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Continuous Outcomes

Case Study: Measurement of physical constants. What
used to be called the National Bureau of Standards (NBS) in

Washington, DC, conducts extremely high precision
measurement of physical constants, such as the actual

weight of so-called check-weights that are supposed to
serve as reference standards (like the official kg).

In 1962–63, for example, n = 100 weighings (listed below) of
a block of metal called NB10, which was supposed to weigh
exactly 10g, were made under conditions as close to IID as

possible (Freedman et al., 1998).

Value 375 392 393 397 398 399 400 401
Frequency 1 1 1 1 2 7 4 12

Value 402 403 404 405 406 407 408 409
Frequency 8 6 9 5 12 8 5 5

Value 410 411 412 413 415 418 423 437
Frequency 4 1 3 1 1 1 1 1

Q: (a) How much does NB10 really weigh? (b) How certain
are you given the data that the true weight of NB10 is less
than (say) 405.25? And (c) How accurately can you predict

the 101st measurement?

The graph below is a normal qqplot of the 100
measurements y = (y1, . . . , yn), which have a mean of

ȳ = 404.6 (the units are micrograms below 10g)
and an SD of s = 6.5.
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NB10 Data
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Evidently it’s plausible in answering these questions to
assume symmetry of the “underlying distribution” F in

de Finetti’s Theorem.

One standard choice, for instance, is the Gaussian:

(µ, σ2) ∼ p(µ, σ2)

(Yi|µ, σ2)
IID∼ N

(
µ, σ2

)
. (1)

Here N
(
µ, σ2

)
is the familiar normal density

p(yi|µ, σ2) =
1

σ
√

2π
exp

[
−1

2

(
yi − µ

σ

)2
]

. (2)
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Gaussian Modeling

Even though you can see from the previous graph that (79)
is not a good model for the NB10 data, I’m going to fit it

to the data for practice in working with the normal
distribution from a Bayesian point of view (later we’ll

improve upon the Gaussian).

(79) is more complicated than the models in the AMI and
LOS case studies because the parameter θ here is a vector:

θ = (µ, σ2).

To warm up for this new complexity let’s first consider a
cut-down version of the model in which we pretend that σ

is known to be σ0 = 6.5 (the sample SD).

This simpler model is then
{

µ ∼ p(µ)

(Yi|µ)
IID∼ N

(
µ, σ2

0

)
}

. (3)

The likelihood function in this model is

l(µ|y) =

n∏

i=1

1

σ0

√
2π

exp

[
− 1

2σ2
0

(yi − µ)2

]

= c exp

[
− 1

2σ2
0

n∑

i=1

(yi − µ)2

]
(4)

= c exp

[
− 1

2σ2
0

(
n∑

i=1

y2
i − 2µ

n∑

i=1

yi + nµ2

)]

= c exp


− 1

2
(

σ2
0

n

)(µ − ȳ)2


 .

Thus the likelihood function, when thought of as a density
for µ, is a normal distribution with mean ȳ and SD σ0√

n
.
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Gaussian Modeling (continued)

Notice that this SD is the same as the frequentist standard
error for Ȳ based on an IID sample of size n from the

N
(
µ, σ2

0

)
distribution.

(82) also shows that the sample mean ȳ is a sufficient
statistic for µ in model (81).

In finding the conjugate prior for µ it would be nice if the
product of two normal distributions is another normal
distribution, because that would demonstrate that the

conjugate prior is normal.

Suppose therefore, to see where it leads, that
the prior for µ is (say) p(µ) = N

(
µ0, σ

2
µ

)
.

Then Bayes’ Theorem would give

p(µ|y) = c p(µ) l(µ|y) (5)

= c exp

[
− 1

2σ2
µ

(µ − µ0)
2

]
exp

[
− n

2σ2
0

(µ − ȳ)2

]

= c exp

{
−1

2

[
(µ − µ0)

2

σ2
µ

+
n(µ − ȳ)2

σ2
0

]}
,

and we want this to be of the form

p(µ|y) = c exp

{
−1

2

[
A(µ − B)2 + C

]}

= c exp

{
−1

2

[
Aµ2 − 2ABµ + (AB2 + C)

]}
(6)

for some B, C, and A > 0.

Maple can help see if this works:

> collect( ( mu - mu0 )^2 / sigmamu^2 +
n * ( mu - ybar )^2 / sigma0^2, mu );

2 2
/ 1 n \ 2 / mu0 n ybar \ mu0 n ybar
|-------- + -------| mu + |-2 -------- - 2 -------| mu + -------- + -------
| 2 2| | 2 2| 2 2
\sigmamu sigma0 / \ sigmamu sigma0 / sigmamu sigma0
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Gaussian Modeling

Matching coefficients for A and B
(we don’t really care about C) gives

A =
1

σ2
µ

+
n

σ2
0

and B =

µ0

σ2
µ

+ nȳ

σ2
0

1
σ2

µ

+ n
σ2

0

. (7)

Since A > 0 this demonstrates two things: (1) the
conjugate prior for µ in model (81) is normal, and (2) the
conjugate updating rule (when σ0 is assumed known) is




µ ∼ N
(
µ0, σ

2
µ

)

(Yi|µ)
IID∼ N

(
µ, σ2

0

)
,

i = 1, . . . , n





→ (µ|y) = (µ|ȳ) = N
(
µ∗, σ

2
∗
)
, (8)

where the posterior mean and variance are given by

µ∗ = B =

(
1
σ2

µ

)
µ0 +

(
n
σ2

0

)
ȳ

1
σ2

µ

+ n
σ2

0

and σ2
∗ = A−1 =

1
1
σ2

µ

+ n
σ2

0

. (9)

It becomes useful in understanding the meaning of these

expressions to define the precision of a distribution, which

is just the reciprocal of its variance: whereas the variance
and SD scales measure uncertainty, the precision scale

quantifies information about an unknown.

With this convention (87) has a series of intuitive
interpretations, as follows:

• The prior, considered as an information source, is
Gaussian with mean µ0, variance σ2

µ, and precision 1
σ2

µ

, and

when viewed as a data set consists of n0 (to be determined
below) observations;

• The likelihood, considered as an information source, is

Gaussian with mean ȳ, variance
σ2

0

n
, and precision n

σ2
0

, and

when viewed as a data set consists of n observations;
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Gaussian Modeling (continued)

• The posterior, considered as an information source, is
Gaussian, and the posterior mean is a weighted average of
the prior mean and data mean, with weights given by the

prior and data precisions;

• The posterior precision (the reciprocal of the posterior
variance) is just the sum of the prior and data precisions
(this is why people invented the idea of precision—on this
scale knowledge about µ in model (81) is additive); and

• Rewriting µ∗ as

µ∗ =

(
1
σ2

µ

)
µ0 +

(
n
σ2

0

)
ȳ

1
σ2

µ

+ n
σ2

0

=

(
σ2

0

σ2
µ

)
µ0 + nȳ

σ2
0

σ2
µ

+ n
, (10)

you can see that the prior sample size is

n0 =
σ2

0

σ2
µ

=
1

(
σµ

σ0

)2
, (11)

which makes sense: the bigger σµ is in relation to σ0, the
less prior information is being incorporated in the

conjugate updating (86).

Bayesian inference with multivariate θ. Returning now

to (79) with σ2 unknown, (as mentioned above) this model
has a (p = 2)-dimensional parameter vector θ = (µ, σ2).

When p > 1 you can still use Bayes’ Theorem directly to
obtain the joint posterior distribution,

p(θ|y) = p(µ, σ2|y) = c p(θ) l(θ|y)
= c p(µ, σ2) l(µ, σ2|y), (12)

7



Multivariate Unknown θ

where y = (y1, . . . , yn), although making this calculation
directly requires a p-dimensional integration to evaluate the

normalizing constant c; for example, in this case

c = [p(y)]
−1 =

(∫∫
p(µ, σ2, y) dµ dσ2

)−1

=

(∫∫
p(µ, σ2) l(µ, σ2|y) dµ dσ2

)−1

. (13)

Usually, however, you’ll be more interested in the marginal
posterior distributions, in this case p(µ|y) and p(σ2|y).

Obtaining these requires p integrations, each of dimension
(p − 1), a process that people refer to as marginalization or
integrating out the nuisance parameters—for example,

p(µ|y) =

∫ ∞

0

p(µ, σ2|y) dσ2 . (14)

Predictive distributions also involve a p-dimensional
integration: for example, with y = (y1, . . . , yn),

p(yn+1|y) =

∫∫
p(yn+1, µ, σ2|y) dµ dσ2 (15)

=

∫∫
p(yn+1|µ, σ2) p(µ, σ2|y) dµ dσ2.

And, finally, if you’re interested in a function of the
parameters, you have some more hard integrations

ahead of you.

For instance, suppose you wanted the posterior distribution

for the coefficient of variation λ = g1(µ, σ2) =
√

σ2

µ

in model (79).
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Multivariate Unknown θ

Then one fairly direct way to get this posterior (e.g.,
Bernardo and Smith, 1994) is to (a) introduce a second

function of the parameters, say η = g2(µ, σ2), such that the
mapping f = (g1, g2) from (µ, σ2) to (λ, η) is invertible; (b)

compute the joint posterior for (λ, η) through the usual
change-of-variables formula

p(λ, η|y) = pµ,σ2

[
f−1(λ, η)|y

]
|Jf−1(λ, η)| , (16)

where pµ,σ2(·, ·|y) is the joint posterior for µ and σ2 and |Jf−1|
is the determinant of the Jacobian of the inverse

transformation; and (c) marginalize in λ by integrating out
η in p(λ, η|y), in a manner analogous to (92).

Here, for instance, η = g2(µ, σ2) = µ would create an
invertible f , with inverse defined by (µ = η, σ2 = λ2η2); the
Jacobian determinant comes out 2λη2 and (94) becomes

p(λ, η|y) = 2λη2 pµ,σ2(η, λ2η2|y).

This process involves two integrations, one (of dimension
p) to get the normalizing constant that defines (94) and one

(of dimension (p − 1)) to get rid of η.

You can see that when p is a lot bigger than 2 all these
integrals may create severe computational problems—this
has been the big stumbling block for applied Bayesian work

for a long time.

More than 200 years ago Laplace (1774)—perhaps the
second applied Bayesian in history (after Bayes

himself)—developed, as one avenue of solution to this
problem, what people now call Laplace approximations to
high-dimensional integrals of the type arising in Bayesian

calculations (see, e.g., Tierney and Kadane, 1986).

Starting in the next case study after this one, we’ll use
another, computationally intensive, simulation-based

approach: Markov chain Monte Carlo (MCMC).
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Gaussian Modeling

Back to model (79). The conjugate prior for θ =
(
µ, σ2

)

in this model (e.g., Gelman et al., 2003) turns out to be
most simply described hierarchically:

σ2 ∼ SI-χ2(ν0, σ
2
0)

(µ|σ2) ∼ N

(
µ0,

σ2

κ0

)
. (17)

Here saying that σ2 ∼ SI-χ2(ν0, σ
2
0), where SI stands for

scaled inverse, amounts to saying that the precision τ = 1
σ2

follows a scaled χ2 distribution with parameters ν0 and σ2
0.

The scaling is chosen so that σ2
0 can be interpreted as a

prior estimate of σ2, with ν0 the prior sample size of this
estimate (i.e., think of a prior data set with ν0

observations and sample SD σ0).

Since χ2 is a special case of the Gamma distribution, SI-χ2

must be a special case of the inverse Gamma family—its
density (see Gelman et al., 2003, Appendix A) is

σ2 ∼ SI-χ2(ν0, σ
2
0) ↔ (18)

p(σ2) =

(
1
2
ν0

)1

2
ν0

Γ
(
1
2
ν0

) (σ2
0

)1

2
ν0
(
σ2
)−(1+1

2
ν0)

exp

(
−ν0 σ2

0

2σ2

)
.

As may be verified with Maple, this distribution has mean
(provided that ν0 > 2) and variance (provided that ν0 > 4)

given by

E
(
σ2
)
=

ν0

ν0 − 2
σ2

0 and V
(
σ2
)
=

2ν2
0

(ν0 − 2)2(ν0 − 4)
σ4

0. (19)
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Gaussian Modeling (continued)

The parameters µ0 and κ0 in the second level of the prior

model (95), (µ|σ2) ∼ N
(
µ0,

σ2

κ0

)
, have simple parallel

interpretations to those of σ2
0 and ν0: µ0 is the prior

estimate of µ, and κ0 is the prior effective sample size of
this estimate.

The likelihood function in model (79), with both µ and σ2

unknown, is

l(µ, σ2|y) = c

n∏

i=1

1√
2πσ2

exp

[
− 1

2σ2
(yi − µ)2

]

= c
(
σ2
)−1

2
n
exp

[
− 1

2σ2

n∑

i=1

(yi − µ)2

]
(20)

= c
(
σ2
)−1

2
n
exp

[
− 1

2σ2

(
n∑

i=1

y2
i − 2µ

n∑

i=1

yi + nµ2

)]
.

The expression in brackets in the last line of (98) is

[ · ] = − 1

2σ2

[
n∑

i=1

y2
i + n(µ − ȳ)2 − nȳ2

]
(21)

= − 1

2σ2

[
n(µ − ȳ)2 + (n − 1)s2

]
,

where s2 = 1
n−1

∑n
i=1 (yi − ȳ)2 is the sample variance. Thus

l(µ, σ2|y) = c
(
σ2
)−1

2
n
exp

{
− 1

2σ2

[
n(µ − ȳ)2 + (n − 1)s2

]}
,

and it’s clear that the vector
(
ȳ, s2

)
is sufficient for

θ =
(
µ, σ2

)
in this model, i.e., l(µ, σ2|y) = l(µ, σ2|ȳ, s2).
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Gaussian Analysis

Maple can be used to make 3D and contour plots of this
likelihood function with the NB10 data:

> l := ( mu, sigma2, ybar, s2, n ) -> sigma2^( - n / 2 ) *

exp( - ( n * ( mu - ybar )^2 + ( n - 1 ) * s2 ) / ( 2 * sigma2 ) );

l := (mu, sigma2, ybar, s2, n) ->

2

(- 1/2 n) n (mu - ybar) + (n - 1) s2

sigma2 exp(- 1/2 ---------------------------)

sigma2

> plotsetup( x11 );

> plot3d( l( mu, sigma2, 404.6, 42.25, 100 ), mu = 402.6 .. 406.6,

sigma2 = 25 .. 70 );

403

404

405

406

mu

30

40

50

60

70

sigma2

0

2e–104

4e–104

6e–104

8e–104

1e–103

1.2e–103

1.4e–103

1.6e–103

You can use the mouse to rotate 3D plots and get other
useful views of them:
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Gaussian Analysis

403404405406
mu

0

2e–104

4e–104

6e–104

8e–104

1e–103

1.2e–103

1.4e–103

1.6e–103

The projection or shadow plot of µ looks a lot like a
normal (or maybe a t) distribution.

30 40 50 60 70
sigma2

0

2e–104

4e–104

6e–104

8e–104

1e–103

1.2e–103

1.4e–103

1.6e–103

And the shadow plot of σ2 looks a lot like a Gamma (or
maybe an inverse Gamma) distribution.
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Gaussian Analysis
> plots[ contourplot ]( 10^100 * l( mu, sigma2, 404.6, 42.25, 100 ),

mu = 402.6 .. 406.6, sigma2 = 25 .. 70, color = black );

35

40

45

50

55

sigma2

403.5 404 404.5 405 405.5
mu

The contour plot shows that µ and σ2 are uncorrelated in
the likelihood distribution, and the skewness of the marginal

distribution of σ2 is also evident.

Posterior analysis. Having adopted the conjugate prior

(95), what I’d like next is simple expressions for the
marginal posterior distributions p(µ|y) and p(σ2|y) and for

predictive distributions like p(yn+1|y).
Fortunately, in model (79) all of the integrations (such as

(92) and (93)) may be done analytically (see, e.g.,
Bernardo and Smith 1994), yielding the following results:

(σ2|y,G) ∼ SI-χ2(νn, σ2
n),

(µ|y,G) ∼ tνn

(
µn,

σ2
n

κn

)
, and (22)

(yn+1|y,G) ∼ tνn

(
µn,

κn + 1

κn

σ2
n

)
.

14



NB10 Gaussian Analysis

In the above expressions

νn = ν0 + n,

σ2
n =

1

νn

[
ν0σ

2
0 + (n − 1)s2 +

κ0n

κ0 + n
(ȳ − µ0)

2

]
, (23)

µn =
κ0

κ0 + n
µ0 +

n

κ0 + n
ȳ, and

κn = κ0 + n,

ȳ and s2 are the usual sample mean and variance of y, and
G denotes the assumption of the Gaussian model.

Here tν(µ, σ2) is a scaled version of the usual tν distribution,

i.e., W ∼ tν(µ, σ2) ⇐⇒ W−µ

σ
∼ tν.

The scaled t distribution (see, e.g., Gelman et al., 2003,
Appendix A) has density

η ∼ tν(µ, σ2) ↔ p(η) =
Γ
[
1
2
(ν + 1)

]

Γ
(
1
2
ν
)√

νπσ2

[
1 +

1

νσ2
(η − µ)2

]−1

2
(ν+1)

.

(24)

This distribution has mean µ (as long as ν > 1) and
variance ν

ν−2
σ2 (as long as ν > 2).

Notice that, as with all previous conjugate examples, the
posterior mean is again a weighted average of the prior

mean and data mean, with weights determined by the prior
sample size and the data sample size:

µn =
κ0

κ0 + n
µ0 +

n

κ0 + n
ȳ. (25)
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NB10 Gaussian Analysis (continued)

NB10 Gaussian Analysis. Question (a): I don’t know

anything about what NB10 is supposed to weigh (down to
the nearest microgram) or about the accuracy of the NBS’s
measurement process, so I want to use a diffuse prior for µ

and σ2.

Considering the meaning of the hyperparameters, to
provide little prior information I want to choose both ν0 and

κ0 close to 0.

Making them exactly 0 would produce an improper prior
distribution (which doesn’t integrate to 1), but choosing

positive values as close to 0 as you like yields a proper and
highly diffuse prior.

You can see from (100, 101) that the result is then

(µ|y,G) ∼ tn

[
ȳ,

(n − 1)s2

n2

]
.
= N

(
ȳ,

s2

n

)
, (26)

i.e., with diffuse prior information (as with the Bernoulli
model in the AMI case study) the 95% central Bayesian

interval virtually coincides with the usual frequentist 95%
confidence interval

ȳ ± t.975
n−1

s√
n

= 404.6 ± (1.98)(0.647) = (403.3,405.9).

Thus both {frequentists who assume G} and {Bayesians who
assume G with a diffuse prior} conclude that NB10 weighs
about 404.6µg below 10g, give or take about 0.65µg.

Question (b). If interest focuses on whether NB10 weighs
less than some value like 405.25, when reasoning in a
Bayesian way you can answer this question directly: the

posterior distribution for µ is shown below, and
PB(µ < 405.25|y,G,diffuse prior)

.
= .85, i.e., your betting

odds in favor of the proposition that µ < 405.25 are about
5.5 to 1.
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NB10 Gaussian Analysis (continued)

Weight of NB10

D
en

si
ty

403.0 403.5 404.0 404.5 405.0 405.5 406.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

When reasoning in a frequentist way PF(µ < 405.25) is
undefined; about the best you can do is to test

H0 : µ < 405.25, for which the p-value would (approximately)
be p = PF,µ=405.25(ȳ > 405.59) = 1 − .85 = .15, i.e.,

insufficient evidence to reject H0 at the usual significance
levels (note the connection between the p-value and the

posterior probability, which arises in this example because the
null hypothesis is one-sided).

NB The significance test tries to answer a different
question: in Bayesian language it looks at P(ȳ|µ)

instead of P(µ|ȳ).

Many people find the latter quantity more interpretable.

Question (c). We saw earlier that in this model

(yn+1|y,G) ∼ tνn

[
µn,

κn + 1

κn

σ2
n

]
, (27)

and for n large and ν0 and κ0 close to 0 this is

(yn+1|y,G)
·∼ N(ȳ, s2), i.e., a 95% posterior predictive
interval for yn+1 is (392,418).

17



Model Expansion

A standardized version of this predictive distribution
is plotted below, with the standardized NB10

data values superimposed.

Standardized NB10 Values

D
en

si
ty

-4 -2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

It’s evident from this plot (and also from the normal qqplot
given earlier) that the Gaussian model provides a poor fit for
these data—the three most extreme points in the data set in

standard units are −4.6,2.8, and 5.0.

With the symmetric heavy tails indicated in these plots, in
fact, the empirical CDF looks quite a bit like that of a t

distribution with a rather small number of
degrees of freedom.

This suggests revising the previous model by expanding it:
embedding the Gaussian in the t family and adding a

parameter k for tail-weight.

Unfortunately there’s no standard closed-form conjugate
choice for the prior on k.

A more flexible approach to computing is evidently
needed—this is where Markov chain Monte Carlo methods

come in.

18



t Sampling Distribution

Example: the NB10 Data. Recall from the posterior

predictive plot toward the end of part 2 of the lecture notes
that the Gaussian model for the NB10 data was inadequate:

the tails of the data distribution are too heavy
for the Gaussian.

It was also clear from the normal qqplot that the data
are symmetric.

This suggests thinking of the NB10 data values yi as like
draws from a t distribution with fairly small degrees of

freedom ν.

One way to write this model is

(µ, σ2, ν) ∼ p(µ, σ2, ν)

(yi|µ, σ2, ν)
IID∼ tν(µ, σ2), (28)

where tν(µ, σ2) denotes the scaled t-distribution with mean
µ, scale parameter σ2, and shape parameter ν.

This distribution has variance σ2
(

ν
ν−2

)
for ν > 2 (so that

shape and scale are mixed up, or confounded in tν(µ, σ2))
and may be thought of as the distribution of the quantity
µ + σ e, where e is a draw from the standard t distribution

that is tabled at the back of all introductory statistics books.

However, a better way to think about model (28)
is as follows.

It’s a fact from basic distribution theory, probably of more
interest to Bayesians than frequentists, that the t

distribution is an Inverse Gamma mixture of Gaussians .

This just means that to generate a t random quantity you
can first draw from an Inverse Gamma distribution and then
draw from a Gaussian conditional on what you got from the

Inverse Gamma.

19



t Sampling Distribution

(λ ∼ Γ−1(α, β) just means that λ−1 = 1
λ
∼ Γ(α, β)).

In more detail, (y|µ, σ2, ν) ∼ tν(µ, σ2) is the same as the
hierarchical model

(λ|ν) ∼ Γ−1
(ν

2
,
ν

2

)

(y|µ, σ2, λ) ∼ N
(
µ, λ σ2

)
. (29)

Putting this together with the conjugate prior for µ and σ2

we looked at earlier in the Gaussian model gives the
following HM for the NB10 data:

ν ∼ p(ν)

σ2 ∼ SI-χ2
(
ν0, σ

2
0

)

(
µ|σ2

)
∼ N

(
µ0,

σ2

κ0

)
(30)

(λi|ν) IID∼ Γ−1
(ν

2
,
ν

2

)

(
yi|µ, σ2, λi

) indep∼ N
(
µ, λi σ

2
)
.

Remembering also from introductory statistics that the
Gaussian distribution is the limit of the t family as ν → ∞,

you can see that the idea here has been to expand the
Gaussian model by embedding it in the richer t family, of

which it’s a special case with ν = ∞.

Model expansion is often the best way to deal with
uncertainty in the modeling process: when you find
deficiencies of the current model, embed it in a richer

class, with the model expansion in directions suggested by
the deficiencies (we’ll also see this method

in action again later).
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WinBUGS Implementation

I read in three files—the model, the data, and the initial
values—and used the Specification Tool from the Model

menu to check the model, load the data, compile the model,
load the initial values, and generate additional initial values

for uninitialized nodes in the graph.

I then used the Sample Monitor Tool from the Inference menu
to set the mu, sigma, nu, and y.new nodes, and clicked on

Dynamic Trace plots for mu and nu.

Then choosing the Update Tool from the Model menu,
specifying 2000 in the updates box, and clicking update

permitted a burn-in of 2,000 iterations to occur with the
time series traces of the two parameters displayed

in real time.
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WinBUGS Implementation (continued)

After minimizing the model, data, and inits windows and killing the
Specification Tool (which are no longer needed until the model is

respecified), I typed 10000 in the updates box of the Update Tool and
clicked update to generate a monitoring run of 10,000 iterations (you
can watch the updating of mu and nu dynamically to get an idea of the

mixing, but this slows down the sampling).

After killing the Dynamic Trace window for nu (to concentrate on mu for
now), in the Sample Monitor Tool I selected mu from the pull-down menu,
set the beg and end boxes to 2001 and 12000, respectively (to summarize
only the monitoring part of the run), and clicked on history to get the
time series trace of the monitoring run, density to get a kernel density
trace of the 10,000 iterations, stats to get numerical summaries of the

monitored iterations, quantiles to get a trace of the cumulative
estimates of the 2.5%, 50% and 97.5% points in the estimated

posterior, and autoC to get the autocorrelation function.
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WinBUGS Implementation (continued)

You can see that the output for µ is mixing fairly well—the
ACF looks like that of an AR1 series with first-order serial

correlation of only about 0.3.

σ is mixing less well: its ACF looks like that of an AR1 series
with first-order serial correlation of about 0.6.

This means that a monitoring run of 10,000 would probably
not be enough to satisfy minimal Monte Carlo accuracy
goals—for example, from the Node statistics window the
estimated posterior mean is 3.878 with an estimated MC

error of 0.0128, meaning that we’ve not yet achieved
three-significant-figure accuracy in this

posterior summary.
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WinBUGS Implementation (continued)

And ν’s mixing is the worst of the three: its ACF looks like that of an
AR1 series with first-order serial correlation of a bit less than +0.9.

WinBUGS has a somewhat complicated provision for printing out the
autocorrelations; alternately, you can approximately infer ρ̂1 from an
equation like (51) above: assuming that the WinBUGS people are taking
the output of any MCMC chain as (at least approximately) AR1 and

using the formula

ŜE
(
θ̄∗
)

=
σ̂θ√
m

√
1 + ρ̂1

1 − ρ̂1

, (31)

you can solve this equation for ρ̂1 to get

ρ̂1 =
m
[
ŜE
(
θ̄∗
)]2

− σ̂2
θ

m
[
ŜE
(
θ̄∗
)]2

+ σ̂2
θ

. (32)
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WinBUGS Implementation (continued)

Plugging in the relevant values here gives

ρ̂1 =
(10,000)(0.04253)2 − (1.165)2

(10,000)(0.04253)2 + (1.165)2

.
= 0.860, (33)

which is smaller than the corresponding value of 0.972 generated by the
classicBUGS sampling method (from CODA, page 67).

To match the classicBUGS strategy outlined above (page 71) I typed
30000 in the updates window in the Update Tool and hit update, yielding a

total monitoring run of 40,000.

Remembering to type 42000 in the end box in the Sample Monitoring

Tool window before going any further, to get a monitoring run of 40,000
after the initial burn-in of 2,000, the summaries below for µ are

satisfactory in every way.
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WinBUGS Implementation (continued)

A monitoring run of 40,000 also looks good for σ: on this
basis, and conditional on this model and prior, I think σ is

around 3.87 (posterior mean, with an MCSE of 0.006),
give or take about 0.44 (posterior SD), and my 95% central
posterior interval for σ runs from about 3.09 to about 4.81
(the distribution has a bit of skewness to the right, which

makes sense given that σ is a scale parameter).
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WinBUGS Implementation (continued)

If the real goal were ν I would use a longer monitoring
run, but the main point here is µ, and we saw back on p. 67
that µ and ν are close to uncorrelated in the posterior, so

this is good enough.

If you wanted to report the posterior mean of ν with an
MCSE of 0.01 (to come close to 3-sigfig accuracy) you’d

have to increase the length of the monitoring run by a

multiplicative factor of
(
0.02213

0.01

)2 .
= 4.9, which would yield a

recommended length of monitoring run of about 196,000
iterations (the entire monitoring phase would take about 3

minutes at 2.0 (PC) GHz).
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WinBUGS Implementation (continued)

The posterior predictive distribution for yn+1 given
(y1, . . . , yn) is interesting in the t model: the predictive mean
and SD of 404.3 and 6.44 are not far from the sample mean

and SD (404.6 and 6.5, respectively), but the predictive
distribution has very heavy tails, consistent with the

degrees of freedom parameter ν in the t distribution being so
small (the time series trace has a few simulated values less
than 300 and greater than 500, much farther from the

center of the observed data than the most outlying
actual observations).
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Gaussian Comparison

The posterior SD for µ, the only parameter directly
comparable across the Gaussian and t models for the NB10

data, came out 0.47 from the t modeling, versus 0.65
with the Gaussian, i.e., the interval estimate for µ from the
(incorrect) Gaussian model is about 40% wider that that

from the (much better-fitting) t model.
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A Model Uncertainty Anomaly?

NB Moving from the Gaussian to the t model involves a
net increase in model uncertainty, because when you

assume the Gaussian you’re in effect saying that you know
the t degrees of freedom are ∞, whereas with the t model

you’re treating ν as unknown. And yet, even though there’s
been an increase in model uncertainty, the inferential

uncertainty about µ has gone down.

This is relatively rare—usually when model uncertainty
increases so does inferential uncertainty (Draper

2004)—and arises in this case because of two things: (a) the
t model fits better than the Gaussian, and (b) the Gaussian

is actually a conservative model to assume as far as
inferential accuracy for location parameters

is concerned.

0 1000 2000 3000 4000 5000

3.
0

3.
5

4.
0

4.
5

5.
0

5.
5

sigma

D
en

si
ty

2 3 4 5 6

0.
0

0.
2

0.
4

0.
6

0.
8

Lag

A
C

F

0 10 20 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Series : sigma

Lag

P
ar

tia
l A

C
F

0 10 20 30

0.
0

0.
1

0.
2

0.
3

 Series : sigma

30


