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eBay-Google Bayesian short course: Problem set 4

1. (First practice with WinBUGS.) Write a WinBUGS program to use Gibbs sampling to an-
alyze the data in the length-of-stay case study, using the same Gamma prior and Poisson
likelihood as in that example. Obtain MCMC approximations both for the posterior distri-
bution of A given the data vector ¥ and the predictive distribution p(y,.1ly), and compare '
summaries of these distributions (means, SDs, histograms or density traces) with the the-
oretical conjugate results we got in the case study. You don’t need to worry about MCMC
diagnostics in this simple example, because Gibbs sampling when there’s only one parameter
amounts to I sampling from the relevant posterior and predictive distributions. Justify
your choices of initial values for the Markov chain and length of burn-in period. Use one of
the formulas given in class to work out how long you need to monitor the chain to report
3-significant-figure accuracy of the posterior mean estimates for both A and gy, and ver-
ify that you do indeed achieve that level of accuracy (at least up to Monte Carlo noise} in
your simulation. What length of monitoring run is necessary to report 3-significant-figure
accuracy of the posterior SI) estimate? Explain briefly, and report all relevant calculations
(simulation or otherwise).

2. (Second practice with WinBUGS.) In problem 3 of Problem Set 2 we used conjugate
inference to fit an Exponential sampling model to the wire failure data given in that problem,
and you may remember noticing that the biggest data value (21194) seemed a bit large in the
Exponential context, which tentatively called the Exponential distribution into question.
Recalling that the basic Bayesian idea for improving a model is to ezpand it by embedding
it in a richer class of models of which it’s a special case, the natural thing to try is to fit a
model to this data set in which the sampling distribution is Gamma (we saw in part 2 of
the lecture notes that the Exponential is a special case of the I'(c, 8) family with o = 1).
Write a WinBUGS program to use MCMC to fit the model

(@, 8) ~ ple,f) (1)
Wi, 8) ® T(a,B), i=1,...,n

to the wire failure data. For this problem, by way of prior information (unlike the situation
in Problem Set 2) let’s use a diffuse prior on & and 8. Since they both live on (0, 00} it’s
natural to try independent I'(e, ¢) priors for both of them, with (as usual) a small value for
¢ like 0.001; or you could use an initial run with T'(e,€) priors to see where the likelihood
is appreciable and then use U(0,c,) and U(0,cg) priors for a and 3, where ¢, and cg are
chosen to be big enough not to truncate the likelihood but not much larger than that.
Summarize the posterior distribution on e and 8 to an appropriate degree of Monte Carlo
accuracy. Does the ['(e, 8) family appear to provide a better fit to the wire failure data
than the Exponential sampling distribution used in Problem Set 27 Explain briefly.

3. (Multinomial data and the Dirichlet distribution as a prior; based on Section 3.5 in
Gelman et al.) In late October 1988, CBS News conducted a survey which was equivalent
to a simple random sample of n = 1,447 American adults to learn about voter preferences



in the Presidential election which was to be held a few weeks later. yy = 727 of these people
supported George Bush (the elder), 4o = 583 supported Michael Dukakis, and yz = 137
supported other candidates or responded “no opinion.” This situation is a lot like the AMI
mortality case study in class except that there are three outcome categories (Bush, Dukakis,
other) instead of two (died, lived): before any data arrives you would probably agree that
your -uncertainty about the string of 1,447 individual outcomes from each sampled person
(which is summarized by the counts ¥y = (y1, y2,¥s) = (727, 583, 137)) is exchangeable. This
leads by an easy generalization of de Finetti’s representation theorem for binary outcomes
to the following model for the summary counts:

(91,...,91‘;) ~ p(@l,,ﬁk) (2)
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where 0 < #; < lforall j =1,...,k and 2;‘-;1 0; = 1. The second line of (2) (the sam-
pling distribution of the vector y, which defines the likelihood function) is the multinomial
distribution, an obvious generalization of the binomial to k > 2 categories (in this voting
problem k = 3). Evidently in this model the conjugate prior for the vector 8 = (61, .., 0%)
is of the form
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this distribution turns out to be well-behaved for any choice of the hyperparameter vector
o= (o,...,0) such that o; > 0 for all j =1,..., k. This is the Dirichlet(c) distribution,
a generalization of the Beta distribution to more than two categories. With this prior the
model becomes '

(61,...,0x) ~ Dirichlet(cy,..., o) (4)
(Y1,+ - Yxlf1,---,08) ~ Multinomial(n;6s,...,0)

(see Appendix A in Gelman et al. for the normalizing constants). As with the Beta distri-
bution, the a; can clearly be seen in this model to represent prior sample sizes; in the voting
example, choosing a particular (o, a2, ) is equivalent to assuming that the prior is equiv-
alent to a data set with oy preferences for Bush, a for Dukakis, and «g for other. To create
a diffuse prior, which would be a natural choice in the absence of any earlier sampling data
(and even with earlier data it’s not clear that voter opinion is sufficiently stable over time
to make simple use of any previous polling results), we evidently want the o; to be small;
an easy choice that avoids complications with improper priors is to take o = (1,...,1), a

" multivariate generalization of the uniform distribution. The main scientific interest in this

problem focuses on v = (6, — 6,), the margin by which Bush is leading Dukakis.

(a) Write out the likelihood function for the vector @ in the Multinomial sampling model
above, and compute the maximum likelihood estimates of the 8; and of . You can either
do this by (i) expressing the log likelihood as a function of 6y,0;, and 03 and performing
a constrained maximization of it using Lagrange multipliers, or (ii) substituting €3 = (1 —
61 — 65) and ys3 = (n — y; — yo) into the log likelihood and carrying out an unconstrained
maximization in the usual way (by setting first partial derivatives to 0 and solving). Do
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the MLEs have reasonable intuitive forms? Explain briefly. (extra credit) On the web or
in a statistics text, read about how Fisher information generalizes when the parameter ¢ of
interest is a vector and use this to compute approximate large-sample standard errors for
the MLEs of the 8; and of +. - : ' :

(b) Use BUGS or WinBUGS with the diffuse prior mentioned above to simulate m draws from "

- the marginal posterior distributions for the 8; and for <, where m is large enough to yield

results that seem accurate enough to you given the context of the problem (briefly justify
your choice of m). How do the posterior means of the 6; compare with the MLEs? Explain
briefly. Report the posterior mean and SD of v, and compare your estimated posterior
density with the plot below, which is taken from Gelman et al. Use your MCMC output .

- to estimate p(vy > Oly), the chance that Bush would win the election if it were held shortly

after the data were gathered and the “other” (non-Bush, non-Dukekis) voters behaved
appropriately (briefly explain what has to be assumed about these other voters so ‘that

ply > 0ly) the chance that Bush would win the election), and attach a Monte Carlo
standard error to your estimate of p(y > Oly). Describe your MCMC sampling strategy

" (mainly your starting values and the length b of your burnin run; you've already justified

your choice of m) and briefly explain why you believe that this strategy has accurately
extracted the posterior distribution of interest.

—
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" Figure 3.3. Histogram of values of (1—02) for 1000 simulations from the posterior |
distribution for the election polling ezample. : |

(c) (extra credit) Use Maple or some equivalent environment (or paper and pen, if you're
brave) to see if you can derive a closed-form expression for p(vly), and compare your
mathematical result with your simulation-based findings in (a), using the actual data in

this example.

4. (extra credit) Write your own Metropolis-Hastings sampler to analyze the data in the
length-of-stay case study, using the same Gamma prior and P01sson likelihood as in that
example; using your MH sampler, complete as many of the steps in problem 1 of this

- assignment as you have time and patience for, and compare the results you obtained in
-problem 1 with Gibbs sampling. In choosing a proposal distribution for your MH sampler

there are two main ways to go: you can either (i) transform A to the log scale so that it
lives on the entire real line and use (something like) a Gaussian proposal distribution for



n = log(A) (in this case youll be using the simpler Metropolis form for the acceptance
probability), or (ii) pick a proposal distribution for A that simulates from the positive part
of the real line (a natural choice would be the family of Gamma distributions; in this case
you’ll be using the more complicated MH form for the acceptance probability). In either
(i) or (ii) you'll find that some measure of scale for the proposal distribution acts like a
tuning constant that can be adjusted to achieve optimal MH Monte Carlo efficiency. If you
have time it would be good to make a small study of how the MCSE of the posterior mean -
for A or n depends on this tuning constant, so that you can find the optimal scaling of the
proposal distribution. |



