j + δ1jxij + εij .

For this model the Var(β̂
1
) is equal to

Var(β̂
1
) =

σ2 + n1τ
2
1 s

2
x

n1n2s2x
, (4.16)

if the explanatory variable xij has school mean zero and its variance s2x is the
same within each cluster. The optimal sample sizes are given in Table 4.1 and
are equal to those for randomization at the pupil level and a random slope if
σ2 is replaced with σ2/s2x. Note that the variance s2x in (4.15) and (4.16) is
equal to 1 if xij is treatment coded −1 and +1 and both values occur with
50% probability within each cluster, as in Table 4.1.

Sample size formulae for the model with explanatory variables at the
pupil and/or school level, with cross-level interaction terms and with fixed
or random slopes for the pupil level variables are presented by Snijders and
Bosker [57]. Their computer program PinT (Power in Two-level designs) [4]
calculates approximate standard errors of regression coefficients for different
combinations of n1 and n2 using the cost constraint (4.1).

To illustrate the use of the program PinT we work out the following exam-
ple. Suppose we want to assess the relationship between a test score on the one
side and the pupil’s socioeconomic status (SES) and school size on the other
side. The data structure has two levels: pupils are nested within schools. The
budget C that is available for his study is equal to 500c1 whereas the costs c2
for sampling a school are equal to 5c1, with c1 the costs for sampling a pupil
in an already sampled school. Figure 4.4 shows the total number of pupils
and the number of schools as a function of the number of pupils sampled per
school as calculated by PinT. As follows from this figure the number of school
decreases as the number of pupils per school increases. This is obvious since
with large n1 less money is available for sampling schools. For the same reason
the total number of pupils increases with the number of pupils per school, see
Figure 4.4.

In order to select the optimal sample sizes a multilevel regression model
must be specified and an optimality criterion must be chosen. Let us assume
the effect of SES on the test score is constant across schools. The multilevel
model then becomes

y
ij

= β0 + β1SES ij + β2SCHOOL SIZE j + δ0j + εij , (4.17)

where y
ij

is the score of pupil i within school j. Standard errors of both
estimated regression coefficients will be used as optimality criteria. To calcu-
late approximate standard errors for these regression coefficients, a reasonable
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Fig. 4.4. Number of schools and total number of pupils as a function of the number
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guess of the within- and between-school covariance matrices ΣW and ΣB of
the predictor variables, and of the variances of the random effects is needed.
In the PinT manual guidelines for obtaining such guesses are given. For conve-
nience it is assumed that all predictor variables have zero mean and variance 1.
We assume that 80% of the variance in SES is located at the pupil level, thus
ΣW = (0.8). The remaining 20% is between-group variance. The covariance
of SES and SCHOOL SIZE is assumed to be equal to 0.2, thus

ΣB =
(

1 0.2
0.2 0.2

)
.

Furthermore, let us assume that σ2 = 0.6, and that τ2
0 = 0.1. The standard

errors of β̂
1

and β̂
2

for these values are plotted in Figure 4.5. Note that
se(β̂

1
) < se(β̂

2
), and that the se(β̂

2
) is a convex function of n1, whereas

se(β̂
1
) decreases with increasing n1. Thus the optimal design for estimating

the effect of SES on the test score as efficiently as possible is achieved by taking
n1 as large as possible. The optimal design for estimating β2 as efficiently as
possible, however, is obtained for n1 = 5. But since the function of se(β̂

2
) is

quite flat near this formal minimum, values of n1 close to this formal minimum
may be chosen as an alternative.
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4.8 Optimal Designs for Variance Parameters

Although the regression coefficients are generally of main interest, in some
multilevel studies one may also be interested in estimating the variance param-
eters as efficiently as possible. For two levels of nesting asymptotic variances
of the variance components in linear multilevel model with a random intercept
and a fixed slope are given by Longford [27] and shown in the first column of
Table 4.3. The optimal sample sizes for estimating the variance components as
efficiently as possible given the cost restriction (4.1) were derived by Cohen [7].
To obtain sample size formulae of practical use, Cohen used an approximation
to the Var(τ̂2

0) and showed that the optimal sample sizes for this approximated
Var(τ̂2

0) are usually the same as those for the true Var(τ̂2
0). The optimal n1 are

also presented in Table 4.3, the optimal n2 follow from the cost restriction.
The variance of ρ̂ was given by Donner [8] and is also shown in Table 4.3.

For this parameter the analytical formulae for the optimal sample sizes are
too complex. Instead, one may substitute n2 = C/(c1n1 + c2) into the Var(ρ̂)
which is then a function of n1 and ρ, c1, c2, and C. Once a reasonable prior
specification of the value of ρ has been made the Var(ρ̂) may be plotted as
a function of n1 and the optimal n1 may be established. Such a plot is given
in Figure 4.6, in which the Var(ρ̂) is plotted as a function of the true ρ and
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Table 4.3. Variance of variance components and intra-class correlation coefficient

and optimal n1.

Optimality criterion Optimal n1

Var(σ̂2) =
2σ4

n2(n1 − 1)

C − 2c2
2c1

Var(τ̂2
0) =

2σ4

n2n1

"
1

n1 − 1
+ 2

ρ

1− ρ
+ n1

„
ρ

1− ρ

«2
# s

c1

„
c1 + 8c2

ρ

1− ρ

«
+ c1

2c1
ρ

1− ρ

Var(ρ̂) =
2[(1− ρ)(1 + (n1 − 1)ρ)]2

n1(n1 − 1)(n2 − 1)
analytical formula complex

the number of pupils per school for c1 = 100, c2 = 200, C = 8000. As follows
from this figure the Var(ρ̂) increases with the true ρ. The value n1 at which
the Var(ρ̂) is minimized decreases when the true value ρ increases.

Although we use the variance of the estimators σ̂2, τ̂2
0, and ρ̂ as optimality

criterion, it has to be noted that the estimators are skewed and thus statistical
tests of and confidence intervals for these parameters do not depend on the
variance only.
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4.9 Robustness of Optimal Designs

The values of the parameters of the multilevel random effects regression model
that is used to analyze the data have to be known in advance to plan multilevel
studies as efficiently as possible. On the other hand, the study is implemented
to get some knowledge of the values of these unknown parameters. To solve
this problem one may use a reasonable prior specification of these parameter
values. Such values may be obtained from the results of comparable studies
(see the references in Table 1 of Murray et al. [43]), from a pilot study, or
from theoretical opinions about the minimally relevant treatment effect. One
may, however, wonder to what extent the optimal design is robust against
misspecification of the model parameters. For each model parameter θ the
robustness can be expressed in terms of the relative efficiency as given by
(4.2). If, for example, Φ(M−1(X(η, ξ),θ)) = Var(β̂

1
) and randomization is

done at the school level, the efficiency of the design ξ = (n1, n2) obtained with
an incorrect prior specification of the value of ρ relative to the efficiency of
the design ξ∗ = (n∗1, n

∗
2) obtained with the true value of ρ is given by(

n∗1ρ+ (1− ρ)
n1ρ+ (1− ρ)

)(
n1n2

n∗1n
∗
2

)
,

where ρ is the true value of the intra-school correlation coefficient.
As an example let us consider the model (4.4) with randomization at the

school level and no treatment by school interaction (i.e., τ2
1 = 0). The optimal

sample sizes for estimating β1 are given in Table 4.1, whereas those for the
variance components σ2 and τ2

0 can be found in Table 4.3. The intra-school
correlation coefficient ρ needs to be known in order to calculate the optimal
sample sizes for β1 and τ2

0 . Let us assume that C = 10000, c1 = 2, and c2 = 30,
and that the true ρ = 0.07. Then the robustness of the optimal designs for β1

and τ2
0 is plotted in Figure 4.7 in terms of the relative efficiency as a function

of ρ. As follows from this figure the optimal design for β1 is a bit more robust
against incorrect prior guesses of ρ than the optimal design for τ2

0 . For ρ = 0.07
the relative efficiency especially decreases very rapidly when a too low prior
guess for ρ is supplied. When the incorrect prior guess of ρ lies within the
interval [0.04, 0.15] the relative efficiency for both parameters is high (i.e.,
> 0.9). This is, however, not necessarily the case for each combination of C,
c1, and c2.

Different approaches have been proposed to derive robust optimal designs
for multilevel model. One such approach is the use of sample size re-estimation.
The optimal sample sizes are calculated based on prior estimates of the model
parameters as obtained from subject-matter knowledge or an educated guess.
Then, a predefined proportion of the number of clusters or of the number
of persons within clusters is sampled, the data are collected, and the model
parameters are estimated on basis of the collected data. Then, the optimal
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sample sizes are re-estimated and the remainder of the data are collected. All
data are used in the final analysis, hence the pilot is referred to as an internal
pilot. This approach has been evaluated for cluster randomized trials [22] and
surveys with nested data [31] by means of simulation studies. The results
showed that sample size re-estimation has large control over power and the
costs of the study. Another approach is the use of Bayesian optimal designs
[59, 61]. This approach allows taking uncertainty about the model parameters
into account by specifying prior distributions of these parameters. Then, a
large number of times the model parameters are sampled from their prior
distributions, and the power levels of the test statistic of the model parameter
of interest are calculated. The power distribution that is thus obtained reflects
the uncertainty in the model parameters. The computer program WINBUGS
can be used to calculate Bayesian optimal designs [60]. Another approach to
calculate robust optimal designs is the use of maximin optimal designs. A
maximin optimal design is the design among all possible designs in the design
space χ that maximizes the minimum relative efficiency over the parameter
space. For an application of maximin optimal designs we refer to Berger and
Tan [3].
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4.10 Concluding Remarks

In this chapter four design issues for the design of multilevel experiments and
surveys were considered: the required budget to obtain a specified power on
the test of a certain parameter, the optimal sample sizes at each level of the
multilevel data structure, the robustness of optimal designs, and the optimal
level of randomization to treatment conditions. As optimality criterion the
variance of model parameters was used, since minimum variance leads to
maximum power of statistical tests, at least assuming unbiased parameter
estimation and an approximately normal distribution of the estimator. When
designing multilevel experiments the treatment effect is generally of main
interest and so its variance is used as optimality criterion. For multilevel
surveys more than one parameter may be of interest and it may be worthwhile
to derive a multiple-objective optimal design [40].

The statistical optimality criteria may or may not conflict with other
criteria. In some circumstances ethical criteria may be applied. For example,
in some experiments it may be unethical to treat certain individuals within
a certain cluster while others are not treated. In this case randomization
at the individual level will become impossible. Practical criteria consist of
the need to reduce costs and administrative efforts, political and logistical
reasons, and the need to avoid control group contamination, which occurs
when information leaks from the intervention group to the control group.
Sometimes there is no alternative to cluster randomization. This may occur
in, for example, community-based interventions where the intervention will
necessarily affect all members of a cluster.

The optimal sample sizes as given in this chapter may be considered as
guidelines which have to be pursued as much as possible in designing multilevel
studies. They were calculated under the assumption that cluster sizes do not
vary and that the costs do not vary across treatment conditions, which is not
always plausible in practice. For instance, school sizes in private schools may
be smaller than those in public schools. And even if school sizes were equal,
there will always be some non-response due to drop-out or for other reasons.
The effects of unbalanced cluster sizes on the variance of the treatment effect
estimator in cluster randomized trials are studied by Manatunga et al. [28],
Kerry and Bland [20], and Van Breukelen et al. [63]. The assumption of equal
costs across treatment conditions may also be unrealistic, and optimal sample
size formulae for varying costs per treatment condition have been published
by Liu [26].
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Many Small Groups

Stephen W. Raudenbush

University of Chicago, Department of Sociology

5.1 Introduction

Hierarchical data from many small clusters arise by necessity and by design.
They arise by necessity when the aim is to study married couples [1], identi-
cal twins [25], siblings [12], paired comparison tasks [2], cooperative learning
groups [36], multiple informants of child social behavior [20], and studies of
animal reproduction [35]. They arise by design in cross-sectional studies: clus-
ter randomized trials [11, 18], multisite randomized trials [3, 6], and surveys
that sample a small number of persons in each of many neighborhoods [14] or
a small number of teachers in each of many schools [17]. In repeated measures
studies, it is common to encounter small numbers of observations for each of
many persons in short time-series designs, such as studies of student learning
based on annual assessments [37], the extreme case being a pre-post design.

In my experience teaching methods for multilevel data, students and other
workshop participants have often expressed dismay that their data involve
many clusters but few cluster members. However, there are often good reasons
for such design choices. If the primary aim of a study is to estimate fixed
regression coefficients (as opposed to variance components or realizations of
random effects), a design that minimizes cluster size, n, and maximizes the
number of clusters, J , may be optimal (cf. chap. 4 in this volume; also [7,
26, 30, 38]). Optimal n per cluster depends on the cost of sampling at each
level, the magnitude of variation at each level, and research question at hand.
Choosing a small n is wise when little variability exists within clusters or
when it is comparatively expensive to assess each individual within a cluster
(relative to the cost of sampling clusters).

Yet under certain conditions, the “small n large J” scenario can pose
challenges to valid statistical inference and can create demanding computa-
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tional tasks as well as problems of statistical precision. The problems are
likely to be less challenging in the case of linear models with normal random
effects at each level and more challenging when non-linear link functions and
non-normal data are involved. These problems are likely to be less challenging
when the aim is to estimate fixed regression coefficients, and more challenging
when the aim is to draw inferences about random regression coefficients (e.g.,
cluster-specific intercepts and slopes) or to estimate variance and covariance
components at the second level of the hierarchy. I provide a brief overview of
each scenario before considering each in more detail.

5.1.1 Linear Models, Normal Random Effects

Consider a two-level setting with J clusters and n members per cluster. One
aim might be to study fixed regression coefficients. A second aim might be
to study random coefficients, that is, cluster-specific coefficients defined as
randomly varying over clusters. A third aim might entail inference about
variation and covariation in such random coefficients defined as a universe of
clusters. How the “small n large J design” fares will depend on which of these
three aims is of central interest in a given study.

For linear models with normal random effects at each level, having “small n
and large J” generally creates no problems in statistical inference in estimating
fixed regression coefficients. Such a design will be inefficient if it is far more
expensive to sample clusters than to sample cluster members, especially if
variation within clusters is large relative to variation between clusters. In other
cases such a design may be optimal. Either way, inferences about regression
coefficients proceeds smoothly, and it is a simple matter to compute consistent
and robust standard errors as a check on the sensitivity of inferences to model
assumptions.

When the aim is to estimate cluster-specific intercepts or slopes, “the small
n large J” strategy tends to be more problematic unless the fit of the model
at level 1 is very good. Holding constant the fit of the model, the optimal
sample size per cluster for estimating random coefficients and second-level
variance components will tend to be larger than when the aim is to estimate
fixed regression coefficients. In part, the difficulty is simply one of obtaining
adequate precision with available resources. However, a more subtle problem
is that the likelihood for the second-level variance will sometimes tend to
be skewed even if J is quite large. In this scenario, the maximum likelihood
(ML) estimator may poorly represent the plausible values of the variance,
and inferences based on large-sample normal theory for the ML estimator can
be misleading. Moreover, empirical Bayes estimates [cf. 23] of cluster-specific
intercepts (or slopes), which condition on the ML estimator of the second-level
variances, may be accompanied by negatively biased standard errors.
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In general, the researcher must keep the complexity of the model of the
covariance structure at level-2 in check when n per cluster is small. In essence,
the lack of data at level 1 requires the imposition of more assumptions (e.g.,
that certain slopes don’t vary). The availability of robust standard errors
minimizes the impact of these assumptions on inferences about the fixed
regression coefficients but this insurance does not apply to inferences about
the random coefficients or the variance-covariance components.

5.1.2 Non-Linear Links and Non-Normal Random Effects

As mentioned, the problems that can afflict variance estimation in the “small
n large J” scenario do not seriously affect inference about the fixed regres-
sion coefficients in the case of linear models and normal random effects.
This happy result, which derives from the asymptotic orthogonality of the
variance estimates and the mean structure estimates under normality and
linearity, does not extend to the case of non-linear link functions and non-
normal random effects. For these models, beliefs about level-2 variability have
potentially strong implications for beliefs about the mean as characterized
by regression coefficients. The sensitivity of the fixed regression coefficients
to inferences about variances is more pronounced under unit-specific than
population-average models [15].

Moreover, concerns about inferences for random coefficients and variance
components, mentioned above in the case of linear models and normal random
effects, are, if anything, more pronounced in the case of non-linear models
and non-normal random effects. Discrete data generally carry less information
per cluster, holding constant n, than do continuous data. This tendency is
especially pronounced with the outcome data are highly skewed; examples
involve binary outcomes with small probabilities of occurrence and counts
based on low event rates.

Finally, a computational problem arises in the non-linear case that is not
present in the linear-normal case. In general, likelihood-based inference for
hierarchical models requires integration of the random effects from the joint
distribution of the random effects and the observed data. The required integral
is available in closed form in the linear-normal case. In the non-linear and
non-normal case, the integral is not available in closed form and must be
approximated using numerical or Monte Carlo methods (see chap. 6 and 9 in
this volume). If n per cluster is sufficiently large, approximating the integral
is comparatively easy because the integrand tends toward normality. When n
is small, the integration problem is more challenging, though this problem is
clearly soluble given current knowledge and technology.
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5.1.3 Focus and Organization of This Chapter

Attention is confined in this chapter to two-level models where the level-1
outcome, conditional on the random effects, is distributed according to an
exponential family with canonical link function (e.g., continuous outcomes
with identity link, binary outcomes with a logit link; Poisson-distributed count
data with a log link). Some or all of the coefficients at level 1 vary over
level-2 units according to a multivariate normal distribution. Although model
checking and robust variance estimation are essential, assuming normality
at level 2 is useful for planning research and for considering the issues that
arise in the “small n large J” scenario, the focus I have been assigned in this
chapter.

I will generally be concerned with likelihood-based inference. This includes
inference based on Bayesian methods, which converge to likelihood-based in-
ference in the case of large J . I will comment briefly on the added value of the
Bayesian perspective in certain contexts, but I refer the reader to chapter 2
for a thorough discussion of that perspective.

After this introduction, the second section considers the model. The third
section considers how the model might be tailored to specific applications
when n per cluster is small by necessity or by design. The fourth section
considers statistical issues that arise in linear models with normal random
effects. The fifth section considers the additional issues that arise in the non-
linear and non-normal case.

5.2 The Model

The linear models I shall discuss have the form

y
j

= Xjβ +Zj δj + εj (5.1)

where

• y
j
[nj , 1] is the vector of outcomes with elements yij , the outcome for the

i-th level-1 unit within the j-th level-2 unit;
• Xj [nj , f ] is a known matrix of predictors associated with the fixed effects

vector β[f, 1];
• Zj [nj , r] is a known matrix of predictors associated with the random effects

vector δj [r, 1]; and
• εj [nj , 1] is a vector of level-1 random effects having elements εij .

The indices thus identify level-1 units i = 1, . . . , nj nested within level-2 units
j = 1, . . . , J . In many applications we shall have nj people nested within
cluster j but in some cases the level-1 units will be repeated measurements
nested within people.
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For the expository purposes of this paper, we shall assume the level-1
random effects εij to be independently and identically distributed as N (0, σ2)
unless otherwise specified. These are also independent of the level-2 random ef-
fects vectors δj , j = 1, . . . , J , which are independently, identically distributed
as r-variate N (∅,Ω).

Equation (5.1) is the “mixed model” formulation. In specifying this model,
it is often conceptually appealing to build it level by level. Thus, we shall write
the level-1 model as

y
j

= Ujβj + εj , (5.2)

where Uj [nj , p] is the matrix of level-1 predictors having rows U ′
ij [1, p], and

β
j
[p, 1] is a vector of level-1 coefficients. At level-2 the level-1 coefficients

become outcomes:
β
j

= Hjγ + δj , (5.3)

where Hj [p, f ] is the matrix of level-2 predictors and γ is the f × 1 vector of
level-2 coefficients. Substituting (5.3) into (5.2) produces a combined model

y
j

= UjHjγ +Ujδj + εj , (5.4)

which is clearly a special case of the mixed model (5.1) with

Xj = UjHj ; Zj = Uj .

The mixed model formulation is more general than the combined model (5.4)
because (5.4) requires every level-1 coefficient to have a random effect at level
2 (p = r). However, the structure of the combined model (5.4) is quite useful
for expository purposes. Particularly if we can assume Uj to be of full column
rank p, we can gain insight by writing the combined model using the ordinary
least squares estimator as the outcome:

(U ′
jUj)

−1U ′
jyj = β̂

j
= Hjγ + δj + εj (5.5)

where εj ∼ N [∅, σ2(U ′
jUj)

−1]. Note that U ′
jUj =

∑nj

i=1UijU
′
ij ≡ njΣu. Note

further that, given β
j

= βj , the variance covariance matrix of β̂
j

is

Var(β̂
j
| β

j
= βj) =

σ2

nj
Σ−1
u .

This conditional variance will be small if a) nj is large; b) σ2, which measures
the misfit of the level-1 model, is small; or Σu, the dispersion of the level-1
predictors, Uij , is large.

In clarifying how the level-1 design affects precision of estimation of model
parameters, a useful concept is the multivariate reliability matrix
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Λj = Cov(β
j
, β̂

j
)
[
Var(β̂

j
)
]−1 = Ω∆−1

j = Ω
(
Ω +

σ2

nj
Σ−1
u

)−1
. (5.6)

Equation (5.6) defines a matrix of regression coefficients that emerge when the
true random coefficients, β

j
are regressed on the least squares estimates β̂

j
.

Note that, holding constant Ω, Λj converges to the identity matrix Ir when
a) nj becomes large, b) σ2 becomes small, or c) Σu becomes large, meaning
that Σ−1

u converges to the null matrix.
The combined model (5.5) creates a useful framework within which we can

study the properties of estimators of the three quantities of interest: the fixed
regression coefficients, γ; the random coefficients, β

j
, j = 1, . . . , J, and the

variance-covariance components, Ω.

5.2.1 Fixed Regression Coefficients

The variance-covariance matrix of β̂
j
, the outcome of (5.5), is

Var(β̂
j
) = Var(δj + εj) = Ω +

σ2

nj
Σu = ∆j .

This leads immediately to the generalized least squares estimator

γ̂ =

 J∑
j=1

H ′
j∆

−1
j Hj

−1
J∑
j=1

H ′
j∆

−1
j β̂j , (5.7)

which has as its variance matrix

Var(γ̂) =

 J∑
j=1

H ′
j∆

−1
j Hj

−1

. (5.8)

Equation (5.7) assumes ∆j to be known. In practice it will equated to its ML
or restricted ML estimator [see 5, chap. 10].

A useful re-expression for (5.8) is

Var(γ̂) =

 J∑
j=1

H ′
jΩ

−1ΛjHj

−1

. (5.9)

As (5.9) shows, the weight accorded each unit j in the estimation of γ is
proportional to its reliability matrix Λj .

Example 1. SupposeHj is the identity matrix. Thus γ is the population mean
of β

j
. Then the information in the data about γ is the precision of γ̂, that is

the inverse of its variance
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[Var(γ̂)]−1 = Ω−1
J∑
j=1

Λj . (5.10)

Increasing nj will increase the information about γ only by pushing Λj toward
Ir. If Λj is already near Ir because σ2 is small or Σu is large, increasing nj
will add little to the information about γ. However, if σ2 is appreciable and
Σu is modest, and especially if it is comparatively inexpensive to increase nj ,
doing so may add significantly to the information about γ at small cost.

Example 2. Suppose further that β
j

is univariate and is, in fact, the mean of
y in cluster j. Thus β̂

j
is the sample mean y

j
. Then (5.10) becomes

[Var(γ̂)]−1 =
J∑
j=1

λj
ω
,

where ω = Var(β
j
) and

λj =
ω

ω + σ2/nj
.

Here λj is the ratio of the variance ωj of the “true mean” β
j

to the variance of
its estimator, the sample mean y

j
. We shall use this expression several times

in later discussions.

5.2.2 Random Regression Coefficients

The conditional mean of the random effect δj given the data y = y (and thus
β̂
j

= β̂j) and the parameters (γ, σ2,Ω) is

E (δj | y,γ,Ω, σ2) = δ∗j = Λj(β̂j −Hjγ). (5.11)

When ML estimates are substituted for the unknown parameters in (5.11),
δ∗j is the empirical Bayes posterior mean commonly used as a point estimate
of the unknown random effect δj . Note that this posterior mean is simply
the least squares residual β̂j −Hjγ “shrunk” toward a mean vector of zero.
The amount of shrinkage is large when Λj is small, that is, when the least
squares estimator β̂

j
is unreliable, as will be the case when nj is small unless

the level-1 model fits the data well so that σ2 is small or unless Σu is large.
If one wishes to estimate the coefficient βj rather than the random effect δj ,
the corresponding expression is

E (β
j
| y,γ,Ω, σ2) = β∗j = Λjβ̂j + (Ir −Λj)Hjγ. (5.12)

This is the well known weighted average of the data-based estimate β̂j and
the prior mean Hjγ. Large weight is accorded the data-based estimater when
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Λj is near Ir, that is, the least squares estimator is highly reliable. Large
weight is accorded the prior mean otherwise.

Given the parameters, the posterior variance of the random effect and the
random coefficient are equal, that is

Var(δj | y, σ2,Ω,γ) = Ω(Ir −Λj).

Thus, the posterior uncertainty about the random effect is the product of the
prior uncertainty Ω and Ir−Λj . If we consider yj to constitute the observed
data while δj constitutes the missing data, we can define Ir − Λj as the
fraction of missing information in cluster j.

5.2.3 Variance-Covariance Components

For simplicity, let us assume that σ2 is known. Given large J , the estimate of
σ2 will be precise in any case. At each iteration, the Fisher scoring estimate
of Ω will then be equal to the iterative generalized least squares estimator
[see 29, chap. 14]

vech(Ω̂) =

 J∑
j=1

(X∗)′(V ∗
j )−1X∗

−1
J∑
j=1

(X∗)′(V ∗
j )−1Y ∗

j (5.13)

where vech(·) denotes the vector of unique elements of a matrix, and

X∗ =
∂ vec(Ω)

∂(vech(Ω))′
,

V ∗
j = 2(∆j �∆j),

Y ∗
j = vec

[
(β̂

j
−Hjγ)(β̂

j
−Hjγ)′ − σ2(U ′

jUj)
−1
]
.

Each term on the right side of (5.13) is evaluated at the parameter estimates
from the previous iteration. The asymptotic variance matrix at convergence
is the inverse of the expected information

Var
[
vech(Ω̂)

]
≈

 J∑
j=1

(X∗)′(V ∗
j )−1X∗

−1

= 2

(X∗)′

 J∑
j=1

(
∆−1
j �∆−1

j

)X∗


−1

= 2
(
(X∗)′

(
Ω−1 �Ω−1

) J∑
j=1

(Λj �Λj)X∗
)−1

. (5.14)

Once again, the multivariate reliability Λj of β̂
j

plays a central role in under-
standing how nj affects precision. This becomes clear in a simple example.
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Example 3. Once again, let us consider the case in which β
j

is a scalar, the
mean of cluster j, so that Ω = ω is also a scalar. Then the Fisher information
for ω is the inverse of (5.14), which becomes

[Var(ω̂)]−1 = 1
2

J∑
j=1

λ2
j/ω

2

where λj and ω are evaluated the MLE of ωj . Thus, the information con-
tained in each level-1 unit about the level-2 variance is the sum of squared
reliability coefficients. It is because this sum of squares is likely to be small
when the typical n is small that small n can sharply undermine precision of
the estimation of the level-2 variance, even when J is fairly large.

5.3 Some Applications

The “small n, large J” setting arises by necessity and by design. It arises by
necessity when the object is to study twins, siblings, married couples, and
when repeated measures studies by necessity involve few time points. It arises
by design when “small n large J” is desirable for statistical efficiency or cost
considerations.

5.3.1 Small n, Large J of Necessity

Matched Pair Designs

Two types of matched pair designs may be distinguished: those in which pair
members are exchangeable and those in which pair members are always dis-
tinguished by an observed characteristic. A paradigm case of exchangeability
involves studies of twins. Although twin members may differ by gender, they
often do not. A second case involves randomly selected pairs of observers
chosen to assess a person or some other entity such as a classroom. In contrast,
many other matched pair designs involve non-exchangeable pair members.
Examples include pre-post designs, studies of heterosexual couples, or exper-
iments in which one pair member is assigned randomly to an experimental
group and a second is assigned to a control. The analytic model will be
generally different in these two cases.

Exchangeable Pair Members

We might begin with a simple unconditional model
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yij = β0 + δ0j + εij , (5.15a)

δ0j
iid∼ N (0, ω00), (5.15b)

εij
iid∼ N (0, σ2). (5.15c)

for i = 1, 2 and j = 1, . . . , J . Here the i subscript is exchangeable. Given
balanced data, the ML estimates of the population mean, β0, the within-pair
variance, σ2 and between-pair variance, ω00 have an interesting structure

β̂
0

=
1
2J

J∑
j=1

2∑
i=1

yij ,

σ̂2 =
1
2J

J∑
j=1

(y
1j
− y

2j
)2,

ω̂00 = max

 1
J

J∑
j=1

(y
1j
− β̂

0
)(y

2j
− β̂

0
), 0

 .

Thus, the between-pair variance estimate is the sample covariance between
pair members while the within-pair variance estimate is the average squared
difference between pair members.

The variance of the mean estimate depends on the reliability λ = ω00/(ω00

+ σ2/2) by
Var(β̂

0
) =

ω00

Jλ
.

Clearly, increasing nj is not an option here. If within-pair differences are small,
λ may still be near 1.0, restricting how large J must be to obtain adequate
precision.

In a similar vein, the variance of the between-pair variance estimate also
depends strongly on λ. When σ2 is unknown we have (for ω00 > 0)

Var(ω̂00) =
2ω2

00

(J − 1)λ2

[
1 + (1− λ2)

J − 1
J(n− 1)

]
.

In studies that compare monozygotic to dizygotic twins, one might compute
the correlation ρ̂ = ω̂00/(ω̂00 + σ̂2) for each group. One might also compute
a single model that constrains the means to be equal but allows the variance
components to differ for the two types of twins. Other twin types of interest
might be same-gender, both-male, or both-female pairs.

A likely goal in twin designs or other sibling designs is to compare pair
members who have experienced some different treatment or environment.
Such a design eliminates unobserved heterogeneity between twin pairs in the
evaluation of causal effects. The model can easily be elaborated to include
within-pair and between-pair covariates:
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yij = β0 +
P∑
p=1

Upijβp +
Q∑
q=1

HqjβP+q + δ0j + εij ,

δ0j
iid∼ N (0, ω00),

εij
iid∼ N (0, σ2),

where Upij are within-pair covariates, Hqj are between-pair covariates, and
the within- and between-variances (σ2, ω00) are now residual variances.

Non-Exchangeable Pair Members

Consider now a study of heterosexual couples. A level-1 variable — gender
— thus discriminates between pair members within every pair. We might
now modify the matched pairs model of (5.15) by adding a level-1 variable.
However, such a model has only two variance components, which enforces the
assumption that men and women have equal variances. A simple fix is to allow
distinct level-1 variances, one for each gender:

yij = β00 + β1(Female)ij + δ0j + εij ,

where (Female)ij is an indicator for females and εij has variance σ2
F for females

and σ2
M for males. The marginal distribution of the pair of outcomes is thus

bivariate normal:(
y
Mj
y
Fj

)
∼ N

((
β0

β0 + β1

)
,

(
ω00 + σ2

M ω00

ω00 ω00 + σ2
F

))
. (5.16)

This reveals that this two-level hierarchical model is equivalent to the multi-
variate model

yij = (Female)ij(βF + δF ) + (Male)ij(βM + δM ) (5.17)

where (Male)ij = 1 − (Female)ij is an indicator for males, and the bivariate
normal distribution is given by(

y
Mj
y
Fj

)
∼ N

((
βM
βF

)
,

(
ωMM ωMF

ωFM ωFF

))
. (5.18)

Equalities between (5.17) and (5.18) are clear. Level-1 and level-2 covariates
can again be added as needed given the research problem at hand.

A limitation of model (5.18) and, equivalently, of (5.16), is that variances
and covariances, and hence, correlations, are not adjusted for measurement
error. By exploiting information about measurement errors, one can solve this
problem, extending (5.17) to create

yij = (Female)ij(βF + δF + eFj) + (Male)ij(βM + δM + eMj),
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where eFj and eMj are measurement errors with variances assumed known,
leading to the bivariate distribution(

y
Mj
y
Fj

)
∼ N

((
βM
βF

)
,

(
ωMM + σ2

e ωMF

ωFM ωFF + σ2
e

))
.

Here the measurement error variances are assumed equal for males and fe-
males. This assumption can readily be abandoned if there is evidence that
measurement error variances depend on gender. Applications of this model
appear in Barnett et al. [1]. Raudenbush et al. [27] extend the model to include
repeated measures.

Short Time Series

The “small n, large J” scenario arises in many studies of individual change. For
example, researchers may use a school’s annual testing program to construct
child-specific records of cognitive growth during the elementary years [37].
Here n is the number of time points per child and generally will not exceed
five or six. Modeling issues that arise in this scenario are discussed elsewhere
in this volume (see chap. 7). Small within-person errors lead to small σ2.
Moreover, individuals are often quite heterogeneous on growth parameters
which are the random coefficients β

j
. In this setting, multivariate reliabili-

ties (5.6) are quite high. For example, in Bryk and Raudenbush’s study of
academic learning during pre-school [5, chap. 6], least squares estimates of
person-specific intercepts and growth rates displayed reliabilities of about .80.
While one tends to recommend that the number of random effects per level-2
unit should be small when n is small, I have often found that time series
as short as five points per person will often support quadratic or even cubic
growth models with ease, producing 3 or 4 random coefficients per person.
This result contrasts with data collected on persons nested within schools
or neighborhoods where the level-1 fit is often poor and the clusters are not
highly heterogeneous with respect to random coefficients of interest. In these
cases, the number of random coefficients per cluster must be sharply curtailed
when n is small.

In longitudinal studies, however, study duration will often be more im-
portant than nj in influencing Λj and therefore the precision of estimation of
model parameters. Let D denote the duration of the study in some meaningful
metric (e.g., years) and let n denote the number of time-series observations.
Then, assuming equally-spaced observations starting at time 0, the frequency
of observation will be (n−1)/D observations per year. Consider, for example,
a simple straight-line growth model for level 1 (time-series i = 1, . . . , n within
participant j):

yij = β
0j

+ β
1j
Di + εij .
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Here Di is the duration of the study at the time of observation i. Then we
have a special case of (5.6) with

Var
(
β̂

1j
| β

j
= βj

)
=
σ2

n

/
D2(n+ 1)
12(n− 1)

,

so that the reliability of the least squares estimator becomes

λj =
ω11

ω11 +
σ2

n

/
D2(n+ 1)
12(n− 1)

.

Suppose, for example, we choose n = 5 time points with a frequency of one
observation per year, so that the duration of the study is D = 4. Then the
reliability will be ω11/(ω11+σ2/10). On the other hand, with the same number
of time points (n = 5) but with frequency twice per year, the duration would
be D = 2. Now the reliability is ω11/(ω11+σ2/2.50). Despite holding constant
the number of time points, the second study produces a reliability that is likely
substantially diminished because the duration of the study has been reduced,
reducing the leverage in estimating the growth rate.

5.3.2 Small n Large J by Design

In general, the researcher must keep the complexity of the model of the
covariance structure at level-2 in check when n per cluster is small. With
this caveat in mind, we shall see that “small n, large J” can produce excellent
statistical power for some but not all research questions. In particular, we
shall examine cases for which 2 < n < 12 and J = 100.

Most two-level cross-sectional designs can be viewed as closely related
to two classical experimental designs: the cluster-randomized trial, and the
multi-site randomized trial. In the cluster-randomized trial, the key contrast
of interest is at level 2 – the cluster level. For the multi-site randomized
trial, the key contrast is at level 1. The basic design features extend to quasi-
experimental designs, though small adjustments are needed to accommodate
covariates.

Cluster-Randomized Trials

In this design, clusters rather than persons are randomly assigned to treat-
ments. Random assignment of persons is not typically feasible or desirable
given the nature of the treatment, which is crafted to operate on the entire
cluster, or because of concerns about diffusion of the treatment within clusters.
The design serves as an ideal type for many observational studies, including
comparisons of public and private schools [4, 8].
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The model may be written simply as

yij = β0 + β1(Treatment)j + δ0j + εij ,

where we assume a balanced design with n participants per cluster and with
J/2 clusters in each treatment. Here (Treatment)j is coded as 0.5 for ex-
perimentals and −0.5 for controls; thus β1 is the mean difference between
treatments. To evaluate power for “small n, large J”, we define

Var(δ0j) = ρ; Var(εij) = 1− ρ,

where ρ is the intra-cluster correlation coefficient, and the treatment effect
β1 is now a standardized effect size. Assuming ρ > 0, the F -statistic for
H0 : β1 = 0 is distributed under the alternative hypothesis as a non-central
F with non-centrality parameter Jβ2

1λ/(4ρ) with

λ =
ρ

ρ+ (1− ρ)/n
.

Thus power will increase as the number of clusters, J and the effect size β1

increase and as ρ decreases. Here λ (0 < λ < 1) may again be thought of as
the penalty for small n; holding constant ρ, λ converges to 1.0 as n increases.
Note therefore that as n increases, the non-centrality parameter converges
to a limit of Jβ2

1/(4ρ) (ρ > 0), while the non-centrality parameter increases
without bound as J increases. In this sense increasing J is more effective than
increasing n in driving up the power as long as ρ > 0.

Figure 5.1 displays power for several values of the effect size and ρ as n
varies from 2 to 10, holding J constant at 100. For a standardized effect size of
0.50, power is uniformly high. However, such an effect size is typically viewed
as quite large in many social and educational interventions. For a much more
modest effect size of β1 = .30, only n = 4 participants per cluster are needed
to achieve a power of .80 given small ρ (at .01) and only n = 7 participants
are needed for ρ = .15, typically regarded as a fairly large ρ. Only in the worst
case scenario of a small effect size (β1 = .20) and ρ = .15 is the power of the
“small n, J = 100” design inadequate. And in that case, increasing J rather
than increasing n is essential to achieving adequate power.

In sum, if the intra-cluster correlation is not too large and the effect size
is not too small, it is possible to achieve substantial power in the “small
n, J = 100” scenario. Skillful choice of covariates will typically reduce ρ to
modest values in many studies in education and human development with
only a small loss in degrees of freedom as the penalty. Thus, “small n, large
J” designs should certainly not be dismissed out of hand for this design, cost
considerations aside.



5 Many Small Groups 221

2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

Number of subjects per cluster

P
o
w

e
r

ρ = 0.01

ρ = 0.15

β1 = 0.50

β1 = 0.30

β1 = 0.20

Fig. 5.1. Power to detect the treatment effect in a cluster randomized trial with

J = 100 clusters (50 per treatment) as a function of n, the number of participants

per cluster. Power is calculated at standardized effect sizes of 0.20, 0.30, and 0.50

and for intra-cluster correlations of 0.01 and 0.15. Significance level is always 0.05.

Multi-Site Randomized Trials

The second paradigm case of a two-level experimental design involves an
experiment that is replicated in each of many clusters (often termed “sites”).
Such experiments are common in medicine, and the Tennessee class size ex-
periment provides an example in education [13]. We shall consider the case in
which n/2 participants are randomly assigned to an experimental or control
site within each of J clusters. Thus there are Jn participants overall.

The model may be written as

yij = β0 + (β1 + δ1j)(Treatment)ij + δ0j + εij .

Note that the treatment contrast is now a level-1 variable taking on a value of
(Treatment)ij = 0.5 for experimentals and −0.5 for controls. Therefore, the
treatment effect β1 + δ1j is potentially site-specific. We assume(

δ0j
δ1j

)
∼ N

((
0
0

)
,

(
ω00 ω01

ω10 ω11

))
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and

εij ∼ N (0, 1).

Once again, β1, the average treatment effect, is standardized, that is, expressed
as a ratio of the average mean difference between treatments divided by the
within-site standard deviation.

The aim now is not only to estimate the average treatment effect, β1, but
also to estimate the treatment-by-site variance component ω11 in the case of
small n with J again held constant at J = 100. Following Raudenbush and Liu
[30], we view ω11 as a standardized treatment-by-site variance and consider
values of .01, .05, and .15 to be small, medium, and moderately large. For β1,
the non-centrality parameter may be expressed as nJβ2

1/(nω11 + 4).
Figure 5.2 provides an idea of the power afforded by small n designs when

J = 100. For large effect size, even n = 4 provides high power at every value of
ω11. For a small effect size of 0.20, n = 8, n = 10, and n = 12 are required to
achieve power of .80 at small, medium, and large values of ω11, respectively.
Thus the “small n, large J” design does well (when J = 100 is viewed as
large) in the case of the multi-site randomized trial.

But can the “small n, J = 100” design detect the variance of the treatment
effect across sites? This parameter is important in gauging the generalizability
of the treatment. Indeed, if ω11 is non-trivial, the main effect of treatment
becomes misleading as a measure of effect at any specific site. In this case a
central F distribution can be used to test the null hypothesis that ω11 = 0
(see Raudenbush and Liu [30] for details).

Figure 5.3 gives the results. The key conclusion is that the small n design
(with J = 100) does not perform as well in detecting treatment-by-site vari-
ance as it does in detecting the main effect of treatment. While n = 12 and
n = 18 are adequate to detect variances of ω11 = .15 and .10 respectively, at
power of .80, these variance values are quite large. Significantly more than 20
participants per site are required to detect a medium-sized variance of .05,
not to mention a small variance of .01.

Conclusion

The results of power analysis for the cluster randomized trial and the multi-site
randomized trial, while certainly not exhaustive, confirm what other practical
experience has implied: Given moderately large J , small n designs can be
very effective in detecting fixed effects of level-1 and level-2 predictors. These
designs are much less adequate, however, in detecting variances of random
coefficients. The exception occurs when the level-1 model fits well, as often
occurs in studies of individual growth. But in two-level cross-sectional designs,
the fit at level 1 is rarely good enough to allow high power for detecting the
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Fig. 5.2. Power to detect the main effect of treatment in a multi-site randomized

trial for J = 100 sites with n participants at each site (n/2 in each treatment).

Power is calculated at standardized effect sizes of 0.20, 0.30, and 0.50, and for effect

size variances of 0.01, 0.05, and 0.15. Significance level is always 0.05.

variances of random coefficients with small n as defined here, given J in the
neighborhood of 100.

5.4 Validity of Statistical Inferences: Linear-Normal Case

Now-standard approaches to two-level data estimate variances and covariances
via maximum likelihood (ML) or restricted maximum likelihood. Inferences
about fixed and random regression coefficients are then conditional on these
ML point estimates. Inferences about the variances are often based on the
large-sample normal approximation to their sampling distributions. It is well
known that this approach can work poorly when J is small, and especially
when the data are greatly unbalanced (see chap. 2 in this volume; see also
Raudenbush and Bryk [28], Rubin [32], Seltzer [33]). These authors have
recommended Bayesian methods and sensitivity analysis in the small J case.
How well does the ML machinery work in the case of large J but small n?

The answer to this question appears to depend on the research focus.
In particular, the validity of standard approaches depends on whether fixed
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Fig. 5.3. Power to detect between-site variance at the treatment effect for J = 100

sites as a function of n, the number of participants per site (n/2 in each treatment).

Between-site variances are 0.05, 0.10, and 0.15, and the significance level is always

0.05.

regression coefficients, variance-covariance components, or the random coeffi-
cients themselves are of primary interest. We discuss each in turn.

5.4.1 Fixed Regression Coefficients

The short answer seems to be that inferences about the fixed regression coef-
ficients proceeds comparatively smoothly in the case of small n but large J .
The generalized least squares (GLS) estimator (5.7) sums over large J . Thus,
imprecisions in estimating the weight matrices should have comparatively
small effect. Moreover, the “small n, large J” case is ideal for the use of
J-consistent robust standard errors [cf. 21]. These can be used as substitutes
for model-based standard errors based on GLS and they also can gauge sensi-
tivity of results to model assumptions and therefore signal the need to modify
the hierarchical model.

To see how the robust standard errors are computed, we first rewrite the
GLS estimator (5.6) in its more general form, based on the mixed model (5.1):

β̂ = Var(β̂)
J∑
j=1

X ′
jV

−1
j y

j
,
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where Vj = ZjΩZ
′
j + σ2Inj and

Var(β̂) =

 J∑
j=1

X ′
jV

−1
j Xj

−1

. (5.19)

Here the weight matrix for cluster j is V −1
j , evaluated at the ML estimates

of Ω and σ2. Errors in these ML estimates will thus translate into errors in
estimates of the weight matrix. However, when J is large, these errors will
tend to be small, given that the GLS estimator is J-consistent.

Of course the poor estimation of the weights, for example under-estimation
of Ω, may distort the estimation of the standard errors (square roots of the
diagonal elements of (5.19)). This would likely occur when the assumptions
about the covariance structure are incorrect. To check on this possibility, we
compute the robust variance

Var(β̂)

 J∑
j=1

X ′
jV

−1
j (yj −Xjβ̂)(yj −Xjβ̂)′V −1

j Xj

Var(β̂).

Given a total sample size of Jn (or sum of nj in the unbalanced case), these
robust estimators converge rapidly to the true variance when J is large and
n is small. This convergence is not dependent on assumptions about which
level-1 predictors have random coefficients. This last point is important in
the “small n, large J” case because it is precisely in this case that one must
impose constraints on the dimensionality of the random effects.

In conclusion, GLS seems to perform well in the “small n, large J” case.
Moreover, the standard errors it produces are easily checked using robust
standard errors, and the latter are especially useful in the “small n, large J”
case.

5.4.2 Level-2 Variances

We noted earlier that while “small n, large J” tends to provide good power
for detecting fixed effects of level-1 or level-2 predictors, power was more
problematic when the aim was to detect heterogeneity of random coefficients.
Similarly, threats to valid statistical inference arise when using ML to make
inferences about such variance components.

The key problem is that the likelihood for level-2 variances can become
quite positively skewed when n is small, even though J is fairly large. The
skewness of the likelihood implies that the mode (i.e., the ML estimate) may
poorly reflect the plausible values of the parameter. Moreover, in this case a
large-sample normal approximation to the likelihood will be poor.
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These threats to valid inference are easily handled if the data are balanced.
In this case, the F -distribution can supply the machinery to obtain accurate
(asymmetric) confidence intervals. However, truly balanced data are rare in
practice, often because of missing data, but possibly also because of cost
considerations and because of the use of level-1 covariates that have different
distributions in each cluster.

To illustrate the problems that can arise in making inferences about vari-
ances, we consider the simple case of a balanced, one-way random effects
analysis of variance, i.e.,

yij = β00 + δ0j + εij ,

where δ0j ∼ N (0, ω00) and εij ∼ N (0, σ2). The likelihood is given by

L(β00, ω00, σ
2;y) = (2π)−Jn/2(σ2)−J(n−1)/2(nω00 + σ2)−J/2

× exp
[
−1

2

(
SSw
σ2

+
SS b

nω00 + σ2

)]
where SSw and SS b are the sums of squared deviations within and between
clusters, respectively.

To illustrate the behavior of the likelihood, we set ω00 = 5 and σ2 = 95.
Thus, the intra-cluster correlation coefficient is ρ = .05, a fairly typical value
in several domains of multilevel research. For simplicity, we hold σ2 equal to
its true value. Figure 5.4 plots the likelihood for ω when n = 2 and J = 100 in
a well-behaved case: the SSw and SS b are set to their expected values. We see
that the likelihood, while globally skewed positively, is reasonably symmetric
at its mode, the maximum likelihood estimator and, by construction, the true
value of ω00. Even in this case with n = 2, the modal value is reasonably
representative of the plausible values of ω00.

In reality the SS b will not be equal to its expected value. To see how the
likelihood behaves in a somewhat less favorable setting, we set SS b to one
standard deviation below its expected value. Such a value could easily arise
in practice. We plot the likelihood in this case in Figure 5.5. Note the ML
estimate is zero and the likelihood is very positively skewed. The modal value
poorly represents the plausible values of ω00.

How much do things improve when we increase n? Increasing n brings
a fairly rapid improvement. Figure 5.6 plots the likelihood under the same
conditions as in Figure 5.5 but with n increased to 10. Fairly small increases
in n create significant improvement in the shape of the likelihood.

I conclude that, when ρ is small and n is very small, likelihood-based
inference about level-2 variance components can mislead the unwary. Small
increases in n can improve things. These results have implications for infer-
ences about random coefficients, the topic to which we now turn.
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Fig. 5.4. Likelihood for ω00 in oneway ANOVA with n = 2, J = 100, and the mean

square between equal to its expected value. True value of ω00 = 5.0.

5.4.3 Inferences Concerning Random Effects

Obtaining good estimates of cluster-specific random coefficients or random
effects is often, but not always, difficult in the “small n large J” setting. The
adequacy of these estimates depends strongly on the reliability Λj . As we
have seen, small n tends to work against large Λj , but a good fit at level-1
(and therefore a small σ2) or good leverage among the level-1 predictors can
push Λj toward Ir, even when n is small.

In the previous section, we saw that the likelihood for level-2 variances
(elements ωqq) can be highly skewed when n is small even if J is moderately
large. Empirical Bayes inferences for random coefficients, which condition on
the MLE of variance components, may then “over-shrink” the point estimate
toward zero and lead to under-estimates of the posterior variance.

A distinction arises in drawing inferences about random coefficients (β
j
)

as opposed to random effects (δj). The validity of the latter depend more on
large J than does the validity of the former.
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Fig. 5.5. Likelihood for ω00 in oneway ANOVA with n = 2, J = 100, and the mean

square between equal to one standard deviation below its expected value. True value

of ω00 = 5.0.

5.4.4 Random Coefficients

Based on the two-level normal linear model of (5.4), the random coefficient
vector, β

j
, given the data y and the parameters σ2 and Ω is distributed as

N (β∗j ,V
∗
j ) with

β∗j = C−1
j (yj −Hj γ̂) +Hj γ̂, (5.20a)

V ∗
j = σ2

(
C−1
j +C−1

j U ′
jHj Var(γ̂)H ′

jUjC
−1
j

)
, (5.20b)

where Cj = U ′
jUj + σ2Ω−1 and γ̂ is the generalized least squares estimator.

A popular approach to empirical Bayes inference is based on the posterior
distribution (5.20a) with restricted MLE substituted for the unknown Λ, σ2.
A nice feature of this approach is that the posterior mean will exist even when
Uj is less than full rank. However, when Uj is full rank, so that unit-specific
least squares estimate β̂j exists, the posterior mean has the illuminating
form (5.12), and the posterior variance matrix becomes

Ω(Ir −Λj) + (Ir −Λj)Hj Var(γ̂)H ′
j(Ir −Λj)′. (5.21)
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Fig. 5.6. Likelihood for ω00 in oneway ANOVA with n = 10, J = 100, and the mean

square between equal to one standard deviation below its expected value. True value

of ω00 = 5.0.

The second term in (5.21) reflects uncertainty about γ. Thus, as J increases
without bound (holding nj constant), this term disappears, and (5.21) con-
verges to Ω(Ir − Λj). Note that as nj increases without bound (holding J

constant), Λj converges to Ir and (5.21) converges to the null matrix. Thus,
large J is not essential in estimating β

j
using empirical Bayes. As we have

seen, large nj is not the only way to push Λj toward Ir inasmuch as small
σ2 or large level-1 dispersion of Uij can also accomplish this.

5.4.5 Random Effects

While large J is not essential to ensure consistency of estimation of the random
coefficients, large J is necessary to ensure consistency in estimating random
effects, which are the discrepancies between the random coefficients β

j
and

their expected values Hjγ. To see this note that the conditional distribution
of the random effects vector δj , given the data y and the parameters σ2 and
Ω, is distributed as N (δ∗j ,D

∗
j ) where, in the full-rank case,
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δ∗j = Λj(β̂j −Hj γ̂), (5.22a)

D∗
j = Ω(Ir −Λj) +ΛjHj Var(γ̂)H ′

jΛ
′
j . (5.22b)

As J increases without bound (holding nj constant), the second term in (5.22b)
disappears, and (5.22b) converges to Ω(Ir − Λj). However, as nj increases
without bound (holding J constant), Λj converges to Ir and (5.22b) converges
to Var(Hj γ̂). Thus large J is essential for the consistency of the empirical
Bayes estimator of δj .

5.4.6 Over-Shrinkage and Under-Estimation of Uncertainty

If the likelihood for a level-2 variance is seriously skewed, as can occur when
nj is very small (even if J is moderate in size – see Figure 5.5), Λ̂j based
on the restricted MLE (or the unrestricted MLE) will be pulled toward the
null matrix. This will pull empirical Bayes random effects estimates toward
zero as it pulls the empirical Bayes random coefficients estimates toward their
predicted values Hj γ̂. It will also tend to produce negatively biased estimates
of the posterior variance (note that as Ω decreases, C−1

j also diminishes). In
this setting a Bayesian approach [see 34] or a better approximation to the
posterior variance [19] will be helpful.

5.5 Validity of Statistical Inferences: Non-Linear Link
Functions

We now consider the case in which yij , given the random effect vector δj ,
belongs to a one-parameter exponential family with canonical link function
ηij = X ′

ijβ + Z ′ijδj with δj ∼ N (∅,Ω). Also, we can collect the elements
ηij into the vector η

j
= Xjβ + Zjδj . The two-level linear models we have

been discussing till now are a special case of this generalized linear mixed
model with identity link and with yij | δj normally distributed. Among many
examples of this model are binary yij with a logit link and a Bernoulli sampling
model, counted yij (so that yij is a non-negative integer) with log link and
Poisson sampling model, and continuous yij > 0 with reciprocal link and
gamma sampling model.

A non-linear link function means that the conditional expectation of y
given the random effects induces an association between the estimate of the
level-2 variance and the estimate of the fixed effects, with implications for
inference in the “small n, large J” case. It also makes the problem of comput-
ing maximum likelihood estimates significantly more challenging than in the
normal theory model with linear link function.
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5.5.1 Relation between the Mean and the Variance

In our discussion of linear models with normal random effects at each level,
we have seen that the “small n, large J” case can sometimes lead to prob-
lems in estimation of level-2 covariance components. And, because empirical
Bayes bases inferences on ML estimates (or restricted ML estimates) of these
variance components, these problems of variance estimation will tend also to
affect the validity of inferences about random coefficients and random effects.
However, these problems in variance estimation do not cause difficulty in
making valid inferences about fixed effects. First, point estimates of the fixed
effects are not sensitive to mis-estimation of variance components in the “small
n, large J” case because, as J increases, the point estimate of the fixed effects
is uncorrelated with point estimates of variance components. Second, robust
standard errors are available in the “small n, large J”, and these do not depend
on the assumed variance-covariance structure.

When the level-1 link function is non-linear and the level-1 distribution is
non-normal, the asymptotic orthogonality of the fixed effects estimates and
the covariance estimates no longer holds. For example, in the case of a scalar
random effect at level 2, we tend to see that larger estimates of the level-2
variance are associated with point estimates of the fixed effects that are farther
from zero. This problem arises because the expected y is a non-linear function
of the random effects. For example, in the logit linear model, we have the
mixed model

E (yij | β, δj) =
[
1 + exp{−(X ′

ijβ +Z ′ijδj)}
]−1

= µij(δj)

≈ µij(∅) + µij(∅)
(
1− µij(∅)

)
Z ′ijδj

+ µij(∅)
(
1− µij(∅)

)(
0.5− µij(∅)

)
Z ′ijδjδ

′
jZij .

(5.23)

To the second order, the marginal expectation of yij is

E (yij) ≈ µij(∅) + µij(∅)
(
1− µij(∅)

)(
0.5− µij(∅)

)
Z ′ijΩZij .

Clearly, the marginal expectation of y depends upon Ω and therefore beliefs
about β must depend upon Ω as well. This dependence does not arise in the
population-average model [40] wherein

E (yij) =
[
1 + exp{−X ′

ijβpop.av}
]−1

,

leading Heagerty and Zeger [15] to recommend population-average inference
with robust standard errors as a robust alternative to “unit-specific” models of
the type reflected in (5.23). The unit-specific coefficients β are not, of course,
the same as the population-average coefficients βpop.av. The unit-specific co-
efficients define the expected change in the log odds that yij = 1 given an
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increase in the corresponding Xij , holding the random effect δj constant. In
contrast, βpop.av gives the expected change in the log odds yij = 1 associated
with a unit change in the corresponding X, averaging over the distribution
of the random effects. The distinction between unit-specific and population-
average inference does not arise in linear models.

5.5.2 Estimation and Computation

Obtaining MLEs for hierarchical models is a two-step problem. The first step
is to find the likelihood; this requires integration of the random effects from
the joint distribution of the data and the random effects. The second step is to
maximize the likelihood. For hierarchical linear models with normal random
effects at each level, the first step is easy because the integration problem
is soluble analytically. Maximization then proceeds using now-standard ap-
proaches such as the Expectation-Maximization (EM) algorithm [9, 10] or
Fisher scoring [22].

When the level-1 link function is non-linear (and the level-1 sampling
model is non-normal), the integration problem is much more challenging. And
it tends to be especially challenging when nj is small and when the level-2
variances are large. This logic becomes clear if we represent the likelihood as
a Laplace transform.

The Likelihood

Let f(yj | δj) = exp{`j(δj)} denote the level-1 model. We use the binary
outcome case with scalar random effect for illustrative purposes, in which
case

`j(δj) =
nj∑
i=1

[yijηij + log(1− µij)] ,

where

ηij = X ′
ijβ + δj , δj ∼ N (0, ω),

µij = [1 + exp{−ηij}]−1.

Defining the parameters as θ = [β, ω], the likelihood of θ at y = y is given
by

L(θ;y) =
J∏
j=1

[
(2π)−nj/2ω−1/2

∫
exp{`j(δj)− 1

2
δ2j /ω}dδj

]
. (5.24)
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Laplace Transform

We now expand the integrand in an infinite Taylor series about its maximizer
δ̂j . We remove the j subscript for simplicity because the integral must be
computed for every j. Thus we have

h(δ) = `(δ)− 1
2
δ2/ω

= [`(δ̂)− 1
2
δ̂2/ω] + [`(1)(δ̂)− δ̂/ω](δ − δ̂) + 1

2
[`(2) − ω−1](δ − δ̂)2 + S,

where

S =
∞∑
k=3

Tk,

Tk =
1
k!

[`(k)(δ̂)](δ − δ̂)k,

`(k) =
dk`(δ)
dδk

∣∣∣∣
δ=δ̂

.

Because δ̂ maximizes h(δ), the second term in the series vanishes. Substituting
the Taylor series into the integral (5.24) thus yields a useful form of the
likelihood

L(θ;y) =
J∏
j=1

[
(2π)−nj/2ω−1/2 exp{`j(δ̂j)− 1

2
δ̂2j /ω}

× EN (0,ψj)[exp{Sj}]
]
, (5.25)

where the expectation is taken over a normal distribution with mean 0 and
variance ψj = −

[
`
(2)
j (δ̂j)− ω−1

]−1.
Equation (5.25) creates a framework for approximating the likelihood and

for evaluating the accuracy of the approximation. To examine how “small n,
large J” affects accuracy of progressively better approximations, we note that

ψj =

(
nj∑
i=1

wij + ω−1

)−1

= ω(1− λj)

where wij = µij(δ̂j)
(
1 − µij(δ̂j)

)
and λj =

∑nj

i=1 wij/(
∑nj

i=1 wij + ω−1). We
highlight the form involving λj for continuity with the theme running through-
out this chapter. We can view λj as the reliability of the iteratively reweighted
least squares estimator of δj . As the cluster size nj increases, λj converges to
1 and ψj approaches zero. Indeed, ψj = O(n−1

j ). Approximations increase in
accuracy as more terms in exp{S} are absorbed in the expectation. Following
Raudenbush et al. [31], we define the following Laplace approximations:
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L1 = exp{S} = 1 +O
(
n−1

)
, (5.26a)

L2 = exp{S} = L1 + T4 + T 2
3 /2 +O

(
n−2

)
, (5.26b)

L3 = exp{S} = L2 + T6 + 2T3 T5 + T 2
4 /2 + 3T 2

3 T4 +O
(
n−3

)
. (5.26c)

Define ζk ∆=EN (0,ψ)(δ− δ̂)k. The asymptotic order of the approximations can
be found by noting that ζk = O(n−k/2) for k even and `(k)(δ̂) = O(n). Thus,

E (T k) =

0 for k odd,
ζk `(k)(δ̂)

k!
= O(n−k/2)O(n) = O(n−k/2+1) for k even,

E (T k Tm) =


0 for k +m odd,
ζk+m `(k)(δ̂) `(m)(δ̂)

k!m!
= O(n−(k+m)/2)O(n2)

= O(n−(k+m−4)/2) for k +m even,

E (T k Tm T p) =


0 for k +m+ p odd,
ζk+m+p `(k)(δ̂) `(m)(δ̂) `(p)(δ̂)

k!m! p!

= O(n−(k+m+p−6)/2) for k +m+ p even,

E (T k Tm T p T q) =


0 for k +m+ p+ q odd,
ζk+m+p+q `(k)(δ̂) `(m)(δ̂) `(p)(δ̂) `(q)(δ̂)

k!m! p! q!

= O(n−(k+m+p+q−8)/2) for k +m+ p+ q even.

Equation (5.26) shows that the accuracy of the approximations depends on
powers of the within-cluster sample size. This shows that for very small n,
the approximations will tend to be poor (especially if ω is large). Eventually,
of course, the rapidly increasing factorial denominators in the terms of S
will dominate, ensuring convergence of higher-order approximations. These
higher-order approximations are, however, tedious to derive.

The most common approach to approximation involves Gauss-Hermite
quadrature [cf. 16]. This approach is useful when the dimension of Ω is small.
Even in the scalar case, comparatively large numbers of quadrature points will
be needed if ω is large and n is small. Adaptive Gauss-Hermite quadrature [24],
which centers the integrand around δ̂j (rather than around 0), will provide
equal accuracy with many fewer quadrature points, but will still encounter
difficulty when the dimension of the random effect is large.

Yosef [39] has clarified the relationship between the accuracy of the Laplace
approximations and approximations to the likelihood based on adaptive
Gauss-Hermite quadrature. We display these in Table 5.1. These are valid,
however, only for scalar random effects.
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Table 5.1. Error of approximation: Laplace versus adaptive Gauss-Hermite quadra-

ture.

Order of Laplace Number of quadrature points Error

L1 1 point O(n−1)

L2 4 points O(n−2)

L3 7 points O(n−3)

L4 10 points O(n−4)

Models with high-dimensional random effects are rarely feasible when n

is small in the case of binary data, however. Laplace approximations of order
L2 work well in these high dimensional cases assuming n > 20 [31].
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Multilevel Models for Ordinal and Nominal

Variables

Donald Hedeker

University of Illinois at Chicago

6.1 Introduction

Reflecting the usefulness of multilevel analysis and the importance of categor-
ical outcomes in many areas of research, generalization of multilevel models
for categorical outcomes has been an active area of statistical research. For
dichotomous response data, several approaches adopting either a logistic or
probit regression model and various methods for incorporating and estimating
the influence of the random effects have been developed [9, 21, 34, 37, 103, 115].
Several review articles [31, 39, 76, 90] have discussed and compared some of
these models and their estimation procedures. Also, Snijders and Bosker [99,
chap. 14] provide a practical summary of the multilevel logistic regression
model and the various procedures for estimating its parameters. As these
sources indicate, the multilevel logistic regression model is a very popular
choice for analysis of dichotomous data.

Extending the methods for dichotomous responses to ordinal response data
has also been actively pursued [4, 29, 30, 44, 48, 58, 106, 113]. Again, devel-
opments have been mainly in terms of logistic and probit regression models,
and many of these are reviewed in Agresti and Natarajan [5]. Because the
proportional odds model described by McCullagh [71], which is based on the
logistic regression formulation, is a common choice for analysis of ordinal data,
many of the multilevel models for ordinal data are generalizations of this
model. The proportional odds model characterizes the ordinal responses in C
categories in terms of C−1 cumulative category comparisons, specifically, C−1
cumulative logits (i.e., log odds) of the ordinal responses. In the proportional
odds model, the covariate effects are assumed to be the same across these
cumulative logits, or proportional across the cumulative odds. As noted by
Peterson and Harrell [77], however, examples of non-proportional odds are
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not difficult to find. To overcome this limitation, Hedeker and Mermelstein
[52] described an extension of the multilevel ordinal logistic regression model
to allow for non-proportional odds for a set of regressors.

For nominal responses, there have been developments in terms of multi-
level models as well. An early example is the model for nominal educational
test data described by Bock [14]. This model includes a random effect for
the level-2 subjects and fixed item parameters for the level-1 item responses
nested within subjects. While Bock’s model is a full-information maximum
likelihood approach, using Gauss-Hermite quadrature to integrate over the
random-effects distribution, it doesn’t include covariates or multiple random
effects. As a result, its usefulness for multilevel modeling is very limited. More
general regression models of multilevel nominal data have been considered
by Daniels and Gatsonis [25], Revelt and Train [88], Bhat [13], Skrondal
and Rabe-Hesketh [97], and in Goldstein [38, chap. 4]. In these models, it
is common to adopt a reference cell approach in which one of the categories
is chosen as the reference cell and parameters are characterized in terms of
the remaining C−1 comparisons to this reference cell. Alternatively, Hedeker
[47] adopts the approach in Bock’s model, which allows any set of C− 1 com-
parisons across the nominal response categories. Hartzel et al. [43] synthesizes
some of the work in this area, describing a general mixed-effects model for
both clustered ordinal and nominal responses, and Agresti et al. [3] describe
a variety of social science applications of multilevel modeling of categorical
responses.

This chapter describes multilevel models for categorical data that accom-
modate multiple random effects and allow for a general form for model covari-
ates. Although only 2-level models will be considered here, 3-level generaliza-
tions are possible [35, 63, 83, 107]. For ordinal outcomes, proportional odds,
partial proportional odds, and related survival analysis models for discrete or
grouped-time survival data are described. For nominal response data, models
using both reference cell and more general category comparisons are described.
Connections with item response theory (IRT) models are also made. A full
maximum likelihood solution is outlined for parameter estimation. In this
solution, multi-dimensional quadrature is used to numerically integrate over
the distribution of random-effects, and an iterative Fisher scoring algorithm is
used to solve the likelihood equations. To illustrate application of the various
multilevel models for categorical responses, several analyses of a longitudinal
psychiatric dataset are described.

6.2 Multilevel Logistic Regression Model

Before considering models for ordinal and nominal responses, the multilevel
model for dichotomous responses will be described. This is useful because both
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the ordinal and nominal models can be viewed as different ways of generalizing
the dichotomous response model. To set the notation, let j denote the level-2
units (clusters) and let i denote the level-1 units (nested observations). Assume
that there are j = 1, . . . , N level-2 units and i = 1, . . . , nj level-1 units nested
within each level-2 unit. The total number of level-1 observations across level-2
units is given by n =

∑N
j=1 nj . Let Y ij be the value of the dichotomous

outcome variable, coded 0 or 1, associated with level-1 unit i nested within
level-2 unit j. The logistic regression model is written in terms of the log odds
(i.e., the logit) of the probability of a response, denoted p

ij
= Pr(Y ij = 1).

Augmenting the standard logistic regression model with a single random effect
yields

log

[
p
ij

1− p
ij

]
= x′ijβ + δj ,

where xij is the s×1 covariate vector (includes a 1 for the intercept), β is the
s× 1 vector of unknown regression parameters, and δj is the random cluster
effect (one for each level-2 cluster). These are assumed to be distributed in
the population as N (0, σ2

δ ). For convenience and computational simplicity, in
models for categorical outcomes the random effects are typically expressed in
standardized form. For this, δj = σδ θj and the model is given as

log

[
p
ij

1− p
ij

]
= x′ijβ + σδ θj .

Notice that the random-effects variance term (i.e., the population standard
deviation σδ) is now explicitly included in the regression model. Thus, it and
the regression coefficients are on the same scale, namely, in terms of the log-
odds of a response.

The model can be easily extended to include multiple random effects. For
this, denote zij as the r×1 vector of random-effect variables (a column of ones
is usually included for the random intercept). The vector of random effects δj
is assumed to follow a multivariate normal distribution with mean vector ∅
and variance-covariance matrixΩ. To standardize the multiple random effects
δj = Tθj , where TT ′ = Ω is the Cholesky decomposition of Ω. The model
is now written as

log

[
p
ij

1− p
ij

]
= x′ijβ + z′ijTθj . (6.1)

As a result of the transformation, the Cholesky factor T is usually estimated
instead of the variance-covariance matrix Ω. As the Cholesky factor is es-
sentially the matrix square-root of the variance-covariance matrix, this allows
more stable estimation of near-zero variance terms.
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6.2.1 Threshold Concept

Dichotomous regression models are often motivated and described using the
“threshold concept” [15]. This is also termed a latent variable model for
dichotomous variables [65]. For this, it is assumed that a continuous latent
variable y underlies the observed dichotomous response Y . A threshold, de-
noted γ, then determines if the dichotomous response Y equals 0 (y

ij
≤ γ) or

1 (y
ij
> γ). Without loss of generality, it is common to fix the location of the

underlying latent variable by setting the threshold equal to zero (i.e., γ = 0).
Figure 6.1 illustrates this concept assuming that the continuous latent variable
y follows either a normal or logistic probability density function (pdf).
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Fig. 6.1. Threshold concept for a dichotomous response (solid = normal, dashed =

logistic).

As noted by McCullagh and Nelder [72], the assumption of a continuous
latent distribution, while providing a useful motivating concept, is not a strict
model requirement. In terms of the continuous latent variable y, the model is
written as

y
ij

= x′ijβ + z′ijTθj + εij .

Note the inclusion of the errors εij in this representation of the model. In
the logistic regression formulation, the errors εij are assumed to follow a
standard logistic distribution with mean 0 and variance π2/3 [2, 65]. The
scale of the errors is fixed because y is not observed, and so the the scale is
not separately identified. Thus, although the above model appears to be the
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same as an ordinary multilevel regression model for continuous outcomes, it
is one in which the error variance is fixed and not estimated. This has certain
consequences that will be discussed later.

Because the errors are assumed to follow a logistic distribution and the
random effects a normal distribution, this model and models closely related
to it are often referred to as logistic/normal or logit/normit models, especially
in the latent trait model literature [11]. If the errors are assumed to follow a
normal distribution, then the resulting model is a multilevel probit regression
or normal/normal model. In the probit model, the errors have mean 0 and
variance 1 (i.e., the variance of the standard normal distribution).

6.2.2 Multilevel Representation

For a multilevel representation of a simple model with only one level-1 covari-
ate xij and one level-2 covariate xj , the level-1 model is written in terms of
the logit as

log

[
p
ij

1− p
ij

]
= β0j + β1jxij ,

or in terms of the latent response variable as

y
ij

= β0j + β1jxij + εij . (6.2)

The level-2 model is then (assuming xij is a random-effects variable)

β0j = β0 + β2xj + δ0j , (6.3a)

β1j = β1 + β3xj + δ1j . (6.3b)

Notice that it’s easiest, and in agreement with the normal-theory (continuous)
multilevel model, to write the level-2 model in terms of the unstandardized
random effects, which are distributed in the population as δj ∼ N (∅,Ω). For
models with multiple variables at either level-1 or level-2, the above level-1
and level-2 submodels are generalized in an obvious way.

Because the level-1 variance is fixed, the model operates somewhat differ-
ently than the more standard normal-theory multilevel model for continuous
outcomes. For example, in an ordinary multilevel model the level-1 variance
term is typically reduced as level-1 covariates xij are added to the model.
However, this cannot happen in the above model because the level-1 variance
is fixed. As noted by Snijders and Bosker [99], what happens instead (as
level-1 covariates are added) is that the random-effect variance terms tend to
become larger as do the other regression coefficients, the latter become larger
in absolute value.
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6.2.3 Logistic and Probit Response Functions

The logistic model can also be written as

p
ij

= Ψ(x′ijβ + z′ijTθj) ,

where Ψ(η) is the logistic cumulative distribution function (cdf), namely

Ψ(η) =
exp(η)

1 + exp(η)
=

1
1 + exp(−η)

.

The cdf is also termed the response function of the model. A mathematical
nicety of the logistic distribution is that the probability density function (pdf)
is related to the cdf in a simple way, namely, ψ(η) = Ψ(η)[1− Ψ(η)].

As mentioned, the probit model, which is based on the standard normal
distribution, is often proposed as an alternative to the logistic model. For
the probit model, the normal cdf Φ(η) and pdf φ(η) replace their logistic
counterparts, and because the standard normal distribution has variance equal
to one, εij ∼ N (0, 1). As a result, in the probit model the underlying latent
variable vector y

j
is distributed normally in the population with mean Xjβ

and variance covariance matrix ZjTT ′Z ′j + I. The latter, when converted to
a correlation matrix, yields tetrachoric correlations for the underlying latent
variable vector y (and polychoric correlations for ordinal outcomes, discussed
below). For this reason, in some areas, for example familial studies, the probit
formulation is preferred to its logistic counterpart.

As can be seen in the earlier figure, both the logistic and normal distribu-
tions are symmetric around zero and differ primarily in terms of their scale;
the standard normal has standard deviation equal to 1, whereas the standard
logistic has standard deviation equal to π/

√
3. As a result, the two typically

give very similar results and conclusions, though the logistic regression param-
eters (and associated standard errors) are approximately π/

√
3 times as large

because of the scale difference between the two distributions. An alternative
response function, that provides connections with proportional hazards sur-
vival analysis models (see Allison [7] and section 6.3.2), is the complementary
log-log response function 1 − exp[− exp(η)]. Unlike the logistic and normal,
the distribution that underlies the complementary log-log response function is
asymmetric and has variance equal to π2/6. Its pdf is given by exp(η)[1−p(η)].
As Doksum and Gasko [26] note, large amounts of high quality data are
often necessary for response function selection to be relevant. Since these
response functions often provide similar fits and conclusions, McCullagh [71]
suggests that response function choice should be based primarily on ease of
interpretation.
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6.3 Multilevel Proportional Odds Model

Let the C ordered response categories be coded as c = 1, 2, . . . , C. Ordinal
response models often utilize cumulative comparisons of the ordinal outcome.
The cumulative probabilities for the C categories of the ordinal outcome Y
are defined as P ijc = Pr(Y ij ≤ c) =

∑c
k=1 pijk. The multilevel logistic model

for the cumulative probabilities is given in terms of the cumulative logits as

log
[

P ijc
1− P ijc

]
= γc −

[
x′ijβ + z′ijTθj

]
(c = 1, . . . , C − 1), (6.4)

with C − 1 strictly increasing model thresholds γc (i.e., γ1 < γ2 . . . < γC−1).
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Fig. 6.2. Threshold concept for an ordinal response with 3 categories (solid =

normal, dashed = logistic).

The relationship between the latent continuous variable y and an ordinal
outcome with three categories is depicted in Figure 6.2. In this case, the
ordinal outcome Y ij = c if γc−1 ≤ y

ij
< γc for the latent variable (with

γ0 = −∞ and γC = ∞). As in the dichotomous case, it is common to set a
threshold to zero to set the location of the latent variable. Typically, this is
done in terms of the first threshold (i.e., γ1 = 0). In Figure 6.2, setting γ1 = 0
implies that γ2 = 2.

At first glance, it may appear that the parameterization of the model
in (6.4) is not consistent with the dichotomous model in (6.1). To see the
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connection, notice that for a dichotomous outcome (coded 0 and 1), the model
is written as

log
[

P ij0
1− P ij0

]
= 0−

[
x′ijβ + z′ijTθj

]
,

and since for a dichotomous outcome P ij0 = p
ij0

and 1− P ij0 = p
ij1

,

log
[
1− P ij0
P ij0

]
= log

[
p
ij1

1− p
ij1

]
= x′ijβ + z′ijTθj ,

which is the same as before. Also, in terms of the underlying latent variable y,
the multilevel representation of the ordinal model is identical to the dichoto-
mous version presented earlier in equation (6.2). If the multilevel model is
written in terms of the observed response variable Y , then the level-1 model
is written instead as

log
[

P ijc
1− P ijc

]
= γc −

[
β0j + β1jxij

]
,

for the case of a model with one level-1 covariate. Because the level-2 model
does not really depend on the response function or variable, it would be the
same as given above for the dichotomous model in equations (6.3a) and (6.3b).

Since the regression coefficients β do not carry the c subscript, they do
not vary across categories. Thus, the relationship between the explanatory
variables and the cumulative logits does not depend on c. McCullagh [71]
calls this assumption of identical odds ratios across the C − 1 cut-offs the
proportional odds assumption. As written above, a positive coefficient for a
regressor indicates that as values of the regressor increase so do the odds that
the response is greater than or equal to c. Although this is a natural way of
writing the model, because it means that for a positive β as x increases so
does the value of Y , it is not the only way of writing the model. In particular,
the model is sometimes written as

log
[

P ijc
1− P ijc

]
= γc + x′ijβ + z′ijTθj (c = 1, . . . , C − 1),

in which case the regression parameters β are identical but of opposite sign.
This alternate specification is commonly used in survival analysis models (see
section 6.3.2).

6.3.1 Partial Proportional Odds

As noted by Peterson and Harrell [77], violation of the proportional odds
assumption is not uncommon. Thus, they described a (fixed-effects) partial
proportional odds model in which covariates are allowed to have differential
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effects on the C − 1 cumulative logits. Similarly, Terza [109] developed a
similar extension of the (fixed-effects) ordinal probit model. Hedeker and
Mermelstein [52, 53] utilize this extension within the context of a multilevel
ordinal regression model. For this, the model for the C − 1 cumulative logits
can be written as

log
[

P ijc
1− P ijc

]
= γc −

[
(x∗ij)

′βc + x′ijβ + z′ijTθi
]

(c = 1, . . . , C − 1),

where x∗ij is a h× 1 vector containing the values of observation ij on the set
of h covariates for which proportional odds is not assumed. In this model, βc
is a h × 1 vector of regression coefficients associated with these h covariates.
Because βc carries the c subscript, the effects of these h covariates are allowed
to vary across the C − 1 cumulative logits. In many areas of research, this
extended model is useful. For example, suppose that in a alchohol reduction
study there are three response categories (abstinence, mild use, heavy use)
and suppose that an intervention designed to reduce drinking is not successful
in increasing the proportion of individuals in the abstinence category but is
successful in moving individuals from heavy to mild use. In this case, the
(covariate) effect of intervention group would not be observed on the first
cumulative logit, but would be observed on the second cumulative logit. This
extended model has been utilized in several articles [32, 114, 117], and a similar
Bayesian hierarchical model is described in Ishwaran [57].

In general, this extension of the proportional odds model is not problem-
atic, however, one caveat should be mentioned. For the explanatory variables
without proportional odds, the effects on the cumulative log odds, namely
(x∗ij)

′βc, result in C − 1 non-parallel regression lines. These regression lines
inevitably cross for some values of x∗, leading to negative fitted values for the
response probabilities. For x∗ variables contrasting two levels of an explana-
tory variable (e.g., gender coded as 0 or 1), this crossing of regression lines
occurs outside the range of admissible values (i.e., < 0 or > 1). However, if the
explanatory variable is continuous, this crossing can occur within the range
of the data, and so, allowing for non-proportional odds can be problematic. A
solution to this dilemma is sometimes possible if the variable has, say, m levels
with a reasonable number of observations at each of these m levels. In this
case m − 1 dummy-coded variables can be created and substituted into the
model in place of the continuous variable. Alternatively, one might consider a
nominal response model using Helmert contrasts [15] for the outcome variable.
This approach, described in section 6.4, is akin to the sequential logit models
for nested or hierarchical response scales described in McCullagh and Nelder
[72].
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6.3.2 Survival Analysis Models

Several authors have noted the connection between survival analysis models
and binary and ordinal regression models for survival data that are discrete
or grouped within time intervals (for practical introductions see Allison [6,
7], D’Agostino et al. [24], Singer and Willett [95]). This connection has been
utilized in the context of categorical multilevel or mixed-effects regression
models by many authors as well [42, 54, 94, 106, 108]. For this, assume that
time (of assessment) can take on only discrete positive values c = 1, 2, . . . , C.1

For each level-1 unit, observation continues until time Y ij at which point
either an event occurs (dij = 1) or the observation is censored (dij = 0),
where censoring indicates being observed at c but not at c+ 1. Define Pijc to
be the probability of failure, up to and including time interval c, that is,

Pijc = Pr(Y ij ≤ c),

and so the probability of survival beyond time interval c is simply 1− Pijc.
Because 1 − Pijc represents the survivor function, McCullagh [71] pro-

posed the following grouped-time version of the continuous-time proportional
hazards model

log[− log(1− Pijc)] = γc + x′ijβ. (6.5)

This is the aforementioned complementary log-log response function, which
can be re-expressed in terms of the cumulative failure probability, Pijc =
1 − exp(− exp(γc + x′ijβ)). In this model, xij includes covariates that vary
either at level 1 or 2, however they do not vary with time (i.e., they do not
vary across the ordered response categories). They may, however, represent
the average of a variable across time or the value of the covariate at the time
of the event.

The covariate effects in this model are identical to those in the grouped-
time version of the proportional hazards model described by Prentice and
Gloeckler [79]. As such, the β coefficients are also identical to the coefficients
in the underlying continuous-time proportional hazards model. Furthermore,
as noted by Allison [6], the regression coefficients of the model are invariant to
interval length. Augmenting the coefficients β, the threshold terms γc repre-
sent the logarithm of the integrated baseline hazard (i.e., when x = ∅). While
the above model is the same as that described in McCullagh [71], it is written
so that the covariate effects are of the same sign as the Cox proportional
hazards model. A positive coefficient for a regressor then reflects increasing
hazard (i.e., lower values of Y ) with greater values of the regressor. Adding
(standardized) random effects, we get

1 To make the connection to ordinal models more direct, time is here denoted as c,

however more commonly it is denoted as t in the survival analysis literature.
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log[− log(1− P ijc)] = γc + x′ijβ + z′ijTθj . (6.6)

This model is thus a multilevel ordinal regression model with a complementary
log-log response function instead of the logistic. Though the logistic model
has also been proposed for analysis of grouped and/or discrete time survival
data, its regression coefficients are not invariant to time interval length and it
requires the intervals to be of equal length [6]. As a result, the complementary
log-log response function is generally preferred.

In the ordinal treatment, survival time is represented by the ordered
outcome Y ij , which is designated as being censored or not. Alternatively,
each survival time can be represented as a set of dichotomous dummy codes
indicating whether or not the observation failed in each time interval that
was experienced [6, 24, 95]. Specifically, each survival time Y ij is represented
as a vector with all zeros except for its last element, which is equal to dij
(i.e., = 0 if censored and = 1 for an event). The length of the vector for
observation ij equals the observed value of Y ij (assuming that the survival
times are coded as 1, 2, . . . , C). These multiple time indicators are then treated
as distinct observations in a dichotomous regression model. In a multilevel
model, a given cluster’s response vector Y j is then of size (

∑nj

i=1 Y ij) × 1.
This method has been called the pooling of repeated observations method
by Cupples et al. [23]. It is particularly useful for handling time-dependent
covariates and fitting non-proportional hazards models because the covariate
values can change across time. See Singer and Willett [96] for a detailed
treatment of this method.

For this dichotomous approach, define λijc to be the probability of failure
in time interval c, conditional on survival prior to c,

λijc = Pr(Y ij = c | Y ij ≥ c).

Similarly, 1 − λijc is the probability of survival beyond time interval c, con-
ditional on survival prior to c. The multilevel proportional hazards model is
then written as

log[− log(1− λijc)] = x′ijcβ + z′ijTθj , (6.7)

where now the covariates x can vary across time and so are denoted as xijc.
The first elements of x are usually timepoint dummy codes. Because the
covariate vector x now varies with c, this approach automatically allows for
time-dependent covariates, and relaxing the proportional hazards assumption
only involves including interactions of covariates with the timepoint dummy
codes.

Under the complementary log-log link function, the two approaches char-
acterized by (6.6) and (6.7) yield identical results for the parameters that do
not depend on c [28, 59]. Comparing these two approaches, notice that for
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the ordinal approach each observation consists of only two pieces of data: the
(ordinal) time of the event and whether it was censored or not. Alternatively,
in the dichotomous approach each survival time is represented as a vector
of dichotomous indicators, where the size of the vector depends upon the
timing of the event (or censoring). Thus, the ordinal approach can be easier
to implement and offers savings in terms of the dataset size, especially as the
number of timepoints gets large, while the dichotomous approach is superior
in its treatment of time-dependent covariates and relaxing of the proportional
hazards assumption.

6.3.3 Estimation

For the ordinal models presented, the probability of a response in category c
for a given level-2 unit j, conditional on the random effects θ is equal to

Pr(Yij = c | θ) = Pijc − Pij,c−1 ,

where Pijc = 1/[1+exp(−ηijc)] under the logistic response function (formulas
for other response functions are given in section 6.2.3). Note that because
γ0 = −∞ and γC = ∞, Pij0 = 0 and PijC = 1. Here, ηijc denotes the
response model, for example,

ηijc = γc −
[
(x∗ij)

′βc + x′ijβ + z′ijTθi
]
,

or one of the other variants of ηijc presented. In what follows, we’ll consider the
general model allowing for non-proportional odds, since the more restrictive
proportional odds model is just a special case (i.e., when βc = 0).

Let Yj denote the vector of ordinal responses from level-2 unit j (for the
nj level-1 units nested within). The probability of any pattern Yj conditional
on θ is equal to the product of the probabilities of the level-1 responses,

`(Yj | θ) =
nj∏
i=1

C∏
c=1

(Pijc − Pij,c−1)yijc , (6.8)

where yijc = 1 if Yij = c and 0 otherwise (i.e., for each ij-th observation,
yijc = 1 for only one of the C categories). For the ordinal representation of
the survival model, where right-censoring is present, the above likelihood is
generalized to

`(Yj | θ) =
nj∏
i=1

C∏
c=1

[
(Pijc − Pij,c−1)dij (1− Pijc)1−dij

]yijc
, (6.9)

where dij = 1 if Yij represents an event, or dij = 0 if Yij represents a censored
observation. Notice that (6.9) is equivalent to (6.8) when dij = 1 for all
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observations. With right-censoring, because there is essentially one additional
response category (for those censored at the last category C), it is γC+1 =∞
and so Pij,C+1 = 1. In this case, parameters γc and βc with c = 1, . . . , C are
estimable, otherwise c only goes to C − 1.

The marginal density of Y j in the population is expressed as the following
integral of the likelihood, `(·), weighted by the prior density g(·),

h(Yj) =
∫

θ

`(Yj | θ) g(θ) dθ, (6.10)

where g(θ) represents the multivariate standard normal density. The marginal
log-likelihood from the N level-2 units, logL =

∑N
j log h(Yj), is then maxi-

mized to yield maximum likelihood estimates. For this, denote the conditional
likelihood as `j and the marginal density as hj . Differentiating first with
respect to the parameters that vary with c, let αk represent a particular
threshold γk or regression vector β∗k, where k = 1, . . . , C if right-censoring
occurs, otherwise k = 1, . . . , C − 1. Then

∂ logL
∂αk

=
N∑
j=1

h−1
j

∂hj
∂αk

,

with

∂hj
∂αk

=
∫

θ

nj∑
i=1

C∑
c=1

yijc

[
dij

(∂Pijc)ack − (∂Pij,c−1)ac−1,k

Pijc − Pij,c−1

− (1− dij)
(∂Pijc)ack
1− Pijc

]
× `j g(θ)

∂ηijk
∂αk

dθ, (6.11)

where ∂ηijk/∂αk = 1 and −x∗ij for the thresholds and regression coefficients,
respectively, and ack = 1 if c = k (and = 0 if c 6= k). Also, ∂Pijc represents the
pdf of the response function; various forms of this are given in section 6.2.3.

For the parameters that do not vary with c, let ζ represent an arbitrary
parameter vector; then for β and the vector v(T ), which contains the unique
elements of the Cholesky factor T , we get

∂ logL
∂ζ

=
N∑
j=1

h−1
j

∫
θ

nj∑
i=1

C∑
c=1

yijc

[
dij

∂Pijc − ∂Pij,c−1

Pijc − Pij,c−1
− (1− dij)

∂Pijc
1− Pijc

]
× `j g(θ)

∂ηijc
∂ζ

dθ, (6.12)

where
∂ηijc
∂β

= −xij ,
∂ηijc

∂(v(T ))
= −Jr(θ � zij),



252 Hedeker

and Jr is the elimination matrix of Magnus [69], which eliminates the elements
above the main diagonal. If T is an r × 1 vector of independent variance
terms (e.g., if zij is an r× 1 vector of level-1 or level-2 grouping variables, see
section 6.7), then ∂ηijc/∂T = zijθ in the equation above.

Fisher’s method of scoring can be used to provide the solution to these like-
lihood equations. For this, provisional estimates for the vector of parameters
Θ, on iteration ι are improved by

Θι+1 = Θι −
{

E
[
∂2 logL
∂Θι ∂Θ′

ι

]}−1
∂ logL
∂Θι

, (6.13)

where, following Bock and Lieberman [17], the information matrix, or minus
the expectation of the matrix of second derivatives, is given by

−E
[
∂2 logL
∂Θι ∂Θ′

ι

]
= E

 N∑
j=1

h−2
j

∂hj
∂Θι

(
∂hj
∂Θι

)′ .
Its estimator is obtained using the estimated parameter values and, at conver-
gence, the large-sample variance covariance matrix of the parameter estimates
is gotten as the inverse of the information matrix. The form on the right-hand
side of the above equation is sometimes called the “outer product of the
gradients.” It was proposed in the econometric literature by Berndt et al.
[12], and is often referred to as the BHHH method.

6.4 Multilevel Nominal Response Models

Let Y ij now denote a nominal variable associated with level-2 unit j and
level-1 unit i. Adding random effects to the fixed-effects multinomial logistic
regression model (see Agresti [2], Long [65]), we get that the probability that
Y ij = c (a response occurs in category c) for a given level-2 unit j is given by

p
ijc

= Pr(Y ij = c) =
exp(η

ijc
)

1 +
∑C
h=2 exp(η

ijh
)

for c = 2, 3, . . . , C, (6.14a)

p
ij1

= Pr(Y ij = 1) =
1

1 +
∑C
h=2 exp(η

ijh
)
, (6.14b)

where the multinomial logit η
ijc

= x′ijβc + z′ijTc θj . Comparing this to the
logit for ordered responses, we see that all of the covariate effects βc vary
across categories (c = 2, 3, . . . , C). Similarly for the random-effect variance
term Tc. As written above, an important distinction between the model for
ordinal and nominal responses is that the former uses cumulative comparisons
of the categories whereas the latter uses comparisons to a reference category.
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This model generalizes Bock’s model for educational test data [14] by
including covariates xij , and by allowing a general random-effects design
vector zij including the possibility of multiple random effects θj . As discussed
by Bock [14], the model has a plausible interpretation. Namely, each nominal
category is assumed to be related to an underlying latent “response tendency”
for that category. The category c associated with the response variable Y ij
is then the category for which the response tendency is maximal. Notice that
this assumption of C latent variables differs from the ordinal model where only
one underlying latent variable is assumed. Bock [15] refers to the former as
the extremal concept and the latter as the aforementioned threshold concept,
and notes that both were introduced into psychophysics by Thurstone [111].
The two are equivalent only for the dichotomous case (i.e., when there are
only two response categories).

The model as written above allows estimation of any pairwise comparisons
among the C response categories. As characterized in Bock [14], it is benefical
to write the nominal model to allow for any possible set of C − 1 contrasts.
For this, the category probabilities are written as

p
ijc

=
exp(η

ijc
)∑C

h=1 exp(η
ijh

)
for c = 1, 2, . . . , C, (6.15)

where now
η
ijc

= x′ijΓdc + (z′ij � θ′j)J
′
r∗Λdc . (6.16)

Here, D is the (C − 1) × C matrix containing the contrast coefficients for
the C − 1 contrasts between the C logits and dc is the cth column vector
of this matrix. The s × (C − 1) parameter matrix Γ contains the regression
coefficients associated with the s covariates for each of the C − 1 contrasts.
Similarly, Λ contains the random-effect variance parameters for each of the
C − 1 contrasts. Specifically,

Λ = [ v(T1) v(T2) . . . v(TC−1) ] ,

where v(Tc) is the r∗ × 1 vector (r∗ = r(r + 1)/2) of elements below and on
the diagonal of the Cholesky (lower-triangular) factor Tc, and Jr∗ is the afore-
mentioned elimination matrix of Magnus [69]. This latter matrix is necessary
to ensure that the appropriate terms from the 1×r2 vector resulting from the
Kronecker product (z′ij � θ′j) are multiplied with the r∗ × 1 vector resulting
from Λdc. For the case of a random-intercepts model, the model simplifies to

η
ijc

= x′ijΓdc +Λdc θj ,

with Λ as the 1× (C − 1) vector Λ = [ σ1 σ2 . . . σC−1 ].
Notice that if D equals
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D =


0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . .

0 0 0 . . . 1

 ,

the model simplifies to the earlier representation in (6.14a) and (6.14b). The
current formulation, however, allows for a great deal of flexibility in the types
of comparisons across the C response categories. For example, if the categories
are ordered, an alternative to the cumulative logit model of the previous
section is to employ Helmert contrasts [15] within the nominal model. For
this, with C = 4, the contrast matrix would be

D =


−1 1

3
1
3

1
3

0 −1 1
2

1
2

0 0 −1 1

 .

Helmert contrasts are similar to the category comparisons of continuation-
ratio logit models, as described within a mixed model formulation by Ten Have
and Uttal [108]. However, the Helmert contrasts above are applied to the
category logits, rather then the category probabilities as in continuation-ratio
models.

6.4.1 Parameter Estimation

Estimation follows the procedure described for ordinal outcomes. Specifically,
letting Yj denote the vector of nominal responses from level-2 unit j (for the
nj level-1 units nested within), the probability of any Yj conditional on the
random effects θ is equal to the product of the probabilities of the level-1
responses

`(Yj | θ) =
nj∏
i=1

C∏
c=1

(pijc)yijc , (6.17)

where yijc = 1 if Yij = c, and 0 otherwise. The marginal density of the
response vector Yj is again given by (6.10). The marginal log-likelihood from
the N level-2 units, logL =

∑N
j log h(Yj), is maximized to obtain maximum

likelihood estimates of Γ and Λ. Specifically, using ∆ to represent either
parameter matrix,

∂ logL
∂∆′ =

N∑
j=1

h−1(Yj)
∫

θ

[
nj∑
i=1

D (yij − Pij) � ∂∆

]
× `(Yj | θ) g(θ) dθ, (6.18)

where
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∂Γ = x′ij , ∂Λ = [Jr∗(θ � zij)]
′
,

yij is the C × 1 indicator vector, and Pij is the C × 1 vector obtained by
applying (6.15) for each category. As in the ordinal case, Fisher’s method of
scoring can be used to provide the solution to these likelihood equations.

6.5 Computational Issues

In order to solve the above likelihood solutions for both the ordinal and
nominal models, integration over the random-effects distribution must be
performed. Additionally, the above likelihood solutions are only in terms of
the regression parameters and variance-covariance parameters of the random-
effects distribution. Often, estimation of the random effects is also of interest.
These issues are described in great detail in Skrondal and Rabe-Hesketh [98];
here, we discuss some of the relevant points.

6.5.1 Integration over θ

Various approximations for evaluating the integral over the random-effects
distribution have been proposed in the literature; several of these are com-
pared in chapter 9. Perhaps the most frequently used methods are based
on first- or second-order Taylor expansions. Marginal quasi-likelihood (MQL)
involves expansion around the fixed part of the model, whereas penalized or
predictive quasi-likelihood (PQL) additionally includes the random part in its
expansion [39]. Both of these are available in the MLwiN software program
[84]. Unfortunately, several authors [19, 87, 90] have reported downwardly
biased estimates using these procedures in certain situations, especially for
the first-order expansions.

Raudenbush et al. [87] proposed an approach that uses a combination of
a fully multivariate Taylor expansion and a Laplace approximation. Based on
the results in Raudenbush et al. [87], this method yields accurate results and is
computationally fast. Also, as opposed to the MQL and PQL approximations,
the deviance obtained from this approximation can be used for likelihood-ratio
tests. This approach has been incorporated into the HLM software program
[86].

Numerical integration can also be used to perform the integration over the
random-effects distribution. Specifically, if the assumed distribution is normal,
Gauss-Hermite quadrature can approximate the above integral to any practi-
cal degree of accuracy [104]. Additionally, like the Laplace approximation, the
numerical quadrature approach yields a deviance that can be readily used for
likelihood-ratio tests. The integration is approximated by a summation on a
specified number of quadrature points Q for each dimension of the integration.
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The solution via quadrature can involve summation over a large number of
points, especially as the number of random effects is increased. For example,
if there is only one random effect, the quadrature solution requires only one
additional summation over Q points relative to the fixed effects solution. For
models with r > 1 random effects, however, the quadrature is performed
over Qr points, and so becomes computationally burdensome for r > 5 or
so. Also, Lesaffre and Spiessens [61] present an example where the method
only gives valid results for a high number of quadrature points. These authors
advise practitioners to routinely examine results for the dependence on Q.
To address these issues, several authors have described a method of adaptive
quadrature that uses relatively few points per dimension (e.g., 3 or so), which
are adapted to the location and dispersion of the distribution to be integrated
[18, 64, 78, 80]. Simulations show that adaptive quadrature performs well
in a wide variety of situations and typically outperforms ordinary quadra-
ture [82]. Several software packages have implemented ordinary or adaptive
Gauss-Hermite quadrature, including Egret R© [22], gllamm [81], LIMDEP [40],
MIXOR [49], MIXNO [46], Stata [101], and SAS PROC NLMIXED [93].

Another approach that is commonly used in econometrics and transporta-
tion research uses simulation methods to integrate over the random-effects
distribution (see the introductory overview by Stern [102] and the excellent
book by Train [112]). When used in conjunction with maximum likelihood
estimation, it is called “maximum simulated likelihood” or “simulated maxi-
mum likelihood.” The idea behind this approach is to draw a number of values
from the random-effects distribution, calculate the likelihood for each of these
draws, and average over the draws to obtain a solution. Thus, this method
maximizes a simulated sample likelihood instead of an exact likelihood, but
can be considerably faster than quadrature methods, especially as the number
of random effects increases [41]. It is a very flexible and intuitive approach
with many potential applications (see Drukker [27]). In particular, Bhat [13]
and Glasgow [36] describe this estimation approach for multilevel models
of nominal outcomes. In terms of software, LIMDEP [40] has included this
estimation approach for several types of outcome variables, including nominal
and ordinal, and Haan and Uhlendorff [41] describe a Stata routine for nominal
data.

Bayesian approaches, such as the use of Gibbs sampling [33] and related
methods [105], can also be used to integrate over the random effects distribu-
tion. This approach is described in detail in chapter 2. For nominal responses,
Daniels and Gatsonis [25] use this approach in their multilevel polychotomous
regression model. Similarly, Ishwaran [57] utilize Bayesian methods in model-
ing multilevel ordinal data. The freeware BUGS software program [100] can be
used to facilitate estimation via Gibbs sampling. In this regard, Marshall and
Spiegelhalter [70] provides an example of multilevel modeling using BUGS,
including some syntax and discussion of the program.
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6.5.2 Estimation of Random Effects and Probabilities

In many cases, it is useful to obtain estimates of the random effects and also to
obtain fitted marginal probabilities. The random effects θj can be estimated
using empirical Bayes methods [16]. For the univariate case, this estimator θ̂j
is given by the mean of the posterior distribution,

θ̂j = E (θj | Yj) =
1

h(Yj)

∫
θ

θj `(·) g(θ) dθ, (6.19)

where `(·) is the conditional likelihood for the particular model (i.e., ordinal
or nominal). The variance of the posterior distribution is obtained as

Var(θ̂j | Yj) =
1

h(Yj)

∫
θ

(θj − θ̂j)2 `(·) g(θ) dθ.

These quantities may be used, for example, to evaluate the response proba-
bilities for particular level-2 units (e.g., person-specific trend estimates).

To obtain estimated marginal probabilities (e.g., the estimated response
probabilities of the control group across time), an additional step is required
for models with non-linear response functions (e.g., the models considered
in this paper). First, so-called “subject-specific” probabilities [75, 118] are
estimated for specific values of covariates and random effects, say θ∗. These
subject-specific estimates indicate, for example, the response probability for
a subject with random effect level θ∗ in the control group at a particu-
lar timepoint. Denoting these subject-specific probabilities as P̂ss, marginal
probabilities P̂m can then be obtained by numerical quadrature, namely
P̂m =

∫
θ
P̂ss g(θ) dθ, or by marginalizing the scale of the regression coef-

ficients [51, p. 179]. Continuing with our example, the marginalized estimate
would indicate the estimated response probability for the entire control group
at a particular timepoint. Both subject-specific and marginal estimates have
their uses, since they are estimating different quantities, and several authors
have characterized the differences between the two [45, 62, 75].

6.6 Intraclass Correlation

For a random-intercepts model (i.e., zj = 1nj ) it is often of interest to express
the level-2 variance in terms of an intraclass correlation. For this, one can make
reference to the threshold concept and the underlying latent response tendency
that determines the observed response. For the ordinal logistic model assum-
ing normally distributed random-effects, the estimated intraclass correlation
equals σ̂2/(σ̂2 + π2/3), where the latter term in the denominator represents
the variance of the underlying latent response tendency. As mentioned earlier,
for the logistic model, this variable is assumed to be distributed as a standard
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logistic distribution with variance equal to π2/3. For a probit model this term
is replaced by 1, the variance of the standard normal distribution.

For the nominal model, one can make reference to multiple underlying
latent response tendencies, denoted as y

ijc
, and the associated regression

model including level-1 residuals εijc

y
ijc

= x′ijβc + z′ijTc θj + εijc c = 1, 2, . . . , C.

As mentioned earlier, for a particular ij-th unit, the category c associated
with the nominal response variable Y ij is the one for which the latent y

ijc

is maximal. Since, in the common reference cell formulation, c = 1 is the
reference category, T1 = β1 = 0, and so the model can be rewritten as

y
ijc

= x′ijβc + z′ijTc θj + (εijc − εij1) c = 2, . . . , C,

for the latent response tendency of category c relative to the reference cat-
egory. It can be shown that the level-1 residuals εijc for each category are
distributed according to a type I extreme-value distribution [see 68, p. 60].
It can further be shown that the standard logistic distribution is obtained
as the difference of two independent type I extreme-value variates [see 72,
pp. 20 and 142]. As a result, the level-1 variance is given by π2/3, which
is the variance for a standard logistic distribution. The estimated intraclass
correlations are thus calculated as rc = σ̂2

c/(σ̂
2
c + π2/3), where σ̂2

c is the
estimated level-2 variance assuming normally-distributed random intercepts.
Notice that C − 1 intraclass correlations are estimated, one for each category
c versus the reference category. As such, the cluster influence on the level-1
responses is allowed to vary across the nominal response categories.

6.7 Heterogeneous Variance Terms

Allowing for separate random-effect variance terms for groups of either i or j
units is sometimes important. For example, in a twin study it is often necessary
to allow the intra-twin correlation to differ between monozygotic and dizygotic
twins. In this situation, subjects (i = 1, 2) are nested within twin pairs (j =
1, . . . , N). To allow the level-2 variance to vary for these two twin-pair types,
the random-effects design vector zij is specified as a 2 × 1 vector of dummy
codes indicating monozygotic and dizygotic twin pair status, respectively. T
(or Tc in the nominal model) is then a 2 × 1 vector of independent random-
effect standard deviations for monozygotics and dizygotics, and the cluster
effect θj is a scalar that is pre-multiplied by the vector T . For example, for a
random-intercepts proportional odds model, we would have

log
[

P ijc
1− P ijc

]
= γc −

{
x′ijβ + [MZ j DZ j ]

[
σδ (MZ )

σδ (DZ )

]
θj

}
,
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where MZ j and DZ j are dummy codes indicating twin pair status (i.e., if
MZ j = 1 then DZ j = 0, and vice versa).

Notice, that if the probit formulation is used and the model has no covari-
ates (i.e., only an intercept, xij = 1), the resulting intraclass correlations

ICCMZ =
σ2
δ (MZ )

σ2
δ (MZ ) + 1

and ICCDZ =
σ2
δ (DZ )

σ2
δ (DZ ) + 1

are polychoric correlations (for ordinal responses) or tetrachoric correlations
(for binary responses) for the within twin-pair data. Adding covariates then
yields adjusted tetrachoric and polychoric correlations. Because estimation of
polychoric and tetrachoric correlations is often important in twin and genetic
studies, these models are typically formulated in terms of the probit link.
Comparing models that allow homogeneous versus heterogeneous subgroup
random-effects variance, thus allows testing of whether the tetrachoric (or
polychoric) correlations are equal across the subgroups.

The use of heterogeneous variance terms can also be found in some item
response theory (IRT) models in the educational testing literature [14, 16,
92]. Here, item responses (i = 1, 2, . . . ,m) are nested within subjects (j =
1, 2, . . . , N) and a separate random-effect standard deviation (i.e., an element
of the m×1 vector T ) is estimated for each test item (i.e., each i unit). In the
multilevel model this is accomplished by specifying zij as an m× 1 vector of
dummy codes indicating the repeated items. To see this, consider the popular
two-parameter logistic model for dichotomous responses [66] that specifies the
probability of a correct response to item i (Y ij = 1) as a function of the ability
of subject j (θj),

Pr(Y ij = 1) =
1

1 + exp[−ai(θj − bi)]
,

where ai is the slope parameter for item i (i.e., item discrimination), and bi
is the threshold or difficulty parameter for item i (i.e., item difficulty). The
distribution of ability in the population of subjects is assumed to be normal
with mean 0 and variance 1 (i.e., the usual assumption for the random effects
θj in the multilevel model). As noted by Bock and Aitkin [16], it is convenient
to let ci = −aibi and write

Pr(Y ij = 1) =
1

1 + exp[−(ci + aiθj)]
,

which can be recast in terms of the logit of the response as

logitij = log

[
p
ij

1− p
ij

]
= ci + aiθj .
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As an example, suppose that there are four items. This model can be repre-
sented in matrix form as

logit1j
logit2j
logit3j
logit4j

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Xj


c1
c2
c3
c4


c

+


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


Zj


a1

a2

a3

a4


a

( θj),

showing that this IRT model is a multilevel model that allows the random
effect variance terms to vary across items (level-1). The usual IRT notation
is a bit different than the multilevel notation, but c simply represents the
fixed-effects (i.e., β) and a is the the random-effects standard deviation vector
T ′ = [ σδ1 σδ2 σδ3 σδ4 ].

The elements of the T vector can also be viewed as the (unscaled) factor
loadings of the items on the (unidimensional) underlying ability variable (θ).
A simpler IRT model that constrains these factor loadings to be equal is the
one-parameter logistic model, the so-called Rasch model [116]. This constraint
is achieved by setting Zj = 1nj and a = a in the above model. Thus, the
Rasch model is simply a random-intercepts logistic regression model with
item indicators for X.

Unlike traditional IRT models, the multilevel formulation of the model
easily allows multiple covariates at either level (i.e., items or subjects). This
and other advantages of casting IRT models as multilevel models are described
in detail by Adams et al. [1] and Rijmen et al. [89]. In particular, this allows a
model for examining whether item parameters vary by subject characteristics,
and also for estimating ability in the presence of such item by subject in-
teractions. Interactions between item parameters and subject characteristics,
often termed item bias [20], is an area of active psychometric research. Also,
although the above illustration is in terms of a dichotomous response model,
the analogous multilevel ordinal and nominal models apply. For ordinal items
responses, application of the cumulative logit multilevel models yields what
Thissen and Steinberg [110] have termed “difference models,” namely, the
treatment of ordinal responses as developed by Samejima [92] within the
IRT-context. Similarly, in terms of nominal responses, the multilevel model
yields the nominal IRT model developed by Bock [14].

6.8 Health Services Research Example

The McKinney Homeless Research Project (MHRP) study [55, 56] in San
Diego, CA was designed to evaluate the effectiveness of using section 8 certifi-
cates as a means of providing independent housing to the severely mentally ill
homeless. Section 8 housing certificates were provided from the Department
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of Housing and Urban Development (HUD) to local housing authorities in
San Diego. These housing certificates, which require clients to pay 30% of
their income toward rent, are designed to make it possible for low income in-
dividuals to choose and obtain independent housing in the community. Three
hundred sixty-one clients took part in this longitudinal study employing a
randomized factorial design. Clients were randomly assigned to one of two
types of supportive case management (comprehensive vs. traditional) and to
one of two levels of access to independent housing (using section 8 certificates).
Eligibility for the project was restricted to individuals diagnosed with a severe
and persistent mental illness who were either homeless or at high risk of
becoming homeless at the start of the study. Individuals’ housing status was
classified at baseline and at 6, 12, and 24 month follow-ups.

In this illustration, focus will be on examining the effect of access to
section 8 certificates on repeated housing outcomes across time. Specifi-
cally, at each timepoint each subjects’ housing status was classified as either
streets/shelters, community housing, or independent housing. This outcome
can be thought of as ordinal with increasing categories indicating improved
housing outcomes. The observed sample sizes and response proportions for
these three outcome categories by group are presented in Table 6.1.

Table 6.1. Housing status across time by group: response proportions and sample

sizes.

timepoint

group status baseline 6-months 12-months 24-months

control street .555 .186 .089 .124

community .339 .578 .582 .455

independent .106 .236 .329 .421

n 180 161 146 145

section 8 street .442 .093 .121 .120

community .414 .280 .146 .228

independent .144 .627 .732 .652

n 181 161 157 158

These observed proportions indicate a general decrease in street living and
an increase in independent living across time for both groups. The increase
in independent housing, however, appears to occur sooner for the section 8
group relative to the control group. Regarding community living, across time
this increases for the control group and decreases for the section 8 group.
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There is some attrition across time; attrition rates of 19.4% and 12.7%
are observed at the final timepoint for the control and section 8 groups, re-
spectively. Since estimation of model parameters is based on a full-likelihood
approach, the missing data are assumed to be “ignorable” conditional on
both the model covariates and the observed responses [60]. In longitudinal
studies, ignorable nonresponse falls under the “missing at random” (MAR)
assumption introduced by Rubin [91], in which the missingness depends only
on observed data. In what follows, since the focus is on describing application
of the various multilevel regression models, we will make the MAR assumption.
A further approach, however, that does not rely on the MAR assumption (e.g.,
a multilevel pattern-mixture model as described in Hedeker and Gibbons [50])
could be used. Missing data issues are described more fully in chapter 10.

6.8.1 Ordinal Response Models

To prepare for the ordinal analyses, the observed cumulative logits across time
for the two groups are plotted in Figures 6.3 and 6.4 The first cumulative
logit compares independent and community housing versus street living (i.e.,
categories 2 & 3 combined versus 1), while the second cumulative logit com-
pares independent housing versus community housing and street living (i.e.,
category 3 versus 2 and 1 combined). For the proportional odds model to hold,
these two plots should look the same, with the only difference being the scale
difference on the y-axis. As can be seen, these plots do not look that similar.
For example, the post-baseline group differences do not appear to be the
same for the two cumulative logits. In particular, it appears that the section 8
group does better more consistently in terms of the second cumulative logit
(i.e., independent versus community and street housing). This would imply
that the proportional odds model is not reasonable for these data.

To assess this more rigorously, two ordinal logistic multilevel models were
fit to these data, the first assuming a proportional odds model and the sec-
ond relaxing this assumption. For both analyses, the repeated housing status
classifications were modeled in terms of time effects (6, 12, and 24 month
follow-ups compared to baseline), a group effect (section 8 versus control), and
group by time interaction terms. The first analysis assumes these effects are
the same across the two cumulative logits of the model, whereas the second
analysis estimates effects for each explanatory variable on each of the two
cumulative logits. In terms of the multilevel part of the model, only a random
subject effect was included in both analyses. Results from these analyses are
given in Table 6.2.

The proportional odds model indicates significant time effects for all time-
points relative to baseline, but only significant group by time interactions for
the 6 and 12 month follow-ups. Marginally significant effects are obtained for
the section 8 effect and the section 8 by t3 (24-months) interaction. Thus,
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Fig. 6.3. First cumulative logit values across time by group.
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Fig. 6.4. Second cumulative logit values across time by group.

the analysis indicates that the control group moves away from street living
to independent living across time, and that this improvement is more pro-
nounced for section 8 subjects at the 6 and 12 month follow-up. Because the
section 8 by t3 interaction is only marginally significant, the groups do not
differ significantly in housing status at the 24-month follow-up as compared
to baseline.

However, comparing log-likelihood values clearly rejects the proportional
odds assumption (likelihood ratio χ2

7 = 52.14) indicating that the effects of
the explanatory variables cannot be assumed identical across the two cumu-
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Table 6.2. Housing status across time: Ordinal logistic model estimates and stan-

dard errors (se).

Proportional Odds Non-Proportional Odds

Non-street1 Independent2

term estimate se estimate se estimate se

intercept −.220 .203 −.322 .218

threshold 2.744 .110 2.377 .279

t1 (6 month vs base) 1.736 .233 2.297 .298 1.079 .358

t2 (12 month vs base) 2.315 .268 3.345 .450 1.645 .336

t3 (24 month vs base) 2.499 .247 2.821 .369 2.145 .339

section 8 (yes=1, no=0) .497 .280 .592 .305 .323 .401

section 8 by t1 1.408 .334 .566 .478 2.023 .478

section 8 by t2 1.173 .360 −.958 .582 2.016 .466

section 8 by t3 .638 .331 −.366 .506 1.073 .472

subject sd 1.459 .106 1.457 .112

−2 logL 2274.39 2222.25

bold indicates p < .05, italic indicates .05 < p < .10
1 logit comparing independent and community housing vs. street
2 logit comparing independent housing vs. community housing and street

lative logits. Interestingly, none of the section 8 by time interaction terms are
significant in terms of the non-street logit (i.e., comparing categories 2 and 3
versus 1), while all of them are significant in terms of the independent logit
(i.e., comparing category 3 versus 1 and 2 combined). Thus, as compared to
baseline, section 8 subjects are more likely to be in independent housing at
all follow-up timepoints, relative to the control group.

In terms of the random subject effect, it is clear that the data are corre-
lated within subjects. Expressed as an intra-class correlation, the attributable
variance at the subject-level equals .39 for both models. Also, the Wald test is
highly significant in terms of rejecting the null hypothesis that the (subject)
population standard deviation equals zero. Strictly speaking, as noted by
Raudenbush and Bryk [85] and others, this test is not to be relied upon,
especially as the population variance is close to zero. In the present case, the
actual significance test is not critical because it is more or less assumed that
the population distribution of the subject effects will not have zero variance.
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6.8.2 Nominal Response Models

For the initial set of analyses with nominal models, reference category con-
trasts were used and street/shelter was chosen as the reference category. Thus,
the first comparison compares community to street responses, and the second
compares independent to street responses. A second analysis using Helmert
contrasts will be described later.

Corresponding observed logits for the reference-cell comparisons by group
and time are given in Figures 6.5 and 6.6. Comparing these plots, different
patterns for the post-baseline group differences are suggested. It seems that
the non-section 8 group does better in terms of the community versus street
comparison, whereas the section 8 group is improved for the independent
versus street comparison. Further, the group differences appear to vary across
time. The subsequent analyses will examine these visual impressions of the
data.
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Fig. 6.5. First reference-cell logit values across time by group.

To examine the sensivity of the results to the normality assumption for
the random effects, two multilevel nominal logistic regression models were
fit to these data assuming the random effects were normally and uniformly
distributed, respectively. Tables 6.3 and 6.4 list results for the two response
category comparisons of community versus street and independent versus
street, respectively. The time and group effects are the same as in the previous
ordinal analyses.

The results are very similar for the two multilevel models. Thus, the
random-effects distributional form does not seem to play an important role
for these data. Subjects in the control group increase both independent and
community housing relative to street housing at all three follow-ups, as com-
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Fig. 6.6. Second reference-cell logit values across time by group.

Table 6.3. Housing status across time: Nominal model estimates and standard

errors (se).

Community versus Street

Normal prior Uniform prior

term estimate se estimate se

intercept −.452 .192 −.473 .184

t1 (6 month vs base) 1.942 .312 1.850 .309

t2 (12 month vs base) 2.820 .466 2.686 .457

t3 (24 month vs base) 2.259 .378 2.143 .375

section 8 (yes=1, no=0) .521 .268 .471 .258

section 8 by t1 −.135 .490 −.220 .484

section 8 by t2 −1.917 .611 −1.938 .600

section 8 by t3 −.952 .535 −.987 .527

subject sd .871 .138 .153 .031

−2 logL 2218.73 2224.74

bold indicates p < .05, italic indicates .05 < p < .10
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Table 6.4. Housing status across time: Nominal model estimates and standard

errors (se).

Independent versus Street

Normal prior Uniform prior

term estimate se estimate se

intercept −2.675 .367 −2.727 .351

t1 (6 month vs base) 2.682 .425 2.540 .422

t2 (12 month vs base) 4.088 .559 3.916 .551

t3 (24 month vs base) 4.099 .469 3.973 .462

section 8 (yes=1, no=0) .781 .491 .675 .460

section 8 by t1 2.003 .614 2.016 .605

section 8 by t2 .548 .694 .645 .676

section 8 by t3 .304 .615 .334 .600

subject sd 2.334 .196 .490 .040

−2 logL 2218.73 2224.74

bold indicates p < .05, italic indicates .05 < p < .10

pared to baseline. Compared to controls, the increase in community versus
street housing is less pronounced for section 8 subjects at 12 months, but
not statistically different at 6 months and only marginally different at 24
months. Conversely, as compared to controls, the increase in independent
versus street housing is more pronounced for section 8 subjects at 6 months,
but not statistically different at 12 or 24 months. Thus, both groups reduce
the degree of street housing, but do so in somewhat different ways. The control
group subjects are shifted more towards community housing, whereas section 8
subjects are more quickly shifted towards independent housing.

As in the ordinal case, the Wald tests are all significant for the inclusion of
the random effects variance terms. A likelihood-ratio test also clearly supports
inclusion of the random subject effect (likelihood ratio χ2

2 = 134.3 and 128.3
for the normal and uniform distribution, respectively, as compared to the
fixed-effects model, not shown). Expressed as intraclass correlations, r1 = .19
and r2 = .62 for community versus street and independent versus street,
respectively. Thus, the subject influence is much more pronounced in terms of
distinguishing independent versus street living, relative to community versus
street living. This is borne out by contrasting models with separate versus a
common random-effect variance across the two category contrasts (not shown)
which yields a highly significant likelihood ratio χ2

1 = 49.2 favoring the model
with separate variance terms.

An analysis was also done to examine if the random-effect variance terms
varied significantly by treatment group. The deviance (−2 logL) for this
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model, assuming normally distributed random effects, equaled 2218.43, which
was nearly identical to the value of 2218.73 (from Tables 6.3 and 6.4) for
the model assuming homogeneous variances across groups. The control group
and section 8 group estimates of the subject standard deviations were respec-
tively .771 (se = .182) and .966 (se = .214) for the community versus street
comparison, and 2.228 (se = .299) and 2.432 (se = .266) for the indepen-
dent versus street comparison. Thus, the homogeneity of variance assumption
across treatment groups is clearly not rejected.

Finally, Table 6.5 lists the results obtained for an analysis assuming
normally-distributed random effects and using Helmert contrasts for the three
response categories. From this analysis, it is interesting that none of the sec-
tion 8 by time interaction terms are observed to be statistically significant for
the first Helmert contrast (i.e., comparing street to non-street housing). Thus,
group assignment is not significantly related to housing when considering sim-
ply street versus non-street housing outcomes. However, the second Helmert
contrast that contrasts the two types of non-street housing (i.e., independent
versus community) does reveal the benefical effect of the section 8 certificate
in terms of the positive group by time interaction terms. Again, the section 8
group is more associated with independent housing, relative to community
housing, than the non-section 8 group. In many ways, the Helmert contrasts,
with their intuitive interpretations, represent the best choice for the analysis
of these data.

Table 6.5. Housing status across time: Nominal model estimates and standard

errors (se) using Helmert contrasts.

Independent

& Community Independent

vs Street vs Community

term estimate se estimate se

intercept −1.042 .163 −1.112 .163

t1 (6 month vs base) 1.541 .215 .371 .187

t2 (12 month vs base) 2.303 .323 .634 .176

t3 (24 month vs base) 2.119 .258 .920 .179

section 8 (yes=1, no=0) .434 .222 .130 .213

section 8 by t1 .623 .330 1.069 .253

section 8 by t2 −.457 .401 1.233 .256

section 8 by t3 −.216 .345 .628 .255

subject sd 1.068 .099 .732 .083

−2 logL = 2218.73

bold indicates p < .05, italic indicates .05 < p < .10
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6.9 Discussion

Multilevel ordinal and multinomial logistic regression models are described
for the analysis of categorical data. These models are useful for analysis of
outcomes with more than two response categories. By and large, the models
are seen as extensions of the multilevel logistic regression model. However,
they generalize the model in different ways. The ordinal model uses cumulative
dichotomizations of the categorical outcome. Alternatively, the nominal model
typically uses dichotomizations that are based on selecting one category as the
reference that the others are each compared to. This chapter has also described
how other comparisons can be embedded within the nominal model.

For ordinal data, both proportional odds and non-proportional odds mod-
els are considered. Since, as noted by Peterson and Harrell [77], examples of
non-proportional odds are not difficult to find, the latter model is especially
attractive for analyzing ordinal outcomes. In the example presented, the non-
proportional odds model provided more specific information about the effect
of section 8 certificates. Namely, as compared to baseline, these certificates
were effective in increasing independent housing (versus community housing
and street living combined) at all follow-up timepoints. Interestingly, the same
could not be said when comparing independent and community housing com-
bined versus street living. Thus, the use of the non-proportional odds model
was helpful in elucidating a more focused analysis of the effect of the section 8
program.

For the nominal model, both reference cell and Helmert contrasts were
applied in the analysis of these data. The former indicated an increase for
community relative to street housing for the non-section 8 group, and an
increase for independent relative to street housing for the section 8 group.
Alternatively, the Helmert contrasts indicated that the groups did not differ
in terms of non-street versus street housing, but did differ in terms of the
type of non-street housing (i.e., the section 8 group was more associated with
independent housing). In either case, the nominal model makes an assump-
tion that has been referred to as “independence of irrelevant alternatives”
[10, 67, 68]. This is because the effect of an explanatory variable comparing two
categories is the same regardless of the total number of categories considered.
This assumption is generally reasonable when the categories are distinct and
dissimilar, and unreasonable as the nominal categories are seen as substitutes
for one another [8, 73]. Furthermore, McFadden [74] notes that the multino-
mial logistic regression model is relatively robust in many cases in which this
assumption is implausible. In the present example, the outcome categories are
fairly distinct and so the assumption would seem to be reasonable for these
data. The possibility of relaxing this assumption, though, for a more general
multilevel nominal regression model is discussed in detail in Train [112].
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The example presented illustrated the usefulness of the multilevel approach
for longitudinal categorical data. In particular, it showed the many possible
models and category comparisons that are possible if the response variable
has more than two categories. In terms of the multilevel part of the model,
only random-intercepts models were considered in the data analysis. However,
in describing model development, multiple random effects were allowed. An
analysis of these data incorporating random subject intercepts and linear
trends is discussed in Hedeker [46]. Additionally, the data had a relatively
simple multilevel structure, in that there were only two levels, namely, re-
peated observations nested within subjects. Extensions of both the ordinal
and nominal models for three and higher level is possible in the MLwiN [84]
and HLM [86] software programs.
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7.1 Introduction

Longitudinal data, often called repeated measurements in medicine and panel
data in the social sciences, arise when units provide responses on multiple
occasions. Such data can be thought of as clustered or two-level data with
occasions i at level 1 and units j at level 2.

One feature distinguishing longitudinal data from other types of clustered
data is the chronological ordering of the responses, implying that level-1 units
cannot be viewed as exchangeable. Another feature of longitudinal data is
that they often consist of a large number of small clusters.

A typical aim in longitudinal analysis is to investigate the effects of co-
variates both on the overall level of the responses and on changes of the
responses over time. An important merit of longitudinal designs is that they
allow the separation of cross-sectional and longitudinal effects. They also allow
the investigation of heterogeneity across units both in the overall level of the
response and in the development over time. Heterogeneity not captured by
observed covariates produces dependence among responses even after control-
ling for those covariates. This violates the typical assumptions of ordinary
regression models and must be accommodated to avoid invalid inference.

It is useful to distinguish between longitudinal data with balanced and
unbalanced occasions. The occasions are balanced if all units are measured at
the same time points ti, i = 1, . . . , n and unbalanced if units are measured
at different time points, tij , i = 1, . . . , nj . In the case of balanced occasions,
the data can also be viewed as single-level multivariate data where responses
at different occasions are treated as different variables. One advantage of the
univariate multilevel approach taken here is that unbalanced occasions and
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missing data are accommodated without resorting to complete case analysis
(sometimes called listwise deletion). We will use maximum likelihood estima-
tion which produces consistent estimates if responses are missing at random
(MAR) as defined by Rubin [59]; see chapter 10 [40] for other approaches in
the case of MAR and Verbeke and Molenberghs [65] for approaches in the
case of responses not missing at random (NMAR).

In this chapter we will consider both linear mixed models and generalized
linear mixed models. A linear mixed model is written in chapter 1, equa-
tion (1.4), as

y
j

= Xjβ +Zjδj + εj , (7.1)

where y
j

is the vector of continuous responses for unit j. In this book the
covariate matrices Xj and Zj are treated as fixed. Extra assumptions are
required when these matrices are treated as random; see for instance Rabe-
Hesketh and Skrondal [54].

A generalized linear mixed model also accommodates non-continuous re-
sponses and can be written as

g(E (y
j
| δj)) = Xjβ +Zjδj

∆=η
j
, (7.2)

where g(·) is a link function and ηj is a vector of linear predictors. Conditional
on the random effects δj , the elements yij of y

j
have a distribution from

the exponential family and are mutually independent. See Rabe-Hesketh and
Skrondal [54] and chapter 9 [58] for treatments of generalized linear mixed
models.

For dichotomous and ordinal responses, generalized linear mixed models
with logit and probit links can also be defined using a latent response formula-
tion. A linear mixed model is in this case specified for an imagined continuous
latent response y∗ij . The observed dichotomous or ordinal response yij with
S > 1 categories results from partitioning y∗ij into S segments using S − 1
cut-points or thresholds; see chapter 6 [31] for details.

We will use an example dataset to illustrate some of the ideas discussed
in this chapter. The dataset comes from an American panel survey of 545
young males taken from the National Longitudinal Survey (Youth Sample)
for the period 1980–1987. The data were previously analyzed by Vella and
Verbeek [64] and can be downloaded from the web pages of Wooldridge [70]
and Rabe-Hesketh and Skrondal [53]. The response variable is the natural
logarithm of the hourly wage in US dollars and the following covariates will
be used:

• educ: Years of schooling (x1j)
• black: Dummy variable for being black (x2j)
• hisp: Dummy variable for being Hispanic (x3j)
• labex: Labor market experience (in 2-year periods) (x4ij)
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• labexsq: Labor market experience squared (x5ij)
• married: Dummy variable for being married (x6ij)
• union: Dummy variable for being a member of a union (x7ij)

The first three covariates are time-constant whereas the next four are time-
varying.

7.2 Models with Unit-Specific Intercepts

In longitudinal data it is usually impossible to capture all between-unit vari-
ability using observed covariates. If the remaining ‘unobserved heterogeneity’
is ignored, it induces longitudinal dependence among the responses for the
same unit (after controlling for the included covariates). A simple way of
representing ‘unobserved heterogeneity’ is by including unit-specific intercepts
which could be either random or fixed.

7.2.1 Random Intercept Models

Consider the response yij of unit j on occasion i (i = 1, . . . , nj). In a linear
random intercept model, sometimes referred to as a one-way error component
model, it is assumed that the unit-specific effects are realizations of a random
variable δj ,

yij = x′ijβ + δj + εij ,

where δj and εij are independently distributed δj ∼ N (0, ω2) and εij ∼
N (0, σ2). The random intercept or ‘permanent component’ δj allows the level
of the response to vary across units, whereas the ‘transitory component’ εij
varies over occasions within units. The model is a special case of a linear
mixed model (7.1) with Zj = 1nj .

The variance-covariance matrix of the responses y
j
, after controlling for

Xj , is given by

Cov(y
j
) = Cov(1nj

δj + εj) = ω21nj
1′nj

+ σ2Inj
,

with diagonal elements ω2 + σ2 and off-diagonal elements ω2. The residual
intraclass correlation becomes

Corr(yij , yi′j) =
ω2

ω2 + σ2
. (7.3)

This covariance structure is also shown in panel A of Table 7.1. It is sometimes
referred to as exchangeable since the joint distribution of the residuals for a
given unit remains unchanged if the residuals are exchanged across occasions.
The covariance structure also satisfies the sphericity property that the condi-
tional variances Var( yij − yi′j ) of all pairwise differences are equal. Note that
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Table 7.1. Common dependence structures for longitudinal data (Ψj
∆
= Cov(y

j
)).

A. Random intercept structure:

Ψj = ω21nj
1′

nj
+ σ2Inj =

26664
ω2 + σ2

ω2 ω2 + σ2

...
...

. . .

ω2 ω2 · · · ω2 + σ2

37775
B. Random coefficient structure:

Ψj = ZjΩZ′
j + σ2Inj

C. Autoregressive residual structure AR(1):

Ψj =
σ2

u

1− α2

26664
1

α 1
...

...
. . .

αnj−1 αnj−2 · · · 1

37775
D. Moving average residual structure MA(1):

Ψj = σ2
u

26666664
1 + a2

a 1 + a2

0 a 1 + a2

...
...

...
. . .

0 0 0 · · · 1 + a2

37777775
E. Autoregressive response structure AR(1):

Ψj =
σ2

ε

1− γ2

26664
1

γ 1
...

...
. . .

γnj−1 γnj−2 · · · 1

37775

the covariances ω2 are restricted to be nonnegative in the random intercept
model. If this restriction is relaxed, the above covariance structure is often
called compound symmetric. In the case of balanced occasions, we could also
allow the variance of εij to take on a different value Σii for each occasion.

Typically, the random intercept model is estimated by either maximum
likelihood or restricted maximum likelihood [42]. The likelihood has a closed
form but iterative methods such as the EM algorithm, Newton-Raphson,
Fisher scoring, or iterated generalized least squares (IGLS) must be used to
estimate the parameters; see chapter 1 [15].
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Maximum likelihood estimates of the random intercept model for the wage
panel data, obtained using Stata’s [63] xtmixed command, are given in the
first column of Table 7.2. As might be expected, more years of schooling,
more labor market experience, being married and being a union member are
all associated with higher hourly wages, whereas being black decreases the
wage compared with being white, and Hispanics’ wages are similar to those of
whites (controlling for the other covariates). The residual intraclass correlation
is estimated as 0.47; 47% of the variance not explained by the covariates is
therefore between individuals and 53% within individuals.

For generalized linear mixed models, the dependence among observed
responses is generally difficult to express because the model-implied corre-
lations and variances depend on the covariates. However, for a generalized
linear random intercept model, obtained by substituting Zj = 1nj in (7.2),
with dichotomous or ordinal responses, the intraclass correlation of the latent
responses is constant and given by (7.3) with σ2 replaced by π2/3 for logit
models and 1 for probit models. An important interpretational issue in gener-
alized linear mixed models concerns the distinction between conditional and
marginal effects, which correspond to unit-specific and population averaged
effects in the longitudinal setting. We return to this in section 7.6.

Generally, the marginal likelihood does not have a closed form for gen-
eralized linear mixed models making estimation more difficult. Common ap-
proaches include penalized quasilikelihood [23], maximum likelihood using
adaptive quadrature [56] and Markov Chain Monte Carlo (MCMC) [10];
see also chapter 9 [58]. For dichotomous responses and counts, closed form
likelihoods can be achieved by specifying a conjugate distribution for the
random intercepts, giving the beta-binomial and negative-binomial models,
respectively [38].

Simulation studies [5, 26, 48, 69] suggest that inference for the ran-
dom intercept model and similar models is relatively robust to violation
of the normality assumption for the random intercept. However, to safe-
guard against distributional misspecification, the random intercept distribu-
tion can be left unspecified by using nonparametric maximum likelihood esti-
mation [30, 34, 37]. The nonparametric maximum likelihood estimator of the
random intercept distribution is discrete with estimated locations and masses,
their number being determined to reach the largest maximized likelihood.

For the wage panel data gllamm [53, 55] in Stata was used to estimate
models with a discrete random effects distribution. The directional deriva-
tive [37] was used to determine whether the nonparametric maximum likeli-
hood estimator (NPMLE) was achieved as described in Rabe-Hesketh et al.
[52]. In the example the NPMLE appears to have eight mass points whose
estimated locations and masses are shown in Figure 7.1. This estimated dis-
crete distribution is quite symmetric apart from a tiny mass at 1.77 which
appears to accommodate one outlying individual whose log wage exceeded
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Fig. 7.1. Estimated discrete random intercept distribution from NPMLE.

the 99th percentile (across individuals and time) in 1981–1987. The standard
deviation of the discrete distribution is very close to ω̂0 for the conventional
random intercept model as are the estimates of the regression parameters β
and variance parameter σ2 given in the second column of Table 7.2.

As discussed for linear models in chapter 3 [61], violation of the assump-
tion that δj has zero expectation can invalidate inference. Specifically, if
E (δj) = z′jγ, where 1njzj and Xj are nonorthogonal, the estimates of the
regression coefficients β will be inconsistent. When the covariates Xj are
treated as random variables Xj , this problem is referred to as endogeneity in
econometrics because the covariates are correlated with the random effects.

The standard approach to handling endogeneity in econometrics is instru-
mental variables estimation [70]. In the present context a simpler solution is
to estimate the within-unit effects of Xj which can be achieved by also con-
trolling for the cluster mean covariates X̄·j . An alternative for linear models
is to use a fixed effects approach which will be discussed next. Unfortunately,
there are no easy fixes for violation of the assumption that E (εij) = 0.

7.2.2 Fixed Intercept Models

A simple linear fixed intercept model or fixed effects model has the form

yij = x′ijβ + δj + εij , (7.4)

where δj are unit-specific intercepts or ‘fixed effects’ and εij are identically
and independently normally distributed residuals with E (εij) = 0. Due to the
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inclusion of fixed effects δj for each unit j, the mean structure of y
j

is satu-
rated so that the regression coefficients β represent within-unit or longitudinal
effects only. Unlike the random intercept model, the fixed intercept model no
longer makes any assumptions regarding the cross-sectional component of the
model, so that endogeneity bias can be avoided. The cost of this robustness
is that regression parameters for time-constant covariates such as gender or
treatment group cannot be estimated and all covariates must therefore be
time-varying.

The fixed intercepts are rarely of interest in themselves and estimation can
be involved when there are many units. An attractive alternative to estimating
all parameters is to eliminate the fixed intercepts. This can be accomplished
by transforming both the responses and covariates and then using ordinary
least squares (OLS). In econometrics, two popular transformations are first
differencing: yij − yi−1,j , xij − xi−1,j , and cluster-mean centering: yij − ȳ·j ,
xij − x̄·j . Both approaches yield consistent estimates of the remaining regres-
sion coefficients but the latter, known as the fixed effects estimator, is more
efficient if the residuals εij are mutually independent as assumed above [70].
Verbeke et al. [66] propose eliminating the intercepts by conditioning on the
cluster mean responses and maximizing the resulting conditional likelihood.
This can be implemented by premultiplying y

j
and Xj by a nj × (nj − 1)

orthonormal contrast matrix. This approach yields identical estimates as the
fixed effects estimator based on cluster mean centering, but has the advantage
that the OLS standard error estimates need not be corrected for the loss of
degrees of freedom.

Some insight can be gained [41] regarding the difference between fixed-
effects and random effects estimators of the regression coefficients by consid-
ering the generalized least squares (GLS) estimator for the latter. The GLS
estimator is asymptotically equivalent to the maximum likelihood estimator
but has a closed form. It can be shown that the GLS estimator is a ma-
trix weighted average of the fixed-effects (or within-unit) estimator and the
between-unit estimator obtained by OLS estimation for the regression of the
cluster-mean response on the cluster-mean covariates. If the random intercept
model is correctly specified, the GLS estimator is more efficient since it uses
cross-sectional information in addition to longitudinal information. However, if
the cross-sectional component of the model is misspecified, the GLS estimator
becomes inconsistent for the longitudinal effects in contrast to the fixed-effects
estimator. Thus, a difference between fixed-effects and GLS estimates for β
suggests that the random effects model is misspecified and is the basis for the
popular Durbin-Wu-Hausman specification test [25] in this context.

Returning to the wage panel data, the fixed effects estimates of the co-
efficients of the time-varying covariates, obtained using Stata’s xtreg com-
mand, are given in the third column of Table 7.2. The estimates are quite
similar to the estimates for the random intercept model, suggesting that
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the cross-sectional component of the random intercept model is not severely
misspecified.

In generalized linear models, except for linear Gaussian or log-linear Pois-
son models, inclusion of a fixed intercept for each unit leads to inconsistent
estimates of the regression parameters β, which is known as the incidental
parameter problem [49]. For binary logistic models, the problem can be over-
come by conditioning on the sum of the responses for each unit to eliminate the
unit-specific intercepts, as mentioned above for linear models. In epidemiology,
such a conditional maximum likelihood approach is used for matched case-
control studies [7], in psychometrics for the Rasch measurement model [57]
and in econometrics for panel data [8, 9]. In addition to the limitation of not
permitting time-constant covariates, this approach also discards units with
all responses equal to 0 or all equal to 1. Furthermore, conditional maximum
likelihood estimation is impossible for some model types such as probit models.

7.3 Models with Unit-Specific Intercepts and Slopes

Sometimes units vary not just in the overall level of the response (control-
ling for covariates) but also in the effects of time-varying covariates on the
response. A typical example is where the effect of time, i.e. the rate of change,
varies between units. Such heterogeneity in the effects of covariates can be
viewed as interactions between the included covariates and a categorical vari-
able representing the units.

7.3.1 Continuous Random Coefficients

The random coefficient model [35] can be written as

yij = x′ijβ + z′ijδj + εij ,

were xij denotes both time-varying and time-constant covariates with fixed
coefficients β and zij denotes time-varying covariates with random coeffi-
cients δj ∼ N (∅,Ω). Since the random coefficients have zero means, xij will
typically contain all elements in zij , with the corresponding fixed effects in-
terpretable as the mean effects. The first element of these vectors is invariably
equal to 1, corresponding to a fixed and random intercept, respectively. The
random intercept model is thus the special case where zij = 1. The random
coefficient covariance structure of the vector y

j
is presented in panel B of

Table 7.1.
A useful version of the random coefficient model for longitudinal data is a

growth curve model where individuals are assumed to differ not only in their
intercepts but also in other aspects of their trajectory over time, for example
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in the linear growth (or decline) of the response. These models include random
coefficients for (functions of) time. For example, a linear growth curve model
can be written as

yij = x′ijβ + δ0j + δ1jtij + εij , (7.5)

where tij , the time at the ith occasion for individual j, is one of the covariates
in xij . The random intercept δ0j and random slope δ1j represent unit-specific
deviations from the mean intercept and slope, respectively. The random in-
tercept and slope should not be specified as uncorrelated, because translation
of the time scale tij changes the magnitude of the correlation [18, 39, 62].

In a linear growth curve model the variance of the responses (controlling
for the covariates) varies over occasions tij ,

Var( yij) = ω2
0 + 2ω10tij + ω2

1t
2
ij + σ2.

Note that the variance increases as a quadratic function of time if tij ≥ 0
and ω10 ≥ 0. The covariance between two responses yij and yi′j for a unit at
different occasions i and i′ becomes

Cov( yij , yi′j) = ω2
0 + ω10(tij + ti′j) + ω2

1tijti′j ,

which depends on the time associated with the occasions.
For the wage panel data we would expect wages to increase more rapidly for

some individuals as they gain more labor market experience than for others.
We therefore estimated a model with a random slope for labex in addition
to the random intercept. Maximum likelihood estimates using xtmixed are
given in the fourth column of Table 7.2. The fixed part estimates remain
practically the same as for the random intercept model. There is a negative
estimated correlation between the random intercept and random slope. To
visualize the model the bottom panel of Figure 7.2 shows the fitted trajectories
(obtained by plugging in empirical Bayes predictions of the random intercepts
and slopes and setting married and union to zero) for the first 40 individuals.
For comparison the corresponding trajectories for the random intercept model
are given in the top panel of the figure. These trajectories are nonlinear due
to the quadratic term labexsq in the fixed part of the model.

For balanced occasions with associated times tij = ti, the linear growth
curve model can also be formulated as a two-factor model with fixed factor
loadings,

yij = λ0i β0j + λ1i β1j + εij , λ0i = 1, λ1i = ti

where
β0j = β0 + δ0j , β1j = β1 + δ1j .

Note that the means of the factors cannot be set to zero here as is usually done
in factor models. A path diagram of this model is shown in Figure 7.3, where
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Fig. 7.2. Fitted trajectories for linear random intercept model (top) and random

coefficient model (bottom). Empirical Bayes predictions are substituted for the ran-

dom effects and married and union set to zero.
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there are three occasions with times t1 = 0, t2 = 1 and t3 = 2. Following the
usual conventions, latent variables or random effects are represented by circles
and observed variables by rectangles. Long arrows represent regressions and
short errors residual errors.

Meredith and Tisak [43] suggest using a two-factor model with free factor
loadings λ1i for β1j (subject to identification restrictions, such as λ11 =0 and
λ12 =1) to model nonlinear growth. Estimation of this factor model requires
balanced occasions, but modern software can handle missing data.
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Fig. 7.3. Path diagram for growth curve model with balanced occasions.

Generalized linear random coefficient models are defined analogously to
the linear case. Maximum likelihood estimation using numerical integration
becomes computationally more demanding as the number of random effects
increases. Unfortunately, we can no longer exploit conjugacy to obtain closed-
form likelihoods for counts and dichotomous responses.

7.3.2 Fixed Coefficients

Instead of considering the unit-specific intercepts and slopes as random, we
can specify a model with fixed intercepts and slopes,

yij = x′ijβ + δ0j + δ1jzij + εij .

If the data are balanced, zij = zi, and the differences zi − zi−1 are constant,
then the δ0j and δ1j can be eliminated by double-differencing [70]. Alterna-
tively, first-differencing can be used to turn the model into a fixed intercepts
model which can subsequently be estimated by any of the methods discussed
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in section 7.2.2. This approach was used to obtain the estimates for the wage
panel data given in the sixth column of Table 7.2. The estimated regression
coefficients for married and union are considerably closer to zero than in
the random coefficient model. Wooldridge [70] also describes an approach for
eliminating the intercepts and slopes in more general models with unbalanced
zij .

Verbeke et al. [66] suggest a hybrid approach, treating the intercepts as
fixed but the slope(s) as random

yij = x′ijβ + δ0j + δ1jzij + εij .

The fixed intercepts are eliminated by forming contrasts using an orthonormal
coefficient matrix as described in section 7.2.2, corresponding to conditional
maximum likelihood estimation. Estimates for the wage panel data using this
approach are given in the fifth column of Table 7.2 and are quite similar to
the estimates for the random coefficient model.

7.3.3 Discrete Random Coefficients

It is sometimes believed that the population consists of different subpop-
ulations or classes of units characterized by different unknown patterns of
development over time. Since class membership is not known, the parameters
characterizing the development trajectory can be treated as discrete latent
variables or random effects.

In a linear latent trajectory model or latent profile model [22] analogous
to (7.5), the model for a unit in latent class c (c = 1, . . . , C) is given by

yijc = e0c + e1ctij + εijc.

Each latent class is characterized by a pair of coefficients e0c and e1c, repre-
senting the intercept and slope of the latent trajectory. Other covariates can
be included in the regression model above, so that the e0c and e1c describe the
distinct patterns of deviations from the mean trajectory given the covariates.
Alternatively, other covariates could be included in a multinomial logit model
for the latent class membership probabilities, as is often done in conventional
latent class models [14].

Interestingly, the number of classes cannot be increased indefinitely. If
it is attempted to exceed the maximum possible number of classes, then
estimated locations of some classes will either coincide or the probabilities of
some classes tend to zero. The solution with the maximum number of classes
then corresponds to the nonparametric maximum likelihood estimator [1]. An
extension of the model would be to allow the variance of residuals εijc to differ
between classes.
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For balanced occasions we do not have to assume that the latent trajec-
tories are linear or have another particular shape but can instead specify an
unstructured model with latent trajectory

yijc = eic + εijc, i = 1, . . . , n

for class c.
In the case of categorical responses, latent trajectory models are typically

referred to as latent class growth models [47] and represent an application of
mixture regression models [51, 68] to longitudinal data.

All these models assume that the responses on a unit are conditionally
independent given latent class membership. Muthén and Shedden [46] relax
this assumption for continuous responses in their growth mixture models by
allowing the residuals εijc to be correlated conditional on latent class mem-
bership with covariance matrices differing between classes.

7.4 Models with Correlated Residual Errors

In the models considered so far the residuals εij have been assumed to be
mutually independent and the longitudinal dependence among the responses
(given the covariates) has been accommodated by including either fixed or
random unit-specific effects. In the case of random effects, the responses are
conditionally independent given the random effects but marginally dependent
with covariance structures for linear models given in Table 7.1.

These covariance structures may be overly restrictive, particularly for a
random intercept model when there are a large number of occasions. For
instance, the correlations between pairs of responses often decrease as the
time lag increases, which is at odds with the constant correlations induced by
the random intercept model. For such reasons, the residuals εij are sometimes
allowed to be correlated. Caution should be exercised when combining a com-
plex unit-level random part with a covariance structure for the residuals, as
the resulting model may not be identified.

Allowing for dependence among the residuals can also be motivated as
follows. Unit-specific intercepts and slopes accommodate the effects of only
time-constant influences (not represented by the covariates). The indepen-
dence assumption for the residuals then implies that time-varying random
influences are immediate and do not persist over more than a single occasion.
There is often no compelling reason to exclude a third type of random influence
which is neither everlasting nor fleeting, but persists for an intermediate length
of time, leading to serially correlated residual errors.

In the following subsections, we follow the treatment in Skrondal and
Rabe-Hesketh [60]. We discuss the case of continuous responses, sometimes
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Fig. 7.4. Path diagrams for autoregressive responses and autoregressive and mov-

ing average residuals. Covariates and paths from covariates to responses omitted

(Source: Skrondal and Rabe-Hesketh [60]).

indicating how the models are modified for other response types. The models
to be described can be generalized to dichotomous and ordinal responses using
the latent response formulation.

7.4.1 Autoregressive Residuals

When occasions are equally spaced in time, a first order autoregressive model
AR(1) can be expressed as

εij = αεi−1,j + uij , (7.6)

where εi−1,j is independently distributed from the ‘innovation errors’ uij ,
uij ∼ N (0, σ2

u). This is illustrated in path diagram form in the first panel of
Figure 7.4. A ‘random walk’ is obtained if the restriction α = 1 is imposed.

Assuming that the process is weakly stationary, |α| < 1, the covariance
structure is as shown in panel C of Table 7.1. The correlations between re-
sponses at different occasions become

Corr(εij , εi+k,j) = αk.

For non-equally spaced occasions, the correlation structure is often specified
as

Corr( yij , yi+k,j) = α|ti+k−ti|,

where the correlation structure for unbalanced occasions is simply obtained
by replacing ti by tij [16]. In the case of balanced occasions, we can also
specify a different parameter αi for each occasion, giving an antedependence
structure [21] for the residuals.

For the wage panel data, we estimated a random intercept model with
AR(1) residuals by maximum likelihood using the lme() function in S-PLUS
giving the estimates in column 7 of Table 7.2 (Stata’s xtregar command can
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be used to estimate the model using the generalized least squares estimator
proposed by Baltagi and Wu [4]). The autoregressive coefficient is estimated
as α̂ = 0.27 and the estimates of the regression parameters β are very similar
to those given for the random intercept model in the first column. The random
intercept model with AR(1) residuals has a considerably larger log-likelihood
than the random intercept model with uncorrelated residuals. Introducing a
random slope increases the log-likelihood to −2095.7 and reduces the esti-
mated autoregressive coefficient to α̂ = 0.17 (estimates not shown).

First order autoregressive covariance structures are often as unrealistic as
the random intercept structure since the correlations fall off too rapidly with
increasing time-lags. One possibility is to specify a higher order autoregressive
process of order k, AR(k),

εij = α1εi−1,j + α2εi−2,j + · · ·+ αkεi−k,j + uij .

7.4.2 Moving Average Residuals

Random shocks disturb the response variable for some fixed number of periods
before disappearing and can be modeled by moving averages [6]. A first order
moving average process MA(1) for the residuals can be specified as

εij = uij + a ui−1,j .

A path diagram for this model is given in the second panel of Figure 7.4 and
the covariance structure is presented in panel D of Table 7.1. The MA(1)
process ‘forgets’ what happened more than one period in the past, in contrast
to the autoregressive processes.

The moving average model of order k, MA(k), is given as

εij = uij + a1ui−1,j + a2ui−2,j + · · ·+ akui−k,j ,

with ‘memory’ extending k periods in the past.

7.5 Models with Lagged Responses

Lags of the response yij can be included as covariates in addition to xij .
Such models are usually called autoregressive models but are sometimes also
referred to as transition models [17], Markov models [17], or conditional mod-
els [11].

When occasions are equally spaced in time, a first order autoregressive
model for the responses yij can be written as

yij = x′ijβ + γyi−1,j + εij .
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A path diagram for this model is shown under ‘AR(1) responses’ in the third
panel of Figure 7.4. Assuming that the process is weakly stationary, |γ| < 1,
the covariance structure is shown in panel E of Table 7.1. An extension of the
autoregressive model is the antedependence model which specifies a different
parameter γi for each occasion.

A first order autoregressive model for the responses was estimated for the
wage panel data giving the estimates shown in the last column of Table 7.2.
The regression coefficient of the lagged response is estimated as γ̂ = 0.56. As
would be expected, many of the other regression coefficients change consider-
ably due to controlling for the lagged response.

As for the residual autoregressive structure, the first order autoregressive
structure for responses is often deemed unrealistic, since the correlations fall
off too rapidly with increasing time-lags. Once again, this may be rectified by
specifying a higher order autoregressive process AR(k)

yij = x′ijβ + γ1yi−1,j + γ2yi−2,j + · · ·+ γkyi−k,j + εij .

Apart from being of interest in its own right, the lagged response model
is useful for distinguishing between different longitudinal models. Consider
two simple models; a model with a lagged response and lagged covariate but
independent residuals εij

yij = γ yi−1,j + β1xij + β2xi−1,j + εij , (7.7)

and an autocorrelation model without lagged response or lagged covariate

yij = β xij + εij ,

but residuals εij having an AR(1) structure. Substituting first for εij =
αεi−1,j + uij from (7.6), then for εi−1,j = yi−1,j − β xi−1,j and reexpressing,
the autocorrelation model can alternatively be written as

yij = α yi−1,j + β xij − αβ xi−1,j + uij .

This model is equivalent to model (7.7) with the restriction β2 = −γβ1. This
means that we can use (7.7) to discriminate between autocorrelated residuals
and lagged responses.

Use of lagged response models should be conducted with caution. First,
lags should be avoided if the lagged effects do not have a ‘causal’ interpretation
since the interpretation of β changes when yi−1,j is included as an additional
covariate. Second, the models require balanced data in the sense that all units
are measured on the same occasions. It is problematic if the response for a
unit is missing at an occasion. In practice, the entire unit is often discarded
in this case. Third, lagged response models reduce the sample size. This is
because the yij on the first occasions can only serve as covariates and cannot
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be regressed on lagged responses (which are missing). Alternatively, if the
lagged responses are treated as endogenous, the sample size is not reduced,
but an initial condition problem arises for the common situation where the
process is ongoing when we start observing it [28]. Finally, if random effects
are also included in the model, even the initial response (at the start of the
process) becomes endogenous [28].

An advantage of lagged response models as compared to models with
autoregressive residuals is that they can easily be used for response types
other than the continuous. Heckman [29] discusses a very general framework
for longitudinal modeling of dichotomous responses, for instance combining
lagged responses with random effects.

7.6 Marginal Approaches

As is clear from the general form of generalized linear mixed models (includ-
ing linear mixed models) in (7.2), the model linking the expectation to the
covariates is specified conditional on the unit-specific random effects δj . The
regression coefficients β therefore have a conditional or unit-specific interpre-
tation.

The marginal or population averaged expectations of the responses can be
obtained by integrating the inverse link function of the linear predictor over
the random effects distribution

E (yij) =
∫
g−1(x′ijβ + z′ijδj) φ(δj ;∅,Ω) dδj , (7.8)

where φ(δj ;∅,Ω) is the multivariate normal density of the random effects.
For linear mixed models, the link function g(·) is the identity and the

population averaged expectation is simply the fixed part x′ijβ of the model.
Therefore, the regression coefficients β also have a population averaged in-
terpretation in this case. In the linear case, it could therefore be argued
that it does not matter whether the model is interpreted conditionally or
marginally. However, in the marginal interpretation of the random part, only
the covariance matrix Ψj of the total random part (as shown in Table 7.1)
is interpreted, not the individual covariance matrices Ω and Σj

∆=Cov(εj).
Thus, Verbeke and Molenberghs [65] argue that the covariance matrices Ω
and Σj need not be positive semi-definite in this case as long as Ψj is positive
semi-definite.

For link functions other than the identity, the expectation in (7.8) differs
from the fixed part of the model. For generalized linear mixed models with
probit links we can derive a simple form for the population averaged expec-
tation using the latent response formulation. The model can be specified as

y∗ij = x′ijβ + z′ijδj + εij , δj ∼ N (∅,Ω), εij ∼ N (0, 1),
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with yij = 1 if y∗ij > 0 and yij = 0 otherwise. The unit-specific model then
becomes

E (yij | δj) = Pr(yij = 1 | δj) = Φ(x′ijβ + z′ijδj),

where Φ(·) is the standard normal cumulative distribution function, the inverse
probit link. The corresponding marginal model is given by

E (yij) = Pr(yij = 1)

= Pr(y∗ij > 0)

= Pr(x′ijβ + z′ijδj + εij > 0)

= Pr
(
−(z′ijδj + εij) ≤ x′ijβ

)
= Pr

(
z′ijδj + εij√
z′ijΩzij + 1

≤
x′ijβ√

z′ijΩzij + 1

)
= Φ

(
x′ijβ√

z′ijΩzij + 1

)
, (7.9)

where the denominator is greater than 1 if Ω 6= ∅. For a random intercept
probit model, the denominator is a constant

√
ω2 + 1 and the population

averaged model has the same functional form as the unit-specific model but
with attenuated regression coefficients β/

√
ω2 + 1. This attenuation is shown

graphically in Figure 7.5 where the dashed curves represent unit-specific rela-
tionships for a random intercept probit model with a single covariate whereas
the flatter solid curve represents the population averaged relationship.

It can be seen from (7.9) that if any aspect of the random part of the
model is altered, the regression coefficients must also be altered to obtain a
good fit to the empirical (marginal) relationship between the response and
covariates. Therefore estimates of the unit-specific regression parameters be-
come inconsistent under misspecification of the random part except for linear
mixed models.

Whether unit-specific or population averaged effects are of interest will
depend on the context. For example, in public health, population averaged
effects may be of interest, whereas unit-specific effects are important for the
patient and clinician. An advantage of unit-specific effects is that they are
more likely to be stable across populations, whereas marginal effects depend
greatly on the between-unit heterogeneity which will generally differ between
populations.

If interest is focused on marginal effects and between-unit heterogeneity
or longitudinal dependence are regarded as a nuisance, generalized estimating
equations (GEE) [36, 71] can be used. The simplest version is to estimate
the mean structure as if the responses were independent and then adjust
standard errors for the dependence using the so-called sandwich estimator.
The estimates of the population averaged regression parameters can be shown
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Fig. 7.5. Unit-specific versus population-averaged probit regression.

to be consistent, but if the responses are correlated, they are not efficient. To
increase efficiency a ‘working correlation matrix’ is therefore specified within a
multivariate extension of the iteratively reweighted least squares algorithm for
generalized linear models. Typically, one of the structures listed in Table 7.1
is used for the working correlation matrix of the residuals yij − g−1(x′ijβ),
as well as unrestricted and independence correlation structures. The working
correlation matrix is combined with the variance function of an appropriate
generalized linear model, typically allowing for overdispersion if the responses
are counts. It is important to note that, apart from continuous responses, the
specified correlation structures generally cannot be derived from a statistical
model. Thus, GEE is a multivariate quasi-likelihood approach with no proper
likelihood.

There are also ‘proper’ marginal statistical models with corresponding
likelihoods. Examples include the Bahadur [2] and Dale [13] models, which
parameterize dependence via marginal correlations and marginal bivariate
odds-ratios, respectively [19, 44]. See Molenberghs and Verbeke [45] for an
overview of these models.

Heagerty and Zeger [27] introduce random effects models where the
marginal mean is regressed on covariates as in GEE. In these models the
relationship between the conditional mean (given the random effects) and
the covariates is found by solving the integral equation (7.8) linking the
conditional and marginal means. Interestingly, the integral involved can be
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written as a unidimensional integral over the distribution of the sum of the
terms in the random part of the model.

7.7 Concluding Remarks

It is straightforward to extend the longitudinal models discussed here to
situations where units are clustered by including random effects varying at
higher levels.

We have focused on linear and quadratic growth models, but nonlinear
growth models can also be specified via linear mixed models using higher
order polynomials of time or splines [62]. Nonlinear mixed models [50] can be
preferable if specific functional forms are suggested by substantive theory as
in pharmacokinetics.

Useful books on modeling longitudinal data include Skrondal and Rabe-
Hesketh [60], Hand and Crowder [24], Crowder and Hand [12], Vonesh and
Chinchilli [67], Jones [33], Hsiao [32], Baltagi [3], Wooldridge [70], Lindsey
[38], Verbeke and Molenberghs [65], Diggle et al. [17] and Fitzmaurice et al.
[20].
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Non-Hierarchical Multilevel Models

Jon Rasbash1 and William J. Browne2
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2 University of Bristol, Department of Clinical Veterinary Science

8.1 Introduction

In the models discussed in this book so far we have assumed that the structures
of the populations from which the data have been drawn are hierarchical.
This assumption is sometimes not justified. In this chapter two main types
of non-hierarchical model are considered. Firstly, cross-classified models. The
notion of cross-classification is probably reasonably familiar to most readers.
Secondly, we consider multiple membership models, where lower level units
are influenced by more than one higher level unit from the same classification.
For example, some pupils may attend more than one school. We also consider
situations that contain a mixture of hierarchical, crossed and multiple mem-
bership relationships.

8.2 Cross-Classified Models

This section is divided into three parts. In the first part we look at situa-
tions that can give rise to a two way cross-classification and introduce some
diagrams to describe the population structure, and discuss notation for con-
structing a statistical model. In the second part we discuss some of the possible
estimation methods for estimating cross-classified models and give an example
analysis of an educational data set. In the third part we then describe some
more complex cross-classified structures and give an example analyses of a
medical data set.
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Table 8.1. Patients cross-classified by hospital and neighbourhood.

Neighbourhood 1 Neighbourhood 2 Neighbourhood 3

Hospital 1 XX X

Hospital 2 X X

Hospital 3 XX X

Hospital 4 X XXX

Table 8.2. Patients nested within hospitals within neighbourhoods.

Neighbourhood 1 Neighbourhood 2 Neighbourhood 3

Hospital 1 XXX

Hospital 2 XX

Hospital 3 XXX

Hospital 4 XXXX

8.2.1 Two-Way Cross-Classifications: A Basic Model

Suppose, we have data on a large number of patients, attending many hospitals
and we also know the neighbourhood in which the patient lives and that
we regard patient, neighbourhood and hospital all as important sources of
variation for the patient level outcome measure we wish to study. Now, typi-
cally hospitals will draw patients from many different neighbourhoods and the
inhabitants of a neighbourhood will go to many hospitals. No pure hierarchy
can be found and patients are said to be contained within a cross-classification
of hospitals by neighbourhoods. This can be represented schematically, for
the case of twelve patients contained within a cross-classification of three
neighbourhoods by four hospitals as in Table 8.1.

In this example we have patients at level 1 and neighbourhood and hospital
are cross-classified at level 2. The characteristic pattern of a cross-classification
is shown, some rows contains multiple entries and some columns contain mul-
tiple entries. In a nested relationship, if the row classification is nested within
the column classification then all the entries across a row will fall under a
single column and vice versa if the column classification is nested within the
row classification. For example, if hospitals are nested within neighbourhoods
we might observe the pattern in Table 8.2.

Many studies follow this simple two-way crossed structure, here are a few
examples:

• Education: students cross-classified by primary school and secondary
school.

• Health: patients cross-classified by general practice and hospital.
• Survey data: individuals cross-classified by interviewer and area of resi-

dence.
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Diagrams for Representing the Relationship Between
Classifications

We find two types of diagrams useful in expressing the nature of relation-
ships between classifications. Firstly, unit diagrams where we draw every unit
(patient, hospital and neighbourhood, in the case of our first example) and
connect each lowest level unit(patient) to its parent units (hospital, neighbour-
hood). Such a representation of the data in Table 8.1 is shown in Figure 8.1.

Hospital H1 H2 H3 H4

Patient P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

Neighbourhood N1 N2 N3

Fig. 8.1. Diagrams for crossed structure given in Table 8.1.

Note that we have two hierarchies present, patients within hospitals and
patients within neighbourhoods. We have organised the topology of the dia-
gram such that patients are nested within hospitals. However, when we come
to add neighbourhoods to the diagram we see that the connecting lines cross,
indicating we have a cross classification. Drawing the hierarchical structure
shown in Table 8.2 gives the representation shown in Figure 8.2.

Clearly, to draw such diagrams that include all units with large data sets
is not practical as there will be far too many nodes on the diagram to fit into
a reasonable area. However, they can be used in schematic form to convey the
structure of the relationship between classifications. But when we have four or
five random classifications present (as commonly occur with social data) even
schematic forms of these diagrams can become hard to read. There is a more
minimal diagram, the classification diagram, which has one node for each
classification. Nodes connected by an arrow indicate a nested relationship,
nodes connected by a double arrow indicate a multiple-membership relation-
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Hospital H1 H4 H2 H3

Patient P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

Neighbourhood N1 N2 N3

Fig. 8.2. Diagrams for completely nested structure given in Table 8.2.

ship (examples are given later) and unconnected nodes indicate a crossed
relationship. Thus the crossed structure in Figure 8.1 and the completely
nested structure of Figure 8.2 are drawn as shown in Figure 8.3.

Patient

Hospital Neighbourhood

(i) crossed structure

Patient

Hospital

Neighbourhood

(ii) nested structure

Fig. 8.3. Classification diagrams for nesting and crossing.
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Some Notation for Constructing a Statistical Model

The matrix notation used in this book for describing hierarchical models, that
is,

y
j

= Xjβ +Zjδj + εj

does not readily extend to the case of cross-classifications. This is because
this notation assumes a unique hierarchy where we write down the generic
equation for the j-th level two unit. In a simple cross-classification we have
two sets of level two units, for example, hospitals and neighbourhoods, so
which classification is j indexing?

We can extend the basic scalar notation to handle cross-classified struc-
tures. Assume we have patients nested within a cross-classification of neigh-
bourhoods by hospital, that is the case illustrated in Figure 8.3(i). Suppose
we want to estimate a simple variance components model giving estimates of
the mean response and patient, hospital and neighbourhood level variation.
In this case we can write the model in scalar notation as

y
i(j1,j2)

= β0 + δj1 + δj2 + εi(j1,j2)

where β0 estimates the mean response, j1 indexes the hospital classification, j2
indexes the neighbourhood classification, δj1 is the random effect for hospital
j1, δj2 is the random effect for neighbourhood j2, yi(j1,j2) is the response for
the i-th patient from the cell in the cross-classification defined by hospital
j1 and neighbourhood j2 and finally εi(j1,j2) is the patient level residual for
the i-th patient from cell in the cross-classification defined by hospital j1 and
neighbourhood j2.

Details of how this notation extends to represent more complex models and
patterns of cross-classifications are given in Rasbash and Browne [14]. One
problem with this notation is that as we fit models with more classifications
and more complex patterns of crossing, the subscript notation that describes
the patterns becomes very cumbersome and difficult to read. We therefore
prefer an alternative notation introduced in Browne et al. [2].

We can write the same model as

y
i
= β0 + δ

(2)
hosp(i) + δ

(3)
nbhd(i) + εi

where i indexes the observation level, in this case patients, and hosp(i) and
nbhd(i) are functions that return the unit number of the hospital and neigh-
bourhood, respectively, that patient i belongs to. Thus for the data structure
drawn in Figure 8.1 the values of hosp(i) and nbhd(i) are given in Table 8.3.

Therefore the model for Patient 3 would be

y
3

= β0 + δ
(2)
1 + δ

(3)
1 + ε3
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Table 8.3. Indexing table for hospitals and neighbourhoods for patients given in

Figure 8.1.

i hosp(i) nbhd(i)

1 1 1

2 1 2

3 1 1

4 2 2

5 2 1

6 3 2

7 3 2

8 3 3

9 4 3

10 4 2

11 4 3

12 4 3

and for Patient 5 would be

y
5

= β0 + δ
(2)
2 + δ

(3)
1 + ε5.

We number the classifications from 2 upwards as we use classification number
1 to represent the identity classification that applies to the observation level
(like level 1 in a hierarchical model). This classification simply returns the row
numbers in the data matrix. As can be seen random effects require bracketed
superscripting with their classification number to avoid ambiguity.

This simplified notation has the advantage that the subscripting notation
does not increase in complexity as we add more classifications. This simpli-
fication is achieved because the notation makes no attempt to describe the
patterns of crossing and nesting present. This is useful information and we
therefore advocate the use of this notation in conjunction with the classifica-
tion diagrams, as shown in Figure 8.3, which display these patterns explicitly.

8.2.2 Estimation Algorithms

We will describe three estimation algorithms for fitting cross-classified models
in detail and mention other alternatives. Each of these three methods has
advantages and disadvantages in terms of speed, memory usage and bias and
these will be discussed later. All three methods have been implemented in
versions of the MLwiN software package [16] and all results in this paper are
produced by this package.

An IGLS Algorithm for Estimating Cross-Classified Models

The iterative generalized least squares estimates for a multilevel model are
those estimates which simultaneously satisfy both of the following equations:
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β̂ = (X ′V −1X)−1X ′V −1y

θ̂ =
(
Z∗′(V ∗)−1Z∗

)−1
Z∗′(V ∗)−1y∗

where β̂ are the estimated fixed coefficients and θ̂ is a vector containing the
estimated variances and covariances of the sets of random effects in the model.
V = Cov(y |X,β) and an estimate of V is constructed from the elements of
θ̂ and Z. y∗ is the vector of elements of (y−Xβ)(y−Xβ)′ and therefore has
length N2 (N is the length of the data set). V ∗ has the form V ∗ = V � V
and Z∗ is the design matrix linking y∗ to V in the regression of y∗ on Z∗. See
Goldstein [7] for more details. Some of these matrices are massive, for example,
(V ∗)−1 is dimensioned N2×N2, making a direct software implementation of
these estimating equations extremely resource intensive both in terms of CPU
time and memory consumed. However, in hierarchical models V and V ∗ have
a block diagonal structure which can be exploited by customised algorithms
[see 9] which allow efficient computation.

The problem presented by cross-classified models is that V (and therefore
V ∗) no longer has the block diagonal structure which the efficient algorithm
requires.

Structure of V for Cross-Classified Models

Lets take a look at the structure of V , the covariance matrix of y, for cross-
classified models and see how we can adapt the standard IGLS algorithm to
handle cross-classifications.

The basic two-level cross-classified model (with hospitals + neighbour-
hoods) can be written as:

y
i
= xiβ + δ

(2)
hosp(i) + δ

(3)
nbhd(i) + εi

δ
(2)
hosp(i) ∼ N (0, σ2

δ(2)), δ
(3)
nbhd(i) ∼ N (0, σ2

δ(3)), εi ∼ N (0, σ2
ε ).

The variance of our response is now

Var(y
i
) = Var

(
δ
(2)
hosp(i) + δ

(3)
nbhd(i) + εi

)
= σ2

δ(2) + σ2
δ(3) + σ2

ε .

The covariance between individuals a and b is

Cov(y
a
, y
b
) = Cov

(
δ
(2)
hosp(a) + δ

(3)
nbhd(a) + εa, δ

(2)
hosp(b) + δ

(3)
nbhd(b) + εb

)
,

which simplifies to σ2
δ(2) for two individuals from the same hospital but differ-

ent neighbourhoods, σ2
δ(3) for two individuals from the same neighbourhood

but different hospitals, σ2
δ(2) + σ2

δ(3) for two individuals from the same neigh-
bourhood and the same hospital and zero for two individuals who are from
both different neighbourhoods and different hospitals. If we take a toy example
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Table 8.4. Indexing table for hospitals and neighbourhoods for 5 patients.

i hosp(i) nbhd(i)

1 1 1

2 1 2

3 1 1

4 2 2

5 2 1

of five patients in two hospitals and introduce a cross-classification with two
neighbourhoods, as shown in Table 8.4.

This generates a 5 × 5 covariance matrix for the responses of the five
patients with the following structure:

V =


h+ n+ p h h+ n 0 n

h h+ n+ p h n 0
h+ n h h+ n+ p 0 n

0 n 0 h+ n+ p h

n 0 n h h+ n+ p

 ,

where h = σ2
δ(2), n = σ2

δ(3) and p = σ2
ε .

Here, the data is sorted patient within hospital. This allows us to split
the covariance matrix into two components: A component for patients within
hospitals which has a block diagonal structure (P ) and a component for
neighbourhoods (Q): V = P +Q, where

P =


h+ p h h 0 0
h h+ p h 0 0
h h h+ p 0 0
0 0 0 h+ p h

0 0 0 h h+ p


and

Q =


n 0 n 0 n
0 n 0 n 0
n 0 n 0 n
0 n 0 n 0
n 0 n 0 n

 .

Given that the V matrix is sorted according to patient within hospital (P ),
P + Q cannot be simultaneously expressed in a single V -matrix as block
diagonal. Splitting the structure of V into a hierarchical, block-diagonal part
that the IGLS algorithm can handle in an efficient way and a non-hierarchical,
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non-block diagonal part forms the basis of a relatively efficient algorithm for
handling cross-classified models.

If we take the dummy variable indicator matrix of neighbourhoods (Z),
then we have Q = ZZ ′n:

Z =


1 0
0 1
1 0
0 1
1 0

 ,ZZ ′n =


1 0 1 0 1
0 1 0 1 0
1 0 1 0 1
0 1 0 1 0
1 0 1 0 1

n

We can define a ‘pseudo-unit’ that spans the entire data set, in our toy exam-
ple, all five points, and declare this pseudo-unit to be level three in the model
(removing the neighbourhood level from the model). We can now form the
three level hierarchical model

y
i
= β0 + δ

(2)
hosp(i) + δ

(3)
punit(i),1zi1 + δ

(3)
punit(i),2zi2 + εi δ

(3)
punit(i),1

δ
(3)
punit(i),2

 ∼ N (0, Σδ(3)), Σδ(3) =

(
σ2
δ(3),1 0
0 σ2

δ(3),2

)

δ
(2)
hosp(i) ∼ N (0, σ2

δ(2)), εi ∼ N (0, σ2
ε )

Here the level structure is patients within hospitals within the pseudo unit
level. zi1 and zi2 are the first and second element, respectively, of the i-th
row of Z. σ2

δ(3),1 and σ2
δ(3),2 are both estimates of the between neighbour-

hood variation, therefore we constrain them to be equal. Thus we can use
the standard IGLS hierarchical algorithm to define and estimate the correct
covariance structure for a cross-classified model. Now if we had 200 hospitals
and 100 neighbourhoods, we would have to form 100 dummy variables for
the neighbourhoods, allow them all to have variances at level 3 and constrain
the variances to be equal. Details of this algorithm are given in Rasbash and
Goldstein [15] and Bull et al. [3] and it will be referred to as the RG algorithm
in later sections.

MCMC

The MCMC estimation methods (see chapter 2 of this book for a fuller de-
scription) aim to generate samples from the joint posterior distribution of
all unknown parameters. They then use these samples to calculate point and
interval estimates for each individual parameter. The Gibbs sampler algo-
rithm produces samples from the joint posterior by generating in turn from
the conditional posterior distributions of groups of unknown parameters. In
chapter 2, the Gibbs sampling algorithm for a normally distributed response
hierarchical model is given.
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As we have seen in the notation section we can describe our model as a set
of additive terms, one for the fixed part of the model and one for each of the
random classifications. The MCMC algorithm works on each of these terms
separately and consequently the algorithm for a cross-classified model is no
more complicated than for a hierarchical model. For illustration we present the
steps for the following cross-classified model based on the variance components
hospitals by neighbourhoods model and refer the interested reader to Browne
et al. [2] for more general algorithms. Note that if the response is dichotomous
or a count then as in chapter 2 we can use the Metropolis-Gibbs hybrid method
discussed there.

The basic two-level cross-classified model (with hospitals + neighbour-
hoods) can be written as:

y
i
= xiβ + δ

(2)
hosp(i) + δ

(3)
nbhd(i) + εi

δ
(2)
hosp(i) ∼ N (0, σ2

δ(2)), δ
(3)
nbhd(i) ∼ N (0, σ2

δ(3)), εi ∼ N (0, σ2
ε )

We can split our unknown parameters into six distinct sets: the fixed effects,
β, the hospital random effects, δ(2)hosp(i), the neighbourhood random effects,
δ
(3)
nbhd(i), the hospitals variance, σ2

δ(2) the neighbourhood variance, σ2
δ(3) and

the residual variance, σ2
ε .

Then we need to generate random draws from the conditional distribution
of each of these six groups of unknowns. MCMC algorithms are generally used
in a Bayesian context and consequently we need to define prior distributions
for our unknown parameters. For generality we will use a multivariate normal
prior for the fixed effects, β ∼ Npf

(µp,Sp), and scaled inverse (SI) χ2 priors
for the three variances. For the hospital variance σ2

δ(2) ∼ SIχ2(ν2, s22), for
the neighbourhood variance σ2

δ(3) ∼ SIχ2(ν3, s23) and for the residual variance
σ2
ε ∼ SIχ2(νε, s2ε). The steps are then as follows:

• In step 1 of the algorithm the conditional posterior distribution in the
Gibbs update for the fixed effects parameter vector β is multivariate nor-
mal with dimension pf (the number of fixed effects):

p(β | y, δ(2), δ(3), σ2
δ(2), σ

2
δ(3), σ

2
ε ) ∼ Npf

(β̂, D̂),

where

D̂ =

(
N∑
i=1

x′ixi
σ2
ε

+ S−1
p

)−1

,

β̂ = D̂

(
N∑
i=1

x′idi
σ2
ε

+ S−1
p µp

)
,

and
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di = yi − δ(2)hosp(i) − δ
(3)
nbhd(i).

• In step 2 we update the hospital residuals, δ(2)k , using Gibbs sampling with
a univariate normal full conditional distribution:

p(δ(2)k | y,β, δ
(3), σ2

δ(2), σ
2
δ(3), σ

2
ε ) ∼ N (δ̂(2)k , D̂

(2)
k ),

where

D̂
(2)
k =

(
n

(2)
k

σ2
ε

+
1

σ2
δ(2)

)−1

,

δ̂
(2)
k = D̂

(2)
k

 ∑
i,hosp(i)=k

d
(2)
i

σ2
ε

 ,

and

d
(2)
i = yi − xiβ − δ(3)nbhd(i).

• In step 3 we update the neighbourhood residuals, δ(3)k , using Gibbs sam-
pling with a univariate normal full conditional distribution:

p(δ(3)k | y,β, δ
(2), σ2

δ(2), σ
2
δ(3), σ

2
ε ) ∼ N (δ̂(3)k , D̂

(3)
k ),

where

D̂
(3)
k =

(
n

(3)
k

σ2
ε

+
1

σ2
δ(3)

)−1

,

δ̂
(3)
k = D̂

(3)
k

 ∑
i,nbhd(i)=k

d
(3)
i

σ3
ε

 ,

and

d
(3)
i = yi − xiβ − δ(2)hosp(i).

Note that in the above two steps n(c)
k refers to the number of individuals in

the k-th unit of classification c.

• In step 4 we update the hospital variance σ2
δ(2) using Gibbs sampling and

a Gamma full conditional distribution for 1/σ2
δ(2):

p(1/σ2
δ(2) | y,β, δ

(2), δ(3), σ2
δ(3), σ

2
ε )

∼ Gamma

n2 + ν2
2

,
1
2

 n2∑
j=1

(
δ
(2)
j

)2 + ν2s
2
2

 .
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• In step 5 we update the neighbourhood variance σ2
δ(3) using Gibbs sam-

pling and a Gamma full conditional distribution for 1/σ2
δ(3):

p(1/σ2
δ(3) | y,β, δ

(2), δ(3), σ2
δ(2), σ

2
ε )

∼ Gamma

n3 + ν3
2

,
1
2

 n3∑
j=1

(
δ
(3)
j

)2 + ν3s
2
3

 .

• In step 6 we update the observation level variance σ2
ε using Gibbs sampling

and a Gamma full conditional distribution for 1/σ2
ε :

p(1/σ2
ε | y,β, δ(2), δ(3), σ2

δ(2), σ
2
δ(3))

∼ Gamma

(
N + νε

2
,

1
2

[
N∑
i=1

ε2i + νεs
2
ε

])
.

The above six steps are repeatedly sampled from in sequence to produce cor-
related chains of parameter estimates from which point and interval estimates
can be created as in chapter 2.

AIP Method

The Alternating Imputation Prediction (AIP) method is a data augmentation
algorithm for estimating cross-classified models with large numbers of random
effects. Comprehensive details of this algorithm are given in Clayton and
Rasbash [4]. We now give an overview.

Data augmentation has been reviewed by Schafer [19]. Tanner and Wong
[20] introduced the idea of data augmentation as a stochastic version of the EM
algorithm for maximum likelihood estimation in problems involving missing
data. Following Tanner and Wong we have

I(mputation) step — Impute missing data by sampling the distribution of
the missing data conditional upon the observed data and current values
of the model parameters.

P(osterior) step — Sample parameter values from the complete data pos-
terior distribution; these will be used for the next I-step.

In the context of random effect models, the random effects play the role of
missing data. If the observed data are denoted by y, the random effects by δ
and the model parameters by θ then the algorithm is specified (at step t) by

I step — Draw a sample δ(t) from p(δ | y,θ = θ(t−1)).
P step — Draw a sample θ(t) from p(θ | y, δ = δ(t)).
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Repeated application of these two steps delivers a stochastic chain with equi-
librium distribution p(δ,θ | y) in a similar way to the MCMC algorithm.
Now let’s look at how we can adapt this method to fit a crossed random
effects model when the only estimating engine we have at our disposal is one
optimized for fitting nested random effects.

An m-way cross-classified model can be broken down into m sub-models
each of which is a 2 level hierarchical model. For example, patients nested
within a cross-classification of neighbourhood by hospital can be broken down
into a patient within hospital sub-model and a patient within neighbourhood
sub-model.

Take the simple model

y
i
= xiβ + δ

(2)
hosp(i) + δ

(3)
nbhd(i) + εi ,

where hospital and neighbourhood are cross-classified. This cross-classified
model can be portioned into two hierarchical sub models: patients within
neighbourhoods (model N) and patients within hospitals (model H). An in-
formal description of the AIP algorithm is:

1. Start by fitting model N using an estimation procedure for 2 level models.
2. Sample the model parameters from an approximation to their joint pos-

terior distribution. That is, sample the fixed effects, the neighbourhood
level variance and the patient level variance; denote these samples by
β[0,3], σ2

δ[0,3] and σ2
ε[0,3] respectively. Here [0, 3] labels a term as belonging

to AIP iteration 0, for classification number 3, that is neighbourhood.
This is the P-step for the neighbourhood classification.

3. Next sample a set of neighbourhood level random effects (o[0,3]) from
p(δ[0,3] | y,β[0,3], σ

2
δ[0,3], σ

2
ε[0,3]) . This is the I-step for the neighbourhood

classification.
4. Offset o[0,3] from y, that is form ỹ = y−o[0,3], re-sort the data according

to hospitals and fit model H using the new offset response ỹ.
5. Next sample β[0,2], σ2

δ[0,2] and σ2
ε[0,2], from this second model, H. This is

the P-step for the hospital classification.
6. Sample a set of hospital level random effects (o[0,2]) from p(δ[0,2] |
y,β[0,2], σ

2
δ[0,2], σ

2
ε[0,2]). This is the I-step for the hospital classification.

This completes one iteration of the AIP algorithm, this is an Imputation-
Posterior algorithm that Alternates between the neighbourhood and hospital
classifications. We proceed by forming ỹ = y − o[0,2], that is offsetting the
sampled hospital residuals from y and using that as a response in step 1. After
T iterations the procedure delivers the following two chains, that can be used
for inference:

{β[0,2], σ
2
δ[0,2], σ

2
ε[0,2]}, {β[1,2], σ

2
δ[1,2], σ

2
ε[1,2]}, . . . , {β[T,2], σ

2
δ[T,2], σ

2
ε[T,2]}

{β[0,3], σ
2
δ[0,3], σ

2
ε[0,3]}, {β[1,3], σ

2
δ[1,3], σ

2
ε[1,3]}, . . . , {β[T,3], σ

2
δ[T,3], σ

2
ε[T,3]}.
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Note that we get two sets of estimates for both the fixed effects and the level 1
variance with the AIP algorithm and the empirical distributions of these quan-
tities should be equal. In our use of AIP we run the chains for between 100 and
400 iterations and judged convergence for a parameter by looking at the mean
of the distribution of that parameter’s chain. To converge to the posterior
distribution to get accurate estimates of say, extreme percentiles, would have
required many more iterations. However, compared to the MCMC algorithm
outlined above, each iteration imposes a heavy computational burden. To
avoid this problem Clayton and Rasbash [4] employed a Rao-Blackwellisation
[6] to estimate characteristics of the posterior distribution from short chains.
However, the accuracy of this method was not thoroughly investigated.

Other Methods

Raudenbush [17] considers an empirical Bayes approach to fitting cross-
classified models based on the EM algorithm. He considers the specific case
of two classifications where one of the classifications has many units whilst
the other has far fewer and shows two educational examples to illustrate the
method.

Two other recent approaches that can be used for fitting cross-classified
models, in particular with non-normal responses are Gauss-Hermite quadra-
ture within PQL estimation [13] and the HGLM model framework as described
in Lee and Nelder [12].

Comparison of Estimation Methods

The RG method when it works is generally fairly quick to converge where
all or all but one of the crossed classifications have small numbers of units.
When there are multiple crossed classifications with large numbers of untis
then the speed of the RG algorithm deteriorates and memory usage is greatly
increased, often exhausting the available memory. The AIP method does not
have these memory problems but will be slower for structures that are almost
hierarchical. Although this method works reasonably well, if the response is
a binary variable and quasi-likelihood methods need to be used, then this
method like the RG method is still affected by the bias that is inherent in
quasi-likelihood methods for binary response multilevel models [see 9]. The
MCMC methods have no bias problems although there are still issues on which
prior distributions to use for the variance parameters. They also, like the AIP
methods, do not have any memory problems. They are however generally
computationally a lot slower as they are estimating the whole distribution
and not simply the mode, although as the structure of the data becomes more
complex the speed difference is reduced.
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An Example Analysis of a Two-Way Cross-Classification: Primary
Schools Crossed with Secondary Schools

We will here consider fitting the RG method using the IGLS algorithm, the
MCMC method based on Gibbs sampling [2] and the AIP method to an
educational example from Fife in Scotland. Here we have as a response the
exam results of 3,435 children at age 16. We know for each child both the
primary school and secondary school that they attended and we are interested
in partitioning the variance between these two sources and individual pupil
level variation. The classification diagram is shown in Figure 8.4. There are
148 primary schools that feed into 19 secondary schools in the dataset. Of the
148 primary schools, 59 are nested within a single secondary school, whilst
another 62 have at most 3 pupils that do not go to the main secondary school
so we have an almost nested structure. This structure is particularly suited
for the RG algorithm.

Pupil

Primary School Secondary School

Fig. 8.4. Classification diagram for the Fife educational example.

We will fit the following model to the dataset

y
i
= β0 + δ

(2)
sec(i) + δ

(3)
prim(i) + εi

δ
(2)
sec(i) ∼ N (0, σ2

δ(2)), δ
(3)
prim(i) ∼ N (0, σ2

δ(3)), εi ∼ N (0, σ2
ε ).

The results are shown in Table 8.5.
From Table 8.5 we can see that in this example there is more variation be-

tween primary schools than between secondary schools. The MCMC estimates
replicate the IGLS estimates with slightly greater higher level variances (mean
versus mode estimates) due to the skewness of the posterior distribution.
The AIP method gives very similar results to the IGLS method. A further
discussion of these results is given in Goldstein [8].
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Table 8.5. Point estimates for the Fife educational dataset.

Parameter IGLS MCMC AIP

Mean achievement (β0) 5.50 (0.17) 5.50 (0.18) 5.51 (0.19)

Secondary school variance (σ2
δ(2)) 0.35 (0.16) 0.41 (0.21) 0.34 (0.15)

Primary school variance (σ2
δ(3)) 1.12 (0.20) 1.15 (0.21) 1.11 (0.20)

Individual level variance (σ2
e) 8.10 (0.20) 8.12 (0.20) 8.11 (0.20)

8.2.3 Models for More Complex Population Structures

In this section we will consider expanding the simple two cross-classified struc-
ture to accommodate more classifications and more complex structures.

Example Scenarios

Let’s take the situation described in the classification diagram drawn in
Figure 8.3(i) where patients lie within a cross-classification of hospitals by
neighbourhoods. We may have information on the doctor that treated each
patient and doctors may be nested within hospitals. The classification diagram
for this structure is shown in Figure 8.5.

Patient

Doctor

Hospital

Neighbourhood

Fig. 8.5. Classification diagram for two crossed hierarchies (patients within doctors

within hospitals) × (patients within neighbourhoods).

A variance components model for this structure is written as

y
i
= β0 + δ

(2)
hosp(i) + δ

(3)
nbhd(i) + δ

(4)
doct(i) + εi
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If doctors work across hospitals and are therefore not nested within hospital
we then have a three way cross-classification which is drawn in Figure 8.6.

Patient

Hospital Neighbourhood Doctor

Fig. 8.6. Classification diagram for three crossed hierarchies (patients within hos-

pitals) × (patients within doctors) × (patients within neighbourhoods).

Note that the variance components model for the structure in Figure 8.6
is also described by the same equation. This is a reflection of the fact that the
model notation for describing the random effects simply lists the classifications
that are sources of variation for the response we are modelling. In the variance
components model we only have an intercept term which varies across all four
classifications present. Suppose we had another explanatory variable, x1, and
we wished to allow its coefficient to vary across the doctor classifications; we
would write this model as

y
i
= β0 + δ

(2)
hosp(i) + δ

(3)
nbhd(i) + δ

(4)
doct(i),0 + β1x1i + δ

(4)
doct(i),1x1i + εi

or alternatively we can express the model as:

y
i
= β

0i
+ β

1i
x1i + εi

β
0i

= β0 + δ
(2)
hosp(i) + δ

(3)
nbhd(i) + δ

(4)
doct(i),0

β
1i

= β1 + δ
(4)
doct(i),1.

It may be that the scenario described in Figure 8.6 is further complicated
because hospitals, doctors and neighbourhoods are all nested within regions.
In this case the classification diagram becomes as in Figure 8.7.

Extending the last model to incorporate a simple random effect for the
region classification we have

y
i
= β

0i
+ β

1i
x1i + εi

β
0i

= β0 + δ
(2)
hosp(i) + δ

(3)
nbhd(i) + δ

(4)
doct(i),0 + δ

(5)
reg(i)

β
1i

= β1 + δ
(4)
doct(i),1.
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Patient

Hospital Neighbourhood Doctor

Region

Fig. 8.7. Classification diagram for three crossed hierarchies nested within a higher

level classification.

These few example scenarios indicate how the classification diagrams and
simplified notation can extend to describe patterns of crossings of arbitrary
complexity.

An Example Analysis of a Complex Cross-Classified Structure:
Artificial Insemination Data

We consider a data set concerning artificial insemination by donor. Detailed
description of this data set and the substantive research questions addressed
by modelling it within a cross-classified framework are given in Ecochard
and Clayton [5]. The data was re-analysed in Clayton and Rasbash [4] as an
example case study demonstrating the properties of the AIP algorithm for
estimating cross-classified models.

The data consists of 1901 women who were inseminated by sperm do-
nations from 279 donors. Each donor made multiple donations, there were
1328 donations in all. A single donation is used for multiple inseminations.
Each woman receives a series of monthly inseminations, 1 insemination per
ovulatory cycle. The data contain 12100 cycles within the 1901 women.

There are two crossed hierarchies, a hierarchy for donors and a hierarchy
for women. Level 1 corresponds to measures made at each ovulatory cycle. The
response we analyse is the binary variable indicating if conception occurs in a
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given cycle. The hierarchy for women is cycles within women. The hierarchy
for donors is cycles within donations within donors. Within a series of cycles a
woman may receive sperm from multiple donors/donations. The classification
diagram for this structure is given in Figure 8.8. The model fitted to the data
is

y
i
∼ Bernoulli(πi)

logit(πi) = β0 + azooi ∗ β1 + semenq i ∗ β2 + (age > 35)i ∗ β3

+ spermcount i ∗ β4 + spermmot i ∗ β5 + iearly i ∗ β6

+ ilatei ∗ β7 + δ
(2)
woman(i) + δ

(3)
donation(i) + δ

(4)
donor(i)

δ
(2)
woman(i) ∼ N (0, σ2

δ(2)), δ
(3)
donation(i) ∼ N (0, σ2

δ(3)), δ
(4)
donor(i) ∼ N (0, σ2

δ(4)).

Note that azoospermia (azoo) is a dichotomous variable indicating whether
the fecundability of the woman is impaired (0 impaired, 1 not impaired). The
results of fitting this model from the MCMC and AIP estimation procedures
are given in Table 8.6. This model could not be fitted using the RG algorithm.
This is because if the data is sorted according to women then we need to fit
279 dummy variables for donors and 1328 dummy variables for donations.
Alternatively, if we sort the data according to donations within donors we
have to fit 1901 dummy variables for women. Either way, the size of these
data matrices cause problems of insufficient memory. Even if these memory
problems can be worked around the numerical instability of the constraining
procedure, that attempts to constrain over a thousand separately estimated
variances to be equal, causes the adapted IGLS algorithm to fail to converge.

Table 8.6. Results for the Artificial Insemination example.

Parameter MCMC AIP

Intercept (β0) −3.92 (0.21) −3.90 (0.21)

Azoospermia (β1) 0.21 (0.09) 0.22 (0.10)

Semen quality (β2) 0.18 (0.03) 0.18 (0.03)

Womens age > 35 (β3) −0.29 (0.12) −0.27 (0.12)

Sperm count (β4) 0.002 (0.001) 0.002 (0.001)

Sperm motility (β5) 0.0002 (0.0001) 0.0002 (0.0001)

Insemination too early (β6) −0.69 (0.17) −0.67 (0.17)

Insemination too late (β7) −0.27 (0.09) −0.25 (0.09)

Women variance (σ2
δ(2)) 1.02 (0.15) 1.01 (0.11)

Donation variance (σ2
δ(3)) 0.36 (0.074) 0.34 (0.065)

Donor variance (σ2
δ(4)) 0.11 (0.06) 0.10 (0.06)

After inclusion of covariates there is considerably more variation in the
probability of a successful insemination attributable to the women hierarchy
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Cycle

Donation

Donor

Woman

Fig. 8.8. Classification diagram for the artificial insemination example model.

than the donor hierarchy. Both the AIP and MCMC methods give simi-
lar estimates for all parameters. The fixed effect estimates show that the
probability of conception is increased with azoospermia and increased sperm
quality, count and motility but decreased with the age of the woman and with
inseminations that are too early or too late.

8.3 Multiple Membership Models

As we have seen from the previous section, allowing classifications to be
crossed gives rise to a large family of additional model structures that can
be estimated. The other main restriction of the basic multilevel model is the
need for observations to belong to a unique classification unit i.e. every pupil
belongs to a particular class, every patient is treated at a particular hospital.
Often however, over time a patient may be treated at several hospitals and
depending on the response of interest all of these hospitals may have influence.
In this section we will firstly introduce the idea of multiple membership and
give some example scenarios where it may occur. We will then discuss the
possible estimation procedures that can be used to fit multiple membership
models and finish the chapter with a simulated example from the field of
education.
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8.3.1 A Basic Structure for Two-Level Multiple Memberships

Suppose we have data on a large number of patients that attend their local
hospital and during the course of their hospital stay they are treated by
several nurses and we regard the nurses as an important factor on the patients
outcome of interest. Now typically each patient will be seen by more than one
nurse during their stay (although some will only see 1) but there are many
nurses and so we will treat nurses as a random classification rather than as
fixed effects. To illustrate this Table 8.7 shows the nurses seen by the first 4
patients.

Table 8.7. Table of patients that are seen by multiple nurses.

Nurse 1 Nurse 2 Nurse 3

Patient 1
√ √

Patient 2
√

Patient 3
√ √

Patient 4
√ √

We can consider this structure in a unit diagram as shown in Figure 8.9.
Here each line in the diagram corresponds to a tick mark in the table. Again
as our dataset gets larger such unit diagrams become impractical as there will
be too many nodes and so we will resort to using the classification diagrams
introduced earlier for cross-classified models. If we wish to include multiple
membership classifications in such diagrams we use the convention of a double
arrow to represent multiple membership. This will lead to the classification
diagram shown in Figure 8.10 for the above patients and nurses example.

Example Scenarios

Many studies have multiple membership structure, here are a few examples:

• Education: pupils change school/class over the course of their education
and each school/class has an effect on their education.

• Health: patients are seen by several doctors and nurses during the course
of their treatment.

• Survey data: Over their lifetime, individuals move household and each
household has a bearing on their lifestyle, health, salary etc.

Constructing a Statistical Model

Returning to our example of patients being seen by multiple nurses, we have
Patient 1’s response being affected by Nurse 1 and Nurse 3 while Patient 2
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Patient P1 P2 P3 P4

Nurse N1 N2 N3

Fig. 8.9. Unit diagram for multiple membership patients within nurses example.

Patient

Nurse

Fig. 8.10. Classification diagram for multiple membership patients within nurses

example.
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is only affected by Nurse 1. As we are treating nurse as a random classifica-
tion we would like each patient’s response to have equal effect on the nurse
classification variance so we generally weight the random effects to sum to 1.
For example let’s assume Patient 1 has been treated by Nurse 1 for 2 days
and Nurse 3 for 1 day. Then we may give Nurse 1 a weight of 2

3 and Nurse 3
a weight of 1

3 . Often we do not have information on the amount of time
patients are seen by each nurse and so we commonly allocate equal weights
(in this case 1

2 ) to each nurse. We can then write down a general two-level
multiple-membership model as

y
i
= xiβ +

∑
j∈nurse(i)

w
(2)
i,j δ

(2)
j + εi

δ
(2)
j ∼ N (0, σ2

δ(2)), εi ∼ N (0, σ2
ε ),

where nurse(i) is the set of nurses seen by patient i and w
(2)
i,j is the weight

given to nurse j for patient i. Here we assume that∑
j∈nurse(i)

w
(2)
i,j = 1 ∀i.

If we wish to write out this model for the first four patients from the example,
we get

y
1

= x1β + 1
2
δ
(2)
1 + 1

2
δ
(2)
3 + ε1

y
2

= x2β + δ
(2)
1 + ε2

y
3

= x3β + 1
2
δ
(2)
2 + 1

2
δ
(2)
3 + ε3

y
4

= x4β + 1
2
δ
(2)
1 + 1

2
δ
(2)
2 + ε4 .

8.3.2 Estimation Algorithms

There are two main algorithms for multiple membership models, an adaption
of the Rasbash and Goldstein [15] algorithm described earlier and the MCMC
method. The AIP method has not been extended to cater for multiple mem-
bership models.

An IGLS Algorithm for Multiple Membership Models

Earlier we described how to fit a cross-classified model by absorbing one of the
cross-classifications into a set of dummy variables (the RG method). A slight
modification is required to allow this technique to be used to fit multiple
membership models. First let’s consider a two-level hierarchical model for
patients within nurses:
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y
i
= β0 + δ

(2)
nurse(i) + εi

δ
(2)
nurse(i) ∼ N (0, σ2

δ(2)), εi ∼ N (0, σ2
ε ).

We can reparamaterise this simple two-level model as

y
i
= β0 + zi,1δ

(2)
1 + zi,2δ

(2)
2 + zi,3δ

(2)
3 + · · ·+ zi,Jδ

(2)
J + εi

δ
(2)
1

δ
(2)
2

δ
(2)
3
...
δ
(2)
J

 ∼ N (0, Σδ(2)), Σδ(2) =


σ2
δ(2),1 0 0 . . . 0
0 σ2

δ(2),2 0 . . . 0
0 0 σ2

δ(2),3 . . . 0
...

...
...

. . .
...

0 0 0 . . . σ2
δ(2),J


εi ∼ N (0, σ2

ε ),

where zi,j is a dummy variable which is 1 if patient i is seen by nurse j, 0
otherwise and J is the total number of nurses. Also we add the constraint
σ2
δ(2),1 = σ2

δ(2),2 = . . . = σ2
δ(2),J . Now these two models will deliver the same

estimates, however the second formulation will take much longer to compute.
The advantage of the second model formulation is that it is straightforward
to extend it to the multiple membership case. Suppose patients are not nested
within a single nurse but are multiple members of nurses with membership
proportions, πi,j . We can simply replace zi,j with πi,j in the second formula-
tion and estimation can proceed in an identical fashion but will now deliver
estimates for the multiple membership model.

MCMC

Once again we will use a Gibbs sampling algorithm that relies on updating
groups of parameters in turn from their conditional posterior distributions.
For illustration we present the steps for the following simple multiple member-
ship model based on the variance components model patients within nurses
described earlier. We once again refer the interested reader to Browne et al.
[2] for more general algorithms and note that if the response is dichotomous or
a count then as in chapter 2 we can use the Metropolis-Gibbs hybrid method
discussed there.

The basic two-level multiple membership model (patients within nurses)
can be written as:

y
i
= xiβ +

∑
j∈nurse(i)

w
(2)
i,j δ

(2)
j + εi

δ
(2)
j ∼ N (0, σ2

δ(2)), εi ∼ N (0, σ2
ε)
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We can split our unknown parameters into four distinct sets: the fixed effects,
β, the nurse random effects, δ(2)j , the nurse level variance, σ2

δ(2) and the patient
level residual variance, σ2

ε .
We then need to generate random draws from the conditional distribution

of each of these four groups of unknowns. We will define prior distributions for
our unknown parameters as follows: For generality we will use a multivariate
normal prior for the fixed effects, β ∼ Npf

(µp,Sp), and scaled inverse χ2

priors for the two variances. For the nurse level variance σ2
δ(2) ∼ SIχ2(ν2, s22),

and for the patient level variance σ2
ε ∼ SIχ2(νε, s2ε). The steps are then as

follows:

• In step 1 of the algorithm the conditional posterior distribution in the
Gibbs update for the fixed effects parameter vector β is multivariate nor-
mal with dimension pf (the number of fixed effects):

p(β | y, δ(2), σ2
δ(2), σ

2
ε ) ∼ Npf

(β̂, D̂),

where

D̂ =

(
N∑
i=1

x′ixi
σ2
ε

+ S−1
p

)−1

,

β̂ = D̂

(
N∑
i=1

x′idi
σ2
ε

+ S−1
p µp

)
,

and

di = yi −
∑

j∈nurse(i)

w
(2)
i,j δ

(2)
j .

• In step 2 we update the nurse residuals, δ(2)k , using Gibbs sampling with
a univariate normal full conditional distribution:

p(δ(2)k | y,β, σ
2
δ(2), σ

2
ε ) ∼ N (δ̂(2)k , D̂

(2)
k ),

where

D̂
(2)
k =

 ∑
i,k∈nurse(i)

(w(2)
i,k )2

σ2
ε

+
1

σ2
δ(2)

−1

,

δ̂
(2)
k = D̂

(2)
k

 ∑
i,k∈nurse(i)

w
(2)
i,kd

(2)
i,k

σ2
ε

 ,
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and

d
(2)
i,k = yi − xiβ −

∑
j∈nurse(i),j 6=k

w
(2)
i,j δ

(2)
j .

• In step 3 we update the nurse level variance σ2
δ(2) using Gibbs sampling

and a Gamma full conditional distribution for 1/σ2
δ(2):

p(1/σ2
δ(2) | y,β, δ

(2), σ2
ε ) ∼ Gamma

n2 + ν2
2

,
1
2

 n2∑
j=1

(
δ
(2)
j

)2 + ν2s
2
2

 .

• In step 4 we update the patient level variance σ2
ε using Gibbs sampling

and a Gamma full conditional distribution for 1/σ2
ε :

p(1/σ2
ε | y,β, δ(2), σ2

δ(2)) ∼ Gamma

(
N + νε

2
,

1
2

[
N∑
i=1

ε2i + νεs
2
ε

])
.

The above four steps are repeatedly sampled from in sequence to produce cor-
related chains of parameter estimates from which point and interval estimates
can be created as in chapter 2.

Comparison of Estimation Methods

As in the comparison for cross-classified models there are benefits for both
methods. The RG method is fairly quick but the number of level 2 units
determines the size of some of the matrices involved and the number of con-
straints that the method has to apply. These dependencies lead to numerical
instability or memory exhaustion in situations with more than a few hundred
level 2 units. The MCMC methods, although again computationally slower,
do not suffer from these memory problems.

An Example Analysis of a Two-Level Multiple Membership
Model: Children Moving School

We consider a simulated data example based on the problem in education
of adjusting for the fact that pupils move school during the course of their
studies. We will consider a study with 4059 students from 65 schools taken
from Rasbash et al. [16]. The actual data in the study has each child belonging
to 1 school but we will assume that over their education 10% of children moved
school so we will choose at random for 10% of the children a second school.
We will assume that information about when the move occured is unavailable
and so for these children we will allocate equal weights of 0.5 to each school.
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Browne et al. [2] considered this as the basis for a simulation experiment by
generating 1000 datasets with this structure to show the bias and coverage
properties of the MCMC method. We will instead consider the true response
on our modified structure. We have as a response the pupil’s total (normalised)
exam score in all GCSE exams taken at age 16 and as a predictor the pupil’s
(standardised) score in a reading test taken at age 11. As we are interested
in progress from age 11–16 it makes sense to consider the effect of all schools
attended in this period. We will consider the following model

normexami = β0 + β1standlrt i +
∑

j∈school(i)

w
(2)
i,j δ

(2)
j + εi

δ
(2)
j ∼ N (0, σ2

δ(2)), εi ∼ N (0, σ2
ε ).

We fit this model using both the RG and MCMC methods and the results can
be seen in Table 8.8. From the table we can see that both methods give similar
results. If we compare the results here with the results in Rasbash et al. [16]
we see only slight changes to the estimates with the level 2 variance slightly
decreased and the level 1 variance slightly increased. However, in cases where
there is greater amounts of multiple membership the variance estimates can be
altered if this multiple membership is ignored. For example, if we randomly
assigned every pupil to a second school, the variances change to 0.088 and
0.609 at levels 1 and 2 respectively.

Table 8.8. Results for the multiple membership schools example.

Parameter RG RIGLS MCMC

Intercept (β0) 0.002 (0.040) 0.003 (0.040)

LRT effect (β1) 0.565 (0.012) 0.565 (0.013)

School variance (σ2
δ(2)) 0.093 (0.018) 0.096 (0.020)

Pupil variance (σ2
ε ) 0.570 (0.013) 0.571 (0.013)

8.4 Combining Multiple Membership and
Cross-Classified Structures in a Single Model

Consider two of our earlier examples in the field of education, firstly pupils in
a crossing of primary schools and secondary schools and secondly pupils who
are moving from school to school. We could assume that these two structures
occur simultaneously and we will then end up with a model structure that
contains both a multiple membership classification (secondary schools) and
a second classification (primary schools) that is crossed with the first. This
scenario can be represented by a classification diagram as in Figure 8.11.



330 Rasbash and Browne

Browne et al. [2] refer to models that contain both multiple memberships and
cross classifications as multiple membership multiple classification (MMMC)
models.

Pupil

P. School S. School

Fig. 8.11. Classification diagram for the primary schools/secondary schools multiple

membership model.

8.4.1 Example Scenarios

Many studies have both cross-classified and multiple membership classifica-
tions in their structure. A few examples are the following:

• Education: pupils can be affected by the crossing of the neighbourhood
they live in and the school they attend. They could also change class over
their period of education and so this multiple membership class classifica-
tion will be crossed with the neighbourhood classification.

• Health: patients are seen by several doctors during their treatment and
may visit several hospitals. Doctors who are specialists may move from
hospital to hospital and so are crossed with the hospitals.

• Survey Data: individuals will belong to many households over the course
of their lives and will reside in several properties. An entire household
may move to a new property so households can be crossed with properties
and all the households/properties can have an effect on the individual. See
Goldstein et al. [10] for more details.

• Spatial Data: individuals will belong to a particular area but will also be
affected by multiple neighbouring areas [11].

8.4.2 Constructing a Statistical Model

If we return to our example of pupils attending multiple secondary schools but
coming from one primary school we need to combine the multiple membership
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and cross classified model structures into one model. As we are treating the
secondary schools as a random classification we would like each pupil to have
an equal effect on the secondary school classification so we will use weights
that add to 1 when a pupil attends more than one secondary school. We will
let second(i) be the list of secondary schools that child i has attended. We
can then write down a general two classification MMMC model as

y
i
= xiβ +

∑
j∈second(i)

w
(2)
i,j δ

(2)
j + δ

(3)
prim(i) + εi

δ
(2)
j ∼ N (0, σ2

δ(2)), δ
(3)
prim(i) ∼ N (0, σ2

δ(3)), εi ∼ N (0, σ2
ε ).

Here w(2)
i,j is the weight given to secondary school j for pupil i. We assume that∑

j∈second(i) w
(2)
i,j = 1, ∀i. Both the RG algorithm and the MCMC method can

be used to fit these models that combine both multiple membership and cross
classification.

8.4.3 An Example Analysis: Danish Poultry Farming

Rasbash and Browne [14] consider an example from veterinary epidemiology
concerning the outbreaks of salmonella typhimurium in flocks of chickens in
poultry farms in Denmark between 1995 and 1997. The response of interest is
whether salmonella typhimurium is present in a flock and in the data collected
6.3% of flocks had the disease. At the observation level, each observation
represents a flock of chickens. For each flock the response variable is whether
or not there was an instance of salmonella in that flock. The basic data have
a simple hierarchical structure as each flock is kept in a house on a farm until
slaughter. As flocks live for a short time before they are slaughtered several
flocks will stay in the same house each year. The hierarchy is as follows: 10,127
child flocks within 725 houses on 304 farms.

Each flock is created from a mixture of parent flocks (up to 6) of which
there are 200 in Denmark and so we have a crossing between the child flock
hierarchy and the multiple membership parent flock classification. The classi-
fication diagram can be seen in Figure 8.12. We also know the exact makeup
of each child flock (in terms of parent flocks) and so can use these as weights
for each of the parent flocks. We are interested in assessing how much of the
variability in salmonella incidence can be attributed to houses, farms and
parent flocks.

There are also four hatcheries in which all the eggs from the parent flocks
are hatched. We will therefore fit a variance components model that allows
for different average rates of salmonella for each year with hatchery included
in the fixed part as follows:
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Child Flock

House

Farm

Parent Flock

Fig. 8.12. Classification diagram for the Danish poultry model.

salmonellai ∼ Bernoulli(πi) (8.1a)

logit(πi) = β0 + Y96 ∗ β1 + Y97 ∗ β2 + hatch2 ∗ β3

+ hatch3 ∗ β4 + hatch4 ∗ β5 + δ
(2)
house(i) + δ

(3)
farm(i)

+
∑

j∈p.flock(i)

w
(4)
i,j δ

(4)
j

(8.1b)

δ
(2)
house(i) ∼ N (0, σ2

δ(2)), δ
(3)
farm(i) ∼ N (0, σ2

δ(3)), δ
(4)
j ∼ N (0, σ2

δ(4)). (8.1c)

The results of fitting model (8.1) using both the Rasbash and Goldstein
method with 1st order MQL estimation and the MCMC method can be seen
in Table 8.9. The quasi-likelihood methods are numerically rather unstable
and we could not get either 2nd order MQL or PQL to fit this model.

We can see here that there are large effects for the year the chickens were
born suggesting that salmonella was more prevalent in 1995 than the other
years. The hatchery effects were also large suggesting chickens produced in
Hatcheries 1 and 3 had a larger incidence of salmonella. There is a large
variability for the parent flock effects and for the farm effects which are of
similar magnitude. There is less variability between houses within farms.

Method Comparison

The MCMC results were run for 50,000 iterations after a burn-in of 20,000
(This took 40 minutes on a 3.4GHz PC) as we used arbitrary starting val-
ues and so the chain took a while to converge. From Table 8.9 we can see
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Table 8.9. Results for the Danish poultry example.

Parameter 1st order MQL MCMC

Intercept (β0) −1.862 (0.184) −2.322 (0.213)

1996 effect (β1) −1.004 (0.138) −1.239 (0.162)

1997 effect (β2) −0.852 (0.159) −1.165 (0.187)

Hatchery 2 effect (β3) −1.458 (0.222) −1.733 (0.255)

Hatchery 3 effect (β4) −0.250 (0.209) −0.211 (0.252)

Hatchery 4 effect (β5) −1.007 (0.353) −1.062 (0.388)

House variance (σ2
δ(2)) 0.206 (0.096) 0.208 (0.108)

Farm variance (σ2
δ(3)) 0.639 (0.121) 0.927 (0.197)

Parent flock variance (σ2
δ(4)) 0.892 (0.184) 0.895 (0.179)

reasonable agreement between the two methods, although the fixed effects
in MQL are all smaller as is the farm level variance. This behaviour was
shown in simulations on a nested three-level binary response data structure
in Rodŕıguez and Goldman [18] with the improvements of the MCMC method
shown in Browne and Draper [1] and so this suggests that the MCMC results
should be more accurate. (See also chapter 9 of this volume.)

8.4.4 Complex Random Effects

Model (8.1) is essentially another variance components model but we could
fit a model that has complex variation at one of the higher classifications. To
illustrate this we will modify the farm level variance to account for different
variability between years at the farm level. That is, we replace the simple farm
level random effects, δ(3)farm(i) with three sets of effects, one for each year. Our
expanded model is then as follows:

salmonellai ∼ Bernoulli(πi) (8.2a)

logit(πi) = β0 + Y96 ∗ β1 + Y97 ∗ β2 + hatch2 ∗ β3

+ hatch3 ∗ β4 + hatch4 ∗ β5 + δ
(2)
house(i) + Y95 ∗ δ(3)farm(i),1

+ Y96 ∗ δ(3)farm(i),2 + Y97 ∗ δ(3)farm(i),3 +
∑

j∈p.flock(i)

w
(4)
i,j δ

(4)
j

(8.2b)

δ
(2)
house(i) ∼ N (0, σ2

δ(2)), δ
(3)
farm(i) ∼ N3(0, Σδ(3)),

δ
(4)
j ∼ N (0, σ2

δ(4)).
(8.2c)

The parameter estimates for this extended model are given in Table 8.10.
We see that the fixed effects estimates are fairly similar to model (8.1). It is
interesting to see that all the covariances in the farm level variance matrix
are positive. This suggests that after adjusting for other factors, if a farm has
an incidence of salmonella in 1995 then it is more likely to have an incidence
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again in 1996 and in 1997. In fact the corresponding correlation estimates are
0.39, 0.35 and 0.67, respectively, showing that in particular there is a strong
correlation between salmonella infection in farms in 1996 and 1997. On the
other hand, these correlations are clearly not equal to 1, which is the value
implied by model (8.1). Hence, this also shows the importance of allowing
complex random effects and the strength of the versatile model specification
approach presented here. The numerical instabilities of the quasi-likelihood
methods mean that comparative estimates could not be calculated for this
model.

Table 8.10. Estimates for the parameters in Model (8.2).

Parameter MCMC estimates

Intercept (β0) −2.544 (0.240)

1996 effect (β1) −1.149 (0.256)

1997 effect (β2) −1.003 (0.293)

Hatchery 2 effect (β3) −1.788 (0.265)

Hatchery 3 effect (β4) −0.143 (0.252)

Hatchery 4 effect (β5) −1.065 (0.383)

House variance (σ2
δ(2)) 0.271 (0.119)

Farm year95 variance (Σδ(3)[1, 1]) 1.416 (0.341)

Farm 95/96 covariance (Σδ(3)[1, 2]) 0.514 (0.262)

Farm 95/97 covariance (Σδ(3)[1, 3]) 0.415 (0.226)

Farm year96 variance (Σδ(3)[2, 2]) 1.239 (0.463)

Farm 96/97 covariance (Σδ(3)[2, 3]) 0.750 (0.321)

Farm year97 variance (Σδ(3)[3, 3]) 1.017 (0.482)

Parent flock variance (σ2
δ(4)) 0.878 (0.180)

8.5 Consequences of Ignoring Non-Hierarchical
Structures

Analysing only hierarchical components of populations which have additional
non-nested structures has two potentially negative consequences. Firstly, the
model is under-specified because there are sources of variation that have
not been included in the model. This under-specification can lead to an
underestimation of the standard errors of the parameters and therefore to
incorrect inferences. Secondly, the variance components obtained from the
simple hierarchical model, or sets of separate hierarchical models, can not be
trusted. They may change substantially if the additional non-nested structures
are included in a single model. For example, we may wish to know about the
relative importance of general practices and hospitals on the variation in some
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patient level outcome. If patients are cross-classified by hospital and general
practice, we need to fit the full cross-classified model including patients, gen-
eral practices and hospitals in order to address this question. Looking at two
separate hierarchical analyses, one of patients within hospital, the other of
patients within general practices, is not sufficient.

A numerical example of this is shown in Table 8.11, which shows results for
three models fitted using the RG method to the educational attainment data
from Fife in Scotland, where pupils are contained within a cross-classification
of primary schools by secondary schools. Model I fits pupils within primary
schools and ignores secondary school, Model II fits pupils within secondary
schools and ignores primary school and Model III fits the cross-classification.
The response is an attainment score at age 16, the explanatory variable VRQ
is a verbal reasoning measure taken at age 11. When one side of the cross-
classification is ignored, the released variance is split between the classification
left in the model and the pupil level variance, inflating both estimates. This
has the most drastic effect when the primary school hierarchy is ignored, in
this case (Model II) the inflated estimate of the between secondary school
variance is 2.5 times its standard error as opposed to 0.5 times its standard
error in the full model.

Table 8.11. Effects of ignoring a cross-classified structure.

Parameter Model I Model II Model III

Intercept 5.97 (0.07) 6.02 (0.07) 5.98 (0.07)

VRQ effect 0.16 (0.003) 0.16 (0.003) 0.16 (0.003)

Primary school variance 0.28 (0.06) 0.27 (0.06)

Secondary school variance 0.05 (0.02) 0.01 (0.02)

Pupil variance 4.25 (0.10) 4.48 (0.11) 4.25 (0.10)
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Multilevel Generalized Linear Models

Germán Rodŕıguez

Office of Population Research, Princeton University

9.1 Introduction

Two of the most influential papers in applied statistics published in the last
few decades are Nelder and Wedderburn [65], introducing generalized linear
models (GLMs), and Cox [20], the seminal paper introducing life tables with
regression, better known as proportional hazard models. As we will see, these
two developments are closely related. Nelder and Wedderburn’s unique con-
tribution was to provide a unified conceptual framework for studying a large
range of statistical models, including not only classical linear models, but also
logit and probit models for binary data, log-linear Poisson models for count
data, and others. The unification was not only conceptual, but led to common
estimation procedures in the form of an iteratively re-weighted least squares
(IRLS) algorithm. The first implementation of these procedures appeared in
the highly successful program GLIM [3], which for many statisticians became
synonymous with GLMs.

In this chapter we follow Wong and Mason [94], Longford [54, 56], Gold-
stein [30], Breslow and Clayton [11] and others in exploring extensions of
GLMs to include random effects in a multilevel setting. Chapter 1 in this
handbook has described multilevel models for continuous outcomes, while
chapter 6 has focused on multilevel models for categorical outcomes. Here we
adopt a unified approach that views the general linear mixed model and many
of the random-effects models for categorical data discussed in earlier chapters
as special cases of the Multilevel Generalized Linear Model (MGLM). This
approach has conceptual merit in emphasizing the similarities among these
models, and provides a common framework to study and evaluate estimation
methods. Alas, we do not have a single estimation procedure that can be
applied to all MGLMs with the same measure of success that IRLS achieved
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for GLMs. Instead, we must choose between quick but sometimes biased
approximations, and more accurate but often compute-intensive maximum
likelihood and Bayesian approaches. Part of our task in this chapter is to
describe and illustrate the alternatives.

Section 9.2 develops the modeling framework. We introduce generalized
linear models (GLMs) as an extension of linear models, and proceed to an
analogous derivation of multilevel generalized linear models (MGLMs) as an
extension of multilevel linear models. The ideas discussed apply more generally
to generalized linear mixed models (GLMMs) and our notation reflects this
broader applicability, but we tend to focus the narrative on the multilevel
case. We review survival models, note their close connection with GLMs, and
describe a natural extension to the multilevel case. We draw an important
distinction between conditional and marginal models that is significant in the
generalized linear case. Finally, we introduce non-linear mixed models and
contrast them with MGLMs.

Section 9.3 is devoted to a discussion of estimation procedures. It turns
out that calculation of the likelihood function for MGLMs involves intractable
integrals. We discuss several alternatives and assess their performance in real-
istic situations, referring to some of our earlier work using simulated data and
a case study [81, 82] and introducing new results. We review a range of approx-
imate estimation procedures that, unfortunately, can be severely biased when
random effects are substantial. We describe maximum likelihood estimation
using Gauss-Hermite quadrature, a method that appears to work remarkably
well, but is limited to relatively low-dimensional models. We also discuss
Bayesian estimation procedures focusing on the Gibbs sampler, a Markov
Chain Monte Carlo (MCMC) method that can be applied to more complex
models involving high-dimensional integrals, albeit not without difficulty. We
close this section with a brief discussion of other approaches to estimation, an
active area of current research.

Section 9.4 is devoted to an application of MGLMs to the study of infant
and child mortality in Kenya, using data from a national survey conducted in
1998. We use a three-level piece-wise exponential survival model that allows
for clustering of infant and child deaths at both the family and community
levels, and fit it to data using the equivalent MGLM with Poisson errors
and log link. We compare estimates that ignore clustering, and estimates
obtained by approximate quasi-likelihood and by full maximum likelihood.
The discussion emphasizes interpretation of the results, particularly the family
and community random parameters. Finally, we show how the model can be
used to estimate measures of intra-family and intra-community correlation in
infant and child deaths.

Section 9.5 is a brief discussion and summary of our conclusions.
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9.2 Extending Multilevel Models

9.2.1 Generalized Linear Models

Consider briefly the general linear model. We usually view the outcome yi for
the i-th individual as a realization of a random variable (r.v.) yi that depends
on a vector xi of predictors or explanatory variables through the equation

yi = x′iβ + εi, (9.1)

where β is a vector of regression coefficients and εi is an error term having a
normal distribution with mean 0 and variance σ2.

It will facilitate further generalization if we write this model in a slightly
different way, noting that yi has a normal distribution with mean µi and
variance σ2, which we write

yi ∼ N (µi, σ2), (9.2)

and the expected value satisfies the linear model

µi = x′iβ. (9.3)

This approach draws a clear distinction between the stochastic structure of the
data, specified in the first equation, and the systematic component, specified
in the second.

The Exponential Family

Nelder and Wedderburn [65] generalize this model in two master strokes. First,
they assume that the distribution of yi is in an exponential family that includes
as special cases many of the distributions we encounter in applied work, such
as the normal, binomial, Poisson, gamma, and inverse Gaussian. The family
may be written as

f(yi) = exp
{
yiθi − b(θi)

ai(φ)
+ c(yi, φ)

}
(9.4)

where θi and φ are unknown parameters and ai(·), b(·), and c(·) are known
functions. Usually ai(φ) = φ/pi where pi is a known prior weight, and this
will be assumed in the applications that follow. In this family the mean is
E (yi) = b′(θi) and the variance is Var(yi) = b′′(θi)ai(φ). In applied work we
often express the variance as a function of the mean, say Var(yi) = φV (µi).

All the distributions mentioned above can be obtained from this general
expression by suitable choice of parameters and functions. For example if
we set θi = µi, b(θi) = 1

2θ
2
i , φ = σ2 and ai(φ) = φ, we obtain a normal

distribution with mean µi and variance σ2. In this case the variance function is
the identity. The Poisson distribution with mean µi has θi = log µi, b(θi) = eθi ,
ai(φ) = φ and φ = 1, and the variance equals the mean. McCullagh and Nelder
[59] show how you can obtain other special cases from the general formula.
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The Link Function

The second aspect of the generalization is that instead of modeling the ex-
pected value of the outcome as a linear function of the covariates, we model a
transformation of the expected value. Specifically, we introduce a one-to-one
continuous differentiable transformation of the mean ηi = g(µi) and assume
that the transformed mean follows a linear model, so that

g(µi) = ηi = x′iβ. (9.5)

The function g(·) is called the link function, and connects the mean with the
linear predictor x′iβ and thus the explanatory variables. The simplest possible
link function is the identity, which leads to modeling the mean itself. Other
transformations in common use are the logit, probit, log, inverse, and square
root.

A key feature of GLMs is that the model for the transformed mean ηi
is simple and has a familiar linear structure. Because the link function is
one-to-one, we can always invert it to obtain a a model for the mean

µi = g−1(x′iβ), (9.6)

but this model is usually more complicated. In particular, interpretation of
the parameters is straightforward in the transformed scale, but may be rather
involved in the original scale. Notable exceptions are models with log and logit
links, where exponentiated coefficients may be interpreted as multiplicative
effects on an expected count or an odds ratio, respectively. An example will
follow in section 9.4.

Link functions can often be motivated as a way to handle range restrictions
on the mean µi. With count data, for example, a linear model is not attractive
because the mean µi must be non-negative but the linear predictor x′iβ may
yield positive or negative values. Modeling the log of the mean instead solves
the problem. The link function can also make the assumption of linearity
more plausible. With count data, for example, one often finds that effects are
relative rather than absolute; an additive model in the log scale is equivalent
to a multiplicative model in the original scale, and can thus represent relative
effects. A link function that maps the mean µi into the parameter θi in the
exponential family is said to be a canonical link. The canonical links for the
Poisson and Bernoulli distributions are the log and the logit, respectively.

Estimation and Testing

An important practical feature of GLMs is that they can all be fit to data using
the same algorithm, a form of iteratively reweighted least squares (IRLS). The
algorithm may be motivated by considering a linearized form of the model, a
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fact that has motivated the adoption of similar strategies for MGLMs. Write
the model as

y = µ(Xβ) + ε, (9.7)

where µ(·) is the inverse link function applied element-wise to the linear pre-
dictor η = Xβ, and ε is a vector of independent heteroscedastic error terms
with mean ∅ and (diagonal) variance-covariance matrix φV (µ). Expanding
the link using a first-order Taylor series about a trial parameter value β0 and
rearranging terms leads to the approximating linear model

y∗ ≈Xβ + ε∗, (9.8)

where y∗ = D−1(y−µ(Xβ0)) +Xβ0 is a working response, ε∗ = D−1ε is a
new error term with variance φW where W = D−1V (µ)D−1 is a diagonal
matrix of weights and D = ∂µ/∂η is a diagonal matrix of derivatives of the
link function with respect to the linear predictor. This approximating linear
model may be fit using weighted least squares to obtain an improved estimate
of β, which can then be used to obtain a better approximating model, and
so on to convergence. McCullagh and Nelder [59] show that this method is
equivalent to Fisher scoring and leads to maximum likelihood estimates.

Under standard regularity conditions the large sample distribution of the
estimator β̂ is approximately normal with mean equal to the true parameter
value β and variance-covariance matrix φ (X ′WX)−1. This result provides
large-sample standard errors and a basis for Wald tests. Likelihood ratio tests
are often preferable, and in the context of GLMs are usually calculated by
reference to a statistic known as the deviance. This statistic is constructed by
considering a likelihood ratio test that compares the model of interest with
a saturated model that has a separate parameter for each observation. The
deviance is the product of the scale parameter φ and the usual likelihood ratio
chi-squared statistic −2 log λ. A test comparing two nested models can then
be computed as the difference of their scaled deviances.

9.2.2 Multilevel Generalized Linear Models

We now consider a similar extension for multilevel linear models. In previous
chapters we have written the general linear mixed model in a form analogous
to (9.1),

yi = x′iβ + z′iδ + εi, (9.9)

where yi is the r.v. representing the outcome for the i-th individual, xi is the
i-th row of the model matrix for the fixed effects β, zi is the i-th row of the
model matrix for the random effects δ, and εi is the individual error term. We
assume that the random effects δ have a N (∅,Ω) distribution, and the error
terms are independent and identically distributed (i.i.d.) N (0, σ2) r.v.’s.
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We could write this model more compactly in terms of vectors, with ε ∼
N (∅, σ2I), but that would not be very productive for the generalization that
follows. Instead, we will reformulate the model in terms of the conditional
distribution of the outcomes yi given the random effects δ, which we write as

yi | δ ∼ N (µi, σ2). (9.10)

In words, we assume that given the random effects the outcomes are indepen-
dent normally distributed r.v.’s with mean µi and variance σ2. The conditional
mean, in turn, follows the linear model

µi = x′iβ + z′iδ, (9.11)

depending on unknown coefficients β and given values δ of the random effects.
The essence of this approach is the recognition that given the random effects,
the outcomes are independent and follow a linear model.

The stage is now set for the generalization. We retain the key assumption of
conditional independence. However, instead of assuming that the conditional
distribution of the outcomes y

i
given the random effects δ is normal, we

assume that the distribution is in the exponential family (9.4). This extends
the general linear mixed model to situations where the conditional distribution
of the responses is binomial, Poisson, gamma, or inverse Gaussian.

The second element of the generalization is the introduction of a link
function. We assume that a transformation of the conditional mean, rather
than the mean itself, follows a linear model, so that

g(µi) = x′iβ + z′iδ. (9.12)

The link function can be the identity, log, logit, probit, or any other one-
to-one continuous differentiable transformation. This final extension leads to
multilevel logit and probit models, multilevel log-linear models for count data,
and many other applications.

By focusing on the conditional distribution of the outcomes given the
random effects we can apply without changes the entire conceptual apparatus
of generalized linear models. In particular, random and fixed effects can be
interpreted in a unified way, the interpretation is simple in the transformed
scale because fixed and random effects enter linearly, and can often be trans-
lated meaningfully back to the original scale. We will return to these issues in
section 9.4.

9.2.3 Survival Models

Let us now consider models for time-to-event or survival data, which are
closely related to GLMs. There is now an extensive literature on survival
models, excellent texts include Kalbfleisch and Prentice [43], Cox and Oakes
[22], and Therneau and Grambsch [89].
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Hazards and Survival

In a standard hazard model we assume that the survival experiences of dif-
ferent individuals are independent and that the hazard for individual i, or
instantaneous risk of occurrence of the event at time t given that it has not
occurred earlier, is given by

λ(t,xi) = λ0(t) exp{x′iβ}, (9.13)

where λ0(t) represents a baseline hazard at time t and exp{x′β} is a relative
risk associated with covariate values x. The special case where λ0(t) = λ0 is
the exponential survival model of Feigl and Zelen [26]. The model is easily
extended to time-varying covariates x(t) and time-varying effects β(t). Note
that taking logs yields a model that is linear in the relative risk parameters.

The cumulative hazard is defined as Λ(t,xi) =
∫ t
0
λ(u,xi) du, which for

time-fixed covariates is simply the baseline cumulative hazard times the rela-
tive risk for individual i. We will also need the survival function or probability
of being alive at time t, which can be obtained from the cumulative hazard
as S(t | xi) = exp{−Λ(t,xi)}, and therefore for fixed covariates satisfies

S(t | xi) = S0(t)exp{x′iβ}, (9.14)

where S0(t) is the baseline survival function.

Estimation with Censored Data

A distinctive feature of survival models is that observations are often cen-
sored, in the sense that for some individuals the event of interest has not
yet occurred at the time the data are analyzed. Estimation of censored-data
hazard models under parametric assumptions for the baseline hazard relies
on the standard survival likelihood, to which an individual who dies at t
contributes λ(t,x)S(t,x), the density at t, and an individual who is censored
at t contributes S(t,x), the probability of surviving to t. This likelihood can
be derived under the key assumption that censoring is non-informative, so all
we know about an individual who is censored at t is that it survived that long,
see Kalbfleisch and Prentice [43]. Cox [20, 21] introduced a partial likelihood
that allows estimation of the relative risk coefficients β without assumptions
about the shape of the baseline hazard λ0(t).

Several authors have noted a close relationship between hazard models and
GLMs, and a number of papers show how various survival models can be fit
using standard GLM software, see Aitkin and Clayton [4] for the exponential,
Weibull and extreme value distributions, Bennet and Whitehead [8] for the
logistic and log-logistic, and Clayton and Cuzick [17] and Whitehead [93] for
estimation using Cox’s partial likelihood. In this section we focus on connec-
tions with Poisson models with log link, which we use in our application in
section 9.4, and binomial models with logit and c-log-log links.
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Piece-Wise Exponential Survival

A flexible semi-parametric approach to hazard models is to partition time (or
duration of exposure) into J intervals [τj−1, τj) for j = 1, . . . , J with cutpoints
0 = τ0 < τ1 < · · · < τJ , and assume that the baseline hazard is constant
within each interval, so that λ0(t) = λ0j for t ∈ [τj−1, τj). Judicious choice of
cutpoints leads to good approximations to a wide range of hazard functions,
using more closely spaced boundaries where the hazard varies rapidly and
wider intervals where the hazard changes more slowly.

Holford [40] and Laird and Olivier [47] noted that the piece-wise exponen-
tial model is equivalent to a Poisson regression model. With censored data we
observe ti, the total time lived by the i-th individual, and di, a death indicator
that takes the value one if the individual died and zero otherwise. Imagine
defining analogous measures for each duration interval, so tij is the time lived
by the i-th individual in the j-th interval, and dij is a death indicator that
takes the value one if individual i died in interval j and 0 otherwise. Then
a piece-wise exponential hazard model can be fitted by treating the death
indicators dij as if they were independent Poisson observations with means
µij = λijtij , where λij is the hazard for individual i in interval j.

The proof is not hard and can be sketched as follows. The contribution of
the i-th individual to the standard survival log-likelihood for censored data
has the form di log λ(ti,xi) − Λ(ti,xi). Suppose ti falls in interval j(i) and
write λij(i) as shorthand for λ(ti,xi). The cumulative or integrated hazard
can be computed easily because the hazard is constant in each interval, so
Λ(ti,xi) =

∑
j λijtij , where the sum is over all intervals up to j(i). There is a

slight lack of symmetry in that we have only one term on the death indicator
and j(i) terms on the exposure times, but we can easily add the terms for
previous intervals, which have dij = 0 and thus are all zero, to obtain

logLi =
j(i)∑
j=1

{dij log λij − λijtij}. (9.15)

This equation coincides with the log-likelihood that we would obtain if we
treated dij as having a Poisson distribution with mean µij = λijtij except for
a term dij log(tij), but this is a constant depending on the data and not the
parameters, so it can be ignored.

It is important to note that we have not assumed that the dij have inde-
pendent Poisson distributions, because clearly they do not. If individual i died
in interval j then it must have been alive in all prior intervals, so the indicators
couldn’t possibly be independent. Moreover, each indicator can only take the
values one and zero, so it couldn’t possibly have a Poisson distribution that
assigns probability to values greater than one. The result is more subtle; it
is the likelihood functions that coincide. Given a realization of a piece-wise
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exponential process, we can find a realization of a set of independent Poisson
r.v.’s that happens to have the same probability and thus leads to the same
estimates. The practical implication is that one can fit a piece-wise exponential
model in terms of the equivalent GLM.

Discrete Survival Models

In his original paper, Cox [20] proposed a discrete version of the proportional
hazards model by working with the conditional odds of dying at each possible
failure time tj given survival up to that point. Specifically, he proposed the
model

λ(tj | x)
1− λ(tj | x)

=
λ0(tj)

1− λ0(tj)
exp{x′β}, (9.16)

where λ0(tj) is the baseline conditional probability of dying at tj given survival
to that time and exp{x′β} is the relative risk. In this model the conditional
log-odds of dying are linear in the relative risk parameters β.

Cox [20] extended his partial likelihood approach to estimate β while
treating the baseline hazards λ0(tj) as nuisance parameters that could be
conditioned out of the likelihood. Allison [5] noted that one could estimate
the complete model, including a separate parameter for each discrete time
of death tj , by running a logistic regression on a set of pseudo observations,
in a procedure analogous to that described above for piece-wise exponential
models.

An alternative extension of hazard models to discrete data assumes that
the survival functions satisfy (9.14) and then solves for the conditional hazard
at time tj , to obtain

λ(tj | x) = 1− (1− λ0(tj))exp{x′β}. (9.17)

The transformation that makes the right-hand-side a linear function of the
parameters is the complementary log-log, and the model can be fitted using
a GLM with binomial structure and complementary log-log link.

This model can also be obtained by grouping time in a continuous-time
proportional hazards model, see Prentice and Gloeckler [72] and Kalbfleisch
and Prentice [43] for details. In this approach time is grouped into intervals
[τj−1, τj) as before, but all we observe is whether an individual survives or dies
in an interval. This construction imposes some constraints on censoring: if an
individual is censored inside an interval we do not know whether he or she
would have survived the interval, and therefore must censor the observation
back at the beginning of the interval. Unlike the piece-wise exponential setup,
we cannot use information about exposure during part of an interval. On the
other hand, we do not need to assume that the hazard is constant in each
interval.
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9.2.4 Multilevel Survival Models

In the last several years there has been considerable interest in extending
survival models by introducing random effects. A classic demographic contri-
bution is Vaupel et al. [91], which introduced a gamma-distributed random
effect to represent unobserved heterogeneity of frailty in univariate survival
models, see also Aalen [1], Hougaard [41, 42] and Manton et al. [58]. The
idea of frailty can be used to represent association of kindred lifetimes in a
multivariate setting, see Clayton [14], Clayton and Cuzick [18], and Oakes
[68]; to account for association in recurrent events and event history data, see
Clayton [15] and Rodŕıguez [79]; and leads naturally to two- and three-level
survival models, see Guo and Rodŕıguez [37], Sastry [83], and Barber et al.
[7].

The multilevel extension follows the same strategy as for MGLMs. We
assume that given a vector of random effects δ, the survival experiences of
different individuals are independent and follow a hazard model with condi-
tional hazard

λ(t,xi | δ) = λ0(t) exp{x′iβ + z′iδ}. (9.18)

In this generalization the hazard for individual i depends not only on the fixed
effects β with model vector xi, but also on the random effects δ with model
vector zi. Once again, the random effects enter a linear predictor in exactly
the same form as the fixed effects. Calculation of the conditional cumulative
hazard and the conditional survival function follows along the same lines as
in ordinary survival models.

We can also calculate unconditional or marginal survival probabilities by
integrating out the random effects. Calculation of unconditional hazards re-
quires special care because hazards, by definition, are conditional on survival
to time t. The extent of dependence of kindred lifetimes can be expressed in
terms of measures of intra-class correlation. Estimation of both discrete and
continuous time multilevel survival models can proceed by working in terms
of the equivalent MGLM with binomial or Poisson errors. We will revisit these
issues in the context of our application in section 9.4.

9.2.5 Conditional and Marginal Models

An alternative approach to the analysis of correlated data that is popular
in longitudinal or repeated-measurement studies focuses on the marginal dis-
tribution of the responses, see Diggle et al. [25, Chapter 8]. These models
assume that the outcomes have a distribution in the exponential family, and
that a transformation of the marginal mean is a linear function of observed
covariates with coefficients β. The models are usually fit to data using gener-
alized estimating equations (GEE) which take into account the dependence of
the observations. The method is very similar to the IRLS algorithm used in



9 Multilevel Generalized Linear Models 347

GLMs, using the same working dependent variable and the same set of weights,
but instead of using weighted least squares (WLS) with a diagonal weight
matrix, it uses generalized least squares (GLS) with a more general weight
matrix, where the non-diagonal elements reflect the correlation structure of
the observations.

In the linear case the marginal and conditional models coincide, in the
sense that in both instances the mean is a linear function of the covariates with
the same coefficients β. This is no longer true in the more general case; except
for variance-component probit models, where the conditional and marginal
models differ only by a scaling of the coefficients, the two approaches lead
to different models. The distinction is particularly important in the case of
survival models, where it can give rise to interesting paradoxes, see Vaupel
and Yashin [92]. Marginal models are useful when one is interested in mak-
ing inferences about population averages, whereas conditional models have a
subject-specific interpretation, see Neuhaus et al. [66] for a comparison. As
will be shown in our application, one can always use a conditional model to
compute marginal quantities of interest, so in this sense the MGLM approach
is richer, see also Goldstein [31, 32].

9.2.6 Non-Linear Models

Generalized linear models and the extensions considered so far expand the
statistician’s toolkit beyond the assumption of normally distributed outcomes,
while retaining the assumption of linear effects on a transformed scale. Non-
linear models are different; they retain the assumption of normally distributed
outcomes, but move beyond the assumption of linear effects to consider more
general structures where the parameters enter non-linearly. These models of-
ten have a natural physical interpretation, may be more parsimonious than
linear models, and can provide more reliable predictions outside the observed
range of the data. Needless to say, non-linear models have also been extended
to include random effects at various levels of aggregation, see Davidian and
Giltinan [24] and Pinheiro and Bates [71, Part II]. In this chapter we focus on
MGLMs, but note that the two approaches share common estimation problems
and have adopted similar solutions.

9.3 Approaches to Estimation

Estimation of multilevel linear models for normally distributed outcomes using
maximum likelihood or restricted maximum likelihood is very well understood.
Excellent implementations are available in specialized multilevel packages,
namely HLM and MLwiN, as well as in general-purpose statistical packages,
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including Stata, SAS and R/S-Plus. When it comes to MGLMs, however, the
picture gets more complicated.

Estimation by maximum likelihood requires the marginal distribution of
the responses. We assume that the random effects have density g(δ), a mul-
tivariate normal density with a patterned covariance structure. We further
assume that the conditional density of the outcomes given the random effects,
f(y | δ), is a product of densities in the exponential family. The product of the
marginal and conditional densities gives us the joint density of the outcomes
and the random effects. Calculation of the marginal density of the outcome is
then a ‘simple matter’ of integrating out the random effects:

f(y) =
∫
f(y | δ) g(δ) dδ. (9.19)

Unfortunately this integral is intractable, with no general closed-form solution.
There are some special cases of interest with a single random effect whose

distribution is conjugate with the distribution of the outcome, see Lee and
Nelder [49] for a general approach. For example if y and δ are scalars, the
marginal distribution of the random effect is gamma and the conditional
distribution of the outcome given the random effect is Poisson, then the
marginal distribution of the outcome is negative binomial, see Lawless [48]. For
binary outcomes the beta-binomial combination is popular, see Crowder [23].
A difficulty with these approaches is that they do not extend easily to models
involving multiple dependent random effects. The flexibility of the assumption
of multivariate normality for the random effects is, in fact, unmatched. To
retain this flexibility, we need a way to get around the intractability of (9.19).
We now turn to a discussion of the three main approaches to estimation in
current use, starting with a simulation study used to evaluate them.

9.3.1 A Simulation Study

To assess the performance of alternative estimation procedures we will use
data from a simulation study described in Rodŕıguez and Goldman [81]. The
study was motivated by work on health care utilization in Guatemala, where
exploratory analyses had suggested large family and community effects on the
use of modern health care, yet more formal analyses using multilevel models,
as implemented in then current software, had failed to confirm the existence of
large effects. To resolve this disparity we ran a number of simulations, using
what we then considered small and large variance components. Subsequent
work revealed that the actual effects were in fact much larger than the values
used in our simulations, see Pebley et al. [69] and the case study in Rodŕıguez
and Goldman [82].

We will focus here on a set of simulations using the actual structure of
Guatemalan data on prenatal care, with 2449 births to 1558 mothers who were
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living in 161 communities. We created three composite explanatory variables
summarizing characteristics of the pregnancy, mother and community, and
set their fixed-effect coefficients to 1. We added random effects representing
unobserved characteristics of the mother and community, sampled from nor-
mal distributions with mean 0 and variance 1. Finally we simulated a binary
response following a 3-level random-intercept logit model. This procedure was
used to generate 100 datasets that have been used by several authors and are
freely available at http://data.princeton.edu/multilevel.

Table 9.1 summarizes the results of trying various estimation procedures
on these datasets. The results for MQL-1 and MQL-2 appeared in Rodŕıguez
and Goldman [81]. Goldstein and Rasbash [34] reported results for PQL-2
using the first 25 of our 100 datasets; we have extended the analysis to cover
all 100 and added PQL-1. The results using quadrature methods and the
Gibbs sampler are new. We will comment on these results as we describe
the various procedures. For brevity we omit presentation and discussion of
standard errors.

Browne and Draper [13] have also analyzed the first 25 of our datasets,
and went on to generate a further 500 samples with the same multilevel
structure, as part of an interesting simulation study contrasting Bayesian
and likelihood-based procedures. The comparison includes MQL and PQL
as well as a Bayesian approach, but excludes maximum likelihood via quadra-
ture procedures. Their implementation of Bayesian estimation combines the
Metropolis algorithm with Gibbs sampling and tries two choices of diffuse pri-
ors for the variances of the random effects. The evaluation criteria include the
bias of point estimates and also the coverage rates of interval estimates. Their
results parallel ours and lead to essentially the same conclusions regarding the
relative merits of these methods.

Table 9.1. Estimates for simulated data using the Guatemala structure.

Estimation Fixed Parameters (β) Random Parameters (σ)

Method Individual Family Community Family Community

True Value 1.000 1.000 1.000 1.000 1.000

MQL-1 0.738 0.744 0.771 0.100 0.732

MQL-2 0.853 0.859 0.909 0.273 0.763

PQL-1 0.808 0.806 0.831 0.432 0.781

PQL-2 0.933 0.940 0.993 0.732 0.924

ML-5 0.983 0.988 1.037 0.962 0.981

ML-20 0.983 0.990 1.039 0.973 0.979

Gibbs 0.971 0.978 1.022 0.922 0.953
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9.3.2 Marginal and Penalized Quasi-Likelihood

Goldstein [30] and collaborators have proposed a general approach to the
estimation of MLGMs that relies on a linearization strategy, and has led
to four different approximations, known as first and second-order maximum
quasi-likelihood (MQL) and penalized quasi-likelihood (PQL).

MQL-1

To motivate these approximations we write the MLGM model as

y = µ(Xβ +Zδ) + ε, (9.20)

where ε is a heteroscedastic error term with mean ∅ and variance V (µ)
depending on the mean. Goldstein [30] approximates the inverse link µ(η)
using a first-order Taylor series expansion around trial values β = β0 and
δ = ∅, to obtain

y = µ(Xβ0) +DX(β − β0) +DZδ + ε, (9.21)

where D = ∂µ/∂η0 is a diagonal matrix of derivatives of the mean with
respect to the linear predictor evaluated at η = η0. Pre-multiplying both
sides of the equation by D−1 and rearranging terms gives

y∗ = Xβ +Zδ + ε∗, (9.22)

where y∗ = D−1(y − µ0) +Xβ0 and ε∗ is an error term with mean ∅ and
variance D−1V (µ)D−1. (The variance is simpler for logit and other models
where the derivative of the linkD coincides with the variance function V (µ).)

Equation (9.22) has the structure of a linear mixed model, with mean
E (y∗) = Xβ and variance

Var(y∗) = ZΩZ′ +D−1V (µ0)D−1, (9.23)

which has been evaluated at µ0. Fitting this model by ML or REML leads to
an improved estimate of the fixed effects β, which can then be used to compute
a new approximating model. The procedure is iterated to convergence. This
method is termed maximum quasi-likelihood (MQL) because the approximat-
ing linear mixed model matches the mean and variance of the target model.
Interestingly, if there are no random effects the method coincides exactly with
the IRLS algorithm used in GLMs and therefore leads to maximum likelihood
estimates.

Longford [54, 56] adopted a different approach that, somewhat surpris-
ingly, leads to an equivalent algorithm. He approximates the conditional like-
lihood f(y | δ) using a second-order Taylor series expansion about δ = ∅.
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The random effects appear in this expansion only in a quadratic form, which
can be combined with a similar quadratic form in the marginal density g(δ) of
the random effects to carry out the required integration analytically. Longford
goes on to derive a Fisher scoring algorithm that provides estimates of both
fixed and random effects. This strategy was first implemented in the multilevel
package VARCL [55], and turns out to be exactly equivalent to Goldstein’s
MQL-1 procedure. For further details see Rodŕıguez and Goldman [81].

Unfortunately, the results in Table 9.1 show that first-order MQL estimates
can be biased, underestimating the fixed effects (β’s) by 23–26% and the
random parameters (σ’s) by 27% at the community and 90% at the family
level. For related results see Breslow and Clayton [11] and Breslow and Lin
[12].

MQL-2

Goldstein [30, p. 50] also proposed a quadratic approximation based on a
second-order Taylor series expansion. Specifically, he adds the second order
terms corresponding to each of the random effects in the model, but omits
second-order terms on the fixed effects as well as mixed derivatives. The
resulting squared terms are treated as additional random effects in the ap-
proximating linear model. Because these are really not separate terms their
means and variances are not estimated, but rather are calculated from the
variances of the original random effects under the assumption of normality.
The resulting constrained model is easily fit using MLwiN. We refer to this
approximation as MQL-2.

Experience suggests that this method is more accurate than MQL-1, al-
though it doesn’t always converge. Table 9.1 shows that the bias is reduced
to 9–15% for the fixed parameters, and 24% and 73% for the community
and family random parameters, respectively; a notable improvement, although
substantial bias remains.

PQL-1

Simulations show that MQL-1 and 2 work better when the random effects are
small, i.e. their variances are close to zero. This fact should not be surprising
considering that the approximation is based on a Taylor series expansion
about δ = ∅. An alternative procedure would be to expand about δ = δ0 with
a non-zero pivot, and the obvious candidate is the empirical Bayes estimate
of the random effects, defined as E (δ | y), evaluated at current parameter
values. The expansion then becomes

y = µ(η0) +DX(β − β0) +DZ(δ − δ0) + ε, (9.24)
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and leads to an approximating multilevel linear model with the same form
as equation 9.22, except that the working response is now y∗ = D−1(y −
µ0)+Xβ0 +Zδ0. This model can be estimated using ML or REML, and the
resulting estimates of both fixed and random effects are used to obtain a new
approximating model. The procedure is then iterated to convergence.

The same procedure has been derived by other authors using different
approaches. Laird [46] and Stiratelli et al. [87] derive it from a Bayesian
perspective as an approximation to a posterior distribution using a diffuse
prior. Schall [84] starts from a MGLM and uses a linearized form of the link
function applied to the data. Breslow and Clayton [11] derive the procedure
using Laplace’s method for integral approximation, and term it penalized
quasi-likelihood or PQL by relating it to results of Green [36].

Our experience suggests that PQL-1 tends to perform better than MQL-1,
is sometimes competitive with MQL-2, and is more likely to converge. For the
simulated data the PQL-1 estimates of the fixed effects are not quite as good
as MQL-2 but the estimates of the random parameters are better, although
the family standard deviation is still seriously biased.

PQL-2

Goldstein and Rasbash [34] have proposed an improved version of PQL,
termed PQL-2, that extends the Taylor series to include second-order terms
on the random effects, but no second order terms on the fixed effects and no
mixed derivatives. The resulting squared terms are treated exactly the same
way as in MQL-2, as additional random effects whose variance is not estimated
but rather calculated from the other parameters.

We have found PQL-2 to be the most accurate method in this series,
although sometimes it fails to converge. The results in Table 9.1 show that
PQL-2 has only a 1–7% bias for the fixed parameters, and underestimates the
community random parameter by 8%, although there is still a 27% bias in the
estimation of the family random parameter.

Bootstrapping

One way to reduce the bias in the approximate estimation procedures is by
bootstrapping, see Kuk [45] and Goldstein [33], and the detailed discussion
in chapter 11. We used MLwiN to bootstrap MQL-1 and PQL-1 estimates
in a case study involving three-level random-intercept logit models [82]. We
found that the procedure was successful in correcting the bias of the estimates
of both fixed and random parameters. However, the technique is extremely
compute-intensive (more so than the MCMC methods discussed below) taking
days to converge in one of our datasets and failing after 400 replicates in
another. In both cases, however, we noted that the first few iterations achieved
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large bias corrections, suggesting that one could run a few bootstrap iterations
as a diagnostic technique. For more details see Rodŕıguez and Goldman [82,
Fig. 3].

9.3.3 Gauss-Hermite Quadrature

A second approach to estimation of MGLMs is to calculate the integral (9.19)
representing the marginal likelihood using numerical quadrature procedures.
Previous work along these lines includes Anderson and Aitkin [6] and Hedeker
and Gibbons [38, 39], see also chapter 6 in this handbook. For an excellent
introduction to numerical integration methods with applications to statistics
see Thisted [90, chap. 5].

Table 9.1 shows the results of computing maximum likelihood estimates
for our simulated data using 5-point and 20-point Gauss-Hermite quadrature.
We find no evidence of bias in the estimation of the fixed effects, and only
about a two percent bias in the estimation of the random parameters, well
within the margin of error of our simulations. We now describe the method
in some detail.

Quadrature Rules

Quadrature methods approximate an integral as a weighted sum of function
values evaluated over a grid of points, so that∫

f(x) dx ≈
∑
q

wqf(xq). (9.25)

Simple methods, such as the trapezoidal rule and Simpson’s rule, evaluate
the integral at equally spaced points and can integrate certain polynomials
exactly; in general, k points lead to exact integration of polynomials of degree
k − 1 with appropriate choice of weights.

Gaussian quadrature rules choose not only the weights, but also the evalu-
ation points or abscissæ, and can achieve higher precision with a fixed number
of points. In particular, Gauss-Hermite quadrature (so-called because the
evaluation points are zeroes of the Hermite polynomials) can be used with
integrals of the form

∫
f(x)e−x

2
dx, and works best when f(x) can be well

approximated by a polynomial. The abscissæ and weights for this rule may be
found in Abramowitz and Stegun [2] or may be computed using the function
gauher in Press et al. [73].

In our applications we need to evaluate integrals of the form
∫
f(z)φ(z) dz

where φ(·) is the standard normal density. A simple change of variables leads to
the approximation

∑
wqf(zq), where wq is the Gauss-Hermite weight divided

by
√
π and zq is the Gauss-Hermite abscissa times

√
2.
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Two-Level Likelihood

Consider a two-level random-intercept model with nj observations in cluster
j. Let δj ∼ N (0, σ2) denote the cluster effect. We assume that given δj the nj
observations are independent and have a distribution in the exponential family
f(yij | δj). We further assume that the conditional mean E (yij | δj) = µij
satisfies a generalized linear model with g(µij) = x′ijβ+δj . We write δj = σzj ,
so we only need to consider standard normal random effects.

Let Lj(zj) =
∏
i f(yij | zj) denote the conditional likelihood for cluster

j given the random effect. We can evaluate the marginal likelihood for the
cluster using Q-point Gauss-Hermite quadrature as a simple weighted average

Lj =
Q∑
q=1

wqLjq, (9.26)

where we have written Ljq as shorthand for Lj(zq), the likelihood for cluster
j evaluated at the q-th quadrature point.

Two-Level Score

First and second derivatives of the likelihood can also be evaluated as weighted
averages, but we usually work with the log-likelihood instead. Let θ denote
the model parameters, including β and σ (or better still log σ, which avoids
range restrictions and is usually better behaved).

Let uj = ∂ logLj/∂θ denote the score vector for cluster j. Simple calculus
shows that

uj =
Q∑
q=1

w∗jqujq, (9.27)

where ujq is the score corresponding to the log-likelihood for cluster j evalu-
ated at the q-th quadrature point, and w∗jq = wqLjq/Lj .

The new weight w∗jq has an interesting interpretation. One can view the
approximate likelihood (9.26) as a mixture model where cluster j comes from
one of Q discrete classes with random effects zq and prior probabilities wq.
The new weight w∗jq is the posterior probability that the cluster came from
class q given the data yj . Thus, the quadrature score is the posterior average
of the scores evaluated at the quadrature points.

Two-Level Hessian

Let Hj = ∂2 logLj/∂θ ∂θ′ denote the Hessian or matrix of second derivatives
of the log-likelihood for cluster j. It can be shown that this matrix satisfies



9 Multilevel Generalized Linear Models 355

Hj =
Q∑
q=1

w∗jqHjq +
Q∑
q=1

w∗jq(ujq − uj)(ujq − uj)′, (9.28)

where Hjq is the Hessian for cluster j evaluated at the q-th quadrature point.
Thus, the Hessian is the posterior average of the Hessians evaluated at the
quadrature points plus the variance of the scores evaluated at the quadrature
points.

This equation is formally identical to a well-known result for maximum
likelihood estimation using the EM algorithm, which views the random effects
δj as missing data, and shows that the incomplete data information equals the
expected complete data information minus the variance of the scores, which
represents the missing information, see Louis [57].

Adaptive Quadrature

Liu and Pierce [53] proposed an extension of Gauss-Hermite quadrature where
the variable of integration is transformed so the integrand is sampled in a more
appropriate region. The starting point is the observation that the integrand in
(9.19) is the product of the prior density of the random effect and the density of
the data given the random effect, and is therefore proportional to the posterior
distribution of the random effect. This, in turn, can be approximated using a
Gaussian density. To fix ideas consider a two-level variance-components model
where the random effect has a N (0, σ2) prior and write the contribution of a
cluster to the likelihood as∫

f(y | δ)φ(δ; 0, σ2) dδ =
∫ {

f(y | δ)φ(δ; 0, σ2)
φ(δ;µ, γ2)

}
φ(δ;µ, γ2) dδ, (9.29)

where φ(δ;µ, γ2) denotes the normal density with mean µ and variance γ2.
Liu and Pierce [53] choose µ and γ2 to match the mode and the curvature

at the mode of the posterior density. The integral on the right-hand side is
then evaluated using Gaussian quadrature, following a change of variables
from δ to (δ − µ)/γ. This has the effect of sampling the integrand in a more
relevant range, and improves accuracy as long as the ratio in braces is better
approximated by a low-order polynomial than the likelihood. The method
with a single node is equivalent to the Laplace (or PQL-1) approximation
to the integral, so this approach may be viewed as an extension of Laplace
approximation.

Pinheiro and Bates [70] derived this algorithm, which they termed adaptive
Gaussian quadrature, from an interesting perspective. They viewed Gaussian
quadrature as a deterministic version of Monte Carlo integration and proposed
adaptive quadrature as a deterministic version of importance sampling, which
tends to be much more efficient than simple Monte Carlo integration, using a
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Gaussian density with the same mode and curvature as the posterior density
as the importance distribution.

Rabe-Hesketh et al. [74] proposed a slightly different approach that sim-
plifies the calculations required to place the nodes; instead of matching the
mode and curvature they use the posterior mean and variance of the ran-
dom effects, which are calculated by building on work of Naylor and Smith
[64]. Their approach, embodied in the gllamm command in Stata, was the
first implementation of adaptive quadrature for multilevel models, and has
now replaced Gauss-Hermite quadrature in other Stata procedures, including
the official commands for random effects logit, probit, and Poisson models.
Another implementation of adaptive methods may be found in R’s lme4.

Although adaptive quadrature requires additional computational effort to
place the abscissæ, it usually pays off by requiring many fewer quadrature
points. In our original analysis of Guatemalan data reported in Pebley et al.
[69], we used Gauss-Hermite quadrature with 20 nodes at each level, so each
likelihood evaluation required going over a 400-point grid. Recently we were
able to replicate the results exactly using gllamm with the default 6 points
per level. The gllamm code is slow because it is interpreted, but speed has
improved as critical parts of the algorithm have been converted to internal
code in Stata. For further details see Rabe-Hesketh et al. [74].

Extension to More Dimensions

So far we have discussed a two-level model with a single random effect, but the
quadrature approach can be extended to higher-dimensional models. Consider
first a three-level random-intercept model. Because there is only one random
effect at each level, the model can be estimated by recursive application of
the method described so far. Specifically, the likelihood for a level-3 unit is
computed as a weighted sum of level-3 likelihoods evaluated at the quadrature
points. These are products of level-2 likelihoods, each computed using (9.26).

Consider next a two-level random-slope model where we have two random
coefficients, say αj = α + δ1j and β

j
= β + δ2j . Fitting this model requires

evaluating a bivariate normal integral, but we can always transform to in-
dependence; in the simplest case by using the marginal distribution of δ1j
and the conditional distribution of δ2j | δ1j , which can then be standardized.
Extension to higher dimensional models follows along similar lines using a
Cholesky decomposition.

Optimization Algorithms

The foregoing results can be used in a Newton-Raphson algorithm for maxi-
mizing the log-likelihood function. Our experience using the built-in function
minimizers in S-Plus and R, as well as code in Press et al. [73], suggests that
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the extra expense of computing second derivatives is not always worthwhile.
Instead, we provide first derivatives only, letting the algorithms compute nu-
merical second derivatives, or use variable-metric methods such as DFP or
BFGS that build an approximation to the Hessian in the course of iteration.
However, we do use analytic results to evaluate the Hessian after convergence,
in order to obtain more accurate standard errors.

The first statistical package to incorporate quadrature methods was Egret
[19]. The latest version of Stata can fit two-level random-intercept logit and
probit models using adaptive quadrature, and has a nice provision for checking
the procedure by comparing results with different numbers of points. A more
general implementation of quadrature methods may be found in the package
aML [51], which can handle, at least in principle, several levels and multiple
random effects.

The computational burden of Gauss-Hermite quadrature increases rapidly
with the dimensionality of the problem. For an m-dimensional model using
Q quadrature points for each random effect, each evaluation of the likeli-
hood function is equivalent to Qm evaluations of a GLM likelihood. Using 12
quadrature points, which seems a reasonable standard for general use, one can
easily fit three-level random-intercept models and two-level models with two
random coefficients, say an intercept and a slope, with each likelihood evalu-
ation the equivalent of 144 GLM likelihoods. But using 12-point quadrature
to evaluate the likelihood of a three-level model with two random coefficients
at each level is equivalent to evaluating almost 21 thousand GLM likelihoods.
Obviously the technique works best for relatively low-dimensional models.

9.3.4 Bayesian Estimation Using the Gibbs Sampler

Recent advances in Bayesian estimation avoid the need for numerical inte-
gration by taking repeated samples from the posterior distribution of the
parameters of interest. In particular, use of the Gibbs sampler in the context
of MGLMs was first proposed by Zeger and Karim [95], and has been discussed
in greater detail by Clayton [16]. See also chapter 2 in this Handbook and the
Browne and Draper [13] evaluation cited earlier.

Gibbs Sampling

To apply this framework we adopt a Bayesian perspective, treating all param-
eters as random variables and assigning prior (or hyperprior) distributions
to the fixed-effect parameters β and to the precisions τ (the reciprocals
of the variances) of the random effects. To obtain Bayesian estimates that
are roughly comparable to maximum likelihood estimates, many analysts
use vague or non-informative priors. Fixed-effects are typically assumed to
come from normal distributions with mean zero and very large variances,
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and precisions are sampled from diffuse gamma or Pareto distributions, see
Spiegelhalter et al. [86].

A popular method for sampling from the posterior distribution of the
parameters given the data is the Gibbs sampler, a Markov chain Monte Carlo
method (MCMC) that focuses on the so-called full conditional distributions of
each parameter given all others, turning a complex multivariate problem into
a series of simpler univariate ones. This approach has been combined with a
general method for drawing samples from any log-concave distribution, called
adaptive rejection sampling [29]. The combination is available in the software
package BUGS [86]. Convergence diagnostics can be calculated using a set of
R or S-Plus functions, see Best et al. [9].

Results for Simulated Data

We tried the Gibbs sampler on our simulated Guatemalan data. We used
non-informative priors, treating all four fixed-effect parameters as i.i.d. normal
variates with mean 0 and precision 10−6. For the two random-effect param-
eters representing the precision of the family and community random effects
we used a Γ (ε, ε) distribution with ε = 0.001 so the mean is 1 and the variance
is 1000. We then ran a naive Gibbs sampler with a burn-in of 200 iterations
followed by a further 1000 iterations. We are very grateful to David Clayton for
sharing with us a set of C functions for MCMC estimation of generalized linear
mixed models and for adapting his driver program to handle our simulated
data. These routines have now been incorporated in the R package GLMMGibbs,
see Myles and Clayton [63].

The results in Table 9.1 are very encouraging, showing practically no bias
in the estimation of the fixed effects, about a 5% bias in the estimation of the
community effect and an 8% bias for the family effect. We did some further
work exploring the nature of the remaining bias and discovered that we could
essentially eliminate it by either (1) using informative priors for the precisions
of the random effects, or (2) using a much larger sample size, simulated by
combining our original samples in groups of five. For additional simulation
results see Browne and Draper [13].

Experience with Real Data

Our experience applying MCMC methods to real data has been somewhat
mixed. In a case study fitting a three-level random-intercept logit model
to data on immunization from Guatemala we found slow mixing and poor
convergence, particularly for parameters representing the variances of the
random effects. Deciding whether a run is adequate often requires a battery
of diagnostic procedures; we have used tests due to Geweke [28] and Roberts
[78], and have found very useful the gibbsit software of Raftery and Lewis
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[75, 76], which provides an estimate of the number of iterations required to
estimate credible limits for each parameter with given probability of attaining
a desired precision.

Fitting a similar model for prenatal care data characterized by heavier
clustering, particularly at the family level, proved substantially more difficult,
with estimates of the efficiency of our chains as low as 1%. Rather than running
much longer chains we heeded the advice of Gelman and Rubin [27] and ran
multiple chains with different starting values. The S-Plus function itsim was
very useful in checking the output from multiple chains before pooling them
to produce final estimates. In the end the MCMC approach required extensive
computation and judging convergence proved something of an arcane art form.
For more details, see Rodŕıguez and Goldman [82].

9.3.5 Other Approaches to Estimation

High-Order Laplace

Breslow and Lin [12] proposed a fourth-order Laplace approximation for two-
level models with a single random effect per cluster, and Lin and Breslow [52]
extended the result to multiple independent random effects per cluster. More
recently, Raudenbush et al. [77] further extended this approach to high-order
approximations for multiple dependent random effects. They report that the
method is remarkably accurate and computationally fast, and validate it by
comparison to Gauss-Hermite quadrature with up to 40 points, using real and
simulated data. This promising strategy was first implemented for two-level
models in version 5 of HLM, but has now been extended to three-level models
in version 6.

Simulated Maximum Likelihood

Monte Carlo integration is not restricted to Bayesian models, but can also
be used for simulating the likelihood, see Lerman and Manski [50] for an
early application. Closely related approaches are the method of simulated
moments (MSM) introduced by McFadden [61], and the method of simu-
lated scores (MSS), see Keane [44]. These methods are often used by applied
economists estimating complex structural models. A useful survey may be
found in Gouriéroux and Monfort [35].

In the context of generalized linear mixed models, McCulloch [60] de-
veloped Monte Carlo variants of the Expectation-Maximization (EM) and
Newton-Raphson algorithms, as well as simulated maximum likelihood (SML).
Booth et al. [10] compare several stochastic alternatives to numerical in-
tegration, including simulated maximum likelihood using importance sam-
pling. These methods are particularly appropriate for high-dimensional models
where quadrature succumbs to the curse of dimensionality.
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Recently Ng et al. [67] evaluated several simulation-based approaches for
maximum likelihood estimation in multilevel models with binary outcomes,
including bias correction using Kuk’s bootstrap (described earlier) and the
Robbins-Monro stochastic approximation method, and estimation using sim-
ulated maximum likelihood (SML). They conclude that SML performs com-
parably with the other methods, but has the advantage of yielding vari-
ance estimates—which can be used to construct Wald tests and confidence
regions—as well as the value of the likelihood at the maximum, which is
useful for constructing likelihood ratio tests to compare nested models. They
note that SML requires good starting values, confirming results in [60], but
is otherwise less prone to computational problems than the other algorithms,
and gives results similar to numerical integration.

9.4 Infant and Child Mortality in Kenya

Our illustration of MGLMs uses data from the 1998 Kenya Demographic and
Health Survey (KDHS) to study infant and child mortality.

9.4.1 The Kenya Survey

The 1998 Kenya Demographic and Health Survey (KDHS) is a national survey
conducted by the National Council for Population and Development (NCPD)
in collaboration with the Central Bureau of Statistics (CBS) and Macro In-
ternational, which provided technical assistance. The survey is national in
scope but excluded seven districts accounting for less than four percent of the
population. The sample was selected using a two-stage stratified design and
relied on a sampling frame maintained by the CBS. Field work was conducted
between February and July, 1998, and achieved an overall response rate of
96.8% of households and 95.7% of women aged 15–49 which were eligible
for an individual interview. The interview included a retrospective maternity
history that collects data on date of birth, survival status, and age at death
for all children each woman has given birth to.

We selected for analysis all births in the ten years preceding the interview,
but excluded 170 pairs of twins and one set of triplets, which have much
higher mortality risks than singletons. The final sample consists of 10,878
births to 4,939 women who live in 530 communities, defined in terms of the
ultimate area units used in the sample design. One objective of our analysis is
to determine the extent to which infant and child deaths are clustered within
families and within communities.

We must note at the outset a limitation of the data: the community is
defined in terms of the respondent’s residence at the time of the survey, but our
analysis uses retrospective mortality data over a ten year period. While this is
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far from ideal, we claim three extenuating circumstances. First, a large fraction
of respondents have always lived in the place where they were interviewed, and
80.9% of all births in our sample were born while the mother resided in her
current community. Second, migration would tend to attenuate the influence
of the community, so our estimates can be considered lower bounds on the
true effects. Third, as a sensitivity test we repeated our analysis using only
births in the last five years, and discovered that our estimates were remarkably
resilient to the choice of reference period.

9.4.2 A Three-Level Hazard Model

Let λijk(t) denote the risk of dying at age t for the i-th child of the j-th mother
in the k-th community. We assume that the hazard depends on age t, a set of
observed child, family and community covariates xijk, and unobserved family
and community random effects δjk and δk via a conditional proportional
hazards model:

λijk(t) = λ0(t) exp{x′ijkβ + δjk + δk}, (9.30)

where λ0(t) is a baseline hazard, β is a vector of fixed parameters representing
the effects of observed covariates, and the unobserved family and community
effects are normally distributed δjk ∼ N (0, σ2

2) and δk ∼ N (0, σ2
3).

Choice of Duration Categories

We assume that the baseline hazard is constant in intervals defined by cut-
points 0 = τ0 < τ1 < · · · < τD, so that λ0(t) = λ0d if t ∈ [τd−1, τd). The choice
of cutpoints is dictated by the shape of the hazard and constraints in data
collection.

The KDHS recorded age at death in days, months or years. Days are
used for neonatal deaths (occurring in the first month of life), months are
used mostly for infant deaths (occurring before age one), and years are used
predominantly for deaths at ages two or higher. We first tabulated events and
exposure by single months up to age one and by single years thereafter. In
calculating exposure for deaths at ages two and higher we treated deaths as
occurring at the midpoint of an interval constrained by the reported age at
death in years and the date of interview. No such approximation is required
for deaths at earlier ages or for survivors.

Following some exploratory work, we decided to use separate exposure
categories for the first month of life, and then for ages 1–5, 6–11, 12–23
and 24–59 completed months, with more detail at ages where the hazard is
changing rapidly. These five categories capture more than 90% of the variation
in the hazard by duration (as measured by the deviance in a marginal Poisson
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model), and yield 48,094 pseudo-observations. For some preliminary analyses
we used only three categories: the first month of life, the rest of the first year,
and older ages, which reduced the number of pseudo-observations to 30,456
and yielded very similar results.

Selection of Explanatory Variables

Our selection of variables has been guided by previous work in the field, see
Mosley and Chen [62] for a conceptual framework. We included only one
community-level variable, type of place of residence, classified as urban or
rural. Residence is coded at the time of the survey, so the same caveat we
discussed for community effects applies here.

Our only family-level variable is mother’s education, which can be coded
in terms of completed years or using dummy variables to mark achievements
such as completing primary or secondary school. Our exploratory analysis
indicated that the most efficient way to capture the educational effect was
to use linear and quadratic terms. We found that mortality increased as one
moved up from no education to complete primary, and decreased only when
one went past secondary education, but this tendency became less noticeable
after controlling for mother’s age, which plays the role of a confounding factor:
the children of very young mothers have higher mortality risks, but young
women also tend to be more educated than older women, a fact that actually
lowers their children’s risk.

All remaining variables are defined at the individual level. Males are known
to have higher mortality than females, so we included a dummy variable for
sex. First and high order births are also at increased risk. We considered using
dummy variables for first births and for births of order six and higher, but
noticed that linear and quadratic terms did a better job of capturing what
appeared to be a gradual increase in risk with birth order.

An important determinant of mortality is length of the preceding birth
interval, which of course is defined only for births of order two or higher.
Children born shortly after a previous birth are known to have much higher
risks, either because of maternal depletion or because they have to compete
with older siblings for scarce resources. To capture this effect we used a linear
spline defined as 30 − i (where i is interval length) for intervals shorter than
30 months and zero for first births and for longer intervals. The linear spline
proved significantly better than a simple dummy for short intervals.

The final individual variable in our model is age of the mother at the time
of birth of the child, which is known to have a U-shaped relationship with
mortality, with higher hazards for the youngest and oldest mothers. We tried
dummy variables for mothers aged < 20 and 40+ at the time of birth of the
child, but discovered that linear and quadratic terms on age at birth did a
better job.
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As part of our exploratory work we allowed all of these variables to interact
with child’s age. We found no evidence of non-proportional effects except
possibly for mother’s education, which appeared to have a larger effect beyond
the first month of life. However, the reduction in deviance did not justify the
additional number of parameters required, as judged by Akaike’s information
criterion, so we retained the simpler proportional hazards model.

Estimation Results

Table 9.2 shows the results of fitting our final model by first-order MQL, first-
order PQL, and maximum likelihood via 12-point Gauss-Hermite quadrature
(ML). We also include for comparison results from a marginal Poisson model
that ignores clustering at the family and community levels. Unlike some of the
results we have obtained for heavily clustered binary data, in this application
all three methods yield similar estimates of the fixed effects. In fact, the results
are very similar to the marginal model as well, except possibly for cohort and
birth order. However, the marginal model underestimates standard errors by
an average of eight percent, and does a poor job estimating the precision of the
urban effect. The estimates of the random parameters, reported here in terms
of the standard deviation of the family and community effects, are unusual
in that MQL and PQL lead to slightly larger values than Gauss-Hermite
quadrature.

First-order MQL converged quickly and uneventfully. First-order PQL
alternated between two sets of estimates of the random parameters, one of
which had the family variance component set to zero. The other, reported in
Table 9.2, yielded results similar to MQL. We tried second-order MQL and
PQL, but both failed repeatedly from a variety of starting points. We also
tried these procedures with the smaller sample of 30,456 pseudo-observations
using only three duration categories and obtained similar results. We believe
that further exploration of the properties of MQL and PQL for Poisson data
with moderate and large amounts of clustering would be useful. The ML
estimates converged quickly. We verified our calculations for two-level models
that included only the family or community effect by running Stata’s xtpois
procedure, which uses adaptive Gaussian quadrature for normal random ef-
fects, obtaining practically identical results.

Testing Random Parameters

A final technical point before we turn to the interpretation of the results
concerns testing for family and community effects. In Table 9.2 we report
standard errors for log σ rather than σ because normal approximations tend
to work better in the unconstrained scale. One must be careful not to divide
the estimate by its standard error, as this would test the hypothesisH0 : σ = 1
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Table 9.2. Parameter estimates for the multilevel model of infant and child survival

in Kenya.

Variable Term GLM MQL-1 PQL-1 ML

Fixed Effects∗

Constant 1 −4.189 −4.163 −4.164 −4.588

(0.095) (0.105) (0.106) (0.118)

Age 1–5 −1.669 −1.646 −1.647 −1.642

(months) (0.089) (0.090) (0.090) (0.089)

6–11 −2.062 −2.005 −2.007 −1.998

(0.096) (0.097) (0.097) (0.097)

12–23 −2.912 −2.830 −2.834 −2.822

(0.105) (0.104) (0.105) (0.106)

24–59 −3.748 −3.641 −3.646 −3.632

(0.108) (0.106) (0.108) (0.109)

Sex male 0.080 0.087 0.087 0.087

(0.065) (0.067) (0.067) (0.068)

Cohort 1993+ 0.195 0.173 0.173 0.173

(0.066) (0.068) (0.069) (0.069)

Mother’s a− 25 −0.060 −0.048 −0.048 −0.047

Age (0.010) (0.011) (0.011) (0.011)

(a− 25)2 0.003 0.003 0.003 0.003

(0.001) (0.001) (0.001) (0.001)

Birth o− 3 0.079 0.046 0.047 0.043

Order (0.035) (0.038) (0.038) (0.039)

(o− 3)2 0.005 0.004 0.004 0.004

(0.004) (0.005) (0.005) (0.005)

Birth (30− i)+ 0.039 0.036 0.036 0.036

Interval (0.006) (0.006) (0.006) (0.006)

Mother’s e− 7 −0.074 −0.066 −0.066 −0.068

Education (0.014) (0.015) (0.015) (0.015)

(e− 7)2 −0.008 −0.007 −0.007 −0.007

(0.002) (0.003) (0.003) (0.003)

Residence urban 0.022 −0.001 0.001 0.040

(0.102) (0.144) (0.144) (0.142)

Random Effects∗

Family σ2 – 0.732 0.696 0.613

log σ2 – −0.312 −0.363 −0.489

– (0.102) (0.096) (0.140)

Community σ3 – 0.747 0.745 0.680

log σ3 – −0.291 −0.294 −0.386

– (0.068) (0.058) (0.081)

Log-likelihood −5688.86 – – −5602.12
∗Standard errors shown in parentheses.
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rather than H0 : σ = 0. Instead we build 95% confidence intervals in the log
scale and exponentiate to obtain intervals for σ. In our example the confidence
intervals are (0.467, 0.807) for the family and (0.580, 0.797) for the community
σ, indicating large effects. Note that by construction these intervals cannot
include zero, so they should not be used as formal tests.

Likelihood ratio tests are preferable, but are not without difficulties. Be-
cause the null hypothesis H0 : σ = 0 is on the boundary of the parameter
space, the likelihood ratio test does not have the usual large sample chi-
squared distribution with degrees of freedom equal to the number of parame-
ters set to zero, see Self and Liang [85] and Stram and Lee [88]. These authors
suggest treating the test for H0 : σ2 = σ3 = 0 as a 50-50 mixture of χ2

1 and
χ2

2 rather than the nominal χ2
2. Similarly, a test of H0 : σ2 = 0 or H0 : σ3 = 0

would be treated as an equal mixture of zero and a χ2
1. Pinheiro and Bates [71]

simulate likelihood ratio statistics in the context of linear mixed models and
note that these adjustments are not always successful. A simpler approach
is to use the nominal degrees of freedom, understanding that the test would
then be conservative. In our application twice the difference in log-likelihoods
between the marginal and conditional models is 173.5, and the effect is highly
significant no matter how we treat the test criterion.

9.4.3 Fixed Effects Estimates

The first thing to note in Table 9.2 is the remarkable decline in risk with
age. Exponentiating the coefficients for durations 1–5 and 12–23 we see that
by ages one to five completed months the risk is 81% lower—and by age one
completed year it is 95% lower—than in the first month of life. Males in this
sample have a 9% higher risk than females with the same characteristics, but
this difference is not significant.

Children born in the period since January 1993, however, have 19% higher
risk at any given age than children born in 1992 or earlier. We examined
this result closely for possible artifacts, including sensitivity to the choice of
duration categories, and found it to be robust. We also looked at survival to
age one using logit models to compare births in the periods 1–4 and 5–9 years
before the survey, with similar results. It seems clear that infant and child
mortality increased in Kenya in the late 1990s, an unfortunate development
that is probably related to the AIDS pandemic.

Mother’s age at the time of birth of the child has a significant effect
on survival. The left panel in Figure 9.1 shows the expected U-shaped re-
lationship. The risk reaches its minimum around age 32, at which point a
ten-year difference in either direction increases the risk by as much as 40
percent, everything else being equal. Birth order, on the other hand, has no
significant effect on survival, with sample estimates suggesting, if anything, a
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Fig. 9.1. The effects of mother’s age and education on the log relative risk.

linear increase in risk with parity. The excess risk often observed for first-order
births appears to have been captured by mother’s age.

Short birth intervals have a strong negative effect on infant and child
survival, as expected. The hazard increases four percent for each month that
the interval falls short of 30, the arbitrary cutoff point in our linear spline.
This translates into a 24% excess risk for children born two years after a
sibling, compared to children born after an interval of two and a half years.

Mother’s education, which ranges from 0 to 19 years with quartiles at 4,
7, and 8, has a large effect on infant and child mortality. The right panel in
Figure 9.1 shows the overall relationship: we see little if any effect of just a
few years of primary education, but a large (and increasing) effect after that.
Around the median, each year of education is associated with a seven percent
decline in risk.

Finally, we find no significant effect of residence on child survival. Interest-
ingly, urban residents in our sample have a four percent higher risk than their
rural counterparts. We speculate that the erosion of the traditional differential
that favors urban residence may be associated with higher prevalence of AIDS
in the cities.

9.4.4 The Random Parameters

The most remarkable feature of our results concerns the large amount of
clustering observed at both the family and community levels. In an analysis of
family effects on infant and child mortality in Guatemala, Guo and Rodŕıguez
[37] find much smaller family effects, and note that their results are in line
with previous work in the area, see also Sastry [83].
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Consider first the family random effect, which is estimated to have a
standard deviation of 0.61. Because this effect is in the scale of the linear
predictor, it can be interpreted exactly the same way as a fixed coefficient
pertaining to an observed covariate. In particular, the children of a mother
who is one standard deviation above the mean in a latent distribution of
family frailty, have 85% higher risk than the children of an average mother.
In contrast, the children of a mother who is one standard deviation below the
mean enjoy 45% lower risk than the children of the average mother. In both
cases, the comparison is with children with identical observed characteristics
who live in the same community.

The community random effect is, surprisingly, even larger, with a standard
deviation of 0.68. Children who live in a community whose frailty is one stan-
dard deviation above the mean have almost double the risk—while those who
live in communities one standard deviation below the mean have about half
the risk—compared to children with the same observed characteristics who
live in an average community. From a public health point of view it would
be interesting to identify communities with large estimated random effects, in
search for an explanation of these findings.

One way to put these results in perspective is to look at the effect of
observed characteristics other than age of the child. We computed the observed
log relative risk, defined as the linear predictor omitting the constant, the
dummy variables representing duration, and both random effects. The way
we coded our covariates, this risk is zero for a third child, female, born before
1993, born at least two and a half years after the second birth, whose mother
was 25 at the time of birth, had completed seven years of education, and lived
in a rural area. For a similar male born after 1993 in a city the log relative
risk is 0.30. In our sample log relative risks range from -2.04 to 2.16; selected
percentiles are shown in Table 9.3.

Table 9.3. Selected percentiles of log relative risk.

P 1 5 10 25 50 75 90 95 99

lrr −0.78 −0.30 −0.13 0.15 0.38 0.63 0.87 1.02 1.31

Exponentiating these numbers we find that children in the third quartile of
relative risk have 61% higher risk than those in the first quartile. In contrast,
the inter-quartile ranges in unobserved family and community characteristics
translate into 2.3-fold and 2.5-fold increases in risk, respectively. Similarly, the
range from the first to the 99th percentile in observed risk factors translates
into an 8-fold increase in risk, whereas the equivalent ranges in the normal
distributions representing family and community effects translate into 17-fold
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Table 9.4. Estimated infant and child mortality at first and third quartiles of

observed and unobserved risk.

Risk Factor Mortality

Observed Family Community Infant Child

Q1 Q1 Q1 0.014 0.022

Q3 0.034 0.053

Q3 Q1 0.031 0.049

Q3 0.075 0.118

Q3 Q1 Q1 0.022 0.035

Q3 0.054 0.085

Q3 Q1 0.049 0.078

Q3 0.119 0.183

Baseline 0.028 0.044

and 24-fold increases in risk, respectively. By this account, substantial relative
risks associated with family and community frailty remain unobserved.

9.4.5 Survival Probabilities

We now translate our results into conditional and marginal probabilities of
surviving to (or dying by) selected ages. This calculation can be done for
selected values of the covariates, and helps present the results of hazard models
in a less technical language.

Table 9.4 shows the conditional probabilities of infant and child death
for our reference category and for children at the first and third quartile
of observed risk factors and unobserved family and community effects. The
underlying survival probabilities are all estimated as

S(t | xijk, δjk, δk) = exp{−Λ0(t) exp{x′ijkβ̂ + δjk + δk}}, (9.31)

with the log relative risk x′ijkβ̂ set to the observed quartiles 0.15 and 0.63,
and the unobserved frailties set to the normal quartiles ±0.67σ̂2 and ±0.67σ̂3.
As we move up the quartiles of observed and unobserved risk factors the
probability of an infant death increases from 14 to 119 per thousand, and the
probability of a child death increases from 22 to 183 per thousand.

Figure 9.2 shows the marginal probabilities of infant and child death as
a function of the log relative risk that combines all observed predictors (left
panel), and as a function of mother’s education with all other variables set to
their reference values (right panel). The corresponding survival probabilities
are estimated by evaluating the double integral

S(t | xijk) =
∫ ∫

S(t | xijk, δjk, δk) dδjk dδk (9.32)
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Fig. 9.2. Marginal probabilities of infant and child death by log relative risk and

by mother’s education.

using 12-point Gauss-Hermite quadrature with conditional probabilities esti-
mated using (9.31).

The marginal probability of infant death varies from 6 to 258 per thousand
as a function of observed risk factors. The equivalent range for mortality up
to age five is 9 to 359 per thousand. The effect of mother’s education is
fairly substantial. The probability that a child in our reference category will
die before age one ranges from 47 per thousand if the mother has only a few
years of education to 25 per thousand for high school graduates (and even less
for the few women with higher education), after averaging over unobserved
family and community attributes. Similarly, the probability of dying before
age five declines from 75 to 39 per thousand, on average, as mother’s education
increases through upper primary and high school.

9.4.6 Intra-class Correlations

The variance parameters in random-intercept models are closely related to
measures of intraclass correlation. In a two-level linear model the Pearson
correlation between any two observations in the same cluster is ρ = σ2

2/(σ
2
2 +

σ2
1). In a two-level logit model the correlation is usually calculated by reference

to the latent variable formulation of the model, setting σ2
1 = π2/3, the variance

of the underlying standard logistic error, see chapter 6. Rodŕıguez and Elo [80]
show that the correlation of observed or manifest binary outcomes in two-level
models can be quite different, and provide a Stata command xtrho that can
be used to compute marginal and joint probabilities, and hence measures of
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correlation such as Person’s r or Yule’s Q, by numerical integration. Their
ideas are easily extended to three-level survival, as shown below.

In the context of survival models, Oakes [68] has shown that the variance
in a two-level model where frailty has a gamma distribution is closely related
to Kendall’s τ , a coefficient of ordinal association. No similar results have
been obtained in general, but having fitted a multilevel survival model we can
estimate any measure of association as a function of the estimated joint and
marginal distributions. Because we followed children up to age 5 only, we are
not in a position to estimate the correlation of lifetimes, but we can estimate
correlation in survival up to ages one and five.

We calculate three marginal probabilities that are useful in constructing
measures of intraclass correlation. First, we need the probability that a child
with covariates x will live to age t, which is given by (9.32). Second, we
need the probability that two children of the same mother both survive to
age t. Because the survival experiences of these two children are independent
given the family and community random effects, we can calculate the bivariate
survival probability as

S2(t, t | xijk,xi′jk)

=
∫ ∫

S(t | xijk, δjk, δk)S(t | xi′jk, δjk, δk) dδjk dδk, (9.33)

where the double integral is evaluated by Gauss-Hermite quadrature. We
usually set xijk = xi′jk, although only variables at levels 2 and 3 would need
to be the same. Third, we need the probability that two children of different
mothers who live in the same community will both survive to age t. Given the
community random effect δk the survival experiences of these two children are
independent, and the probability of surviving to age t can be calculated for
each one by integrating out the corresponding family effect. The probability
in question is then

S3(t, t | xijk,xi′j′k) =
∫ (∫

S(t | xijk, δjk, δk) dδjk

×
∫
S(t | xi′j′k, δj′k, δk) dδj′k

)
dδk, (9.34)

and can also be evaluated by Gauss-Hermite quadrature. We usually set xijk =
xi′j′k, although only variables at level 3 need be the same.

With these three probabilities in hand we can now calculate any measure of
correlation for binary outcomes. For example the Pearson correlation between
the indicators of survival to age t for two children of the same mother with
observed covariates x is given by

ρ2(t,x) =
S2(t, t | x,x)− S(t | x)2

S(t | x)[1− S(t | x)]
, (9.35)
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Fig. 9.3. Intra-family and intra-community correlations in infant and child mortal-

ity, by log relative risk.

where S2(t, t | x,x) is the joint survival probability from (9.33) and S(t | x)
is the marginal probability from (9.32). A similar expression applies to the
correlation for children of different mothers living in the same community, but
using (9.34) for the joint probability. These measures of intra-class correlation
are a function of the marginal and joint probabilities of survival to age one or
five, which in turn depend on the linear predictor as well as the variances of
the random effects.

Figure 9.3 shows these correlations calculated over the entire range of
observed relative risks in Kenya using the estimated values of σ2 and σ3 in
Table 9.2. The intra-family correlations, which result from children sharing
unobserved family and community characteristics, are always higher than
the intra-community correlations, which result from sharing unobserved com-
munity characteristics only. The correlations are also higher for child than
for infant mortality (or their complements, survival to ages five and one,
respectively), and increase with the relative risk as measured from observed
covariates. For our reference cell the intra-family correlation is 0.05 for infant
and 0.07 for child deaths, but these numbers increase to 0.18 and 0.21 at the
highest levels of risk. The fact that the correlation between observed outcomes
in the same family or community increases with the level of risk parallels the
results obtained for two-level logit models in [80].
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9.5 Summary and Conclusions

In this chapter we described generalizations of the multilevel model that go
beyond normally distributed outcomes to cover a wide range of continuous
and discrete responses, including binary, count and survival data. The distin-
guishing feature of the generalization is the assumption that conditional on
a set of random effects, the outcomes are independent and follow a standard
generalized linear model. In this extension a transformation of the conditional
mean given a set of observed covariates and unobserved random effects follows
a linear model. In a survival context the conditional hazard has a similar
structure. We contrasted this approach with models that focus on the marginal
distribution of the outcomes, and with models that assume Gaussian outcomes
but a non-linear structure of effects.

We reviewed the three main approaches to estimation, including marginal
and penalized quasi-likelihood, maximum likelihood using Gauss-Hermite
quadrature, and Bayesian estimation using the Gibbs sampler. We reported re-
sults of a simulation study showing that for heavily clustered binary responses
quasi-likelihood estimates can be severely biased, while maximum likelihood
estimates are approximately unbiased. Bayesian estimates showed a small bias
that could be eliminated by using informative priors or larger samples. We
also commented on a case study using binary data from Guatemala which
leads to similar conclusions, but reveals some of the convergence problems
that arise with bootstrapping and Bayesian estimates. Finally, we presented
an application to survival data from Kenya where the approximate procedures
fared better. On balance, there is a clear need for fast and accurate estimation
procedures that can be applied to a wide variety of models and datasets.

Our analysis of infant and child mortality in Kenya illustrates the close
connection between piece-wise exponential survival models and generalized
linear models with Poisson errors and log link. We showed how the risk of
death varies between birth and age five as a function of observed charac-
teristics of the child, mother and community, as well as unobserved random
effects representing heterogeneity of frailty across families and communities.
We found large effects on the hazard, and translated these into marginal and
conditional probabilities of dying by age one and by age five. Finally, we
developed measures of intra-family and intra-community correlation in infant
and child deaths. The study illustrates how much more can be learned from
a dataset by taking into account the group structure in the framework of
multilevel generalized linear models.
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and childhood immunization in Guatemala: Do family and community matter?

Demography, 33:231–247, 1996.

70. J. C. Pinheiro and D. M. Bates. Approximations to the log-likelihood function

in the nonlinear mixed-effects model. Journal of Computational and Graphical

Statistics, 4:12–35, 1995.

71. J. C. Pinheiro and D. M. Bates. Mixed-Effects Models in S and S-PLUS.

Springer, New York, 2000.

72. R. L. Prentice and L. A. Gloeckler. Regression analysis of grouped survival data

with application to breast cancer data. Biometrics, 34:57–67, 1978.

73. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical

Recipes in C. Cambridge University Press, Cambridge, MA, 2nd edition, 1992.

74. S. Rabe-Hesketh, A. Skrondal, and A. Pickles. Reliable estimation of generalized

linear mixed models using adaptive quadrature. The Stata Journal, 2:1–21, 2002.

75. A. E. Raftery and S. M. Lewis. How many iterations in the Gibbs sampler?

In J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, editors,



9 Multilevel Generalized Linear Models 377

Bayesian Statistics 4, pages 763–773. Oxford University Press, Oxford, UK,

1992.

76. A. E. Raftery and S. M. Lewis. Implementing MCMC. In W. R. Gilks,

S. Richardson, and D. J. Spiegelhalter, editors, Markov Chain Monte Carlo

in Practice, pages 115–130. Chapman & Hall, London, 1996.

77. S. W. Raudenbush, M.-L. Yang, and M. Yosef. Maximum likelihood for gen-

eralized linear models with nested random effects via high-order, multivariate

Laplace approximation. Journal of Computational and Graphical Statistics, 9:

141–157, 2000.

78. G. O. Roberts. Markov chain concepts related to sampling algorithms. In

W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, editors, Markov Chain

Monte Carlo in Practice, pages 45–57. Chapman & Hall, London, 1996.
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Missing Data

Nicholas T. Longford

SNTL and Universitat Pompeu Fabra

10.1 Background and Generalities

Nonresponse is a ubiquitous feature of large-scale studies that collect informa-
tion from human subjects or their organizations, such as schools, households
or businesses. The contacted sources of data (subjects, their parents, repre-
sentatives of schools, and the like) may refuse to respond to some or all of the
questionnaire items, may not have ready access to the requested information,
and the record of the responses may be corrupted or lost altogether during
its transfer and conversion to electronic format.

Concerns about missing values, and solutions commensurate with the com-
puting facilities available at the time, can be traced back to Yates [30] and
Healy and Westmacott [9]. These methods can be motivated as estimation of
the missing values followed by an adjustment of the degrees of freedom due to
the lost items of data. The main impetus for the modern approaches, based
on computationally intensive methods, can be identified with Orchard and
Woodbury [22], Rubin [23, 24] and Dempster et al. [4], and their application
in a wide range of areas has been greatly promoted by Little and Rubin [11]
and Rubin [25]. For a comprehensive review and discussion, see Rubin [26].
The early methodological developments were restricted to specific methods
of analysis applied to data from small-scale experiments, such as the analysis
of variance (ANOVA) of field experiments, and saw virtue in computational
simplicity. In contrast, modern approaches pursue flexibility and versatility,
aiming to deal with missing information by a module attached to the pro-
cedure that would have been employed had the data been complete. Indeed,
this complete-data analysis is a key concept in these approaches.

As a consequence of missing values, less information is collected than was
planned. At the same time, the representativeness of the units for which the
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values of a variable have been recorded (the responding units) is questionable.
Methods for addressing nonresponse can be divided into two categories: those
that reduce the dataset (by deleting the records of some units) and those that
make up the data so as to generate, structurally, a look-alike of the complete
dataset. The latter are referred to as imputation methods. The aim of all of
these methods is to adapt the complete-data analysis so that it would yield
an estimator with good resampling properties.

In this chapter, we adopt the frequentist perspective, and so by ‘good
properties’ (efficiency) we understand small mean squared error (MSE) in
repeated applications of the estimator on the datasets generated by hypo-
thetical replications of the process that yielded the original (realized) dataset.
This process is a superposition of sampling of the units (generation of the
complete data) and nonresponse (deletion of a part of the data). An impor-
tant prerequisite is that the complete-data analysis is efficient. That is, the
quantities (parameters) of interest would be estimated efficiently had the data
been complete.

10.1.1 Example

An example with computer generated data is summarized in Figure 10.1. The
complete data are pairs (xi , yi), i = 1, . . . , n = 20, a random sample from a
bivariate normal distribution. This dataset, a 20 × 2 array, is denoted by A.
The value of x1 is not available to the analyst; the horizontal line drawn at
y1 indicates the uncertainty about x1 , although the value of x1 is available to
us, marked by a circle ,.

Suppose we wish to estimate the regression slope β = Cov(x, y)/Var(x).
The corresponding complete-data analysis is β̂ = Sxy/Sxx , where Sxx =∑
i(xi − x̄)2 and Sxy =

∑
i(xi − x̄)(yi − ȳ) are the corrected totals of squares

x2 and crossproducts xy, respectively (z̄ is the sample mean of z; z is either x
or y). These two totals cannot be evaluated because the contribution of unit
1 to them is not available.

The obvious deletion method reduces the sample to the units i = 2, . . . n
that have complete records. At this point we have to distinguish between the
missing values in the realized dataset (one value of x missing), and missing
values in hypothetical replications of the sampling and nonresponse processes.
After all, these processes may yield a dataset with no missing values, or with
more than just one missing value.

Denote the units with incomplete records by M , and the realized dataset
by A−M . For A−M , the estimator β̂ is well defined. We distinguish between
the two estimators, β̂(A) and β̂(A−M ), by indicating the dataset used as
the argument of β̂; β̂(A) is efficient because the units i = 1, . . . , 20 were
obtained as a random sample (from a well defined population). Without the



10 Missing Data 381

2 3 4

5

6

7

8

9

Population regression
Complete−data regression
Reduced−data regression

x

y

Fig. 10.1. A computer generated dataset with one missing value of x (in circle).

The lines drawn are the ‘true’ regression (solid), the complete-data regression (dots),

and the regression based on the complete records (dashes).

missing unit(s), the resulting subsample may no longer be a random sample
and β̂(A−M ) no longer efficient.

However, this should not stop us in our tracks. It can reasonably be argued
that a few missing values are unlikely to alter the results radically. This we
can check by deleting at random, or by a deliberate choice, another value of
y, obtaining the dataset A−(M,k) and comparing β̂(A−M ) with β̂(A−(M,k)).
Also, the normality of x provides some protection from extreme values of x.
The value of x1 can be further narrowed down by realizing that y

1
−βx1 is also

‘constrained’ by normality. On the other hand, the mechanism of missingness
may target units with extreme residuals. Indeed, in Figure 10.1 the complete-
and incomplete-data analyses yield rather similar regressions. But recall, that
our focus is on properties of estimators (random variables), not the values of
their realizations, and so the proximity of the values of β̂(A) and β̂(A−M )
does not justify a dismissal of the issue.

10.1.2 Imputation Methods

Imputation methods generate a value for each missing item (in section 10.1.1
for x1), thus completing the dataset. Then the complete-data analysis can
proceed, oblivious to the fact that the value of x1 has been ‘manufactured’
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by the analyst. Since in this way we pretend to have more information than
was recorded, we can expect the inferences to indicate higher precision than is
warranted. The extent of this problem depends on how we impute for missing
values, and how we exploit the information about the causes that give rise to
the missing values.

Imputing for x1 the sample mean x̂1 = x̄ or the back-calculated value
of x1 , ˆ̂x1 = {y1 − ȳ(A−M )} /β̂(A−M ), are simple examples of imputation
methods. Each of these imputed values is associated with a model for the
mechanism of missingness. For x̂1 , it is

x1 = µx + η
1

(10.1)

(µx is the population mean of x), and so we estimate x1 by the fit of this
model. For ˆ̂x1 , the model is

y
1

= α+ βx1 + η
1
, (10.2)

where η
1

is a random draw from a centered normal distribution. Neither of
these models is necessarily correct; the process of missingness may prefer to
select extreme values of x, or extreme values of the deviation η. However, in
some vague sense, the model in (10.2) is better informed because it makes use
of the realized value of y

1
.

The complete-data analysis can be straightforwardly applied to the com-
pleted dataset Â = {(x̂1 , y1), (x2 , y2), . . . , (xn , yn)}, but the estimator β̂(Â)
will not have the desired property of efficiency, and its sampling variance will
not be estimated with honesty (without bias). Not only have we ‘invented’ one
value (in general, several values) for the missing data, our invention (x̂1 or ˆ̂x1)
looks too good. We have substituted η1 = 0, that is, no deviation from the
fit, and that could hardly be expected. This could be remedied by drawing
a value of η

1
at random from the distribution fitted for η. In this way, we

will not recover the value of x1 with precision, but will mimic the assumed
mechanism of missingness more closely.

The following example illustrates why estimating each missing value with-
out bias is sometimes not very useful. Suppose the value of x is missing but
we know that it is equal to −1, 0, or +1. Further, ±1 are equally likely, but
x = 0 is most likely, say, with probability 0.7. Imputing x̂ = 0 would seem to
be reasonable. However, if the quantity of interest is x2 and we would estimate
it by (x̂)2 = 0, with MSE equal to 0.3, we would fail to protect our inferences
against the possibility that x2 = 1. A better choice for x2 is its expected value,
x̂2 = 0.3, because, assuming that the conditional distribution of x is correct,
we would estimate x2 with smaller MSE, equal to 0.21. Note that in this way
we break some rules of arithmetic; (x̂)2 6= x̂2. In fact, if x̂ and V̂ar(x̂) are
unbiased for x and Var(x̂), respectively, then (x̂)2− V̂ar(x̂) is unbiased for x2.
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10.2 Models for Missing Values

Having highlighted the importance of the mechanism of missingness, we now
introduce a notation and associated terminology. To align it with the conven-
tions in the literature [e.g., 11], we define the complete data as (X,Y ) where
X are the values of the variables which are never missing (such as variables set
by design, or available prior to data collection), and some values of Y may be
missing. The indicator of missingness is the array R of the same dimensions
as Y , defined as follows: the element of R for unit i and variable k is Rik = 1
if Yik is recorded, and Rik = 0 otherwise. The rows of R are denoted by ri
and columns by Rk , and the analogous notation is used for X and Y . For
instance, the record of a subject on four variables may be yi = (1, ?, ?, 5.37);
‘?’ indicates a missing value. The corresponding vector r is ri = (1, 0, 0, 1).
We call r the pattern of missingness. A practical way of summarizing the
extent of missing values is by tabulating r. An example is given in Table 10.1
(the commas separating the elements of r are omitted to save space). A less
complete summary enumerates only the number of missing values for each
variable; this can be expressed as n−

∑
i ri , where n is the sample size. For

Table 10.1, this summary is (117, 97, 174, 115).

Table 10.1. Tabulation of the pattern of missingness. An example.

Pattern r

(1111) (1110) (1101) (1100) (0011) (0110) (0100) (0000)

Count 1233 17 87 24 43 11 9 54

Thus the sampling and missingness (nonresponse) processes are described
by the random array (R,Y ;X), or its joint distribution. By Y r we denote
the recorded part of Y , that is, all y

ik
for which rik = 1. By Y m we denote

the missing part of Y . Note that Y r and Y m may be ‘ragged’ arrays, with
gaps.

When the missingness process is simple random sampling we say that data
are missing completely at random (MCAR); in this case, R depends neither
on X nor on Y :

(R) ∼ (R | Y ;X) ,

where ∼ stands for ‘has the same distribution as’. Simple random sampling is
a very special process, unlikely to arise without either being promoted in some
way or the cause of missingness being unrelated to the processes involved in
generating the complete data.

A much more general mechanism of missingness arises by stratified random
sampling. With it, MCAR applies within each subpopulation (stratum) de-
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fined by the categories of one or several completely recorded discrete variables.
We can extend this definition to continuous variables by a limiting argument
(using finer and finer discretization). This mechanism of missingness is re-
ferred to as missing at random (MAR); R depends on the complete data only
through the recorded data:

(R | Y ;X) ∼ (R | Yr ;X) .

Finally, mechanisms of missingness in which dependence on the missing values
is essential (is present even after conditioning on all the recorded data) are
called missing not at random (MNAR). Note that MAR and MNAR are
qualified by the variables in X and Y .

The following is an example of MNAR. A survey of alcohol consumption
among the students of a college is to be conducted by telephone interviewing.
Since students attend lectures on weekdays, they will be contacted in their
homes on a Saturday morning and asked to recall their consumption the
previous day. It is reasonable to anticipate that some of the students who
have consumed alcohol in excess the night before will not be well disposed to
respond. This is likely to be the case not only among students in general (so
that this is not MCAR), but even within any conceivable category of students
defined at the outset of the study. So this process of nonresponse is not a
MAR either.

The central role of the MAR mechanism stems from the following charac-
terization. When MAR applies, the missing part of a record, Y m , is associated
with the recorded part Yr in the same way as the corresponding components
in complete records. This enables us to establish, in principle, the marginal
distribution of the missing part of a record. In practice, this marginal dis-
tribution is estimated, and estimation can be improved by using the records
which are not complete but their recorded parts overlap with the missing part
Y m .

The joint distribution (R,Y ;X) can be expressed in terms of the condi-
tional distributions (R | Y ;X) and (Y | R ;X) as

(R,Y ;X) ∼ (R | Y ;X)× (Y ;X) (10.3)

and

(R,Y ;X) ∼ (Y | R ;X)× (R ;X) , (10.4)

respectively. The decomposition in (10.3) comprises the complete-data dis-
tribution (Y ;X) and the distribution of the deletion (selection) process
(R | Y ;X); it is referred to as the selection model. Its obvious appeal is
in the correspondence with our description of the sampling and missingness
processes. The decomposition in (10.4) corresponds to separate models for
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each pattern of missingness. It is referred to as the pattern-mixture model.
Since a dataset may contain many patterns of missingness (up to 2K for K
variables), it may not be practical to associate each pattern r with a separate
set of parameters describing the conditional distribution (Y | r). Also, no
assumptions about the missing values could be supported empirically from
the subset of data with the given pattern r. For instance, the conditional
distribution (Y | r = (1, 1, 0, 0); X) cannot inform us about the third and
fourth components of Y without using the data on units with the other pat-
terns. So, the use of pattern-mixture models is somewhat more complicated,
but their flexibility can be used with advantage. In general, pattern-mixture
and selection models yield different distributions for the missing values when
particular assumptions (distributions and parameters) are specified for their
components. The two kinds of models can be combined. For instance, instead
of conditioning on each pattern separately, models can be formulated for sets
of patterns, and (some of) these models may be selection models. All these
models are informed by the associations among the (pairs of) variables, and
so the units with complete records, r = (1, . . . , 1), play a central role.

10.3 EM Algorithm and Multiple Imputation

We have so far considered a complete-data analysis β̂ as an estimator β̂(A)
that would be obtained had the complete data A been available. Deletion
methods apply β̂ to a reduced dataset A− which contains no missing val-
ues; imputation methods define values for the missing items, thus creating a
completed dataset A+, and evaluate β̂(A+). These estimators are deficient
even when β̂(A) is efficient and the deletion is ‘minimal’ or the imputation
‘intelligent’ (unbiased). When the dataset has few missing values, this problem
can be dealt with by a caveat in the discussion of the analysis. When there
are numerous missing values, their impact is no longer innocuous.

EM algorithm and multiple imputation are two general approaches to
estimation with incomplete data. These approaches seek to adjust (efficient)
complete-data estimators in such a way that the resulting (incomplete-data)
estimator would also be efficient, with reference to replications of the sam-
pling and missingness processes. In the EM algorithm, the computational
procedure for the complete-data estimator is adjusted; with multiple imputa-
tion, additional ‘data’ is generated to complete the observed dataset, but the
complete-data estimator is applied without any alterations.

10.3.1 EM Algorithm

Let the complete-data likelihood for a parameter vector θ be L(θ;Y ,X). The
likelihood for the observed data is
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L(θ;Yr ,Ym ;X) p(R | Yr ;X) dF (Ym ;X) , (10.5)

where p is the conditional probability of the pattern of missing data, and F

is the distribution function of the missing data. This integral is in general
difficult to evaluate or maximize. The EM algorithm avoids its direct maxi-
mization. EM is an iterative procedure, with iterations comprising two steps,
E (estimation) and M (maximization). In the E-step, the expectation of the
complete-data log-likelihood L is evaluated at the current estimate θ̂. The
expectation is taken over the conditional distribution of Y m given Yr and
X. The M-step maximizes this expected log-likelihood, and the value of θ at
which the maximum is attained is adopted as the updated value of θ̂. The
iterations of EM are then repeated until the updating changes the value of θ̂
only slightly.

A substantial simplification in (10.5) takes place when the mechanism of
missingness can be eliminated from the likelihood. This happens when the
sets of parameters characterizing the sampling and missingness processes are
disjoint and functionally unrelated (separated) and MAR applies. When these
two conditions hold the mechanism of missingness is said to be ignorable.
Separation is usually satisfied, but MAR is the key assumption that makes
the estimation task manageable. Under ignorable missingness

L(θ;Yr ,X) =
∫
L(θ;Yr ,Ym ;X) dF (Ym ;X) ,

and so the conditional expectations in the E-step are much simpler.
The log-likelihood can often be expressed as a linear function of a small

number of statistics (called sufficient statistics). In such a setting, the E-step
estimates the contribution of the missing values to these statistics, and in the
M-step the estimates of these statistics are used in place of their (unknown)
complete-data values. The EM algorithm requires a value of θ̂ for the first
iteration. This has to be obtained separately, although this estimator need
not have good properties; the estimator based on the complete records is
usually satisfactory. Often the first few iterations of the EM algorithm move
θ̂ most of the way toward the maximum likelihood estimate, but then many
further iterations are required to get very close to the solution.

For a proof of convergence of the EM algorithm and the associated regu-
larity conditions, see Dempster et al. [4]. Convergence properties of the EM
algorithm are derived by Wu [29]. The EM algorithm is particularly appeal-
ing when the M-step evaluates a simple estimator, because this evaluation
will be conducted many times. The general idea of the EM algorithm has
been extended in several directions. They include dealing with more complex
problems, widening the scope of the EM algorithm, and acceleration of its
convergence. See Statistica Sinica [6] for several innovations and Meng and
van Dyk [21] for a review.
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The estimated Hessian obtained from the last M-step estimates the com-
plete-data Hessian which is related to the complete-data information. Its
inverse estimates Var

{
θ̂(A)

}
; it underestimates Var

{
θ̂(A−M )

}
. The differ-

ence Var
{
θ̂(A−M )

}
− Var

{
θ̂(A)

}
is the inflation of variance due to missing

data. Louis [17], Meilijson [18] and Meng and Rubin [19] describe approaches
to estimating the incomplete-data sampling variance (matrix) from the EM
algorithm. These methods are not applicable or suitable in all settings. For
example, there may be no shortlist of sufficient statistics. The second-order
partial derivatives of the log-likelihood can always be approximated numeri-
cally by finite differences of the values of the log-likelihood, and these values
can be approximated by simulations. This is a fall-back option when no com-
putationally less demanding approach is suitable.

For univariate θ, the fraction of the information that is missing is defined as
γ = 1−Var

{
θ̂(A)

}
/Var

{
θ̂(A−M )

}
. This definition is extended to multivariate

θ by considering estimation of the linear combinations θ′c for various vectors
c. The speed of convergence of the EM algorithm is closely related to the
fraction γ, or to the largest fraction γ(c) [29].

10.4 Multiple Imputation

With multiple imputation, a small number of alternative completions of the
observed dataset are generated and the complete-data analysis is carried out
on each completed dataset. The generation of these completions (completed
datasets), say, A(1), . . . , A(K) is usually the most complex task, but the
remainder is straightforward. The complete-data analysis is applied on each
completion, yielding estimates β̂(1) = β̂(A(1)), . . . , β̂(K) = β̂(A(K)) and esti-
mated complete-data sampling variances ŝ2(A1), . . . , ŝ2(AK). Although this
requires K times as much computing, it entails little programming effort ad-
ditional to that for conducting one complete-data analysis. The estimator for
the recorded data is obtained by averaging theK results of the completed-data
analyses:

β̃ =
1
K

K∑
k=1

β̂(k)

s̃2 =
1
K

K∑
k=1

ŝ2k +
K + 1

K(K − 1)

K∑
k=1

(
β̂(k) − β̃

)2

(10.6)

The completions, sets of plausible values Ỹk , are generated by simulations
from the model that relates the missing values to the observed data. For
this, it is essential that missingness is ignorable. Otherwise, the details of the
departure from ignorability have to be specified in detail. Suppose the missing
values are related to the recorded values by the model
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y
m

= g(yr ;ψ) + ξ , (10.7)

where g is a function involving a set of parameters ψ and ξ is a random
sample from a distribution (such as normal) with one or several unknown
parameters ω. The parameter (vectors) ψ and ω can be estimated from the
complete records, although other records may also contribute (e.g., by using
an EM algorithm). One set of plausible values is generated by drawing a set
of plausible parameters ψ̃ and ω̃ from the estimated sampling distribution
of ψ̂ and ω̂, followed by the ‘prediction’ ỹ

m
= g(yr ; ψ̃) + ξ̃, where ξ̃ is

drawn at random from the estimated distribution of ξ (such as the centered
normal distribution with variance ω̃). This can be interpreted as a meticulous
reflection of the uncertainty in both the estimated parameters and in the
missing values. This is an important ingredient of the method, contributing
to the ‘inheritance’ of the good properties of the complete-data estimator.

Suppose the complete-data estimator θ̂(A) is unbiased and its sampling
variance s2(A) = Var

{
θ̂(A)

}
is estimated, by ŝ2, without bias and with sam-

pling variance Var
{
ŝ2(A)

}
much smaller than s4. Further, suppose the model

for missing data (as in (10.7)) is correctly specified. Then, using infinitely
many imputations, the estimator β̃ is also unbiased, and its sampling variance
is

Var
(
β̃
) .= E

(
ŝ2
)

+B , (10.8)

where B = Vark
(
β̂(k)

)
is the between-imputation variance; its finite-K esti-

mator is

B̂K =
1

K − 1

K∑
k=1

(
β̂(k) − β̃

)2

.

For proof of (10.8), see Rubin [25].
In practice, only a finite number of imputations is used. The results about

β̃ remain valid, with an ‘approximation’ caveat. The estimator β̃ remains
unbiased. The estimator of the sampling variance can be expressed as

s̃2 = ŝ2 +
(

1 +
1
K

)
B̂K ,

where the bar denotes the average over the K imputations. As K −→ +∞,
B̂K converges to B, so B/K is the contribution to the sampling variance
due to having used only K sets of imputations. The average ŝ2 estimates the
complete-data sampling variance Var

{
β̂(A)

}
and B can be interpreted as the

inflation of the sampling variance caused by the missing values. It is useful
to define the fraction of information that is missing as γ = B/{s2(A) + B}.
When several parameters are estimated, their fractions γ may differ.

The number of imputations K has an impact on the precision of β̃. By
using an additional set of imputations, the sampling variance is reduced by
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B/K−B/(K+1) = B/{K(K+1)}, that is, by approximately 100γ/{K(K+
1)}%. Thus, the value of γ is an important factor in choosing K. The gains
in precision due to the first few sets of imputations are quite dramatic, but
then the gains diminish. For instance, the sixth set of imputed values reduces
the sampling variance by B/30, whereas infinitely many imputations after the
fifth would have reduced it by B/5. The decision about setting K should be
based on the anticipated fraction of the information missing. Nowadays, the
amount of computing is not a serious concern, and so it should not enter into
consideration about setting K. A more serious concern is the storage of the
plausible values; this grows linearly with K. Of course, sets of plausible values
do not have to be stored if they are immediately used in the completed-data
analysis. However, then new sets of plausible values have to be generated for
each analysis.

The model for missing data can rarely be established with any certainty.
Rubin [26] and Schafer [27] recommend to involve as many covariates as is
practicable, so as to improve the chances of MAR being appropriate. If the
model contains some unimportant or redundant terms the uncertainty about
the missing values is greater than it could be otherwise, but this is less of
a concern than unbiasedness in the estimation of the parameters associated
with the missing values — that no important variable is omitted.

10.5 Missing Values in Multilevel Data

The previous sections summarized the general approach to dealing with miss-
ing values. Here we discuss issues specific to multilevel analysis. We consider
the model

y
j

= Xjβ +Zjδj + εj , (10.9)

where β is a set of regression parameters and δj , j = 1, . . . , N2 , and the
N = n1 + · · · + nN2 elements of εj are mutually independent random sam-
ples from centered normal distributions with pz × pz variance matrix Ω and
variance σ2, respectively; pz is the number of columns in Z. This model
has the form of an analysis of covariance (ANCOVA) model; the only dif-
ference from the standard setting is in the status of the terms δj . In AN-
COVA, they are parameters (subject to an identification constraint, such as
δ1 + · · · + δN2 = ∅pz ). In our model they are random variables described by
their variance matrix Ω. We say that two such models are paired. We denote
X =

(
X ′

1 , . . . ,X
′
N2

)′, Z =
(
Z ′1 , . . . ,Z

′
N2

)′ and y =
(
y′

1
, . . . ,y′

N2

)′, so that,
for instance, E (y) = Xβ. Further, Vj = Var

(
y
j

)
= σ2Inj + ZjΩZ

′
j . It is

practical to define Ψ = σ−2Ω, so that σ2 can be factored out of Var
(
y
j

)
:

Vj = σ2Wj , with Wj = Inj
+ZjΨZ′j . The log-likelihood is l = l1 + · · ·+ lN2 ,

where
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−2lj = nj log(2πσ2) + log (detWj) + (yj −Xjβ)′W−1
j (yj −Xjβ) .

We assume that the parameters in Ψ are functionally related to neither β nor
σ2.

We will refer to the Fisher scoring algorithm [12, 13] as the complete-
data analysis. The algorithm can be compactly described by the following
equations:

β̂ =
(
X ′Ŵ−1X

)−1
X ′Ŵ−1y

σ̂2 =
1
N

(
y −Xβ̂

)′
Ŵ−1

(
y −Xβ̂

)
∂lj
∂θ

=
1

2σ2

∑
j

(yj −Xjβ)′W−1
j Zj

∂Ψ

∂θ
Z ′jW

−1
j (yj −Xjβ)

− 1
2

∑
j

tr
(
Z ′jW

−1
j Zj

∂Ψ

∂θ

)

−E

(
∂2lj

∂θ1 ∂θ2

)
=

1
2

∑
j

tr
(
Z ′jW

−1
j Zj

∂Ψ

∂θ1
Z ′jW

−1
j Zj

∂Ψ

∂θ2

)
,

whereW =
⊕N2

j=1Wj is the block-diagonal matrix with blocksWj . (V can be
defined similarly.) The first two equations are explicit, although they depend
on the estimate of Wj which involves Ψ̂ . In the third and fourth equations, θ,
θ1 and θ2 are any parameters involved in Ψ . The Hessian matrix H and the
scoring vector s for the parameters θ involved in Ψ are assembled from these
equations, and an update of them is given by

θ̂new = θ̂old +H−1s ,

with H and s evaluated at the current (old) estimates of β, σ2 and Ψ . The
formulas for β̂ and σ̂2 have to be evaluated after each update, unless the
update is very close to ∅. Provisions have to be made to ensure that the
estimated variance matrix Ψ̂ is non-negative definite. A practical proposition
is to estimate a decomposition of Ψ , such as the Cholesky or singular value
decomposition; see Lindstrom and Bates [10] or Longford [16, chap. 7].

10.5.1 EM Algorithm

We use the Fisher scoring algorithm as the M-step of the EM algorithm.
Central to this is a description of the complete-data log-likelihood as a function
of sufficient statistics. Noting that

W−1
j = Inj −ZjΨG−1

j Z
′
j

det(Wj) = det(Gj) ,
(10.10)
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where Gj = Ipz +Z ′jZjΨ , a convenient set of minimal sufficient statistics is

(Xj yj)
′
Zj

(X y)′ (X y) .

These statistics are minimal sufficient also for the paired ANCOVA model.
The role of the E-step is to estimate these summaries. The building-blocks

of the summaries are the missing values themselves and products u1u2 where
at least one of u1 and u2 is a missing value of a variable in X or y, on the
same elementary unit ij. In summary, we require the conditional expectation
and variance of each missing value and the conditional covariance of every
pair of values missing for the same elementary unit. The conditioning is on
the recorded data.

Some variables in X may be constant within clusters j (Xij ≡ Xj); for
a missing value on such a variable its conditional expectation and variance
are still required, but it is only one value each, common to all the elementary
units in the cluster. We split the task of evaluating the conditional moments
of the missing values to the missing outcomes ym and the missing values of
the covariates, Xm , according to the partitioning of the joint distribution of
X and y:

(yr ,Xr)(ym | yr ,X)(Xm | yr ,Xr).

Values Missing on y Only

We assume first that values are missing only on the outcome y. Information
about a missing value on y is contained in the values of the covariates for the
unit and in the other units of the cluster, which share the same value of δj .
Assuming MAR given X, the conditional distribution of a missing value y

ij
,

given yr and X, is obtained from the joint distribution of y
j
:

y
j
∼ N

(
Xjβ , σ

2Wj

)
.

For notational simplicity, suppose the values y
m,j

= (y
1j
, y

2j
, . . . , y

qjj
)′ are

missing, and the remainder of y
j

is recorded. Let Xj , Zj and Wj have the

corresponding partitioning, Xj =
(
X ′
m,j X

′
r,j

)′, Zj =
(
Z ′m,j Z

′
r,j

)′ and

Wj =
(
Wr,j Wrm,j

Wmr,j Wm,j

)
.

The conditional distribution of y
m,j

given yr,j is

N
{
Xm,jβ +Wmr,jW

−1
r,j

(
yr,j −Xr,jβ

)
, σ2
(
Wm,j −Wmr,jW

−1
r,jWrm,j

)}
,
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from which the required expectations are extracted straightforwardly. Since
Wr,j and Wm,j have the same form as Wj , they can be inverted either
directly, or by using equation (10.10):

W−1
r,j = Irj −Zr,jΨ

(
Ipz +Z ′r,jZr,jΨ

)−1
Z ′r,j ,

where rj = nj − qj , and similarly for Wm,j . Of course, this identity is useful
only when the dimensions of Wr,j are much greater than those of Ψ .

Missing Covariate Values

We separate the variables in X into those that are never missing, T , and
those that contain some missing values, U ; either of these matrices, or their
cluster-level submatrices Tj and U j may be empty.

In estimating the contributions of the missing values of y we have relied on
the model (y |X), (10.9). Similarly, for estimating the contributions of U we
require a model for U . A practical proposition is to specify a distribution for
(U | T ); we omit conditioning on yr for convenience. The variables in U can
be categorical or continuous, and defined for elementary units or clusters, so
several cases have to be distinguished. For the set of continuous variables in
U , U con , the natural model to consider is the multivariate multilevel model
with no covariates:

U ij,con = µcon + δj,con + εij,con , (10.11)

with mutually independent centered normal random samples {δj,con} and
{εij,con}. Dependence on the (cross-classified) categories of U cat can be intro-
duced by allowing the mean to depend on the category. Such a variable can
also be associated with cluster-level variation, or the components of εcon may
have category-specific variances. Note, however, that the number of categories
grows very quickly with the number of variables, and so parsimony may be
essential. If the normality assumption for some of the components of U con is
not appropriate, the log-transformation may be applied. The E-step requires
the expectations on the original scale; these are

E{exp(x )} = exp{E (x ) + 1
2 Var(x )}

Var{exp(x )} = exp{2E (x ) + Var(x )}
[
exp{Var(x )} − 1

]
.

For some other non-linear transformations there are no analytical expressions.
Although the delta method can be employed, one should be weary of apply-
ing approximations repeatedly (for several missing values) in iterations. The
model in (10.11) can be expanded by replacing the vector of means µcon with
a linear regression on T and could also include variables representing the
categorical variables and their interactions.
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For U cat , the categorical versions of the multilevel models can be adopted,
but fitting them is much more time consuming (and ML estimation is only
approximate), so they are not always practicable for the unrecorded cat-
egories. More practical alternatives assume that the within-cluster (multi-
nomial) distributions are identical, or that the within-cluster probabilities
satisfy a normal multilevel model with the dependence structure implied by
multinomiality. That is, let p

j
be the K × 1 vector of probabilities in cluster

j. For each j, these probabilities add up to unity. We specify for them that

p
j

= p+ δj , (10.12)

where δj is a random sample from a centered multivariate normal distribution,
N (∅,Ω). To satisfy the identity p′

j
1K = 1 for each j, Ω has to be such that

1′KΩ1K = 0. For the vectors of counts cj , the samples from the respective
multinomial distributions with sample sizes nj and vectors of probabilities pj ,
we have

Var(cj | pj) = nj
{
diag(pj)− pjp′j

}
. (10.13)

Equations (10.12) and (10.13) specify a two-level model which, with the ad-
mittedly invalid assumptions of normality, can be fitted by Fisher scoring.
As an alternative, Ω can be estimated by moment matching, as the variance
matrix of the sample proportions cj/nj in excess of that implied by (10.13).

In its generality, the EM algorithm appears rather extensive and requiring
a substantial programming effort. Its implementation is practical when only a
few patterns of missingness arise, so that a limited number of cases discussed
above have to be dealt with. A distinct disadvantage of the general approach
is that the already iterative and not particularly simple algorithm has to be
interfered with. The compounding of two kinds of iterations, Fisher scoring
and EM algorithm, generates no problems additional to those for either kind
[20]; after a few EM-iterations, one iteration of Fisher scoring within each EM
iteration is usually sufficient.

10.5.2 Multiple Imputation

Multiple imputation overcomes some of the difficulties arising in the EM al-
gorithm. First of all, the (Fisher scoring or another) complete-data algorithm
is applied without any alterations. This is a great advantage for an analyst
not acquainted with all the details of the algorithm, or when the algorithm is
available only in a compiled form.

Like the EM, multiple imputation is based on a model for the missing
values. A proposition practical in many settings is that of MAR, after con-
ditioning on as many variables as is feasible. If we cannot condition on all
the variables, those that are more closely associated (correlated) with the
incompletely recorded variables should be preferred.
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The plausible values can be generated in stages. For this, the incompletely
recorded variables are classified into a small number of groups. The model for
missing data for the first group relies on the information from that group and
the completely recorded variables. At the second stage, missing data for the
second group of variables are generated from a model which conditions on the
first-group and completely recorded variables, and so on. At each stage the
imputed values in the previous stages are conditioned on. It is advantageous
to impute first for variables with few missing values which are useful for
conditioning at later stages, and to deal with variables with a lot of missing
values last.

When multiple imputation is organized in stages information about the
missing values is not used fully; we trade efficiency for computational tractabil-
ity or simplicity. However, efficiency is lost only due to handling missing-data
information; only the component B in (10.8) is affected. An iterated version
of this scheme makes better use of the information in incomplete records. The
method described in van Buuren et al. [28] corresponds to the setting in which
each incompletely recorded variable forms a group on its own.

10.5.3 Monotone Pattern of Missingness

In general, data can be missing with any conceivable pattern r. However, some
sets of variables may have a restricted pattern of missingness. An important
example is when the only patterns occurring for a set of variables, suitably
permuted, are such that r is non-increasing. That is, each r comprises a
segment of ones, followed by a segment of zeros; either segment may be empty.
This commonly arises in longitudinal studies, in which a subject may drop out
at any stage, but no returns to the study occur after skipping a stage.

In this setting, multiple imputation by stages can be applied, with each
variable included in a stage on its own. The plausible values for the first time-
point are generated first; then the plausible values for the second time-point
are generated, conditioning on the (recorded or imputed) values for the first
time point, and so on for values at the second and subsequent time-points.

In this way, the plausible values are generated using univariate analyses
(completing one variable at a time), and all information about the missing
values is exploited. Variations on this theme include grouping the variables
so that missingness is monotone with respect to these groups; if a subject
has some values missing for variables in group k, all values are missing for
variables in groups k + 1, k + 2, . . . . Also, the monotone pattern may apply
but for a small number of exceptions. In such a case, we may proceed with
imputation for the remaining units, and make different arrangements for the
few units that break the monotone pattern.
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10.5.4 Sensitivity Analysis

All theoretical results about multiple imputation rely on the correctness of
the assumption about the model for the missing values. Since this model,
typically based on MAR, cannot be verified, we have to address the concern
that the possibly inappropriate model for missing data has induced a bias of
the incomplete-data estimator θ̃.

Exploring the entire range of alternative models for missing values is
rarely feasible because of the vast variety of MNAR mechanisms that can
be conceived. However, when estimating a specific parameter θ, we can define
alternative models for missing data that stack the plausible values against the
inference drawn from MAR-generated plausible values.

By way of an example, suppose the difference of the means of a variable
for men and women in a given population is of interest. In the analysis of the
study that collected the relevant data, MAR is assumed for the missing values.
Suppose the hypothesis of no difference between men and women is rejected;
the estimated mean for men is higher than for women. In the sensitivity
analysis, we alter the plausible values, ‘disadvantaging’ men’s missing values.
A practical way of doing this is to reduce each plausible value (replacement
for a missing value) for men by c and increase each plausible value for women
by c. Instead of adding or subtracting, for a variable with positive values, we
can multiply or divide each plausible value by a given positive constant. This
constant, or its additive version, describes the extent of departure from MAR.
Of interest is the smallest value c for which substantially different conclusions
are drawn. We can then speculate whether the MNAR process given by this
constant is feasible. If it is not, we conclude that the result obtained assuming
MAR holds for all feasible mechanisms of missingness. Otherwise, the result
is inconclusive because of the uncertainty about this mechanism.

10.5.5 Generalized Linear Mixed Models

In generalized linear models, the (univariate) outcome y is related to the
covariates x by the formula

E ( y | x;β) = f(xβ) ,

where f is a strictly monotone function (its inverse is called the link function),
and the conditional distribution of y, given xβ, is in a specified parametric
family. The ordinary regression model corresponds to identity f and normal
distribution of y. The natural extension to generalized linear mixed models
(GLMM) is by a reference to generalized ANCOVA (gANCOVA) models, that
is, for the outcomes y

j
in cluster j

E (y
j
|Xj ,Zj ,β, δj ) = f (Xjβ +Zjδj) ,
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whereXj and Zj are the regression and variation design matrices for cluster j,
β is a vector of (average) regression parameters, δj is the vector of deviations
of the regression specific to cluster j from the average regression, and the
function f is applied elementwise. In GLMM, δj ∼ N (∅,Ω), iid, for some
variance matrix Ω, whereas in the paired ANCOVA model δj are parameters,
subject to an identification constraint. Note that the qualifier ‘average’ is
appropriate only on the linear scale (Xjβ and Zjδj), not on the scale of
outcomes y

j
, unless the link function f−1 is linear.

We can associate a specific GLMM with a (normal) random coefficient
model, by replacing the link with identity, and the distributional assumption
with normality. The algorithms for fitting a GLMM are rather complex. One
class of them is based on analytical approximations to the log-likelihood [1],
and another on numerical approximations, using Gaussian quadrature [14].
The implementation of Markov chain Monte Carlo (MCMC) algorithms [7]
has revolutionized model fitting, although some computational issues associ-
ated with MCMC are still awaiting practical resolution. For a more extensive
treatment of these models and algorithms, see chapters 6 and 9.

None of the algorithms for fitting GLMM admits a description in terms
of a set of sufficient statistics much smaller than the number of observations.
As a consequence, implementing the EM algorithm with either of them is
extremely difficult. Multiple imputation, on the other hand, is much better
suited with GLMM because the model for missing data, and the process of
generating plausible values is unaffected by the complete-data model and the
complete-data algorithm is used without any alteration.

The advantages of multiple imputation are not specific to GLMM; they
pertain to all complex complete-data analyses, including random coefficient
models with multiple layers of nesting and crossclassifications, as well as their
non-linear extensions.

10.6 Other Applications of EM and MI

The range of problems that can be formulated as analysis of incomplete data
is much wider than the stereotype setting in which, contrary to the plan,
some observations were not recorded. We can declare some data as missing
even if we never had any intention to collect its values. An important generic
example is that of the measurement error in the covariates. We illustrate this
application first on a simple example, and then proceed to general cases.

Suppose we are interested in the simple regression

y = b0 + b1x+ ε ,

with the usual assumptions of independence, normality and homoscedasticity
of ε, ε ∼ N (0, σ2), iid. Instead of the covariate x we observe only its corrupted
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version, u = x + ξ, where ξ is N (0, τ2), iid, independent of x and y. This
simple (measurement error) model/process can be more appropriately named
the corruption model/process, since the deviation of u from x may be due to
causes other than measurement. Suppose first that τ2 is known.

In the complete-data analysis, we evaluate

b̂1 =

∑n
i=1(xi − x̄)( yi − ȳ )∑n

i=1(xi − x̄)2
(10.14)

(x̄ is the sample mean of the xi and ȳ the sample mean of the y
i
). Since

xi are not observed, we estimate their contributions to the numerator and
denominator in (10.14) by functions of ui . This is easy to accomplish by
moment matching. In the following identities, E ξ indicates expectation over
the deviations ξ

i
. We have

E ξ{(ui − ū)(yi − ȳ)} = (xi − x̄)(yi − ȳ)

but

E ξ{(ui − ū)2} = (xi − x̄)2 +
n− 1
n

τ2 .

So, the numerator in (10.14) can be estimated naively, replacing each xi with
ui , whereas the denominator has to be adjusted; its unbiased estimator is∑n

i=1(ui − ū)2 − (n− 1)τ2 .

The combination of the E- and M-steps yields the estimator

b̃1 =

∑n
i=1(ui − ū)(yi − ȳ)∑n

i=1(ui − ū)2 − (n− 1)τ2
.

This slope estimator is steeper than the naive estimator of b1 ; this phe-
nomenon is generally referred to as attenuation. The estimator b̃1 can be
derived without any reference to the EM algorithm. In any case, this EM
algorithm is very unusual; only one application of the E- and M-steps is
required because the E-step is independent of the M-step.

When τ2 is not known, its estimator can be used. For this, the design
may have to be expanded and a random sample of the values of xi observed
independently, by the same corrupted process, twice or several times. With
such observations, τ2 can be estimated from the within-x variation. For an
application in educational testing, see Longford [15].

Multiple imputation entails simulating plausible values of xi , followed by
their substitution in the complete-data analysis (10.14). From(

x

u

)
∼ N

{(
µx
µx

)
,

(
σ2
x σ2

x

σ2
x σ2

x + σ2
ξ

)}
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we have

(xi | ui) ∼ N

(
σ2
x

σ2
x + σ2

ξ

ui +
σ2
ξ

σ2
x + σ2

ξ

µx ,
σ2
xσ

2
ξ

σ2
x + σ2

ξ

)
.

This can be interpreted as shrinkage toward the mean µx or preferring to err
on the side of the overall mean. The reward for this strategy is smaller mean
squared error on average.

Since the complete-data analysis is very simple, involving a short list of
linear and quadratic statistics, the EM algorithm is much more practical.
However, for generalized linear models and their multilevel extensions, multi-
ple imputation is much more versatile because simulation of the missing values
is unaffected by the complexity of the complete-data analysis.

An alternative approach to handling measurement error, competing in
versatility with multiple imputation, is the simulation-extrapolation method
(SIMEX) of Carroll et al. [2]. With this method, corrupted values of the
covariates are generated with a range of levels of the corruption greater than
the realized level. The complete-data estimator is evaluated for each dataset
completed with the simulated corrupted values, and inferences are made by
extrapolating the values of the estimates to zero corruption. SIMEX relies on
a good method of extrapolation and an appropriate choice of the levels of cor-
ruption. Difficulties arise with complex complete-data analyses when little is
known about the dependence of the estimators on the extent of corruption and
when several variables are subject to corruption. In comparison, simulation
of the plausible values in multiple imputation is based solely on the assumed
process of corruption, and is oblivious to the complexity of the complete-data
analysis.

Misclassification can be regarded as a corruption process. The corrupted
version of a dichotomous variable x is another dichotomous variable u; x 6= u

with the misclassification probability. With multiple imputation, several draws
are made from the plausible distribution of xm , which is established from the
estimated conditional distribution of xm given xr and u. This distribution usu-
ally depends on the probability of misclassification. The plausible distribution
is based on a plausible (randomly drawn) value of this probability. When the
misclassification probability depends on some covariates, and the parameters
of this dependence are estimated, the uncertainty about these parameters also
has to be reflected in the plausible values of x.

10.6.1 Random Coefficients as the Missing Data

Analysis with random coefficient models can be naturally formulated as a
missing information problem. If the random coefficients were known the (or-
dinary least squares) analysis would be straightforward. The EM algorithm
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with this approach was developed by Dempster et al. [5]. This EM algorithm
converges slowly when the fraction of the missing information is substantial,
and such cases are encountered frequently. With direct maximization algo-
rithms, such as Fisher scoring and iteratively reweighted least squares [8], such
problems are much less acute. However, direct algorithms are difficult to im-
plement for very complex models. The programming task can be reduced by a
judicious assignment of a set of coefficients as missing data, selecting a simpler
complete-data analysis. The E-step of the EM algorithm would estimate the
contributions of the ‘missing’ random coefficients to the sufficient statistics.
In most settings, EM algorithm is not feasible, and the missing data have to
be represented by multiple imputation. Since the complete-data algorithm is
iterative, multiple imputation may have to be applied in each iteration. This
complicates the assessment of convergence somewhat. Also, there is no proof
that the good properties of the multiple-imputation estimator are maintained
at the converging iteration. See Clayton and Rasbash [3] for a study of such
an algorithm.

10.7 Summary

In most of statistical enterprise, inferences are made about specified (or im-
plied) populations. Multilevel analysis, as many other generic methods of
analysis, assume that the analysed dataset is representative of the studied
population. Good representation is often eroded by selective missingness, and
so methods for dealing with incomplete data should be in the toolkit of every
statistical analyst. This imperative is even stronger in studying human popu-
lations because human subjects are often poorly motivated, easily distracted
while responding, and do not cooperate with study protocols perfectly.

Although several kinds of data incompleteness can be handled by mul-
tilevel analysis without having to make special arrangements, invisible bias
may be incurred when the analysed dataset is treated as complete. This
chapter discussed two general approaches to dealing with missing values —
the EM algorithm and multiple imputation. Both approaches consider an
efficient complete-data analysis (typically, by maximizing a likelihood). In the
EM algorithm, this analysis is adjusted, and applied iteratively. In multiple
imputation, the complete-data analysis is used without any alteration, but
multiple sets of replacements for the missing values have to be generated.
Multiple imputation is more versatile, applicable with complex complete-data
analyses in which EM would be very difficult to implement.

Methods for missing data are applicable in a much wider range of problems.
Many complex problems could be simplified if some additional information
(data) were available. If such data is regarded as missing a general approach
to dealing with missing information can be invoked. The chapter discussed
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measurement-error and complex random coefficient models as examples in
which secondary applications of missing-data methods can be applied, leading
to a reduction in the computational (programming) effort and enabling us to
exploit available algorithms constructed for simpler problems.
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11.1 Introduction

Estimation in (linear) multilevel models usually relies on maximum likelihood
(ML) methods. The various computer programs for multilevel analysis employ
versions of full information (FIML) and restricted maximum likelihood (REML)
methods. Two vital assumptions underlying ML theory are, that (a) the residu-
als are i.i.d. with a distribution from a specified class, usually the multivariate
normal, and (b) the sample size is (sufficiently) large. More specifically, the
attractive properties of FIML estimators — consistency, (asymptotic) efficiency
and (asymptotic) normality — are derived from the supposition that the sam-
ple size goes to infinity. In practice, however, these assumptions will frequently
be met only approximately, which may lead to severely biased estimators and
incorrect standard errors [7].

Resampling methods can be used to obtain consistent estimators of bias
and standard errors, and to obtain confidence intervals and bias-corrected es-
timates of model parameters. A number of general resampling approaches are
found throughout the literature, of which we mention the bootstrap and the
jackknife, permutation, and cross-validation. Bayesian Markov chain Monte
Carlo methods [e.g., 16, 23] and simulation-based estimators for mixed non-
linear models [e.g., 27, 61, 63] are also closely related to these resampling
methods. Particularly, bootstrap and jackknife procedures have proven to
be methods that yield satisfactory results in small sample situations under
minimal assumptions. In this chapter, we discuss resampling of multilevel data
by means of bootstrap and jackknife procedures. In cases where the assump-
tions underlying ML methods for estimating multilevel models are violated,
bootstrap and jackknife estimation may provide useful alternatives.
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The application of the bootstrap and the jackknife to multilevel models is
not straightforward. For the bootstrap, there are several possibilities, depend-
ing upon the nature of the data and the assumptions one is willing to make.
Each of them, however, has its own associated problems. In this chapter, we
discuss three different approaches, which are derived from general principles of
bootstrap theory and apply concepts adapted from bootstrapping regression
models.

The application of the jackknife to multilevel analysis is based on a ver-
sion of the delete-m jackknife approach [57, section 2.3]. In this procedure,
subsamples are obtained from the original sample by successively removing
mutually exclusive groups of size m. For the application to multilevel analysis,
the delete-m jackknife has been adapted for groups of unequal size.

Bootstrap and jackknife estimation in the context of multilevel analysis
have been studied by several authors, and for various models and situations.
Laird and Louis [33, 34] discuss empirical Bayes confidence intervals based on
bootstrap samples and Moulton and Zeger [45] study bootstrapping a model
for repeated measurements. Bellmann et al. [3] use a parametric bootstrap
for a panel data model that is essentially a multilevel model and Booth [4]
similarly uses a parametric bootstrap for generalized linear mixed models.
Goldstein [24] presents an iterated bootstrap based on the results of Kuk
[32]. A theoretical analysis of nonparametric bootstrapping of balanced two-
level models without covariates is given in Davison and Hinkley [14, pp. 100–
102]. Our discussion largely follows the lines of the systematic development of
resampling methods for multilevel models in Busing et al. [8, 9, 10, 12], Van
der Leeden et al. [68], and Meijer et al. [42, 43].

In this chapter, we focus on FIML estimation for multilevel linear models
with two levels. The ideas, however, are directly applicable to REML estimators
and generalize straightforwardly to models with three or more levels.

In the remainder of this section, we define the model upon which we center
our discussion and we elaborate on the consequences of violating the assump-
tions of ML estimation in multilevel models. In section 11.2, we briefly discuss
the general ideas of the bootstrap and the jackknife, and the specific issues
involved in the application of the bootstrap to regression models. Section 11.3
provides an extensive discussion of the three methods for bootstrap implemen-
tation, as well as a number of approaches to construct confidence intervals. In
section 11.4, the application of the jackknife to multilevel models is discussed.
Section 11.5 briefly discusses the availability of resampling options in existing
software for multilevel analysis. In section 11.6, we discuss some results of
evaluation studies of the various resampling approaches and in section 11.7,
we briefly discuss application of the presented approaches to other types of
multilevel models, and we mention various possible extensions and alternatives
to the (bootstrap) resampling methods presented.
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11.1.1 Model, ML Estimation, and Assumptions

For our discussion of resampling methods for multilevel models, we consider a
version of the two-level mixed linear model. Suppose data are obtained from
n individuals nested within J groups, with group j containing nj individuals.
For each group j, the model is given by

y
j

= Xj β +Zj δj + εj , (11.1a)

with (
εj
δj

)
∼ N

((
∅
∅

)
,

(
σ2Inj ∅

∅ Ω

))
(11.1b)

and (εj , δj) ⊥ (ε`, δ`) for all j 6= `. Under these assumptions,

y
j
∼ N (Xjβ,ZjΩZ

′
j + σ2Inj

). (11.2)

In some situations, however, we assume that the explanatory variables are not
fixed constants, but random variables with unspecified distributions, so that
we should write Xj and Zj instead of Xj and Zj . In that case, (11.2), should
be viewed as the conditional distribution of y

j
given Xj = Xj and Zj = Zj .

We tend to think of the model as being derived from a two-level slopes-as-
outcomes model, which is a special case of the mixed linear model presented
here, but we do not need that in our discussion, so we will confine ourselves
to the mixed linear model specification. See de Leeuw and Meijer [15] for a
more extensive discussion of the model and the various ways to interpret it.

The parameters of the model described by (11.1a) can be divided into a set
of fixed parameters, the elements of β, and a set of random parameters, i.e.,
σ2, the variance of the level-1 residuals, and the elements of Ω, the variances
and covariances of the level-2 residuals. The random parameters are commonly
referred to as variance components. Under the given normality assumptions
for the residuals, FIML estimates are obtained by maximizing the loglikelihood
function with respect to all model parameters. The asymptotic covariance
matrix of the estimators is the inverse of the information matrix, which is
derived from standard ML theory. Standard errors for both fixed and random
parameters are obtained by taking the square roots of the diagonal elements
of an estimate of this matrix.

The assumptions underlying ML estimation need closer examination. Two
general assumptions were briefly mentioned above. The first assumption is
a sufficiently large sample size. Hierarchical data structures, however, make
sample size a more complicated issue: besides the total sample size, the sample
size at each level of the hierarchy has to be considered. The second assumption
is (multivariate) normality of the residuals. In multilevel models, each level
in the data generates its own residuals. Therefore, several distributions are
involved in the estimation procedure for which the normality assumption
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must be met. One further assumption, often made more implicitly, is that
the estimated model is correct. In other words, it is assumed that the condi-
tional expectation E (y

j
| Xj ,Zj) = Xj β and the covariance matrix Vj of

y
j

conditional on Xj and Zj , equal to Vj = ZjΩZ
′
j + σ2Inj

, are specified
correctly.

Obviously, in practical research, the aforementioned assumptions may eas-
ily be violated, especially the assumption of a large sample size. The effects
that these violations have on the quality of the estimators and their standard
errors in multilevel (or similar) models have been discussed by several authors.
It is well understood, theoretically, that FIML estimators of the variance com-
ponents are (negatively) biased [e.g., 56, p. 240]. Moreover, several simulation
studies show that this bias can be substantial. Particularly when the sample
size is small, FIML may fail [7, 31, 67]. Magnus [40] and Breusch [6], however,
proved that the ML estimators of the fixed parameters are unbiased if the
random component rj = Zj δj + εj is symmetrically distributed. Even if the
components of δj and εj are skewed, this requirement will be approximately
satisfied due to a central limit theorem argument. Furthermore, theory for ML
estimation under distributional misspecification [69, 71] ensures that even in
such cases, the ML estimators of the fixed parameters will be virtually unbiased.
Asymptotic calculations of Breslow and Lin [5] for a particular class of mixed
linear models confirm that bias in the fixed parameter estimators is negligible,
whereas variance component estimators may be seriously biased.

Standard errors are based on large sample theory as well. The idea is that
as the sample size goes to infinity, the distribution of the estimators converges
to a (multivariate) normal distribution with covariance matrix equal to the
inverse of the information matrix. The standard errors of the ML estimators,
as reported by the various multilevel analysis programs, are the square roots
of the diagonal elements of an estimate of this matrix. In finite samples, the
covariance matrix of the estimators may not be approximated well by the
asymptotic covariance matrix. Moreover, if the distributional assumptions
are incorrect, the asymptotic covariance matrix differs from the inverse of
the information matrix as assumed by the ML method. As a result, asymp-
totically correct standard errors based on a so-called sandwich estimator of
the asymptotic covariance matrix may be quite different from standard errors
based on the inverse of the information matrix. This difference appears to be
small for the fixed parameters, but may be large for the variance components
[70]. Furthermore, convergence to normality may not be satisfactory for the
distributions of the estimators. Busing [7] shows that they can be severely
skewed for the variance components.
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11.2 General Theory of Bootstrap and Jackknife

In this section, we discuss theory and general principles of the bootstrap and
the jackknife. Ordinary regression models and multilevel models share similar
characteristics. Therefore, to prepare the stage for bootstrapping multilevel
models, we illustrate the principles of the bootstrap with respect to regression
models. The jackknife is introduced in its classic form.

11.2.1 The Bootstrap

The bootstrap is a general approach to estimate the bias and the variance (and
consequently the standard error) of an estimator under minimal assumptions
[14, 20, 28]. Let z be a random variable with distribution function F , and let
{z1, z2, . . . , zn} be a random sample of size n from F . The underlying idea
of the bootstrap is that the empirical distribution function F̂n, generated by
this sample, is a consistent estimator of the distribution function F in the
population [e.g., 44, p. 507].

Let θ0 be the true value of a parameter θ associated with the distri-
bution F , θ0 = θ(F ), and let θ̂ be an estimator of θ from the sample,
θ̂ = θ(z1, z2, . . . , zn) = θ(F̂n). The bootstrap simulates the sampling and
estimation process by drawing samples with replacement from F̂n, which is
completely known once the original sample is obtained. In this simulation,
the distribution F̂n plays the role of F , and θ̂ plays the role of θ0. Simulation
samples, referred to as bootstrap samples, are drawn from F̂n and θ̂ is estimated
by θ∗ in the same way θ0 was estimated by θ̂.

Because F̂n
P=⇒F , it is assumed that the properties of the estimator θ∗

based on the distribution F̂n give information about the properties of θ̂ based
on the distribution F . For example, the bias of θ∗ based on the distribution
F̂n is taken as an estimator of the bias of θ̂ based on the distribution F . It
has been proven by many authors that this approach works in many cases: it
leads to consistent estimators of the properties of θ̂ [e.g., 47].

The bootstrap is implemented as follows: B bootstrap samples {z∗b1,
z∗b2, . . . , z

∗
bn}, b = 1, . . . , B, are drawn from F̂n (i.e., drawn with replacement

from {z1, z2, . . . , zn}). From each of the B samples, the parameter θ is esti-
mated, thereby obtaining B estimates θ∗b , b = 1, . . . , B. The expectation of θ∗

(given F̂n) is estimated by the mean of the estimates θ∗b : θ
∗
(.) =

∑B
b=1 θ

∗
b/B.

The variance of θ∗ (given F̂n) is estimated by the variance of the estimates
θ∗b : V̂ar(θ∗) =

∑B
b=1(θ

∗
b − θ∗(.))

2/(B − 1).

The bias of θ̂ is estimated by the (estimated) bias of θ∗:

B̂iasB = B̂ias(θ∗) = θ∗(.) − θ̂, (11.3)

and the bias-corrected estimator of θ is therefore [see, e.g., 28, pp. 8–9]
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θ̂B = θ̂ − B̂iasB = 2θ̂ − θ∗(.). (11.4)

The standard error of θ̂ is estimated by the square root of the estimated
variance of θ∗ [see, e.g., 20, p. 47]:

ŝeB =
√

V̂ar(θ∗) =

√√√√ 1
B − 1

B∑
b=1

(
θ∗b − θ

∗
(.)

)2

. (11.5)

The bootstrap described above is called the nonparametric bootstrap, be-
cause the bootstrap samples are drawn from the nonparametric empirical
distribution function F̂n. Frequently, however, F is assumed to be a specific
distribution F (φ), only depending upon a parameter (or parameter vector of
fixed dimension) φ, which may or may not be the same parameter as θ. Then,
if φ is estimated by φ̂, F can also be estimated by F̃n = F (φ̂), instead of F̂n,
and a parametric bootstrap can be defined [see, e.g., 20, section 6.5]. If the
distributional assumption about F is correct, one benefits from the fact that
this parametric empirical distribution function F̃n will generally be a more
efficient estimator of F .

The parametric bootstrap is defined exactly analogous to the nonparamet-
ric bootstrap, except that bootstrap samples are drawn from F̃n instead of
F̂n. For example, if it is assumed that F is a normal distribution function
with mean µ and variance σ2, then bootstrap samples are drawn from a
normal distribution with mean x̄ and variance s2, where x̄ and s2 are the
mean and variance of the observed, original sample. A consequence of the
parametric bootstrap is that samples are drawn from a generally more smooth
distribution than the nonparametric empirical distribution, which is a step
function. Therefore, in contrast to the nonparametric bootstrap, the values
z∗bi encountered in the bootstrap samples will usually not be present in the
original sample.

Bootstrapping Regression Models

Consider the linear regression model

y
i
= α+ βxi + εi,

where εi is a residual with zero mean and variance σ2. Suppose that we have
observed the sample {(y1, x1), . . . , (yn, xn)}. Then parameter estimates α̂, β̂,
and σ̂2 can be obtained by using the familiar ordinary least squares method.
Depending on the assumptions made, several different bootstrap methods can
be used.

If the explanatory variable x is considered a random variable, therefore
now denoted as x, nonparametric bootstrap samples can easily be obtained
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from a straightforward generalization of the basic method discussed above
to vector-valued variables. In this case, bootstrap samples are drawn from
the bivariate empirical distribution function of (y, x). This means drawing
complete cases with replacement: bootstrap samples {(y∗1 , x∗1), . . . , (y∗n, x∗n)}
consist of pairs (y∗i , x

∗
i ) that are also elements of the original sample: for each

i = 1, . . . , n, there exists a j, 1 ≤ j ≤ n, such that (y∗i , x
∗
i ) = (yj , xj). Next,

the regression parameters can be estimated from each bootstrap sample and
bias-corrected estimates can be obtained, as well as standard errors of the
estimators, using formulas (11.4) and (11.5).

The situation is different if the exogenous variable x is a fixed design
variable, determined by the research problem or chosen by the experimenter.
This happens, for instance, if x is the dose of some drug administered to
a group of experimental subjects. Now, each bootstrap sample should have
exactly the same x values, that is, x∗i = xi for each i in each bootstrap
sample. The distribution function from which bootstrap samples should be
drawn is the empirical conditional distribution of y given x. Sampling from this
distribution amounts to resampling the residuals instead of complete cases.
First, the residuals are estimated from the original sample by

ε̂i = yi − α̂− β̂xi, (11.6)

with α̂ and β̂ as above. Then, bootstrap samples {ε∗1, . . . , ε∗n} are drawn from
{ε̂1, . . . , ε̂n}, and bootstrap samples of y are obtained from

y∗i = α̂+ β̂xi + ε∗i . (11.7)

When B bootstrap samples have been obtained, bias-corrected estimates of
the parameters and bootstrap estimates of the covariance matrix of the pa-
rameters may be computed in the usual way, although for the simple linear
regression model, resampling is not necessary and the bootstrap results can be
computed analytically [e.g., 20, p. 112]. This will not be the case for multilevel
models, however.

If x is a fixed design variable and ε is assumed to be normally distributed,
the parametric estimator of the conditional distribution of y

i
given xi, is a

normal distribution with mean α̂+β̂xi and variance σ̂2. Therefore, parametric
bootstrap samples can be obtained by drawing samples {ε∗1, . . . , ε∗n} from a
normal distribution with mean zero and variance σ̂2 and then adding these to
the estimated mean α̂+β̂xi. Then, the parametric bootstrap method proceeds
in the same way as the nonparametric bootstrap method with fixed x. Similar
parametric bootstrap methods can be designed for random x.

The bootstrap methods discussed here for regression models are the con-
ventional implementations as, for instance, discussed by Freedman [22], Efron
[18], Hinkley [30], Hall [28, pp. 170–171], and Efron and Tibshirani [20,
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chap. 9]. These methods have some drawbacks and therefore, several alter-
native resampling methods have been proposed that are, for example, robust
to heteroskedasticity. A thorough discussion is given by Wu [73].

11.2.2 The Jackknife

The jackknife was originally introduced by Quenouille [48, 49] to estimate the
bias of an estimator and to correct for it. Tukey [65] proposed an accompa-
nying estimator for the variance of the estimator, and hence for its standard
error.

The idea of the jackknife is as follows. Consider an independently and
identically distributed sample of size n from some distribution and an esti-
mator θ̂n of a parameter θ obtained from this sample. Furthermore, consider
removing a group of m observations from the sample, and let θ̂n−m be the
estimator of the same parameter θ based on this sample of size n −m. The
difference between θ̂n and θ̂n−m can then be used to estimate the bias of θ̂n
and this estimate can be used to obtain the bias-corrected jackknife estimator
θ̂J . It is known that the bias of θ̂J is generally of order n−2 if m is relatively
small compared to n. This is typically much smaller than the bias of θ̂n, which
is generally of order n−1.

Obviously, there are many possibilities for selecting a group of observations
of size m from the sample. If m is equal for each group, the simplest case is
obtained form = 1. Now, the sample is divided into n “groups” of size one, i.e.,
the n observations. In all other cases with m > 1 and n a multiple of m, the
sample is divided into g mutually exclusive groups of size m, with g = n/m. In
the remainder of this section, we will give the details of the standard jackknife
procedures for these situations. Justifications can be found in the standard
jackknife literature [e.g., 57] or as special cases of the discussion in section 11.4
below.

Delete-1 Jackknife

Suppose θ̂n is an estimator of θ based on a sample of size n. Now, remove the
i-th observation from the sample, and let θ̂(i) be the estimator of θ based on
a sample size of n− 1. The delete-1 jackknife estimator of θ is now given by

θ̂J(1) = nθ̂n − (n− 1)θ̄(1), (11.8)

where θ̄(1) = n−1
∑n
i=1 θ̂(i).

The delete-1 jackknife variance estimator [65], based on the pseudo values

θ̃(i) = nθ̂n − (n− 1)θ̂(i), i = 1, . . . , n,

is given by
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σ̂2
J(1) =

1
n

n∑
i=1

1
n− 1

(
θ̃(i) −

1
n

n∑
k=1

θ̃(k)

)2

,

=
n− 1
n

n∑
i=1

(
θ̂(i) − θ̄(1)

)2

.

(11.9)

As mentioned above and discussed in more detail in section 11.4, the bias
of θ̂J(1) is typically O(n−2), whereas the bias of θ̂n is typically O(n−1).
Furthermore, σ̂2

J(1) is a consistent estimator of the asymptotic variance of
both θ̂n and θ̂J(1).

Delete-m Jackknife

Suppose the sample is divided into g mutually exclusive and independent
groups of (equal) size m (m > 1), where m = n/g. Now remove the m

observations of group j from the sample, and let θ̂(j) be the estimator of
θ based on the corresponding reduced sample of size n − m. The delete-m
jackknife (or grouped jackknife) estimator of θ is now given by

θ̂J(m) = gθ̂n − (g − 1)θ̄(m), (11.10)

with θ̄(m) = g−1
∑g
j=1 θ̂(j). Hence, θ̂J(m) is based on g estimators θ̂(j) of θ,

each based on a subsample of size n−m. Clearly, for m = 1, (11.10) reduces
to (11.8).

The delete-m jackknife variance estimator is defined similarly to (11.9). It
is based on the pseudo values

θ̃(j) = gθ̂n − (g − 1)θ̂(j), j = 1, . . . , g,

and given by

σ̂2
J(m) =

1
g

g∑
j=1

1
g − 1

(
θ̃(j) −

1
g

g∑
k=1

θ̃(k)

)2

,

=
g − 1
g

g∑
j=1

(
θ̂(j) − θ̄(m)

)2

.

(11.11)

The mathematics leading to (11.8)–(11.11) can be found in the standard
jackknife literature. For example, Shao and Tu [57] provide a systematic intro-
duction to the theory of the jackknife, including a discussion of its theoretical
properties.
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11.3 Bootstrapping Two-Level Models

In order to make the bootstrap succeed, the simulation must reflect the prop-
erties of the stochastic model that is assumed to have generated the data.
Therefore, a resampling scheme for multilevel models must first of all take into
account the hierarchical data structure, that is, the fact that observations are
subject to intra-class dependency. Multilevel models can be viewed as linear
regression models with a complex structure for the residuals. Hence, we may
consider the methods for bootstrapping regression models to implement the
bootstrap for multilevel models. In order to deal properly with the intra-class
dependency, we have to make several adaptations, which we will discuss below.
In exactly the same manner as with regression models, it is useful to distin-
guish between two different kinds of models: incorporating fixed or random
explanatory variables.

Analogous to the discussion in section 11.2, we discuss three approaches
to apply the bootstrap to two-level models: (1) the parametric bootstrap; (2)
the residual bootstrap, in which the residuals are resampled; and (3) the cases
bootstrap, in which entire cases are resampled. The three bootstrap methods
discussed here are based on different assumptions. The parametric bootstrap
requires the strongest assumptions: the explanatory variables are considered
fixed, and both the model (specification) and the distribution(s) are assumed
to be correct. The residual bootstrap requires weaker assumptions: apart from
considering the explanatory variables as fixed, only the model (specification)
is assumed to be correct. This implies, for example, that the residuals are
assumed to be homoskedastic. The cases bootstrap, finally, requires minimal
assumptions: only the hierarchical dependency in the data is assumed to be
specified correctly.

11.3.1 Parametric Bootstrap

The parametric bootstrap uses the parametrically estimated distribution func-
tion of the data to generate bootstrap samples. In the two-level model dis-
cussed here, two of these distribution functions are involved. For the level-1
residuals εj , we use the N (∅, σ̂2Inj ) distribution function, and for the level-2
residuals, contained in the vectors δj , we use the N (∅, Ω̂) distribution func-
tion. Compared to the other two bootstrap approaches, we could say that the
parametric bootstrap is “closest” to FIML.

Let β̂ be the FIML estimate of β. The (re)sampling procedure is now as
follows:

1. Draw J vectors δ∗j , j = 1, . . . , J , of level-2 residuals from a (multivariate)
normal distribution with mean zero and covariance matrix Ω̂.
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2. Draw J vectors ε∗j of sizes nj , j = 1, . . . , J , containing level-1 residu-
als from a normal distribution with means zero and covariance matrices
σ̂2Inj

.
3. Generate the bootstrap samples y∗j , j = 1, . . . , J , from y∗j = Xjβ̂+Zjδ

∗
j+

ε∗j .
4. Compute estimates for all parameters of the two-level model.
5. Repeat Steps 1–4 B times and compute bias-corrected estimates and

bootstrap standard errors using formulas (11.4) and (11.5).

In this procedure the explanatory variables are assumed to be fixed. Note that
the values on the outcome variable encountered in the bootstrap samples will
generally not be present in the observed, original sample.

11.3.2 Residual Bootstrap

If the variables contained inXj and Zj are considered to be fixed explanatory
(design) variables, bootstrap samples can be obtained by resampling the resid-
uals. To implement this strategy, called residual bootstrap, the residuals at each
level need to be estimated first. We can study (at least) two approaches: (1)
estimation by the method of shrinkage, which gives δ̂j = Ω̂Z ′jV̂

−1
j (yj −Xjβ̂)

and ε̂j = yj −Xjβ̂ − Zj δ̂j , and (2) estimation of raw residuals, using OLS
decomposition of the total residuals, which gives δ̂j = (Z ′jZj)

−1Z ′j(yj −Xjβ̂)
and ε̂j = yj −Xjβ̂ − Zj δ̂j . (See Snijders and Berkhof [60] for an extensive
and complementary discussion of residuals in a multilevel model.) In both
cases, β̂ is the FIML estimate of β. Resampling of both types of residuals
may be considered for the following reason. Raw residuals are unbiased, but
inefficient, estimators. Shrunken residuals are (asymptotically) more efficient
than their raw counterparts, but are biased towards zero and may therefore
not adequately reflect the true variation in the residuals, which could have
undesirable effects upon bootstrap results. Note that the estimation of these
residuals is mathematically equivalent to the estimation of factor scores in
factor analysis. Given this similarity, it follows that one could also estimate
the residuals by a covariance preserving method [e.g., 62], so that the (sample)
covariance matrix of the estimated transformed residuals is equal to the es-
timate of the covariance matrix of the corresponding random variables. This
idea has been elaborated by Carpenter et al. [13], although their two-step
method does not coincide with one of the two optimal solutions given by
Ten Berge et al. [62].

Unlike in regression analysis, the estimated residuals in multilevel analysis
do not necessarily have an average of zero. Therefore, the residuals must be
centered first. Otherwise, the possibly nonzero average of the residuals would
lead to biased bootstrap estimators [cf. 22].

Let {ε̂ij} and {δ̂j}, j = 1, . . . , J , i = 1, . . . , nj , be the sets of (centered)
estimates of the level-1 and level-2 residuals, respectively. Further, let β̂ be
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the FIML estimate of β. Now, bootstrap samples are obtained by the following
procedure:

1. Draw a sample {δ∗j} of size J with replacement from the set {δ̂j} of
estimated level-2 residuals.

2. Draw J samples {ε∗ij} of sizes nj , j = 1, . . . , J , with replacement from the
elements of {ε̂ij}.

3. Generate the bootstrap samples y∗j , j = 1, . . . , J , from y∗j = Xjβ̂+Zjδ
∗
j+

ε∗j .
4. Compute estimates for all parameters of the two-level model.
5. Repeat Steps 1–4 B times and compute bias-corrected estimates and

bootstrap standard errors using formulas (11.4) and (11.5).

The level-1 and level-2 residuals are assumed to be independently distributed
and therefore, in the above procedure, they are also independently resampled.
As a result, the level-1 and level-2 residuals corresponding to the same indi-
vidual observation are not kept together during resampling. If it is suspected
that δj and εj are not independent, a bootstrap method that is robust to
this kind of dependence is obtained by drawing the level-1 residuals ε∗j from
the estimated level-1 residuals for the same original level-2 unit the drawing
δ∗j happens to come from: If δ∗j = δ̂k, then {ε∗ij , i = 1, . . . , nj} are drawn
with replacement from {ε̂hk, h = 1, . . . , nk}. This is called the linked residual
bootstrap [25]. A theoretical discussion of the virtues of various forms of
linking and shrinkage in balanced two-level models without covariates is given
by Davison and Hinkley [14, p. 102].

A variant on the residual bootstrap is obtained if we consider the mul-
tilevel model as a regression model y = Xβ + r, with y = (y′

1
, . . . ,y′

J
)′,

X = (X ′
1, . . . ,X

′
J)′, and where r is the resulting vector of non-i.i.d. residuals.

The covariance matrix of r is V =
⊕J

j=1 Vj . Let L be a matrix such that
LL′ = V . Then we can define ζ = L−1r, so that E (ζ ζ′) = In and r = Lζ.
Hence, given the FIML estimates, we can compute L̂ from V̂ , r̂ = y −Xβ̂,
and ζ̂ = L̂−1r̂. After centering ζ̂, residuals ζ∗

ij
can be drawn with replace-

ment from {ζ̂hk, k = 1, . . . , J ;h = 1, . . . , nk}, and y∗ = Xβ̂ + L̂ζ∗ can be
used in the bootstrap procedure. This method is statistically correct under
a wider range of assumptions than the residual bootstrap discussed thus far
and performed very well in a simulation study using error component models
for panel (longitudinal) data [1]. However, it uses the multilevel structure in
the data only implicitly through the covariance matrix V . It is therefore less
intuitively appealing, which explains why the method has (to our knowledge)
not been used in multilevel analysis yet.
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11.3.3 Cases Bootstrap

If the explanatory variables contained in Xj and Zj are considered to be
realizations of random variables, bootstrap samples can be obtained by re-
sampling entire cases. Therefore, this method is called the cases bootstrap.
The resampling procedure is as follows [2, 8]:

1. Draw a sample of size J with replacement from the level-2 units, that
is, draw a sample {j∗

k
, k = 1, . . . , J} (with replacement) of level-2 unit

numbers.
2. For each k, draw a sample of entire cases, with replacement, from (the

original) level-2 unit j = j∗k . This sample has the same size n∗k = nj∗k = nj
as the original unit from which the cases are drawn. (Note that this implies
that the total sample size of the bootstrap samples may not be n.) Then,
for each k, we have a set of data {(y∗ik,X∗

ik,Z
∗
ik), i = 1, . . . , n∗k}.

3. Compute estimates for all parameters of the two-level model.
4. Repeat Steps 1–3 B times and compute bias-corrected estimates and

bootstrap standard errors using formulas (11.4) and (11.5).

An alternative formulation is: (1) draw one entire level-2 unit (yj ,Xj ,Zj),
containing nj level-1 cases, with replacement; (2) from this level-2 unit, draw a
bootstrap sample (y∗

j
,X∗

j ,Z
∗
j ) of size nj with replacement; (3) repeat steps 1

and 2 J times; (4) compute all parameter estimates for the two-level model; (5)
repeat Steps 1–4 B times and compute bias-corrected estimates and bootstrap
standard errors using formulas (11.4) and (11.5).

The above procedure shows that for the cases bootstrap each observed
response yij keeps joined together with the observed scores on the explanatory
variables in Xij and Zij .

The cases bootstrap must be handled with some care. It depends on the
nature of the data whether it makes sense to resample units from both levels,
or only from level 2 or level 1. Two examples may give insight into this
problem.

1. If the level-2 units are individuals and the level-1 units are repeated
measures of some variables for these individuals [58, 59, 66], it makes
sense to resample only the individuals and keep the values of the y, X,
and Z variables constant for each individual. Thus, only level-2 units are
resampled and once a level-2 unit enters the bootstrap sample, all level-1
units within this level-2 unit are collected from the original sample and
are not resampled.

2. If the level-2 units are countries and the level-1 units are individuals
from these countries, it makes sense to resample only the individuals and
keep the countries and the country-specific (level-2) variables constant.
Now only level-1 units are resampled within each level-2 unit. The level-2
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units and their variables are taken from the original sample and are not
resampled.

Many more examples can be given in which only the level-2 units, or only the
level-1 units, or both level-1 and level-2 units should be resampled. Which of
these three possibilities is most appropriate depends mainly on two factors: (1)
the degree of randomness of the sampling at both levels, and (2) the (average)
sample size at both levels. If, for example, students (level 1) from all Dutch
universities (level 2) are compared, it is clear that the sample of universities is
nonrandom, and that only level-1 units should be resampled. The reverse may
be true for a sample of families, with all family members from each family
present in the sample.

If the sample size at one level (usually level 1) is very small [see 52, for
examples] the sample size at this level may be too small to give accurate
bootstrap results. Furthermore, resampling the units at this level may lead
to numerical problems, because it can easily happen that in the bootstrap
sample only one original unit is present, repeated J or nj times.

If the most appropriate resampling scheme is selected in this way, the
cases bootstrap leads to consistent estimators. Goldstein [26, p. 82] suggests
that this would not be the case if both levels are resampled, because the
within-group dependence would be lost, but this is incorrect. The independent
resampling at level 1 is conditional on the level-2 unit, observations from
different original level-2 units cannot be assigned to the same level-2 unit in
the resampling. Conditional on the level-2 unit, the observations at level 1
are assumed independent in the model. This is exactly how the resampling
is done and hence it gives consistent estimators. After resampling at level 1,
the bootstrap observations within the same level-2 unit share the same (un-
conditional) dependence as in the original sample. However, cases bootstrap
estimators are typically less efficient than parametric and residuals bootstrap,
but this is because they use considerable weaker assumptions. For example,
cases bootstrap is still consistent under heteroskedasticity. Thus, as is often
the case, there is a trade-off between robustness and efficiency.

11.3.4 Bootstrap Confidence Intervals

Up till now, we have used the bootstrap only for bias correction and computa-
tion of standard errors. However, an important and nontrivial application of
the bootstrap is the computation of confidence intervals. We will now discuss
a number of different types of bootstrap confidence intervals for a typical
parameter θ with true value θ0. We will only discuss two-sided intervals,
one-sided intervals are defined analogously. The intended nominal coverage
of the confidence interval will be denoted by 1 − α, so that the probability
that the interval contains the true parameter value should be approximately
1− α.
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Notation

Before we introduce the different bootstrap confidence intervals, we will in-
troduce some useful notation. Let Φ(z) be the standard normal distribution
function. Then zα is the α-th quantile of the standard normal distribution,
zα = Φ−1(α). Let the distribution function of the estimator θ̂ be H(θ), that
is, H(θ) = Pr(θ̂ ≤ θ). A consistent estimator of this distribution function is
obtained from the B bootstrap replications θ∗b , b = 1, . . . , B, of θ̂:

Ĥ(θ) =
#{b : θ∗b ≤ θ}

B
. (11.12)

Note that Ĥ is invariant under monotonic transformation, in the sense that
if g(θ) is a monotonically increasing function of θ, then the estimate of its
distribution function is

H̃(g(θ)) =
#{b : g(θ∗b ) ≤ g(θ)}

B
= Ĥ(θ) .

This property has been used in the derivations of some of the confidence
intervals described below.

Bootstrap Normal Confidence Interval

If the assumptions of the model, including the normality assumptions, hold,
then the estimators are asymptotically normally distributed with a certain
covariance matrix, derived from the likelihood function. Hence, for our typical
parameter θ, we have √

n(θ̂ − θ0)
L=⇒N (0, ψ), (11.13)

say. The distribution of θ̂−θ0 can be approximated by the normal distribution
with mean zero and variance ψ̂/n, where ψ̂ is a consistent estimator of ψ
derived from the likelihood function. The usual confidence intervals for θ0 are
therefore [

θ̂ + z 1
2α

ŝeN (θ̂); θ̂ + z1− 1
2α

ŝeN (θ̂)
]
, (11.14)

where ŝeN (θ̂) =
√
ψ̂/n is the estimator of the asymptotic standard devia-

tion of θ̂. Under mild regularity conditions, the estimators are asymptotically
normally distributed, even if the random terms in the model are not. In that
case, ŝeN may not be a consistent estimator of the standard deviation of
the estimators of the variance components, although it is still consistent for
the fixed parameters. This suggests replacing ŝeN in (11.14) by a bootstrap
estimator. This gives the bootstrap normal confidence interval[

θ̂ + z 1
2α

ŝeB(θ̂); θ̂ + z1− 1
2α

ŝeB(θ̂)
]
, (11.15)
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in which ŝeB is the bootstrap estimator of the standard deviation of θ̂. Alter-
natively, one might use[

θ̂B + z 1
2α

ŝeB(θ̂); θ̂B + z1− 1
2α

ŝeB(θ̂)
]
, (11.16)

where θ̂B is the bootstrap bias-corrected estimator of θ.
The bootstrap normal confidence interval relaxes the assumption of nor-

mality of the data, but still heavily relies on the asymptotic normality of the
estimators. In finite samples, however, the estimators may not be approxi-
mately normally distributed [7].

Hall’s Percentile Interval

Hall’s percentile interval [28, p. 12] takes the bootstrap normal interval (11.15)
as its starting point. That interval is based on the idea that

Pr
(
θ̂ + z 1

2α
ŝeB(θ̂) ≤ θ0 ≤ θ̂ + z1− 1

2α
ŝeB(θ̂)

)
−→ 1− α, (11.17)

because θ̂ is asymptotically normally distributed and ŝeB(θ̂) is a consistent
estimator of its standard deviation. In finite samples, however, the distribution
of θ̂ may not be approximately normal [7]. Therefore, instead of using quantiles
of the normal distribution, using bootstrap quantiles may give more accurate
results.

To derive the necessary bootstrap quantiles, let us rewrite (11.17) into the
following form:

Pr
(
z 1

2α
ŝeB(θ̂) ≤ θ0 − θ̂ ≤ z1− 1

2α
ŝeB(θ̂)

)
−→ 1− α.

The estimated quantiles q 1
2α

= z 1
2α

ŝeB(θ̂) and q1− 1
2α

= z1− 1
2α

ŝeB(θ̂) of the
normal distribution have to be replaced by quantiles of the distribution of
θ0 − θ̂. These are estimated by quantiles q̂ 1

2α
and q̂1− 1

2α
of the bootstrap

distribution of θ̂ − θ∗. From the definition Pr(θ̂ − θ∗ ≤ q̂ 1
2α

) = 1
2α, it follows

that q̂ 1
2α

= θ̂ − Ĥ−1(1 − 1
2α) and the confidence interval for θ0 becomes

[θ̂ + q̂ 1
2α

; θ̂ + q̂
1− 1

2α
], which reduces to[
2θ̂ − Ĥ−1(1− 1

2α); 2θ̂ − Ĥ−1( 1
2α)

]
. (11.18)

Note that the upper quantile of Ĥ ends up (in reverse) in the lower confidence
point and vice versa. This tends to give a small bias and skewness correction.
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Percentile-t

The percentile-t (also called bootstrap-t) is a combination of the ideas of the
bootstrap normal and Hall’s percentile intervals. It is derived by rewriting
(11.17) into the following form:

Pr

(
z 1

2α
≤ θ0 − θ̂

ŝeB(θ̂)
≤ z1− 1

2α

)
−→ 1− α. (11.19)

The quantiles of the normal distribution are now replaced by quantiles of the
distribution of t̂ = (θ0 − θ̂)/ŝeB(θ̂). These are estimated by quantiles of the
bootstrap distribution of t∗ = (θ̂ − θ∗)/se∗B(θ∗). Let Ĝ(t) be the bootstrap-
estimated distribution function of this quantity, i.e.,

Ĝ(t) =

#

{
b :

θ̂ − θ∗b
se∗B,b(θ

∗)
≤ t

}
B

,

and let t̂ 1
2α

and t̂1− 1
2α

be the 1
2α-th and (1− 1

2α)-th quantiles of Ĝ, respectively,

that is, t̂ 1
2α

= Ĝ−1( 1
2α) and t̂1− 1

2α
= Ĝ−1(1− 1

2α). The percentile-t interval
is obtained by replacing z 1

2α
by t̂ 1

2α
and z1− 1

2α
by t̂1− 1

2α
in (11.15) and is thus[

θ̂ + t̂ 1
2α

ŝeB(θ̂); θ̂ + t̂1− 1
2α

ŝeB(θ̂)
]
. (11.20)

This confidence interval requires an estimate se∗B,b(θ
∗) of the standard de-

viation of θ∗ for each bootstrap resample b. This is usually obtained by per-
forming a small bootstrap within each bootstrap resample. Thus, for example,
B = 1000 bootstrap samples are drawn with replacement from the original
sample and within each sample b = 1, . . . , B, B2 = 25 samples are drawn with
replacement from the bootstrap sample. From the B2 samples, se∗B,b(θ

∗) is
obtained. This means that B · B2 bootstrap samples have to be drawn and
B · B2 times the estimator of θ has to be computed. In the example, this
amounts to 1000 · 25 = 25 000 bootstrap samples and 25 000 times computing
the estimator.

The percentile-t interval tends to perform better than the bootstrap nor-
mal and Hall’s percentile interval, because it uses the nonnormality of the
distribution of the estimator (as opposed to the former) and t̂ is more nearly
pivotal than θ0 − θ̂ in a number of important cases, which means that its
distribution depends less on the parameters that are being estimated. The
quantity t̂ is not always nearly pivotal, however, and in those cases in which
it is not, the percentile-t confidence interval performs less well. A complicated
extension that aims at transforming the parameter to a near-pivotal quantity
is the variance stabilized percentile-t interval, see, e.g., Efron and Tibshirani
[20, section 12.6].
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Efron’s Percentile Interval

The idea behind this interval is quite different from the ideas behind the
bootstrap normal interval and its extensions. It was stated above that Ĥ(θ) is a
consistent estimator of the distribution function of θ̂. Therefore, an asymptotic
1−α confidence interval can be obtained by taking the relevant quantiles from
Ĥ, which leads to the interval[

Ĥ−1( 1
2α); Ĥ−1(1− 1

2α)
]
. (11.21)

Efron’s percentile interval does not rely on the asymptotic normality of θ̂. Its
coverage performance in finite samples is, however, frequently not very well,
because the end points of the interval tend to be a little biased. Note the
difference with Hall’s percentile interval. Here, percentiles of the distribution
of θ̂ are approximated by percentiles of the distribution of θ∗, whereas in Hall’s
percentile interval, percentiles of the distribution of θ0 − θ̂ are approximated
by percentiles of the distribution of θ̂ − θ∗.

Bias-Corrected (BC) and Bias-Corrected and Accelerated (BCa)
Percentile Intervals

The BC and BCa intervals have been introduced to correct for some bias in
the endpoints of Efron’s percentile interval (11.21). Assume that there exists
a monotonically increasing function g(θ) such that

g(θ̂)− g(θ0)
1 + ag(θ0)

∼ N (−z0, 1). (11.22)

The constant z0 allows for some bias in the estimator g(θ̂) of g(θ0) and the
constant a, called the acceleration constant, expresses the speed at which
the standard deviation of the estimator increases with the parameter being
estimated. In typical estimation problems, a = O(n−1/2) and z0 = O(n−1/2).

From the likelihood based on (11.22), it can now be derived that the exact
confidence interval for θ0 is equal, up to order O(n−1), to the BCa interval
given by [

Ĥ−1
(
Φ(z[ 12α])

)
; Ĥ−1

(
Φ(z[1− 1

2α])
)]
, (11.23)

where
z[ 12α] = z0 +

z0 + z 1
2α

1− a(z0 + z 1
2α

)

and z[1− 1
2α] similarly defined. Note that this interval does not depend on the

specific transformation g(·), which follows from the invariance property of Ĥ
discussed earlier. In practice, the constants z0 and a have to be estimated, but
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this does not alter the results up to order O(n−1). Moreover, even if (11.22)
does not hold, the BCa endpoints are correct up to order O(n−1), whereas in
many cases the endpoints of the intervals discussed previously are only correct
up to order O(n−1/2).

A simple consistent estimator of z0 is ẑ0 = Φ−1
(
Ĥ(θ̂)

)
. The estimation

of a is the most important problem with the BCa method. If it is assumed
that a = 0, we obtain the BC interval, which is discussed, e.g., in Efron [18].
Usually, however, the BC interval is only correct up to order O(n−1/2) and is
therefore typically worse than the BCa interval.

Efron [19] provided several formulas for a. In a one-parameter para-
metric model where θ̂ is the ML estimator, a good approximation for a is
a ≈ 1

6Skewθ=θ̂(l̇θ), where ‘Skew’ denotes the skewness of a random variable
and l̇θ is the score function (derivative of the loglikelihood with respect to θ).

When more parameters are to be estimated, which is the case in multilevel
analysis, these results are no longer valid. Efron [19] gave a formula for a based
on reducing the multiparameter problem to a one-parameter problem defined
by the least favorable direction. This is defined by the following formulas:
Let fη(y) be the density function of the data dependent on a parameter
vector η, and let l̈η̂ = ∂2 log fη(y)/∂η ∂η′, evaluated in the value η̂ of the
estimator. Let θ = t(η) be the parameter of interest and let ∇̂ = ∂t(η)/∂η,
evaluated in η̂. The least favorable direction at η = η̂ is now defined as
µ̂ = (l̈η̂)−1∇̂. The multiparameter problem is now reduced to a one-parameter
problem by considering only parameter values of the form η̂ + λµ̂. Now,
a ≈ 1

6Skewλ=0[∂ log fη̂+λµ̂(y∗)/∂λ]. Note that the parameter vector is called
η in this definition. This formula may be used for the parametric bootstrap
in multilevel analysis, although the formulas are quite complicated. This
was done for a simple two-level variance components model by LeBlond [36,
section 7.3.4]. Usually, confidence intervals are required for each parameter
separately, so that t(η) = e′iη and ∇̂ = ei, where ei is the i-th unit vector.

For the nonparametric bootstrap, the standard formula for a is based
on the empirical influence function of θ̂. This is, however, not well defined
for multilevel data, so that this formula cannot be used. Tu and Zhang [64]
proposed to estimate a by the jackknife according to the formula

âJ =
(n− 1)3

6n3(σ̂2
J(1))3/2

n∑
i=1

(
θ̂(i) − θ̄(1)

)3

. (11.24)

A similar formula for a was used by Frangos and Schucany [21], who also
studied a corresponding method using the positive jackknife, which extends
the data set by duplicating a data point, so that we get a sample size of
n + 1 and estimators θ̂(+i) instead of θ̂(i) for the standard jackknife, which
they call negative jackknife. For multilevel data, we have to replace these
jackknife formulas with grouped jackknife methods for unequal group sizes
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(see section 11.4). It is, however, doubtful whether the jackknife for multilevel
models will give a reasonable estimate of a third-order moment. A bootstrap
analog of (11.24) would be

âB =
1
6

1
B

B∑
b=1

(
θ∗b − θ

∗
(.)

)3

[
1
B

B∑
b=1

(
θ∗b − θ

∗
(.)

)2
]3/2

.

It is still an open question whether this gives reasonable results.

11.4 Jackknifing Two-Level Models

In section 11.2, we discussed the classic jackknife approach to estimating the
bias of an estimator and to obtain a bias-corrected version of this estimator.
Using the pseudo values, an accompanying estimator for the variance of the
(original or bias-corrected) estimator, and hence for the standard error, can
be obtained as well.

The jacknife version we discussed is based on subsamples obtained from
the original sample by successively removing mutually exclusive groups of
observations of size m. Furthermore, it relies on the assumption of indepen-
dently and identically distributed observations. Both features influence the
formulation of a jackknife resampling scheme for multilevel data and models.

The independence assumption restricts the application of the jackknife to
the highest level in the data. In the two-level case, independence can only be
assumed for the groups. Within the groups, data are dependent. Consequently,
a multilevel jackknife approach must be based on subsamples obtained by
removing complete level-2 units. In fact, Wolter [72, section 4.6] already stated
that the delete-m jackknife can be used in cluster sampling, when the data
within clusters are dependent. In multilevel data, however, groups are usually
not of equal size m. Therefore, to make the jackknife suitable for multilevel
data and models, the delete-m jackknife needs to be generalized to a grouped
jackknife for unequal group sizes, called the delete-mj jackknife by Busing
et al. [10].

11.4.1 Delete-mj Jackknife

To apply the delete-m jackknife (with m > 1, and n a multiple of m), the
sample is divided into g mutually exclusive groups of size m, with g = n/m.
In multilevel analysis, the sample is divided into J groups of (usually) varying
size nj , that is, nj is not equal for each group and n/nj will not necessarily
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be equal to J . As a result, the formulas discussed earlier have to be adapted
slightly. Let θ̂(j∗) be an estimator of θ based on a sample from which group j
with size nj is removed. The delete-mj jackknife estimator of θ is now given
by

θ̂J(mj) = Jθ̂n −
J∑
j=1

(
1− nj

n

)
θ̂(j∗). (11.25)

The estimator θ̂J(mj) can be justified as follows. Consider an estimator θ̂n of
a parameter θ obtained from a sample of size n from some distribution. In
general, the expected value of such estimators can be written as the true value
θ0 plus a power series expansion in 1/n, that is,

E (θ̂n) = θ0 +
b1
n

+
b2
n2

+
b3
n3

+ . . . , (11.26)

where b1, b2, . . . are unknown constants, independent of sample size, and fre-
quently not equal to zero [see, e.g., 49, 55]. If b1 6= 0, the bias in (11.26) is
clearly of order n−1. Let hj = n/nj . Then, the total sample size can be written
as n = njhj . Hence,

E (hj θ̂n) = hjθ0 +
b1
nj

+
b2
hjn2

j

+
b3
h2
jn

3
j

+ . . . , (11.27)

and

E (θ̂(j∗)) = θ0 +
b1

(hj − 1)nj
+

b2
(hj − 1)2n2

j

+
b3

(hj − 1)3n3
j

+ . . . . (11.28)

Combining (11.27) and (11.28) gives

E
[
hj θ̂n − (hj − 1)θ̂(j∗)

]
= θ0 +

b2
n2
j

(
1
hj
− 1
hj − 1

)
+
b3
n3
j

(
1
h2
j

− 1
(hj − 1)2

)
+ . . . ,

= θ0 −
b2
n2

hj
hj − 1

− b3
n3

hj(2hj − 1)
(hj − 1)2

+ . . . . (11.29)

Finally, to prevent loss of efficiency, the weighted average of the J possible
estimators is used [cf. 49]. This gives

θ̂J(mj) =
J∑
j=1

nj
n

(
hj θ̂n − (hj − 1)θ̂(j∗)

)
,

= Jθ̂n −
J∑
j=1

(
1− nj

n

)
θ̂(j∗). (11.30)
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The expectation of (11.30) is

E

 J∑
j=1

nj
n

(
hj θ̂n − (hj − 1)θ̂(j∗)

)
=

J∑
j=1

nj
n
θ0 −

J∑
j=1

1
hj

(
b2
n2

hj
hj − 1

)
−

J∑
j=1

1
hj

(
b3
n3

hj(2hj − 1)
(hj − 1)2

)
+ . . . ,

= θ0 −
b2
n2

J∑
j=1

1
hj − 1

− b3
n3

J∑
j=1

2hj − 1
(hj − 1)2

+ . . . ,

so that the bias is of order n−2 if b2 6= 0 and if nj is relatively small compared
to n.

The corresponding estimator of the variance of θ̂J(mj), based on the pseudo
values

θ̃(j∗) = hj θ̂n − (hj − 1)θ̂(j∗), j∗ = 1, . . . , J,

is given by

σ̂2
J(mj) =

1
J

J∑
j=1

1
hj − 1

(
θ̃(j∗) − θ̂J(mj)

)2

=
1
J

J∑
j=1

1
hj − 1

(
hj θ̂n − (hj − 1)θ̂(j∗)

− Jθ̂n +
J∑
k=1

(
1− nk

n

)
θ̂(k∗)

)2

.

(11.31)

Note that when all groups are of equal size, (11.10) follows from (11.30),
that is, the delete-mj jackknife estimator reduces to the delete-m jackknife
estimator. Analogously, (11.31) reduces to the expression for the delete-m
jackknife variance estimator (11.11).

11.4.2 Jackknife Confidence Intervals

The delete-mj jackknife estimator and the delete-mj jackknife variance esti-
mator can be used to construct the jackknife normal confidence interval[

θ̂J(mj) + z 1
2α
σ̂J(mj); θ̂J(mj) + z1− 1

2α
σ̂J(mj)

]
. (11.32)

The jackknife normal confidence interval relaxes the normality assumption
for the data. However, the interval relies on the asymptotic normality of the
estimators, which may in finite samples not be approximately satisfied [7].
Other jackknife confidence intervals are not applicable or are probably worse,
due to the limited use of the pseudo values.
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11.5 Software

In this section, we briefly discuss resampling options within the available mul-
tilevel software packages. Basically, there are two programs containing built-in
options for resampling: MLwiN [51] and MLA [11]. The other major programs for
multilevel analysis, HLM [53] and VARCL [38] do not contain resampling options.
In principle, bootstrap and jackknife methods as discussed in the preceding
sections could be implemented within general purpose packages such as SAS,
SPSS, R, and S-Plus. However, these procedures need to be entirely developed
and programmed by the user.

11.5.1 MLwiN

Goldstein [24] proposed a parametric bootstrap procedure with iterative bias
correction, based on the results of Kuk [32]. This procedure has been imple-
mented in the MLwiN program (versions 1.1 and higher), under the name of
iterated bootstrap. In a series of steps, bootstrap simulation and bias correc-
tion are performed alternatingly. The process starts by using an estimated
parameter as the “true value” from which a set of (parametric) bootstrap
replicates is obtained. From these bootstrap replicates the bias-corrected esti-
mate is computed. In the next step, the corrected estimate serves as the “true
value” for a new set of bootstrap replicates. From this set, an update for the
bias-corrected estimate is computed, and so on. Steps are repeated until the
successive corrected estimates converge. Although Rasbash et al. [51] present
a promising illustration of this iterated bootstrap, they still suggest to use
the procedure with care. This phrasing is also used by Goldstein [26, p. 126],
who states that a certain correction to the bootstrap estimates must be done
to obtain “approximately correct standard errors and quantile estimates.”
He also states (on p. 84) an important problem with the iterated bootstrap,
namely that the procedure may not converge.

A second bootstrap method that is implemented in MLwiN is the residual
(“nonparametric”) bootstrap with covariance-preserving residuals as proposed
by Carpenter et al. [13] and mentioned earlier.

11.5.2 MLA

The MLA program has been developed primarily for research on resampling
methods in two-level models. It is extensively documented in Busing et al.
[8, 9, 11]. Langer [35] discusses in detail many examples of analyses with
MLA. The latest version of MLA is version 4.1. Among several options mainly
reflecting the research interests of the authors, the program provides FIML
estimates of parameters and standard errors, and their counterparts obtained
with the parametric bootstrap, the residual bootstrap with raw and shrunken
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residuals with and without linking, and the cases bootstrap. Furthermore,
a number of bootstrap confidence intervals have been implemented, viz. the
bootstrap normal confidence interval, the percentile-t interval, Efron’s per-
centile interval, and the bias-corrected (BC) percentile interval. A final option
of interest for our discussion here is the delete-mj jackknife.

11.6 Empirical Evidence

Bootstrap and jackknife estimation applied to multilevel models has not yet
been studied by many authors, and for some specific models or situations only.
Information about the performance of the different approaches comes from a
relatively limited number of Monte Carlo simulation studies. In this section,
we summarize the results that are most relevant for our discussion.

11.6.1 Bootstrap Bias Correction and Standard Errors

Van der Leeden et al. [68] evaluated the parametric bootstrap, the two versions
of the residual bootstrap, and the cases bootstrap. In an extensive simulation
study they addressed the question whether these bootstrap estimators of
model parameters and standard errors are less biased and have smaller mean
squared error (MSE) than their FIML counterparts. Data were generated for
a two-level model containing one predictor variable at each level. The (condi-
tional) intraclass correlation was set to 0.2, and the intercept-slope correlation
to 0.5. Assumptions were violated by using moderately small sample sizes
(especially at level 2), and severely skewed distributions for the residuals.

The main conclusion of this study was that the shrunken residual bootstrap
works for variance component estimation, that is, it works for cases like the one
simulated (small sample size at level 2 and heavily skewed distribution of the
residuals). In such cases, this type of bootstrap provides nearly unbiased esti-
mators of the variance components at both levels, with relatively small MSE.
It may be considered a valuable alternative to FIML estimation, especially
when the interest is in estimating the “true value” of a variance component.
Regarding bias, the other three bootstrap methods do not produce useful
results for this case, although the cases bootstrap has MSE’s similar to those
of the shrunken residual bootstrap.

Results confirmed the finding that bias in the FIML fixed parameter esti-
mators is negligible [cf. 5, 40]. The application of the bootstrap to estimate
these parameters has clearly no surplus value. However, bootstrap confidence
intervals may be useful for testing the fixed parameters, since their FIML
standard errors can be substantially downward biased, making the commonly
used t-ratios suspicious.
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The biases of the standard errors are about equally bad for FIML and
the different bootstrap methods. Compared to the other methods, the cases
bootstrap seemed to perform best. This holds for the MSE’s of the standard
errors as well. The cases bootstrap yielded standard errors with the relatively
most satisfactory MSE’s.

Although the results of Van der Leeden et al. [68] show that the shrunken
bootstrap method works for the case they had simulated, the study merely
provides empirical evidence in the same tradition as the bootstrap method
itself: using raw computing power. The four bootstrap methods differ in their
assumptions. The extent to which these are violated in the simulation study
gives a little grip on the explanation of the findings.

Compared to the other methods, the parametric bootstrap requires the
strongest assumptions. In particular, it leans heavily upon the assumption of
a (multivariate) normal distribution for the residuals. In the simulation, this is
exactly the assumption which is severely violated. This explains the relatively
bad performance here. In cases where data are less skewed (and the model is
specified correctly) we expect this method to yield more satisfactory results.

For the other methods, matters are more complicated. In the simulation
study we know that there is homoskedasticity, and that the model is correct.
Under these conditions we should expect good results for the cases bootstrap,
as well as for the residual bootstrap. However, this is not corroborated for
the cases bootstrap. Still, from a theoretical perspective, this method seems
to be the most attractive since it comes closest to the ideal of an assumption-
free method. To explain the bad performance of the cases bootstrap in this
study, we could hypothesize that this method is possibly more sensitive to the
distorting effects of small sample size than the residual bootstrap. In the study,
this method was implemented in its most simple, conventional form. Future
research may include several ways of refining, for instance by balancing, to
improve the performance of this method.

The residual bootstrap treats the regression design as fixed, but “at the
cost” (in contrast to the cases bootstrap which can deal with heteroskedastic-
ity) of assuming homoskedasticity, that is, a single empirical error distribution
for both levels. In the study, this method works very satisfactory, but only
as far as the resampling of shrunken residuals is concerned. Apparently, these
residuals adequately reflect the true variation of the residuals in the popula-
tion, whereas the raw residuals do not.

The simulation results affirm the theoretical insight that a z-test for the
null hypothesis that a variance component is zero is unreliable and not well-
founded. Distributions of the variance component estimators are far from
normal. Therefore, chi-square tests and likelihood ratio tests have been rec-
ommended instead. However, likelihood ratio tests are still founded upon the
assumption of normality, whereas chi-square tests rely on asymptotic prop-
erties (a sufficiently large sample size at level 2). Bootstrap methods may
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provide nonparametric confidence intervals that could replace (or could be
used in addition to) these approaches.

The discussion of resampling methods has so far been limited to FIML
estimation. As stated in section 11.1, in some cases, the bias of FIML is
well understood. An accepted alternative procedure for the estimation of the
variance components is the method of restricted maximum likelihood (REML),
which is claimed to provide less biased estimators [e.g., 56, chap. 6]. There
are, however, two drawbacks associated with this approach. First, REML still
relies on the assumption of normality, whereas the bootstrap does not. Second,
compared to FIML, the use of REML limits the application of likelihood ratio
tests. REML optimizes a transformed likelihood function that does not contain
the fixed parameters, that is, with respect to the variance components only.
Hence, changes in model specification can only be tested as far as the random
part is concerned. Nevertheless, it is useful and necessary to compare REML
with bootstrap estimation, in particular by the method of shrunken residuals.
Bootstrapping the REML estimators is yet another option.

11.6.2 Bootstrap Confidence Intervals

Meijer et al. [42] studied the performance of bootstrap confidence intervals
for multilevel models by means of a simulation study. They used essentially
the same design as Van der Leeden et al. [68] in their study of bootstrap
bias correction and standard errors as discussed above. The only exception
is that Meijer et al. [42] only studied the cases bootstrap. They compared
the bootstrap normal, percentile-t, Efron’s percentile, and BC intervals to
standard intervals for FIML and REML estimators.

Their results showed that the different bootstrap confidence intervals of
the fixed parameters were all satisfactory. The FIML and REML confidence
intervals of the fixed parameters were also satisfactory, except the confidence
intervals for the intercept, which showed some undercoverage. The FIML and
REML confidence intervals for the variance components were dramatically bad,
with a coverage of about 40% for a nominal value of 95%. The bootstrap
confidence intervals studied were a great improvement, but with coverage
percentages around 70%, they were still far from satisfactory. Hence, further
research is needed to find improvements. Possibly, the BCa interval or the
double bootstrap (see below) may give satisfactory results, given their higher
order accuracies.

11.6.3 Jackknife

Busing et al. [10] studied the performance of the delete-mj jackknife in a
simulation study. Data for a (two-level) random effects ANOVA model were
generated, that is, an intercept-only model including one variance component
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at each level. Residuals were drawn from a skewed distribution and the in-
traclass correlation was set to 0.2. In the simulation design, the number of
groups J , group sizes nj , and the skewness of the residual distributions were
varied in turn.

The results showed that the delete-mj jackknife estimator offers a minor
reduction in bias compared to FIML and REML estimators, in exchange for a
minor decrease in efficiency. A distinct reduction in bias was found for the
delete-mj standard error. When sample size is moderate, this standard error
even improves in efficiency. It can be concluded that the delete-mj jackknife
standard errors are to be preferred to FIML and REML standard errors in the
situations studied.

Due to the assumption of independence, the application of the jackknife for
multilevel models is restricted to the highest level in the hierarchy. However,
this limitation makes the implementation of the jackknife relatively simple.
Researchers may easily use this jackknife method within their own general
purpose packages (e.g., SAS, S-Plus, R).

By using a very simple multilevel model in the simulation study, the merits
and drawbacks of the presented jackknife approach have not been fully ex-
plored yet. More research is needed to reveal the full potential of the jackknife
for multilevel models.

11.7 Extensions

Up till now, we have limited our discussion of bootstrap and jackknife pro-
cedures for multilevel models to the simple two-level mixed linear model,
estimated with FIML. However, the discussion generalizes straightforwardly to
other types of estimation methods, such as REML or two-step OLS (although in
such cases, shrunken residuals may not be appropriate) and to more levels, in
which case the delete-mj jackknife must be applied to the highest level. Also,
the methods, especially cases bootstrap, apply with little or no adaptation to
estimators that handle missing data, such as multiple imputation and the EM
algorithm [39].

Moreover, from the treatment in this chapter, resampling methods for
other types of models can be easily derived. If a parametric distribution
for the random terms is assumed, for example with generalized linear mixed
models [54], the parametric bootstrap can be applied [4, 32]. If all variables are
assumed to be random, as for example in many multilevel structural equation
models [37, 46], the cases bootstrap or delete-mj jackknife can be applied.
(The multilevel SEM model of du Toit and du Toit [17] includes nonrandom
covariates, though.) If (some of) the covariates are assumed nonrandom and
residuals can be estimated meaningfully, as in nonlinear regression models,
the residual bootstrap can be applied.
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Note, however, that some care is needed in the application of the residual
bootstrap, because the residuals can in some cases not be estimated sat-
isfactorily or are not independent of the covariates. A typical example is
a multilevel logistic regression (or mixed logit) model [e.g., 29], where the
observable dependent variable yi is binary. We may postulate an underlying
continuous random variable that satisfies a regression model with continuous
residuals, but these cannot be estimated. On the other hand, we could compute
the residuals as r̂i = yi − E (yi | Xi), the values of the dependent variable
minus their (conditional) expectations according to the model. If we would
perform a residual bootstrap using these residuals, the bootstrap-generated
values y∗i = E (yi | Xi) + r∗i of the dependent variable would not be binary
anymore. Moreover, the distribution of the residuals ri depends on the value
of the conditional expectation, E (yi |Xi).

With non-hierarchical models [50], parametric and residual bootstrap tech-
niques can generally be used, but cases bootstrap sampling and jackknife are
problematic due to the dependency structure (the data cannot be decomposed
in disjoint independent subsets). It may be possible to define versions of cases
bootstrap analogous to the moving blocks bootstrap for time series that give
satisfactory results, but this is not straightforward.

In the discussion in this chapter, the various characteristics of the distribu-
tion F̂n were obtained by simple random sampling from this distribution. In
many cases, this may be computationally inefficient and with too small values
of B lead to unstable estimators. The literature on Monte Carlo methods
contains a number of strategies to improve the computational and statistical
efficiency, such as antithetic sampling, importance sampling, and control vari-
ates. These, as well as a number of bootstrap-specific issues such as balanced
resampling are discussed by, e.g., Hall [28, Appendix II], Efron and Tibshirani
[20, chap. 23], and Davison and Hinkley [14, chap. 9].

As we have stated, the bootstrap confidence intervals studied by Meijer
et al. [42] do not perform satisfactorily, although they have better coverage
rates than the standard FIML and REML confidence intervals. It is expected that
the BCa interval has better coverage, but the estimation of the acceleration
constant is a little problematic in multilevel data. A promising alternative is
the double bootstrap, which is a computationally highly intensive method, but
this may nevertheless be feasible with today’s (and tomorrow’s) computers.
The double bootstrap is obtained by performing a bootstrap within each
bootstrap sample. The coverage rates of the bootstrap confidence intervals
at the lower level of simulation are used to determine the quantiles of the
bootstrap-estimated distribution function Ĥ(θ) at the higher level that must
be used in order to obtain a suitable confidence interval. The theoretical prop-
erties of the double bootstrap are comparable to those of the BCa method,
but the computations are easier, although they are more extensive as well.
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See, e.g., McCullough and Vinod [41] for the details of the implementation
and the statistical properties of the double bootstrap.

Finally, note that, although the most obvious parameters θ that may be
subjected to bootstrap and jackknife procedures are the fixed parameters and
variance components of the multilevel model, we can let θ be almost any
characteristic of the model or the data, as illustrated by LeBlond [36].
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12.1 Introduction

Multilevel analysis allows characteristics of different groups to be included in
models of individual behavior. Most analyses of social data entail the analysis
of data with built-in hierarchies, usually obtained as a consequence of complex
sampling methods. At each level of the hierarchy, a different set of variables
may be defined.

Random regression models have been developed to model continuous data
[6], and also dichotomous repeated measures data [16] where certain char-
acteristics of the data preclude the use of traditional ANOVA models. Ran-
dom regression models, however, do not allow for the possibility of including
higher-level variables. It has been shown by Aitkin and Longford [2] that the
aggregation of variables over individual observations may lead to misleading
results. Both the aggregation of individual variables to a higher level of obser-
vations and the disaggregation of higher order variables to an individual level
in the analysis of multilevel data have been shown to be inadequate [11, 20].
Thus the need for statistical models that take account of the sampling scheme
is well recognized.

The use of multilevel models was initially hampered by the fact that
closed form mathematical expressions to estimate the variance and covariance
components have only been available for perfectly balanced designs. Iterative
numerical procedures must be used to obtain efficient estimates for unbal-
anced designs. Among the procedures suggested are full maximum likelihood
[18, 31] and restricted maximum likelihood as proposed by Mason et al. [32]
and Raudenbush and Bryk [42]. Another approach is the procedure of Bayes
estimation [13]. Fitting the Mason et al. model, using the method of scoring,
was illustrated by de Leeuw and Kreft [12].
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At the same time, interest in latent variables, i.e., variables that can
not be directly observed or alternatively only imperfectly observed, led to
theory providing for the definition, fitting and testing of general models for
linear structural relations with latent variables for data from simple random
sample(s). General applications based on this theory followed important con-
tributions by Jöreskog and Sörbom [24] and McArdle and McDonald [33].

A more general model for multilevel structural relations, accommodating
latent variables and the possibility of missing data at any level of the hierarchy
and providing the combination of developments in these two fields, was a
logical next step. In papers by Goldstein and McDonald [19], McDonald and
Goldstein [36], Lee [28], and McDonald [34, 35], such a model was proposed.
Attention was also given to the problem of estimation in the case of both
balanced and unbalanced designs for linear structural relations in two-level
data. Muthén [38, 39, 40] proposed a partial maximum likelihood solution as
simplification in the case of an unbalanced design, entailing the computation
of a single between-groups covariance matrix and an ad hoc estimator/scaling
parameter. An overview of the latter can be found in Hox [21]. Raudenbush
[41], Lee and Poon [29], and Liang and Bentler [30] developed full maximum
likelihood estimators using the EM algorithm.

Liang and Bentler [30] discussed the similarities and differences between
the various formulations of two-level structural equation models and presented
a computationally efficient EM algorithm for obtaining ML estimates for un-
balanced designs with cases missing at random.

In this chapter we describe a general two-level structural model that is
similar to Liang and Bentler [30], the main difference being the estimation
procedure. In our approach, we use the Fisher scoring [see 10] algorithm
to obtain ML estimates. An advantage of this method is that it uses the
expected values of the second order derivatives and hence standard errors of
the estimated parameters are readily available. We also make use of the spe-
cial structure of the population covariance matrix to derive computationally
efficient expressions (cf. Appendix 12.B) for the log-likelihood function and
derivatives. An algorithm for full maximum likelihood estimation of the model
is proposed, and a likelihood-based discrepancy function and test for goodness
of fit is derived. Two examples, illustrating the implementation of the results
for unbalanced designs with missing data at both levels of the hierarchy, are
given.

12.2 A General Two-Level Structural Equation Model

We use McDonald’s [34] formulation of a multilevel structural equations model
(cf. (12.1)). In his paper, he derived minimal sufficient statistics for a bal-
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anced sampling design, i.e., nj = n, j = 1, 2, . . . , J , no missing values, and
unrestricted means.

We have concentrated on the full information normal maximum likelihood
procedure for these types of models when data are missing at random and
the samples lead to an unbalanced design. Particular attention is paid to the
derivation of results that can be directly used by researchers who would like
to write their own multilevel SEM programs.

Suppose we have measures yijk on k = 1, 2, . . . , p variables from i =
1, 2, . . . , nj level-one units (for example students) from j = 1, 2, . . . , J ran-
domly sampled level-two units (for example schools). It is further supposed
that we have xjl, l = 1, 2, . . . , q variables characterizing the level-two units.

For the j-th level-2 unit, we write the observed data as

y′j = (y′1j ,y
′
2j , . . . ,y

′
njj ,x

′
j),

where

y′ij = (yij1, yij2, . . . , yijp)

and

x′j = (xj1, xj2, . . . , xjq).

We assume that yij and xj can be written as

y
ij

= X(y)ijβy + Sijvj + Sijuij , (12.1)

xj = X(x)jβx +Rjwj . (12.2)

It is assumed that v1,v2, . . . ,vN are i.i.d. N (∅,ΣB) and that u1j , u2j , . . . ,
unjj are i.i.d. N (∅,ΣW ). It is additionally assumed that Cov(vj ,u

′
ij) = ∅ for

j = 1, 2, . . . , J ; i = 1, 2, . . . , nj .
Note that the matrices X(y) and Sij defined by (12.1) allow for the

handling of incomplete data. For example, suppose p = 4 and that for a
specific (level-2, level-1) combination only two measurements (say y1 and y3)
are available, then

S =
(

1 0 0 0
0 0 1 0

)
, so that Sv =

(
v1
v3

)
.

In general, Sij can be regarded as a selection matrix [14] consisting of a subset
pij of the rows of the p×p identity matrix Ip, where the rows of Sij correspond
to the response measurements available for the (i, j)-th unit. Likewise, Rj can
be regarded as a subset qj of the rows of Iq.

Additional distributional assumptions are
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Cov(wj) = Σxx , j = 1, 2, . . . , J

Cov(y
ij
,w′

j) = Σyx , j = 1, 2, . . . , J ; i = 1, 2, . . . , nj

Cov(uij ,w
′
j) = ∅.

(12.3)

From (12.1) and (12.2) it follows that

y
j

=
(
X(y)jβy + Sjvj +

∑nj

j=1Zijuij
X(x)jβx +Rjwj

)
, (12.4)

where

X(y)j =

 X(y)1j

...
X(y)njj

 , Sj =


S1j

S2j

...
Snjj



Rj =


R1j

R2j

...
Rnjj

 , and Zij =



∅
...
∅
Sij
...
∅


. (12.5)

From the distributional assumptions given above it follows that

y
j
∼ N (µj ,Σj),

where

µj =
(
X(y)j ∅

∅ X(x)j

)(
βy
βx

)
= Xjβ, (12.6)

Σj =
(

Vj SjΣyxR
′
j

RjΣxyS
′
j RjΣxxR

′
j

)
, (12.7)

and

Vj = Cov


y

1j
...

y
njj

 = SjΣBS
′
j +

nj∑
i=1

ZijΣWZ
′
ij .

Remark

If Rj = Iq and Sij = Ip, corresponding to the case of no missing y or x
variables, then SjΣyxR

′
j = 1nj �Σyx, where 1nj is an nj × 1 column vector

(1, 1, . . . , 1)′.
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Furthermore, for Sij = Ip, i = 1, . . . , nj ,

Vj = Inj �ΣW + 1nj1
′
nj

�ΣB

[see, e.g., 36]. The unknown parameters in (12.6) and (12.7) are β, vecsΣB ,
vecsΣW , vecΣxy, and vecsΣxx, where vecsA denotes the 1

2p(p+1)×1 vector
of nonduplicated elements of the p × p symmetric matrix A. The unknown
parameters are contained in a k∗ × 1 vector π.

Structural models for the type of data described above may be defined by
restricting the elements of β, ΣB , ΣW , Σxy, and Σxx to be functions of some
basic set of parameters γ′ = (γ1, γ2, . . . , γk), k < k∗.

For example, assume the following pattern for the matrices ΣW and ΣB ,
where ΣW refers to the within (level-1) covariance matrix and ΣB to the
between (level-2) covariance matrix:

ΣW = ΛWΨWΛ
′
W +DW

ΣB = ΛBΨBΛ
′
B +DB . (12.8)

Factor analysis models typically have the covariance structures defined by
(12.8). Consider a confirmatory factor analysis model with 2 factors and
assume p = 6.

ΛW =



λ11 0
λ21 0
λ31 0
0 λ42

0 λ52

0 λ62

 , ΨW =
(
ψ11 ψ12

ψ21 ψ22

)
, and DW =

 θ11 · · ·
...

. . .
θ66

 .

If we restrict all the parameters across the level-1 and level-2 units to be equal,
then

γ′ = (λ11, λ21, . . . , λ62, ψ11, ψ21, ψ22, θ11, . . . , θ66)

is the vector of unknown parameters.

12.3 Maximum Likelihood for General Means and
Covariance Structures

In this section we give a general framework for normal maximum likelihood
estimation of the unknown parameters. In practice, the number of variables
(p + q) and the number of level-1 units within a specific level-2 unit may
be quite large, which leads to Σj matrices of very high order. It is therefore
apparent that further simplification of the likelihood function derivatives and
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Hessian is required if the goal is to implement the theoretical results in a
computer program. These aspects are addressed in Appendix 12.B.

Denote the expected value and covariance matrix of y
j

by µj and Σj ,
respectively (see (12.6) and (12.7)). The log-likelihood function of y

1
,y

2
, . . .,

y
J

may then be expressed as

lnL = − 1
2

J∑
j=1

{
nj ln 2π + ln |Σj |+ trΣ−1

j (yj − µj)(yj − µj)′
}
. (12.9)

Instead of maximizing lnL, maximum normal likelihood estimates of the
unknown parameters are obtained by minimizing − lnL with the constant
term omitted, i.e., by minimizing the function

F (γ) = 1
2

J∑
j=1

{
ln |Σj |+ trΣ−1

j Gyj

}
, (12.10)

where

Gyj = (yj − µj)(yj − µj)′. (12.11)

The first order condition ∂F (γ)/∂γ = ∅ yields the normal maximum likeli-
hood estimator γ̂ of the unknown vector of parameters γ.

Unless the model yields maximum likelihood estimators in closed form,
it will be necessary to make use of an iterative procedure to minimize the
discrepancy function. The optimization procedure described next [see 10] is
based on the so-called Fisher scoring algorithm, which in the case of structured
means and covariances may be regarded as a sequence of Gauss-Newton steps
with quantities to be fitted as well as the weight matrix changing at each step.
Fisher scoring algorithms require the gradient vector and an approximation to
the Hessian matrix. Elements of the gradient vector, g(γ), and approximate
Hessian matrix H(γ) of F (γ) are given by

∂F

∂γr
= [g(γ)]r = −

J∑
j=1

{
trQj

∂µj
∂γr

+ 1
2

trPj
∂Σj

∂γr

}
, (12.12)

where

Qj = (yj − µj)′Σ−1
j , (12.13)

and

Pj = Σ−1
j (Gyj −Σj)Σ−1

j . (12.14)



12 Multilevel SEM 443

Let

[H(γ)]r,s = −E
(
∂2 lnL
∂γr ∂γs

)
.

In the remainder of this chapter H(γ) will be referred to as the Hessian.
Hence

∂2F

∂γr ∂γs
≈ [H(γ)]r,s

=
J∑
j=1

{
tr
(
∂µ′j
∂γr

Σ−1
j

∂µj
∂γs

)
+ 1

2

(
Σ−1
j

∂Σj

∂γr
Σ−1
j

∂Σj

∂γs

)}
. (12.15)

Suppose that γk is the k-th approximation to the γ̂ that minimizes F (γ).
Let gk = g(γk), Hk = H(γk), and Fk = F (γk). The next approximation is
obtained from

γk+1 = γk + αkδk , (12.16)

where

δk = −H−1
k gk (12.17)

and αk is a step size parameter chosen initially as 1 and then successively
halved until Fk+1 ≤ Fk.

Agresti [1] pointed out that the Fisher scoring method resembles the
Newton-Raphson method, the distinction being that the Fisher scoring (cf.
(12.15)) uses the expected value of the second derivative matrix.

A convenient feature of the Fisher scoring algorithm is that an estimate,
{H(γ̂)}−1 of the asymptotic covariance matrix of estimators γ is available on
convergence as a by-product of the calculations.

It may be necessary to minimize F (γ) subject to r nonlinear constraints
of the form

c(γ) = 0 (12.18)

where c(γ) is a continuously differentiable r × 1 vector valued function of γ.
Let ck = c(γk) and Lk = L(γk). Then the linear Taylor approximation for
the constraint function is

c(γ) ≈ ck +Lkδ, (12.19)

where δ = γ−γk. A typical element of the r× k Jacobian matrix Lk is given
by

[Lk]ij =
∂ci
∂γj

∣∣∣∣
γ=γk

, (12.20)

where ci = [c(γ)]i. Consequently, the nonlinear constraints (12.18) may be
approximated by the linear constraints
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Lkδ = −ck . (12.21)

The increment vector δk is obtained [10] as the solution of(
δk
λk

)
=
(
Hk +L′kDkLk L′k

Lk ∅

)−1(−(gk +L′kDkck)
−ck

)
(12.22)

where λk is an r×1 vector of Lagrange multipliers andDk is an arbitrary non-
negative definite matrix. The scaling matrix Dk does not affect the solution
and is often chosen to be the null matrix [17]. The next approximation γk+1

for γ̂ is obtained from
γk+1 = γk + αkδk ,

where αk is chosen initially as 1 and is halved successively until

Fb + 2
r∑
i=1

∣∣∣[λk]j [ck+1]j
∣∣∣ < Fα + 2

r∑
i=1

∣∣∣[λk]j [ck]j∣∣∣, (12.23)

where (cf. (12.10)) Fb = F (γk+1) and Fα = F (γk). If no constraints are
imposed, all terms involving ck and Lk are omitted.

It can happen that the matrix to be inverted in (12.22) is singular or near
singular. An adaptation of the Jennrich and Sampson [22] stepwise regression
procedure may be used to obtain an appropriate conditional inverse. Their
procedure for imposing bounds on the estimates may also be employed.

Let π denote a k∗×1 vector containing the elements of them×1 parameter
vector β, and the nonduplicated elements of ΣB , ΣW , Σxy, and Σxx. It
follows that

k∗ = m+ 2
(

1
2
p(p+ 1)

)
+ pq + 1

2
q(q + 1) .

In Appendix 12.B, results are derived for the gradient vector g = g(π) and
Hessian H = H(π) in terms of the parameters of a two-level model when no
restrictions are imposed on the elements of β and the parameter matrices ΣB

to Σxx.
Two-level structural equation models impose restrictions on the between

(level-2) and within (level-1) variance components. Formally, suppose that
β = β(γ),ΣB = ΣB(γ),ΣW = ΣW (γ),Σxy = Σxy(γ), andΣxx = Σxx(γ),
where γ is a k × 1 vector of unknown parameters, k < k∗. Derivatives of
the form ∂ΣB/∂γr, . . . , ∂Σxx/∂γr form an inherent part of the estimation
procedure in structural equation models and are relatively straightforward to
compute. For example (see (12.8)),

∂ΣW

∂[ΛW ]r,s
= JrsΨWΛ

′
W +ΛWΨWJ ′rs

where [ΛW ]r,s denotes an element of the parameter vector π and Jrs is a null
matrix except for the (r, s)-th element which equals 1.
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In general, let C: (k∗ × k) denote the matrix of derivatives

C =
∂π

∂γ′
.

Using the chain rule for matrix differentiation, it follows that

∂ lnL
∂γ′

=
∂ lnL
∂π′

∂π

∂γ′
,

and hence

∂ lnL
∂γ

= C ′g(π). (12.24)

Similarly,

H(γ) = −E
(
∂2 lnL
∂γ ∂γ′

)
= C ′H(π)C. (12.25)

The matrix C, and expressions (12.24) and (12.25) are instrumental in the
analysis of multilevel structural equation models and the derivation of a χ2

goodness of fit statistic. Note that C = I when γ = π and hence no restric-
tions are imposed on the multilevel variance components. Standard errors of
the estimated parameters are obtained as the square roots of the diagonal
elements of [H(γ̂)]−1, where γ̂ is the maximum likelihood estimator of γ. In
the Appendix 12.B, detailed computational formulas for ∂ lnL/∂γ and H(γ)
are derived.

12.3.1 Starting Values and Convergence Issues

In fitting a structural equation model to a hierarchical data set, one may
encounter convergence problems unless good starting values are provided.

We have implemented the following procedure in LISREL [15]. As a
first step estimates of the fixed components β and the variance compo-
nents ΣB , Σxy, Σxx, and ΣW are obtained. This is accomplished by setting
C = ∂π/∂γ′ = I (see (12.23) and (12.25)), where π′ is the vector of pa-
rameters

(
µ′, (vecsΣB)′, . . . , (vecsΣxx)′

)
and γ the set of parameters when

restrictions are imposed on µ, vecsΣB , . . . , vecsΣxx.
Our experience with the Gauss-Newton algorithm described above is that

convergence is usually obtained in less than 10 iterations, where initially β =
∅, ΣB = Ip, Σxy = ∅, Σxx = Iq, and ΣW = Ip. At convergence, the value of
−2 lnL is computed.

Next, we treat

SB =
(
Σ̂B Σ̂yx

Σ̂xy Σ̂xx

)
and SW =

(
Σ̂W ∅
∅ ∅

)
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as sample covariance matrices and fit a two-group structural equation model to
the between and within groups. Parameter estimates obtained in this manner
are used as the elements of the initial parameter vector γ0. The estimators
obtained from this step are consistent and are therefore typically already close
to the final ML estimators.

In the third step, the iterative procedure is restarted and γk updated from
γk−1, k = 1, 2, . . . , until convergence is obtained. This value is denoted by γ̂,
the maximum likelihood estimator of γ. Standard errors of the elements of γ̂
are calculated as the square roots of the diagonal elements of [H(γ̂)]−1.

12.4 Fit Statistics and Hypothesis Testing

The multilevel structural equation model, M(γ), and its assumptions imply
a covariance structure ΣB(γ), ΣW (γ), Σxy(γ), Σxx(γ) and mean structure
µ(γ) for the observable random variables, where γ is a k × 1 vector of pa-
rameters in the statistical model. It is assumed that the empirical data is a
random sample of J level-2 units and n =

∑J
j=1 nj level-1 units, where nj

denotes the number of level-1 units within the j-th level-2 unit. From this data,
we can compute estimates of µ, ΣB , . . . , Σxx if no restrictions are imposed
on their elements. The number of parameters for the unrestricted model (see
section 12.3) is k∗ = m+ 2

[
1
2p(p+ 1)

]
+ pq+ 1

2q(q+ 1) and is summarized in
the k∗ × 1 vector π. To test the model M(γ) we use the likelihood ratio test
statistic

c = −2 lnL(γ̂) + 2 lnL(π̂) (12.26)

that, if the unrestricted model M(π) holds, c has a χ2 distribution with
d = k∗ − k degrees of freedom.

If the model does not hold, c has a noncentral χ2 distribution with d

degrees of freedom and noncentrality parameter λ that may be estimated as
[see 9]:

λ̂ = max(c− d, 0) (12.27)

Browne and Cudeck [9] also show how to set up a confidence interval for λ.
It is possible that the researcher has specified a number of competing

models M1(γ1), M2(γ2), . . . , MK(γK). If the models are nested in the sense
that γj : kj × 1 is a subset of γi: ki × 1, one may use the likelihood ratio test
c∗ = −2 lnL(γ̂

j
) + 2 lnL(γ̂

i
) with degrees of freedom ki − kj to test Mj(γj)

against Mi(γi).
Another approach is to compare models on the basis of some criteria

that take parsimony as well as fit into account. This approach can be used
regardless of whether or not the models can be ordered in a nested sequence.
Two strongly related criteria are the AIC measure of Akaike [3] and the CAIC
of Bozdogan [7]:
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AIC = c+ 2k (12.28)

CAIC = c+ (1 + lnn)k. (12.29)

The use of c as a central χ2 statistic is based on the assumption that the
model holds exactly in the population. A consequence of this assumption is
that models that hold approximately in the population will be rejected in
large samples.

Steiger [43] proposed the root mean square error of approximation (RM-
SEA) statistic that takes particular account of the error of approximation in
the population

RMSEA =
√
F̂ 0/d , (12.30)

where F̂ 0 is a function of the sample size, degrees of freedom, and the fit
function. To use the RMSEA as a fit measure in multilevel SEM, we propose

F̂ 0 = max
{
c− d
n

, 0
}
. (12.31)

Browne and Cudeck [9] suggest that an RMSEA value of 0.05 indicates a close
fit and that values of up to 0.08 represent reasonable errors of approximation
in the population.

12.5 A Simple Illustration

The following example illustrates the steps outlined above. The data set used
in this section forms part of the data library of the Multilevel Project at
the University of London, and comes from the Junior School Project [37].
Mathematics and language tests were administered in three consecutive years
to more than 1000 students from 49 primary schools that were randomly
selected from primary schools maintained by the Inner London Education
Authority.

The following variables were selected from the data file:

School School code (1–49)
Math1 Score on mathematics test in year 1 (score 1–40)
Math2 Score on mathematics test in year 2 (score 1–40)
Math3 Score on mathematics test in year 3 (score 1–40).

The school number (School) is used as the level-2 identification.
A simple confirmatory factor analysis model (see Figure 12.1) is fitted to

the data:

ΣB = λψλ′ +DB ,

ΣW = λψλ′ +DW ,
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Fig. 12.1. Confirmatory factor analysis model.

where λ′ = (1, λ21, λ31) and DB and DW are diagonal matrices with diagonal
elements equal to the unique (error) variances of Math1, Math2, and Math3.
The variance of the factor is denoted by ψ. Note that we assume equal factor
loadings and factor variance across the between and within groups, leading to a
model with 3 degrees of freedom. The SIMPLIS [see 25] syntax to fit the factor
analysis model is shown below. Note that the between- and within-groups
covariance matrices are the estimated ΣB and ΣW obtained in the first step
by fitting the unrestricted model.

Group 1: Between Schools JSP data (Level 2)
Observed Variables: Math1 Math2 Math3
Covariance matrix

3.38885
2.29824 5.19791
2.31881 3.00273 4.69663

Sample Size=24 ! Taken as (n1 + n2 + ... + nN)/N
! and rounded to nearest integer

Latent Variables: Factor1
Relationships
Math1=1*Factor1
Math2-Math3=Factor1

Group 2: Within Schools JSP data (Level 1)
Covariance matrix
47.04658
38.56798 55.37006
30.81049 36.04099 40.71862

Sample Size=1192 ! Total number of pupils
! Uncomment the following line to free the parameter
! Set the Variance of Factor1 Free
Set the Error Variance of Math1 Free
Set the Error Variance of Math2 Free
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Set the Error Variance of Math3 Free
Path Diagram
LISREL OUTPUT ND=3
End of Problem

Table 12.1 shows the parameter estimates, standard errors and χ2 statistic
from the SIMPLIS output and the corresponding values from the multilevel
SEM output.

Table 12.1. Parameter estimates and standard errors for factor analysis model.

SIMPLIS Multilevel SEM

Estimate Standard error Estimate Standard error

Factor loadings

Math1 1.000 — 1.000 —

Math2 1.173 0.031 1.177 0.032

Math3 0.939 0.026 0.947 0.028

Factor variance

ψ 32.109 1.821 31.235 1.808

Error variances (between)

Math1 1.640 0.787 1.656 0.741

Math2 2.123 1.059 2.035 0.942

Math3 1.868 0.779 1.840 0.734

Error variances (within)

Math1 14.114 0.810 14.209 0.890

Math2 10.274 0.884 10.256 0.993

Math3 11.910 0.699 11.837 0.806

Chi-square 36.233 46.560

Degrees of freedom 3 3

Remarks:

1. The between-groups sample size of 24 used in the SIMPLIS syntax was
computed as J−1

∑J
j=1 nj , where J is the number of schools and nj the

number of children within school j. Since this value is only used to obtain
starting values, it is not really crucial how the between-group sample size
is computed. See for example, Muthén [38, 39] for an alternative formula.

2. The within-group sample size of 1192 used in the SIMPLIS syntax is equal
to the total number of school children.
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3. The number of missing values per variable is as follows:
Math1 : 38
Math2 : 63
Math3 : 239.
The large percentage missing for the Math3 variable may partially ex-
plain the relatively large difference in χ2 values from the SIMPLIS and
multilevel SEM outputs.

4. If one allows for the factor variance parameter to be free over groups, the
χ2 fit statistic becomes 1.087 at 2 degrees of freedom. The total number
of multilevel SEM iterations required to obtain convergence equals 8.

In conclusion, a small number of variables and a single factor SEM model
were used to illustrate the starting values procedure that we adopted. The
next section contains two additional examples, also based on a schools data
set. It should be noted that in the applications to follow, we focus on the
parameters of the latent variable submodel and do not present (although
they may be important in their own right) the regression coefficients of the
exogenous variables.

12.6 Practical Applications

The two examples discussed in this section are based on school data that were
collected during a 1994 survey in South Africa.1

A brief description of the SASchools94.dat data set is as follows: J = 136
schools were selected and the total number of children within schools n =∑J
j=1 nj = 6047, where nj varies from 20 to 60. The data set contains 20

variables as shown in Table 12.2.
The variables Language and Socio are school level variables and their

values do not vary within schools. Listwise deletion of missing cases results in
a data set containing only 2691 of the original 6047 cases.

12.6.1 Example 1: Confirmatory Factor Analysis

For this example we use the variables Classif, Compar, Verbal, Figure, Patt-
comp, and Numserie from the schools data set discussed in the previous
section. Two common factors are hypothesized: verbal and numeric ability.
The first three variables are assumed to measure Verbfac and the last three
to measure Numfac. A path diagram of the assumed factor model is shown in
Fig. 12.2. Appropriate LISREL syntax is given in the appendix (see p. 460)
of this chapter.

The between- and within-school structural equation models are
1 This data set is available on request from the authors.
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Table 12.2. Description of variables in SASchool94.dat .

Number

Var. Name Description missing

1 Student Level-1 identification 0

2 School Level-2 identification 0

3 Constant All values equal to 1 0

4 Grade 0 = Grade 2, 1 = Grade 3, 2 = Grade 4 0

5 Language 0 = White∗, 1 = Black∗ 0

6 Gender 1 = Male, 2 = Female 1

7 Mothedu Mother’s level of education on a scale from 1 to 7 783

8 Fathede Father’s level of education on a scale from 1 to 7 851

9 Read Teacher’s evaluation on a scale from 1 to 5† 482

10 Speech Teacher’s evaluation on a scale from 1 to 5† 470

11 Write Teacher’s evaluation on a scale from 1 to 5† 467

12 Arithm Teacher’s evaluation on a scale from 1 to 5† 451

13 Socio Socio-economic status indicator, scale 0 to 5 on school

level

0

14 Classif Classification: total correct out of 30 items 23

15 Compar Comparison: total correct out of 23 items 27

16 Verbal Verbal Instructions: total correct out of 50 items 20

17 Figure Figure Series: total correct out of 24 items 118

18 Pattcomp Pattern Completion: total correct out of 24 items 109

19 Knowled Knowledge: total correct out of 32 items 112

20 Numserie Number Series: total correct out of 15 items 2305
∗ “White” = Afrikaans or English,

“Black” = One of the eleven official black languages.
† 1 = Poor, . . . , 5 = Excellent.

ΣB = ΛΨBΛ
′ +DB (12.32)

ΣW = ΛΨWΛ
′ +DW , (12.33)

where

Λ: (6× 2) =



1 0
λ21 0
λ31 0
0 1
0 λ52

0 λ62

 ,

and where factor loadings are assumed to be equal over the between (schools)
and within (children) levels. The 2 × 2 matrices ΨB and ΨW denote uncon-
strained factor covariance matrices. Diagonal elements of DB and DW are
the unique (error) variances.

Gender and Grade differences were accounted for in the means part of the
model,
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Fig. 12.2. Confirmatory factor analysis model for 6 variables.

E (y
ijk

) = βk0 + βk1Gender + βk2Grade,

where the subscripts i, j, and k denote students, schools, and variables k =
1, 2, . . . , 6, respectively.

From the description of the school data set, we note that the variable
Numserie has 2505 missing values. An inspection of the data set reveals that
the pattern of missingness can hardly be described as missing at random. To
establish how well the proposed algorithm perform in terms of the handling
of missing cases, we have nevertheless decided to retain this variable in both
examples.

Table 12.3 shows the estimated between-schools covariance matrix Σ̂B

when no restrictions are imposed on its elements, and the fitted covariance
matrix ΣB(γ̂) with γ the vector of parameters of the CFA models (12.32)
and (12.33). Likewise, Table 12.4 shows Σ̂W for the unrestricted model and
ΣW (γ̂) for the CFA model.

The goodness of fit statistics for the CFA model (with 6047 students in
136 schools) are: χ2 = 159.87, RMSEA = 0.061, df = 20. Parameter estimates
and standard errors are given in Table 12.5.

It is typical of structural equation models to produce large χ2 values when
sample sizes are large, as in the present case. The RMSEA may be a more
meaningful measure of goodness of fit and the value of 0.061 indicates that the
assumption of equal factor loadings between and within schools is reasonable.
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Table 12.3. Estimated between-schools covariance matrix, ΣB .

(i) Σ̂B unrestricted

Classif Compar Verbal Figure Pattcomp Numserie

Classif 1.29

Compar 1.27 2.66

Verbal 2.83 3.54 10.42

Figure 2.06 2.70 6.89 5.53

Pattcomp 2.17 2.60 6.58 5.09 5.34

Numserie 1.46 1.85 4.93 3.85 3.81 3.16

(ii) ΣB(γ̂) for the CFA model

Classif Compar Verbal Figure Pattcomp Numserie

Classif 1.61

Compar 1.74 3.86

Verbal 2.21 3.22 6.76

Figure 2.52 3.67 4.66 5.82

Pattcomp 2.29 3.33 4.22 5.03 4.93

Numserie 1.79 2.60 3.30 3.93 3.56 3.11

Table 12.4. Estimated within-schools covariance matrix, ΣW .

(i) Σ̂W unrestricted

Classif Compar Verbal Figure Pattcomp Numserie

Classif 8.49

Compar 4.59 18.77

Verbal 5.52 7.64 17.26

Figure 4.45 7.21 8.49 16.27

Pattcomp 4.30 7.21 8.45 9.55 16.19

Numserie 2.69 4.05 5.28 7.31 5.80 7.31

(ii) ΣW (γ̂) for the CFA model

Classif Compar Verbal Figure Pattcomp Numserie

Classif 7.81

Compar 3.31 17.12

Verbal 4.19 6.11 15.07

Figure 3.72 5.42 6.87 14.58

Pattcomp 3.37 4.91 6.23 8.13 14.61

Numserie 2.64 3.84 4.87 6.36 5.76 7.21
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Table 12.5. Parameter estimates and standard errors for the CFA model.

Estimate Standard error

Factor loadings

λ11 1.000 —

λ21 1.456 0.048

λ31 1.846 0.054

λ42 1.000 —

λ52 0.906 0.017

λ62 0.708 0.014

Factor covariances (between schools)

Ψ11 1.196 0.185

Ψ21 2.524 0.342

Ψ22 5.546 0.729

Error variances (between schools)

Classif 0.413 0.081

Compar 1.327 0.223

Verbal 2.673 0.388

Figure 0.279 0.090

Pattcomp 0.377 0.092

Numserie 0.325 0.069

Factor covariances (within schools)

Ψ11 2.271 0.114

Ψ21 3.722 0.128

Ψ22 8.976 0.272

Error variances (within schools)

Classif 5.538 0.119

Compar 12.305 0.262

Verbal 7.328 0.222

Figure 5.606 0.169

Pattcomp 7.239 0.178

Numserie 2.710 0.098

12.6.2 Example 2: Structural Equation Model

We now consider a more elaborate model and use the following variables:
Gender, Grade, Classif, Compar, Verbal, Knowled, Figure, Pattcomp, Num-
serie, Read, Speech, Write, Arithm, Mothedu, Fathedu, Language, and Socio.
The variables Language and Socio are so-called school variables in the sense
that their values vary across, but not within, schools. A path diagram for the
structural equation model is given in Figure 12.3.

Using Jöreskog’s [23] LISREL notation, the latent variable model is written
as

η = Bη + Γξ + ζ. (12.34)
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Fig. 12.3. Path diagram for the between-schools model.

The η: (2 × 1) vector contains the latent endogeneous variables Verbfac and
Numfac. The coefficient matrix B: (2 × 2) gives the effect of the η’s on
each other. It is usually assumed that B is non-singular and has all diagonal
elements equal to zero. The ξ: (2 × 1) vector contains the latent exogeneous
variables Evaluate and Environ. The coefficient matrix Γ : (2×2) contains the
coefficients for the impact of ξ on η. Disturbances for each latent endogeneous
variable are contained in the 2× 1 vector ζ, and Cov(ζ) = Ψ .

The measurement part of the model is

y = Λyη + ε

x = Λxξ + δ.

Elements of the 7×1 vector y are the 7 endogeneous variables Classif to Num-
serie that are the indicators of Verbfac and Numfac. The coefficient matrix
Λy: (7× 2) (the factor loadings) gives the impact of Verbfac and Numfac on
the variables Classif, Compar, . . . , Numserie. The unique variables or “errors”
are in the vector ε: (7×1). It is assumed that E (ε) = ∅, Cov(ε) = Θε (usually
a diagonal matrix) and that Cov(η, ε′) = ∅.

Analogous definitions and assumptions hold for the 8 × 1 vector x rep-
resenting the eight exogeneous variables Read, Speech, . . . , Socio. Hence,
E (δ) = ∅, Cov(δ) = Θδ, and Cov(ξ, δ′) = ∅.

It is customary to scale each latent variable by selecting one of its indicators
and setting its factor loading to one.
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From the above assumptions, it follows for the between-schools group that
(see also Jöreskog and Sörbom [26], equation (1.4)) ΣB11

ΣB21 ΣB22

ΣB1xy ΣB2xy Σxx


=
(
ΛyA(ΓΦΓ ′ + Ψ)A′Λ′y +Θε ΛyAΓΦΛ

′
x

ΛxΦΓ
′A′Λ′y ΛxΦΛ

′
x +Θδ

)
, (12.35)

where A = (I −B)−1,

ΣB : (13× 13) =
(
ΣB11: (7× 7) ΣB12

ΣB21: (6× 7) ΣB22: (6× 6)

)
, and Σxx: (2× 2).

Note that the seven variables Classif, Compar, . . . , Numserie are endogeneous
variables in the LISREL model (ΣB11 part) while the next six variables Read,
Speech, . . . , Fathedu are exogeneous variables (ΣB22 part). In the theoretical
framework, these thirteen variables are considered y-variables with between-
schools covariance matrixΣB and within-schools matrixΣW . The two school-
level variables Language and Socio have covariance matrix Σxx.

As described in the previous example, we controlled for Gender and Grade
effects through the inclusion of these variables in the means part of the model.

Table 12.6 shows the estimated between-schools covariance matrix(
ΣB Σyx

Σxy Σxx

)
when no restrictions are imposed on its elements and also the fitted covariance
matrix for the structural equations model (12.34).

In both between- and within-school models, the residual covariance matrix
of the latent variables Verbfac and Numfac was assumed to be diagonal.
Furthermore, in the between-schools model it was assumed that there is no
effect of endogeneous latent variables on each other, and hence B = ∅. For
the within-schools model,

B =
(

0 0
β21 0

)
.

Since the estimated error variance for the exogeneous variable Fathedu was
negative (but close to zero), this error variance was fixed at zero. The appro-
priate LISREL syntax is given in the appendix (see p. 460) of this chapter.

Table 12.7 shows the estimated within-school covariance matrix for the
unrestricted and restricted cases.

Estimates and standard errors of the unknown parameters in the struc-
tural equation models for the between- and within-school models are given in
Table 12.8.
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Table 12.6. Estimated between-school covariance matrices for ΣB unrestricted and

ΣB restricted according to (12.34).

(i) Σ̂B with no restrictions imposed on the elements

Classif 1.29
Compar 1.26 2.63
Verbal 2.83 3.52 10.40
Knowled 1.76 2.64 5.67 4.57
Figure 2.06 2.70 6.87 3.69 5.51
Pattcomp 2.16 2.58 6.54 3.87 5.06 5.31
Numserie 1.46 1.84 4.89 2.75 3.81 3.77 3.11
Read 0.18 0.17 0.59 0.46 0.37 0.34 0.27 0.14
Speech 0.12 0.13 0.42 0.36 0.24 0.25 0.20 0.12 0.12
Write 0.14 0.14 0.48 0.42 0.25 0.25 0.18 0.12 0.11 0.12
Arithm 0.14 0.16 0.55 0.40 0.34 0.34 0.23 0.12 0.10 0.11 0.13
Mothedu 0.49 0.53 1.26 0.58 1.18 1.15 0.85 0.06 0.04 0.02 0.04 0.70
Fathedu 0.50 0.55 1.33 0.57 1.28 1.21 0.92 0.06 0.02 0.02 0.04 0.72 0.78
Language 0.26 0.22 0.92 0.36 0.77 0.76 0.61 0.03 0.01 0.00 0.02 0.20 0.23 0.21
Socio 0.86 0.97 2.39 1.26 1.96 2.01 1.44 0.12 0.10 0.09 0.13 0.61 0.67 0.32 1.24

(ii) ΣB(γ̂) with restrictions imposed according to the model (12.34)

Classif 1.31
Compar 1.21 2.69
Verbal 2.78 3.66 10.16
Knowled 1.80 2.36 5.44 4.39
Figure 1.33 1.75 4.04 2.61 5.39
Pattcomp 1.31 1.72 3.96 2.56 4.99 5.28
Numserie 1.01 1.32 3.05 1.97 3.84 3.77 3.17
Read 0.22 0.28 0.65 0.42 0.41 0.40 0.31 0.14
Speech 0.19 0.24 0.56 0.36 0.35 0.35 0.27 0.11 0.12
Write 0.20 0.26 0.61 0.39 0.38 0.37 0.29 0.12 0.10 0.12
Arithm 0.20 0.26 0.60 0.39 0.37 0.37 0.28 0.12 0.10 0.11 0.13
Mothedu 0.43 0.57 1.30 0.84 1.27 1.25 0.96 0.04 0.03 0.04 0.04 0.68
Fathedu 0.47 0.61 1.41 0.91 1.38 1.35 1.04 0.04 0.04 0.04 0.04 0.70 0.76
Language 0.15 0.20 0.46 0.30 0.45 0.44 0.34 0.01 0.01 0.01 0.01 0.23 0.25 0.21
Socio 0.43 0.56 1.29 0.83 1.26 1.24 0.95 0.04 0.03 0.04 0.04 0.64 0.70 0.23 1.24

Finally, the goodness of fit measures for the multilevel structural equation
model fitted to the school data set are: χ2 = 691.198, RMSEA = 0.029,
df = 145. The χ2 statistic is for testing the null hypothesis that model (12.34)
holds for the between- and within-schools covariance structures against the
alternative hypotheses that no restrictions are imposed on the covariance ma-
trices. According to this measure of fit, one should reject the null hypothesis.
The RMSEA value of 0.029 and inspection of Tables 12.6 and 12.7 shows that
the fitted model may be quite acceptable.

12.7 Conclusion and Discussion

A Fisher Scoring algorithm is employed to obtain full maximum likelihood
estimation of a general two-level structural equations model. An explicit
feature of our approach is that the likelihood function and derivatives (see
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Table 12.7. Estimated within-school covariance matrices for ΣW unrestricted and

ΣW restricted according to (12.34).

(i) Σ̂W with no restrictions imposed on the elements

Classif 8.49
Compar 4.59 18.78
Verbal 5.52 7.65 17.27
Knowled 3.49 5.40 7.10 16.34
Figure 4.46 7.22 8.49 5.59 16.29
Pattcomp 4.31 7.22 8.46 5.56 9.56 16.20
Numserie 2.71 4.08 5.28 3.65 7.31 5.81 7.31
Read 0.66 0.80 1.21 0.88 1.02 0.87 0.78 1.21
Speech 0.51 0.66 1.01 0.67 0.88 0.78 0.66 0.75 1.04
Write 0.63 0.85 1.23 0.84 1.02 0.94 0.81 0.83 0.73 1.08
Arithm 0.64 0.82 1.21 0.81 1.04 0.92 0.82 0.73 0.64 0.75 1.11
Mothedu 0.23 0.28 0.43 0.20 0.24 0.10 0.14 0.08 0.05 0.05 0.06 1.44
Fathedu 0.20 0.20 0.38 0.15 0.25 0.20 0.16 0.08 0.04 0.03 0.04 0.87 2.00

(ii) ΣW (γ̂) with restrictions imposed according to the model (12.34)

Classif 7.88
Compar 3.39 17.32
Verbal 4.23 6.17 14.86
Knowled 2.71 3.95 4.94 14.75
Figure 3.76 5.48 6.85 4.38 14.72
Pattcomp 3.34 4.87 6.08 3.89 8.11 14.49
Numserie 2.64 3.85 4.81 3.08 6.42 5.70 7.18
Read 0.63 0.92 1.15 0.74 1.08 0.96 0.76 1.18
Speech 0.56 0.82 1.02 0.65 0.96 0.85 0.67 0.71 1.02
Write 0.63 0.93 1.16 0.74 1.08 0.96 0.76 0.81 0.72 1.06
Arithm 0.57 0.84 1.05 0.67 0.98 0.87 0.69 0.73 0.65 0.73 1.11
Mothedu 0.20 0.30 0.37 0.24 0.19 0.17 0.14 0.06 0.05 0.06 0.05 1.45
Fathedu 0.16 0.24 0.30 0.19 0.15 0.14 0.11 0.05 0.04 0.05 0.04 0.88 2.01

Appendix 12.B) are expressed in terms of matrix operations of order less
or equal to p + q leading to a very significant reduction in computational
workload. In the case of most EM algorithms, estimates of the standard errors
of the estimated population parameters are not readily available as is the case
in our method.

Results are given for an unbalanced design with responses possibly missing
at random. The model allows for regression on fixed explanatory variables
and structured residual covariance matrices on both levels of the hierarchy.
A number of fit statistics are discussed and practical examples are given to
demonstrate the feasibility of the derived procedures. Additional examples,
including examples dealing with structured mean vectors, are included with
LISREL [15].

In structural equation modeling (SEM), it is typically assumed that the
data to be analyzed is obtained from a simple random sample (SRS). In many
research studies, however, data has a hierarchical structure. For example,
students nested within schools or patients nested within hospitals. By ignoring
the hierarchical structure of the data, incorrect parameter estimates, standard
errors and inappropriate fit statistics may be obtained.
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Table 12.8. Parameter estimates and standard errors for the unknown parameters

in model (12.34).

Between schools Within schools

Estimate Standard error Estimate Standard error

Λy

λ21 1.313 0.144 1.459 0.049

λ31 3.027 0.255 1.822 0.053

λ41 1.954 0.172 1.167 0.044

λ62 0.981 0.040 0.888 0.019

λ72 0.756 0.033 0.703 0.015

Λx

λ21 0.863 0.058 0.886 0.014

λ31 0.934 0.052 1.003 0.014

λ41 0.918 0.062 0.909 0.014

λ62 1.084 0.032 0.804 0.153

λ72 0.354 0.040 — —

λ82 0.990 0.090 — —

B β21 2.186 0.195 1.605 0.055

Γ

γ11 1.488 0.220 0.776 0.033

γ12 0.571 0.088 0.143 0.035

γ21 2.587 0.415 0.088 0.058

γ22 1.801 0.176 −0.126 0.049

Φ

φ11 0.130 0.021 0.804 0.022

φ21 0.041 0.029 0.060 0.016

φ22 0.649 0.087 1.090 0.208

Ψ
ψ11 0.353 0.076 1.803 0.095

ψ22 1.735 0.284 3.032 0.179

Θε

Classif 0.391 0.076 5.555 0.117

Compar 1.100 0.189 12.380 0.259

Verbal 1.736 0.388 7.153 0.200

Knowled 0.876 0.195 11.590 0.234

Figure 0.302 0.094 5.583 0.171

Pattcomp 0.391 0.102 7.293 0.178

Numserie 0.267 0.066 2.673 0.098

Θδ

Read 0.015 0.004 0.375 0.010

Speech 0.020 0.004 0.394 0.009

Write 0.010 0.003 0.248 0.008

Arithm 0.022 0.005 0.445 0.010

Mothedu 0.030 0.008 0.358 0.207

Fathedu 0.000 — 1.302 0.136

Language 0.126 0.016 — —

Socio 0.606 0.078 — —
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To examine the effect of clustering, one could fit the level-1 SEM models
described in the previous section by treating the data as an SRS. In general,
if the parameter estimates and estimated standard errors are close to those
obtained using the multilevel SEM approach, it can be assumed that there
is a negligible cluster effect. For example, student characteristics under study
do not vary significantly across schools.
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Appendix

12.A LISREL Programs

LISREL Syntax for Example 1 (CFA Model)

Group1: Between Schools HSRC School Project
DA NI=7 NO=0 NG=2 MA=CM MI=-9.0
LA
Classif Compar Verbal Figure Pattcomp Numserie
RA = SASchools94.dat
$CLuster School
SE
1 2 3 4 5 6 /
MO NY=6 NE=2 LY=FU,FI PS=SY,FR TE=DI,FR
LE
Verbfac Numfac
FR LY(2,1) LY(3,1) LY(5,2) LY(6,2)
VA 1.00 LY(1,1) LY(4,2)
PD
OU ME=ML

Group2: Within Schools HSRC School Project
LA
Classif Compar Verbal Figure Pattcomp Numserie
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DA NI=7 NO=0 NG=2 MA=CM MI=-9.0
RA = SASchools94.dat
SE
1 2 3 4 5 6 /
MO NY=6 NE=2 LY=IN PS=IN TE=IN
LE
Verbfac Numfac
FR PS(1,1) PS(2,1) PS(2,2) TE(1,1) TE(2,2)
FR TE(3,3) TE(4,4) TE(5,5) TE(6,6)
! FR LY(2,1) LY(3,1) LY(5,2) LY(6,2)
OU

LISREL Syntax for Example 2 (Structural Equation Model)

Group1: Between Schools Data, HSRC project
DA NI=16 NO=0 NG=2 MA=CM MI=-9.0
LA
Classif Compar Verbal Knowled Figure Pattcomp Numserie
Read Speech Write Arithm Mothedu Fathedu Language Socio
RA=SA_Schools94.dat
$CLuster School
SE
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15/
MO NX=8 NY=7 NK=2 NE=2 LY=FU,FI LX=FU,FI BE=FU,FI c

GA=FU,FI PH=SY,FR PS=DI,FR TE=DI,FR TD=DI,FR
LE
Verbfac Numfac
LK
Evaluate Environ
FI TD(6,6)
FR LY(2,1) LY(3,1) LY(4,1) LY(6,2) LY(7,2) BE(2,1)
FR LX(2,1) LX(3,1) LX(4,1)
FR LX(6,2) LX(7,2) LX(8,2)
FR GA(1,1) GA(1,2) GA(2,1) GA(2,2)
VA 1.000 LY(1,1) LY(5,2) LX(1,1) LX(5,2)
VA 0.001 TD(6,6)
PD
OU ME=ML ND=2
Group2: Within Schools Data, HSRC project
DA NI=16 NO=0 NG=2 MA=CM MI=-9.0
LA
Classif Compar Verbal Knowled Figure Pattcomp Numserie
Read Speech Write Arithm Mothedu Fathedu Language Socio
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RA=SA_Schools.dat
MO NX=8 NY=7 NK=2 NE=2 LY=FU,FI LX=FU,FI BE=FU,FI c

GA=FU,FI PH=SY,FR PS=DI,FR TE=DI,FR TD=DI,FR
LE
Verbfac Numfac
LK
Evaluate Environ
FR LY(2,1) LY(3,1) LY(4,1) LY(6,2) LY(7,2) BE(2,1)
FR LX(2,1) LX(3,1) LX(4,1)
FR LX(6,2)
FR GA(1,1) GA(1,2) GA(2,1) GA(2,2)
VA 1.000 LY(1,1) LY(5,2) LX(1,1) LX(5,2)
VA 0.0 LX(7,2) LX(8,2)
!EQ PS(2,2) PS(1,2,2)
!EQ PS(1,1) PS(1,1,1)
!EQ PH(2,2) PH(1,2,2)
!EQ PH(2,1) PH(1,2,1)
!EQ PH(1,1) PH(1,1,1)
!EQ BE(2,1) BE(1,2,1)
OU

12.B Computational Details

12.B.1 Expressions for the Inverse and Determinant of Σ

The estimation procedures outlined in the previous section can be imple-
mented in a computer program for a general two-level structural equation
model. A major problem, however, is how to deal efficiently with the calcula-
tion of the high order matrix products, determinants, and inverses that is part
and parcel of multilevel models. Due to the particular structure of Σj defined
by (12.7) it is shown that storage space and execution time considerations
can be eliminated to a large extent. We show that the likelihood function,
derivatives, and Hessian can be expressed in terms of matrix operations of
order less or equal to p+ q.

From (12.5) and (12.7) it follows that the covariance matrix of (y
1j

, y
2j

,
. . . , y

njj
)′ can be written as

Σjyy = Vj = SjΣBS
′
j +Λj , (12.36)

where Λj is a block diagonal matrix
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Λj =


Λ1j

Λ2j

. . .
Λnjj


and where

Λij : (pij × pij) = SijΣWS
′
ij , pij ≤ p. (12.37)

Let Aj : (p × p) = S′jΛ
−1
j Sj . From (12.5) and (12.6) it follows that Aj =∑nj

i=1Aij , where
Aij = S′ijΛ

−1
ij Sij . (12.38)

Also define

Bj : (p× p) = (Σ−1
B + S′jΛ

−1
j Sj)

−1 = (Σ−1
B +Aj)−1. (12.39)

The following matrix expressions are defined in terms of (12.38) and (12.39):

Cj : (p× p) = (Ip −AjBj) (12.40)

Dj : (p× p) = (Ip −AjBj)Aj = CjAj . (12.41)

In order to obtain expressions for the inverse of the patterned covariance
matrix Σj defined by (12.7), define the qj × qj matrix Σ22.1 as

Σ22.1 = (Σjxx −ΣjxyV
−1
j Σjyx), qj ≤ q (12.42)

where (see (12.7)) Σjxx = RjΣxxR
′
j and Σjyx = SjΣyxR

′
j .

Using a well-known matrix identity [see, e.g., 27], it follows from (12.36)
that

V −1
j = Λ−1

j −Λ
−1
j Sj

(
Σ−1
B + S′jΛ

−1
j Sj

)−1
S′jΛ

−1
j

= Λ−1
j −Λ

−1
j SjBjS

′
jΛ

−1
j . (12.43)

Hence, using (12.39), it follows that

Σ22.1 = Rj (Σxx −ΣxyDjΣyx)R′
j .

Using another well-known result for the inverse of a partitioned matrix [see,
e.g., 4],

Σ−1
j =

(
Σ11
j Σ12

j

Σ21
j Σ22

j

)
, (12.44)

it follows that

Σ11
j = V −1

j ΣjyxΣ
−1
22.1ΣjxyV

−1
j + V −1

j

Σ21
j = −Σ−1

22.1ΣjxyV
−1
j

Σ12
j = −V −1

j ΣjyxΣ
−1
22.1

Σ22
j = Σ−1

22.1 .
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Let
Ej : (q × q) = R′

jΣ
22
j Rj = R′

jΣ
−1
22.1Rj . (12.45)

Using (12.43) and (12.45), it follows after simplification that

Σ11
j = V −1

j +Λ−1
j SjCjΣyxR

′
jΣ

−1
22.1RjΣxyC

′
jS

′
jΛ

−1
j

= V −1
j +Λ−1

j SjCjΣyxEjΣxyC
′
jS

′
jΛ

−1
j .

A more compact expression for Σ11
j is obtained by defining the p× p matrix

Fj as

Fj = CjΣyxR
′
jΣ

−1
22.1RjΣxyC

′
j = CjΣyxEjΣxyC

′
j . (12.46)

Finally, define Hj as
Hj = Fj −Bj . (12.47)

Then from (12.43) it follows that Σ11
j can be written as

Σ11
j = V −1

j +Λ−1
j SjFjS

′
jΛ

−1
j = Λ−1

j +Λ−1
j SjHjS

′
jΛ

−1
j . (12.48)

It can also be verified (see (12.38) and (12.44)) that

Σ12
j = −Λ−1

j SjC
′
jΣyxR

′
jΣ

−1
22.1 . (12.49)

From (12.7) and applying well-known results [see, e.g., 4], for partitioned
matrices, it follows that |Σj | = |Vj | |Σ22.1|, where

|Vj | = |SjΣBS
′
j +Λj | = |Λj | |ΣB | |Σ−1

B +Aj | (12.50)

with Aj as defined in (12.38). Hence

|Σj | =

{
nj∏
i=1

|Λij |

}
|ΣB | |Σ−1

B +Aj | |Σ22.1|.

12.B.2 Likelihood Function

From the equations (12.1) to (12.7) it follows that

lnLj = − 1
2

{
nj∑
i=1

pij ln 2π + ln |Σj |+ e′jΣ−1
j ej

}
,

where ej = yj − µj and pij = rank(Sij). If no yij values are missing, pij = p

and Sij = Ip. From (12.10) it follows that the function to be minimized is

F (γ) = 1
2

J∑
j=1

(ln |Σj |+ e′jΣ−1
j ej) (12.51)
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Partition ej as

ej =
(
e(1)j

e(2)j

)
, (12.52)

where

e′(1)j = (e′1j , e
′
2j , . . . , e

′
njj) = (y′1j − µ′1j ,y′2j − µ′2j , . . . ,y′njj − µ

′
njj)

and where
e(2)j = xj − µ(x)j . (12.53)

In order to simplify the terms in (12.51), we define the following vectors in
terms of ej . Recall from (12.1) that µij = X(y)ijβy and µ(x)j = X(x)jβx. Let
pj be a p× 1 vector defined as

pj = S′jΛ
−1
j e(1)j , (12.54)

then

pj =
nj∑
i=1

S′ijΛ
−1
ij eij =

nj∑
i=1

pij .

Also, let

qij = Z ′ijΣ
11
j e(1)j +Z ′ijΣ

12
j e(2)j (12.55)

rj = S′jΣ
11
j e(1)j + S′jΣ

12
j e(2)j . (12.56)

From (12.38), (12.48) and (12.54) it follows that

qij = pij +AijHjpj −AijC
′
jΣyxR

′
jΣ

−1
22.1e(2)j ,

rj = (Ip +AjHj)pj −AjC
′
jΣyxR

′
jΣ

−1
22.1e(2)j ,

and

sj = R′
jΣ

21
j e(1)j +R′

jΣ
22
j e(2)j

= R′
jΣ

−1
22.1RjΣxyCjpj +R′

jΣ
−1
22.1e(2)j . (12.57)

Calculation of e′
jΣ

−1
j ej

From (12.52) it follows that e′jΣ
−1
j ej = t11 + 2t12 + t22, where (see (12.43) –

(12.47) and (12.54))

t11 = e′(1)jΣ
11
j e(1)j =

nj∑
i=1

e′ijΛ
−1
ij eij + p′jHjpj ,

t12 = e′(1)jΣ
12
j e(2)j = −p′jCjΣyxR

′
jΣ

−1
22.1e(2)j ,

and

t22 = e′(2)jΣ
−1
22.1e(2)j . (12.58)
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12.B.3 Gradient Vector

From (12.12), (12.14), and (12.53) it follows that

∂F

∂[π1]r
= −

J∑
j=1

tr
{

(Σ−1
j eje

′
jΣ

−1
j −Σ

−1
j )

∂Σj

∂[π1]r

}
(12.59)

∂F

∂[π2]r
= −2

J∑
j=1

tr
{
e′jΣ

−1
j

∂µj
∂[π2]r

}
, (12.60)

where the k∗ × 1 vector π is partitioned as π′ = (π′1,π
′
2), with π′1 = (β′y,β

′
x)

and π′2 =
(
(vecsΣB)′, (vecsΣW )′, (vecΣxy)′, (vecsΣxx)′

)
.

Calculation of ∂F/∂[ΣB]r,s

From (12.7) it follows that

∂Σj

∂[ΣB ]r,s
=

 ∂Vj
∂[ΣB ]r,s

∅

∅ ∅

 ,

where

∂Vj
∂[ΣB ]r,s

= SjGrsS
′
j

Grs = Jrs + (1− δrs)Jsr , (12.61)

and δrs is Kronecker’s delta, i.e., δrs = 1 if r = s, and 0 otherwise.
Therefore, after some simplification using the partitioning (12.44) of Σ−1

j ,
it follows that

∂F

∂[ΣB ]r,s
= −

J∑
j=1

tr
{
(Σ11

j e(1)j +Σ12
j e(2)j)(e′(1)jΣ

11
j + e′(2)jΣ

21
j )(SjGrsS

′
j)
}

+
J∑
j=1

trΣ11
j SjGrsS

′
j

=
J∑
j=1

trS′jΣ
11
j SjGrs −

J∑
j=1

tr rjr′jGrs

with rj defined in (12.56). Equivalently,

∂F

∂[ΣB ]r,s
= (2− δrs)

J∑
j=1

[
S′jΣ

11
j Sj − rjr′j

]
r,s
. (12.62)
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Calculation of S′
jΣ

11
j Sj

From (12.48) it follows that

S′jΣ
11
j Sj = S′jΛ

−1
j Sj + S′jΛ

−1
j SjHjS

′
jΛ

−1
j Sj .

Therefore, using (12.38) and (12.66),

S′jΣ
11
j Sj = Aj(Ip +HjAj) = Kj . (12.63)

Calculation of rj

From the expressions (12.48) and (12.56), it follows that S′jΣ
11
j e(1)j =

S′jΛ
−1
j e(1)j + S′jΛ

−1
j SjHjS

′
jΛ

−1
j e(1)j . Therefore, using (12.54),

S′jΣ
11
j e(1)j = pj +AjHjpj = (Ip +AjHj)pj . (12.64)

Similarly, from (12.40) and (12.49),

S′jΣ
12
j e(2)j = −S′jΛ−1

j SjC
′
jΣyxR

′
jΣ

−1
22.1e(2)j

= −AjC
′
jΣyxR

′
jΣ

−1
22.1e(2)j . (12.65)

Calculation of ∂F/∂[ΣW ]r,s

From (12.5), (12.7), and (12.36) it follows that

∂Vj
∂[ΣW ]r,s

=
nj∑
i=1

ZijGrsZ
′
ij ,

with Grs defined by (12.61), and Zij by (12.5). Therefore,

∂F

∂[ΣW ]r,s
= −

J∑
j=1

nj∑
i=1

tr
{
(Σ11

j e(1)j +Σ12
j e(2)j)(e′(1)jΣ

11
j + e′(2)jΣ

21
j )

×ZijGrsZ
′
ij

}
+

J∑
j=1

trΣ−1
j

∂Σj

∂[ΣW ]r,s

=
J∑
j=1

trΣ−1
j

∂Σj

∂[ΣW ]r,s
−

J∑
j=1

nj∑
i=1

tr qijq′ijGrs

=
J∑
j=1

trΣ−1
j

∂Σj

∂[ΣW ]r,s
− (2− δrs)

J∑
j=1

nj∑
i=1

[
qijq

′
ij

]
r,s
,

where qij is defined in (12.55). Since Z ′ij = (∅, . . . ,S′ij , . . . ,∅), it follows that
(see also (12.54))
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Z ′ijΣ
11
j e(1)j = Z ′ij

[
Λ−1
j +Λ−1

j Sj(Fj −Bj)S′jΛ
−1
j

]
e(1)j

= SijΛ
−1
ij eij +AijHjpj

= pij +AijHjpj .

Furthermore, Z ′ijΣ
12
j e(2)j = −AijC

′
jΣyxR

′
jΣ

−1
22.1e(2)j . Finally (see (12.38)

and (12.47)),

trΣ−1
j

∂Σ

∂[ΣW ]r,s

= tr

{
nj∑
i=1

Z ′ijΣ
11
j ZijGrs

}

=
nj∑
i=1

tr(Z ′ijΛ
−1
j ZijGrs +Z ′ijΛ

−1
j SjHjS

′
jΛ

−1
j ZijGrs)

= (2− δrs)
nj∑
i=1

[
Aij(Ip +HjAij)

]
r,s
.

Hence

∂F

∂[ΣW ]r,s
= (2− δrs)

J∑
j=1

nj∑
i=1

[
Aij(Ip +Hj)Aij − qijq′ij

]
r,s
.

Calculation of ∂F/∂[Σxx]r,s

∂F

∂[Σxx]r,s
= −

J∑
j=1

tr
{
(Σ21

j e(1)j +Σ22
j e(2)j) (e′(1)jΣ

12
j + e′(2)jΣ

22
j )RjGrsR

′
j

}
+

J∑
j=1

tr
{
Σ−1
j

(
∅ ∅
∅ RjGrsR

′
j

)}

=
J∑
j=1

trΣ22
j RjGrsR

′
j −

J∑
j=1

tr sjs′jGrs

= (2− δrs)
J∑
j=1

[
R′
jΣ

22
j Rj −

J∑
j=1

sjs
′
j

]
r,s
,

where sj is defined in (12.57).

12.B.4 Hessian Matrix

The following matrix expressions are defined in terms of (12.38) – (12.41) and
(12.45) – (12.47) in order to simplify elements of the Hessian:
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Kj = S′jΣ
11
j Sj = Aj(I +HjAj) (12.66)

and

Lj : (p× q) = S′jΣ
12
j Rj = −AjC

′
jΣyxR

′
jΣ

−1
22.1Rj = −D′

jΣyxEj . (12.67)

Let

Mjrs =
nj∑
i=1

AijGrsAij =
nj∑
i=1

{
aijra

′
ijs + (1− δrs)aijsa′ijr

}
, (12.68)

with aijr the r-th column of Aij = S′ijΛ
−1
ij Sij . Also let

Nij = AijHjAij . (12.69)

Note:

To compute Mjrs =
∑nj

i=1AijGrsAij let jr be a column vector with all
elements equal to zero except for the r-th element which equals one. Hence
(see (12.61))

Grs = Jrs + (1− δrs)Jsr = jrj
′
s + (1− δrs)jsj′r .

Note that aijr = Aijjr is the r-th column of the symmetric matrix Aij .
Therefore

nj∑
i=1

AijGrsAij =
nj∑
i=1

{
aijra

′
ijs + (1− δrs)aijsa′ijr

}
.

Finally, define the block diagonal matrix Djrs as

Djrs =
nj⊕
i=1

SijGrsS
′
ij . (12.70)

Let σB = vecsΣB , σW = vecsΣW , σxx = vecsΣxx, σxy = vecΣxy, and
π′2 = (σ′B ,σ

′
W ,σ

′
xy,σ

′
xx). The Hessian with respect to π2:

[
p(p + 1) + pq +

1
2q(q + 1)

]
× 1 is

H(π2) = E



∂2F

∂σB ∂σ′B
[sym.]

∂2F

∂σW ∂σ′B

∂2F

∂σW ∂σ′W

∂2F

∂σxy ∂σ′B

∂2F

∂σxy ∂σ′W

∂2F

∂σxy ∂σ′xy

∂2F

∂σxx ∂σ′B

∂2F

∂σxx ∂σ′W

∂2F

∂σxx ∂σ′xy

∂2F

∂σxx ∂σ′xx


. (12.71)
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The simplification of the terms for the between and within components,
∂2F/∂[ΣB ]u,v ∂[ΣB ]r,s and ∂2F/∂[ΣW ]u,v ∂[ΣW ]r,s are given in the form of
propositions, followed by a listing of the simplified results for the remaining
elements of the Hessian.

Proposition 12.1.

E
∂2F

∂[ΣB ]u,v ∂[ΣB ]r,s
(12.72)

= 1
2

J∑
j=1

trKjGrsKjGuv

=
(2− δrs)(2− δuv)

4

J∑
j=1

([Kj ]r,u[Kj ]s,v + [Kj ]r,v[Kj ]s,u) (12.73)

with Kj defined in (12.66) and F by (12.10).

Proof. From (12.61)

∂Σj

∂[ΣB ]r,s
=
(
SjGrsS

′
j ∅

∅ ∅

)
.

Using this result and (12.44), [H(ΣB)]rs,uv can be written as

[H(ΣB)]rs,uv = 1
2

J∑
j=1

tr
{
Σ−1
j

∂Σj

∂[ΣB ]r,s
Σ−1
j

∂Σj

∂[ΣB ]u,v

}

= 1
2

J∑
j=1

tr{Σ11
j SjGrsS

′
jΣ

11
j SjGuvS

′
j}.

Since trAB = trBA with A = S′j and B = Σ11
j SjGrsS

′
jΣ

11
j SjGuv,

[H(ΣB)]rs,uv = 1
2

J∑
j=1

tr{S′jΣ11
j SjGrsS

′
jΣ

11
j SjGuv}.

From (12.66), Kj = S′jΣ
11
j Sj , so that

[H(ΣB)]rs,uv = 1
2

J∑
j=1

trKjGrsKjGuv .

From Bargmann [5] the following property holds: trAJijBJrs = [A]si[B]jr.
Using (12.63) and the definition of Grs (see (12.61)), it follows that the
formula for [H(ΣB)]rs,uv can be simplified to the form (12.73). ut
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Proposition 12.2.

E
∂2F

∂[ΣW ]u,v ∂[ΣW ]r,s
= 1

2

J∑
j=1

tr
{
Σ11
j

∂Vj
∂[ΣW ]r,s

Σ11
j

∂Vj
∂[ΣW ]r,s

}

= 1
2

J∑
j=1

trΣ11
j DjrsΣ

11
j Duv

= 1
2

J∑
j=1

nj∑
i=1

trAijGrsAijGuv

+ 1
2

J∑
j=1

trMjrsHjMjuvHj

+
J∑
j=1

nj∑
i=1

trNijGrsAijGuv ,

where
∂Vj

∂[ΣW ]r,s
=

nj∑
i=1

ZijGrsZ
′
ij

and whereGrs andDrs have been defined in (12.61) and (12.70), respectively.

Proof. From (12.48), Σ11
j = Λ−1

j +Λ−1
j SjHjS

′
jΛ

−1
j , so that

1
2

J∑
j=1

trΣ11
j DjrsΣ

11
j Djuv

= 1
2

J∑
j=1

tr
{
(Λ−1

j +Λ−1
j SjHjS

′
jΛ

−1
j )Djrs(Λ−1

j +Λ−1
j SjHjS

′
jΛ

−1
j )Djuv

}
= 1

2

J∑
j=1

trΛ−1
j DjrsΛ

−1
j Djuv

+ 1
2

J∑
j=1

tr(Λ−1
j SjHjS

′
jΛ

−1
j DjrsΛ

−1
j SjHjS

′
jΛ

−1
j Djuv)

+
J∑
j=1

tr(S′jΛ
−1
j DjrsΛ

−1
j DjuvΛ

−1
j SjHj). (12.74)

The three terms can be simplified as follows.

Term 1 : Using (12.37) and (12.38)
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1
2

J∑
j=1

trΛ−1
j DjrsΛ

−1
j Djuv

= 1
2

J∑
j=1

nj∑
i=1

tr
{
(S′ijΛ

−1
ij Sij)Grs(S′ijΛ

−1
ij Sij)Guv

}
= 1

2

J∑
j=1

nj∑
i=1

trAijGrsAijGuv .

Term 2 : Using the well-known property trAB = trBA with A = Λ−1
j SjHj ,

1
2

J∑
j=1

tr(Λ−1
j SjHjS

′
jΛ

−1
j DjrsΛ

−1
j SjHjS

′
jΛ

−1
j Djuv)

= 1
2

J∑
j=1

tr(S′jΛ
−1
j DjrsΛ

−1
j SjHjS

′
jΛ

−1
j DjuvΛ

−1
j SjHj).

Using (12.38) and (12.70), S′jΛ
−1
j DjrsΛ

−1
j Sj can be rewritten as

S′jΛ
−1
j DjrsΛ

−1
j Sj =

nj∑
i=1

S′ijΛ
−1
ij SijGrsS

′
ijΛ

−1
ij Sij

=
nj∑
i=1

AijGrsAij

= Mjrs ,

with Mjrs defined in (12.68). Substitution of this result allows the simplifica-
tion of the second term to

1
2

J∑
j=1

tr(Λ−1
j SjHjS

′
jΛ

−1
j DjrsΛ

−1
j SjHjS

′
jΛ

−1
j Djuv)

= 1
2

J∑
j=1

trMjrsHjMjuvHj .

Term 3 : The final term can be simplified using the definitions of Aij , Djrs,
and Grs (see (12.38), (12.70), and (12.61)) to write

S′jΛ
−1
j DjrsΛ

−1
j DjuvΛ

−1
j Sj =

nj∑
i=1

AijGrsAijGuvAij .

Thus (see (12.69))
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J∑
j=1

tr(S′jΛ
−1
j DjrsΛ

−1
j DjuvΛ

−1
j SjHj) =

J∑
j=1

nj∑
i=1

trNijGrsAijGuv .

When the results obtained for the three terms are substituted in (12.74), the
proposition follows. ut

The remaining components of the Hessian are obtained in a similar way.
Expressions for each remaining component of (12.71) are given below.

H(1, 2):

E
∂2F

∂[ΣB ]r,s ∂[ΣW ]u,v

= 1
2

J∑
j=1

tr(S′jΣ
11
j DjuvΣ

11
j SjGrs)

= 1
2

J∑
j=1

tr
{
(S′jΛ

−1
j +AjHjS

′
jΛ

−1
j )Djuv(Λ−1

j Sj +Λ−1
j SjHjAj)Grs

}
= 1

2

J∑
j=1

tr
{
(Ip +AjHj)S′jΛ

−1
j DjuvΛ

−1
j Sj(Ip +HjAj)Grs

}
= 1

2

J∑
j=1

tr
{
(Ip +AjHj)Mjuv(Ip +HjAj)Grs

}
.

H(1, 3):

E
∂2F

∂[ΣB ]r,s ∂[Σxy]u,v

= 1
2

J∑
j=1

tr(S′jΣ
11
j SjGrsS

′
jΣ

12
j RjJuv +RjJuvS

′
jΣ

11
j SjGrsS

′
jΣ

12
j )

=
J∑
j=1

tr(S′jΣ
11
j SjGrsS

′
jΣ

12
j RjJuv)

=
J∑
j=1

trKjGrsLjJuv .

H(2, 3): Using (12.45) and (12.49)
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E
∂2F

∂[ΣW ]r,s ∂[Σxy]u,v

= 1
2

J∑
j=1

tr(Σ11
j DjrsΣ

12
j RjJuvS

′
j +Σ21

j DjrsΣ
11
j SjJ

′
uvR

′
j)

=
J∑
j=1

tr(S′jΣ
11
j DjrsΣ

12
j RjJuv)

= −
J∑
j=1

tr
{
(Ip +AjHj)S′jΛ

−1
j DjrsΛ

−1
j SjC

′
jΣyxEjJuv

}
.

But (see (12.68))

S′jΛ
−1
j DjrsΛ

−1
j Sj =

nj∑
i=1

AijGrsAij = Mjrs

and Kj = S′jΣ
11
j Sj , so that

E
∂2F

∂[ΣW ]r,s ∂[Σxy]u,v

= −
J∑
j=1

tr
{
(Ip +AjHj)S′jΛ

−1
j DjrsΛ

−1
j SjC

′
jΣyxEjJuv

}
= −

J∑
j=1

tr(KjMjrsC
′
jΣyxEjJuv).

H(3, 3):

E
∂2F

∂[Σxy]r,s ∂[Σxy]u,v

=
J∑
j=1

tr(S′jΣ
12
j RjJrsS

′
jΣ

12
j RjJuv + S′jΣ

11
j SjJ

′
rsR

′
jΣ

22
j RjJuv)

=
J∑
j=1

tr(LjJrsLjJuv +KjJ
′
rsEjJuv).

H(1, 4):

E
∂2F

∂[ΣB ]r,s ∂[Σxx]u,v
= 1

2

J∑
j=1

tr(S′jΣ
12
j RjGuvR

′
jΣ

21
j SjGrs)

= 1
2

J∑
j=1

trL′jGrsLjGuv ,
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with Grs defined in (12.61).

H(2, 4):

E
∂2F

∂[ΣW ]r,s ∂[Σxx]u,v

= 1
2

J∑
j=1

tr(R′
jΣ

21
j DjrsΣ

12
j RjGuv)

= 1
2

J∑
j=1

tr(R′
jΣ

−1
22.1RjΣxyCjS

′
jΛ

−1
j DjrsΛ

−1
j SjC

′
jΣyxR

′
jΣ

−1
22.1RjGuv)

= 1
2

J∑
j=1

tr(EjΣxyCjMjrsC
′
jΣyxEjGuv).

H(3, 4): From (12.45) and (12.67)

E
∂2F

∂[Σxx]r,s ∂[Σxy]u,v

= 1
2

J∑
j=1

tr(S′jΣ
12
j RjGrsR

′
jΣ

22
j RjJuv +RjJuvS

′
jΣ

12
j RjGrsR

′
jΣ

22
j )

= 1
2

J∑
j=1

tr(S′jΣ
12
j RjGrsR

′
jΣ

22
j RjJuv + S′jΣ

12
j RjGrsR

′
jΣ

22
j RjJuv)

=
J∑
j=1

tr(S′jΣ
12
j RjGrsR

′
jΣ

22
j RjJuv)

=
J∑
j=1

trLjGrsEjJuv .

H(4, 4):

E
∂2F

∂[Σxx]r,s ∂[Σxx]u,v
= 1

2

J∑
j=1

tr(R′
jΣ

22
j RjGrsR

′
jΣ

22
j RjGuv)

= 1
2

J∑
j=1

trEjGrsEjGuv .

12.B.5 Gradient and Hessian for the Fixed Part of the Model

For the fixed part of the model, the gradient and Hessian are derived in a
similar way. Partition y

j
as y′

j
= (y′

(1)j
,x′j), with E (y

(1)j
) = X(y)jβy = µ(1)j

and E (xj) = X(x)jβx = µ(x)j . Then
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∂F

∂[βy]r
= −

J∑
j=1

tr
(
y(1)j − µ(1)j

xj − µ(x)j

)′ (
Σ11
j Σ12

j

Σ21
j Σ22

j

) (
X(y)jjr

∅

)

= −
J∑
j=1

tr
{
(y(1)j − µ(1)j)′Σ11

j X(y)jjr + (xj − µ(x)j)′Σ21
j X(y)jjr

}
= −

J∑
j=1

(e′(1)jΣ
11
j X(y)jjr + e′(2)jΣ

21
j X(y)jjr),

where e(1)j = y(1)j − µ(1)j and e(2)j = xj − µ(x)j . Similarly,

∂F

∂[βx]r
= −

J∑
j=1

tr
(
y(1)j − µ(1)j

xj − µ(x)j

)′ (
Σ11
j Σ12

j

Σ21
j Σ22

j

) (
∅

X(x)jjr

)

= −
J∑
j=1

tr
{
(y(1)j − µ(1)j)′Σ12

j X(x)jjr + (xj − µ(x)j)′Σ22
j X(x)jjr

}
= −

J∑
j=1

(e′(1)jΣ
12
j X(x)jjr + e′(2)jΣ

22
j X(x)jjr).

Turning to the elements of the Hessian, we have

[H(β)]r,s =
J∑
j=1

{
∂µ′j
∂[β]r

Σ−1
j

∂µj
∂[β]s

}
.

In terms of βy, we find that

E
∂2F

∂[βy]r ∂[βy]s
=

J∑
j=1

tr(j′rX
′
(y)jΣ

11
j X(y)jjs).

Also

E
∂2F

∂[βx]r ∂[βx]s
=

J∑
j=1

tr(j′rX
′
(x)jΣ

22
j X(x)jjs).

Finally

E
∂2F

∂[βy]r ∂[βx]s
=

J∑
j=1

tr(j′rX
′
(y)jΣ

12
j X(x)jjs).

12.B.6 Simplifications for Special Cases

When there are no missing data, and no x-variables on level 2, the reader may
verify that expressions for the gradient vector and Hessian matrix simplify
considerably [see 14]. For example,
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H(σB ,σ′B) = 1
2
G′
p


J∑
j=1

Kj �Kj

Gp ,

where Kj = Aj(Ip−BjAj), with Aj = njΣ
−1
W and Bj = (Σ−1

B +njΣ−1
W )−1.

Also

H(σB ,σ′W ) = 1
2
G′
p


J∑
j=1

Σ−1
W (Ip −BjAj) �Σ−1

W (Ip −BjAj)

Gp ,

H(σW ,σ′W ) = 1
2
G′
p


J∑
j=1

nj(Σ−1
W −Σ

−1
W BjΣ

−1
W ) � (Σ−1

W −Σ
−1
W BjΣ

−1
W )

+ nj(nj − 1)(Σ−1
W BjΣ

−1
W ) � (Σ−1

W BjΣ
−1
W )

Gp .

These results follow, since Sij = Ip for j = 1, 2, . . . , J , i = 1, 2, . . . , nj . Use
is also made of the result that trAGrsAGuv is a typical element of G′

p(A�
A)Gp, where [see, e.g., 8] Gp is a unique p2 × 1

2p(p + 1) matrix such that
vecS = Gp vecsS, with S a symmetric p× p matrix, and Grs was defined in
(12.61).

Note that we preferred to obtain expressions for the gradient and Hessian
in terms of individual elements and not in terms of the resulting Kronecker
products. Suppose, for example, that p = 10 and ΣW is constrained to be
equal to a diagonal matrix. The corresponding Hessian will only contain the
55 nonduplicated elements [H(ΣW )]rr,ss instead of the 1

2 (55 × 56) elements
of the unconstrained case.

In general, if allowance is to be made for some elements of ΣW and
ΣB to be fixed, it is more efficient to have elementwise expressions for the
corresponding gradient and Hessian.

One could also compute the patterns of missingness within each level-2
unit, so that, for example,

Aj =
nj∑
i=1

S′ijAijSij = n∗jΣ
−1
W +

m∑
k=1

nkS
′
ikAikSik ,

where n∗j equals the number of complete patterns, m equals the number of
patterns for missing value cases and nk denotes the number of cases belonging
to pattern k, k = 1, 2, . . . ,m. Note that

∑m
k=1 nk = nj − n∗j .
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25. K. G. Jöreskog and D. Sörbom. LISREL 8: Structural Equation Modeling with

the SIMPLIS Command Language. Scientific Software International, Chicago,

1993.
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