8 Feb 2013

eBay-Google Bayesian short course: Problem set 4 solutions
(partial)

1. All of the example output involving BUGS in the class so far has been with WinBUGS; here
for variety I'll illustrate classicBUGS. As usual I create three files: poissonl.bug specifies
the model, poissonl.dat loads the data, and poissonl.in specifies the initial values.

poissonl.bug

model poissonil;

const

var
lambda, y[ n ], y.new;

data in "poissonl.dat";
inits in "poissonl.in";

{
lambda ~ dgamma( 0.001, 0.001 );
for (i in 1:n ) {
y[ i ] ~ dpois( lambda );
}

y.new ~ dpois( lambda );

‘poissonl.dat‘

list(y=c¢(1, 2,1, 1,1, 2,2, 4,3,6,2,1,3,0))

poissonl.in

list( lambda = 2.0 )



My session with classicBUGS (under Solaris UNIX), in which I specified a burn-in of 1,000
iterations (far longer than necessary but no harm is done [as mentioned in the problem
statement, with only a single parameter Gibbs sampling = IID sampling, and it doesn’t
matter where you start; you're in equilibrium after 1 iteration]) and a monitoring run of
10,000 iterations, went like this:

greco 339> bugs

Welcome to BUGS on 21 st Mar 2003 at 17:40:6

BUGS : Copyright (c) 1992 .. 1995 MRC Biostatistics Unit.

All rights reserved.

Version 0.603 for unix systems.

For general release: please see documentation for disclaimer.
The support of the Economic and Social Research Council (UK)
is gratefully acknowledged.

Bugs> compile( "poissonl.bug" )
[here classicBUGS just repeated the .bug file]
Parsing model declaratiomns.
Loading data value file(s).
Loading initial value file(s).
Parsing model specification.
Checking model graph for directed cycles.
Generating code.
Generating sampling distributions.
Generating initial values
Checking model specification.
Choosing update methods.
compilation took 00:00:00
Bugs>update( 1000 )
time for 1000 updates was 00:00:00
Bugs>monitor( lambda )
Bugs>monitor( y.new )
Bugs>update( 10000 )
time for 10000 updates was 00:00:01

Bugs>stats( lambda )

mean sd 2.5% : 97.5)% CI median sample
2.066E+0  3.868E-1 1.391E+0 2.908E+0 2.038E+0 10000



Bugs>stats( y.new )

mean sd 2.5% : 97.5)% CI median sample
2.077E+0 1.503E+0 0.000E+0 6.000E+0  2.000E+0 10000
Bugs>q( )
greco 340>

You can use the stats command in classicBUGS to get the usual summary statistics for
each node in the graph. One way (perhaps the most stringent way we've looked at) to
decide how long to monitor the chain to get 3-significant-figure accuracy for the posterior
mean is the Brooks-Draper diagnostic: from the initial monitoring run of 10,000 iterations
the estimated posterior mean for \ is 2.066E+0, so b = 0; choosing o = 0.05 for 95% Monte
Carlo confidence and k = 3, taking 0.3868 for the current posterior SD estimate, and using
p1 = 0 because the series is IID yields

0.3868 )2 (1 +0

m > 4(1.960)" (100_3+l 0

) = 92,989 = 23, 000. (1)
The corresponding calculation for y,,; yields m > 347,000, because the posterior SD is
so much larger on the predictive scale (but even on my not-very-fast (550 Unix MHz)
workstation this only takes 8 seconds).

After a similar classicBUGS session with a burn-in of length 1,000 and a monitoring run of
347,000 iterations, there are two new files in the directory in which I ran BUGS: bugs.out
(which contains the MCMC data set) and bugs.ind (which tells me how BUGS has stored
that data set):

greco 350> more bugs.ind

lambda 1 347000
y.new 347001 694000

(i.e., BUGS has put all of the simulated draws for A in the first 347,000 rows and all of the y,,4
draws in the last 347,000). Looking also at bugs.out you can see that classicBUGS writes
out two columns, one for the iteration number and one for the quantity being monitored:

greco 353> more bugs.out

1001 2.13775
1002 2.05825
1003 2.70570
1004 1.30209
1005 2.31741



Estimated and theoretical densities for lambda

1.0

0.8
|

Density

0.4

lambda

Figure 1: A comparison of the true posterior distribution for A (solid line) with its MCMC
estimate (dotted line).

Here’s some R code to read the bugs.out file and make some comparisons between the
Monte Carlo and theoretical results:

greco 361> R

R : Copyright 2003, The R Development Core Team
Version 1.6.2 (2003-01-10)

[Previously saved workspace restored]

> lambda <- matrix( scan( "bugs.out" ), 694000, 2,
byrow = T )[ 1:347000, 2 ]

Read 1388000 items

> y.new <- matrix( scan( "bugs.out" ), 694000, 2,
byrow = T )[ 347001:694000, 2 ]

Read 1388000 items

> mean( lambda )



[1] 2.072043

> alpha.star <- 29.001

> beta.star <- 14.001

> alpha.star / beta.star

[1] 2.071352

> sd( lambda )

[1] 0.3848807

> sqrt( alpha.star / beta.star"2 )
[1] 0.3846338

> mean( y.new )

[1] 2.070055

> sd( y.new )

[1] 1.488519

> sqrt( alpha.star * ( 1 + 1 / beta.star ) / beta.star )
[1] 1.48973

> postscript( "hw4-1.ps" )

> plot( density( lambda ), type = ’1’, xlab = ’lambda’,
main = ’Estimated and theoretical densities for lambda’ )

> lambda.grid <- seq( 0.7, 4.0, length = 500 )

> lines( lambda.grid, dgamma( lambda.grid, shape = 29.001,
scale = 1 / 14.001 ), 1ty = 2 )

> dev.off( )
> postscript( "hw4-2.ps" )
> hist( y.new, probability = T, breaks = 0:14 - 0.5, xlab = ’y.new’,

main = ’Estimated and theoretical pmfs for y.new’,
ylab = ’Probability’ )



Estimated and theoretical pmfs for y.new

0.25
|

0.20
|

0.15
|

Probability

0.10
|

0.05
|

0.00
L

y.new

Figure 2: A comparison of the true posterior predictive distribution for y,.1 (solid line) with
its MCMC' estimate (dotted line).

> pmf <- exp( lgamma( alpha.star + 0:13 ) + alpha.star * log(
beta.star / ( 1 + beta.star ) ) + 0:13 * log( 1 /
(1 + beta.star ) ) - lgamma( alpha.star ) - lgamma( 0:13 + 1 ) )

> for (i in 0:13 ) {
segments( i, 0, i, pmf[ 1 + 1 1, 1ty = 2 )
}

> dev.off( )

You can see that a monitoring run of 347,000 has indeed met (and actually exceeded, in this
case) the target of 3-sigfig accuracy: the theoretical posterior means and SDs differ from
their Monte Carlo estimates by 1 or 2 ticks in the fourth sigfig for both A and y,,+1, and the
kernel density traces and histograms based on the MCMC output (Figures 1 and 2) differ
from their theoretical counterparts by amounts which are visually negligible.

As for the MCMC accuracy of the posterior SD, equation (17) from chapter 4 of the lecture
notes indicates, when the marginal posterior is not far from Gaussian and the time series
for the given parameter behaves like white noise, that the MCSE for the posterior SD is
smaller than that for the posterior mean by a factor of v/2, which means that the required

6



monitoring run length to get the same accuracy is smaller for the SD than the mean by
a factor of 2. This calculation would apply here with reasonable force to A (you can see
from Figure 1 that its posterior distribution is approximately Gaussian) but would be less
convincing for y,,+1 (Figure 2 shows that its distribution is considerably more skewed). (to
be continued)

2. (to be continued)
3. (a) The likelihood function here is

(61, 02, 05)y1, Y2, y3) = c 07" 65 65, (2)
and the log likelihood function is
UOly) = c+y1In(61) + y2 In(62) + y3 In(65); (3)
the MLEs are found by maximizing (3) subject to the constraint
g(0) =0, +60,+65—1=0. (4)

Using method (i) mentioned in the problem statement, this is a job for Lagrange multipliers:
the constrained extrema will satisfy the system of four equations in four unknowns defined
for some A by (4) plus

o 9 ey

d Y2 0 o
0 _ U39 oy
8—93ll(0|y) =0 )\8939(9) =\

Adding the three equations in (5) after multiplying equation i by #; and using (4) yields
y1+y2+y3:n:(91+92+93))\:)\, (6)

from which evidently, for i = 1,2, 3,
N
(ei)l\/ILE - ! (7)

a result that makes excellent intuitive sense. It remains to demonstrate that (7) defines the
maximum of (3); your favorite multivariate calculus book will remind you that a stationary
point of l1(A|y) (a point at which all of its first partial derivatives are 0) is a local maximum
if all of the eigenvalues of the Hessian (the matrix of second partial derivatives) of I1(0|y)
at the stationary point are negative. The Hessian of (3) is

_g_% 0
HO)=| 0 - 0 [; (8)
0 0 -

3
2
03



evaluated at the stationary point (7) it becomes

2

-0 0
H(bwe)=| 0 -2 0 |. (9)
o 0 -2

Y3

The eigenvalues of (9) are evidently its diagonal elements, which you can see are indeed all
negative, so (7) is indeed a local maximum; and (as you can check) it’s a global maximum
because approaching the relevant boundaries of the domain of (3), namely letting the 6; get
arbitrarily close to 0 or 1, the log likelihood function goes to —oo.

Using method (ii) instead to find the MLEs, substitute (say) 3 = 1 — 6; — 65 and y3 =
n — 1y — Yo into (3) to yield

ll(@l, Qg\yl, yg) =c+ Y1 11’1(91) + Y2 111(92) + (n — Y — yg) 11’1(1 — 91 — 92); (10)

setting the first partial derivatives of this with respect to 6, and 65 equal to 0 yields

0 Y =Y — Y2

a5 0y = 5 — T —g- =0 (11)
d Y2 N—Y1—Ya
005 1oly) = O, 1—6,—6, 0

This is a system of two linear equations in the two unknowns 6; and #5 whose solution for
1=1,21s

iy i

(Hi)MLE n’ (12>
and then from the constraint on the parameters and by the functionalA invariance prop-
erty of MLEs you get immediately that (6’3)MLE =1- (Ql)MLE — (QQ)MLE = % and

Y = [(él)MLE — (ég)MLE}. Your favorite book on mathematical statistics will tell you that
when the parameter 6 of interest is a vector the analogue of Fisher information is a matrix
given by R R

[=—H(fue) . (13)

and that for large n the repeated-sampling distribution of Oprp 18 approximately multivariate
Gaussian with mean 6 and covariance matrix V = I, the inverse of the Fisher information
matrix. Here, because of the constraint on the parameters, (9) can’t be used to compute
the Hessian; you need to apply (13) to the method—(ii) parameterization. At this point (if
not before) Maple starts to become quite useful:

greco 2841> maple

N~/ Maple 7 (SUN SPARC SOLARIS)
_INI |/1_. Copyright (c) 2001 by Waterloo Maple Inc.
\ MAPLE / All rights reserved. Maple is a registered trademark of
S > Waterloo Maple Inc.

[ Type 7 for help.



> assume( n > 0, y1 > 0, y2 > 0, thetal > 0, thetal < 1, theta2 > O,
theta2 < 1 );

> with( linalg ):

Warning, the protected names norm and trace have been redefined and
unprotected

> 11 := ( y1, thetal, y2, theta2, n ) -> y1 * 1ln( thetal ) +
y2 * In( theta2 ) + (n -yl - y2 ) * 1n( 1 - thetal - theta2 );

11 := (y1, thetal, y2, theta2, n) ->
y1 1n(thetal) + y2 1n(theta2) + (n - y1 - y2) 1n(1 - thetal - theta2)

> hessian( 11( y1, thetal, y2, theta2, n ), [ thetal, theta2 ] );

[ y1~ n” - y1v - y2~ n” - y1© - y2~ ]
[- == = ittt ]
[ 2 2 2]
[ thetal” (1 - thetal™ - theta2™) (1 - thetal™ - theta2”) ]
[ ]
[ n~ - y1~ - y2~ y2~ n~ - y1~ - y2~ ]
[- = T i ]
[ 2 2 2]
[ (1 - thetal™ - theta2™) theta2” (1 - thetal™ - theta2™) ]

>H := subs(n -yl - y2 =y3, 1 - thetal - theta2 = theta3,
hessian( 11( y1, thetal, y2, theta2, n ), [ thetal, theta2 ] ) );

[ y1~ y3 y3 ]
- = - ——————- ]
[ 2 2 2 ]
[ thetal” theta3 theta3d ]
H:=[ ]
[ y3 y2~ y3 1
[ - - - mmmmmmem — —mmeeo ]
[ 2 2 2]
[ theta3 theta2” theta3 ]

> That := simplify( eval( - matrix( H ), [ thetal = y1 / n,
theta2 = y2 / n, theta3 =y3 /n ] ) );

[ 2 2 ]
[ n” (y3 + y17) n” ]

e - ]
[ y3 y1~ y3 ]



That := -[ ]
[ 2 2 ]
[ n” n” (y3 + y27)]
[ - - - - ]
[ y3 y3 y2~ ]

>V :=subs(yl +y2+y3=mn, yl +y2=n-y3, yl + y3 =n - y2,
y2 + y3 = n - y1, simplify( inverse( That ) ) );

[(n~ - y17) y1~ yi= y2~ 1]
[ - - ]
[ 3 3 ]
[ n~ n~ ]
V=1 ]
[ y1~ y2~ (n~ - y27) y2~]
[ - ———— ]
[ 3 3 ]
[ n”~ n”~ ]

If you now do this exercise over again two more times, using the constraint to successively
remove first #; and then 65 from the log likelihood function instead of #3, and if you substitute
(12) into the final expression Maple came up with above, you'll see a pattern that permits
you to work out the covariance matrix for the MLE 0 = (91, ég, ég) of the entire parameter
vector:

0(1-01) g6, 4,6
. 7:L R . nA ATLA
V=| _bp 200 g |, (14)
n n R n_
by by 0(1-0s)
n n n

The diagonal entries of this matrix (the sampling variances of the parameters) are familiar
from our earlier work with the Bernoulli/ binomial likelihood: (14) says that for each
component of the parameter vector

. 0: (1-6;)
SE(0;) =\ —————=. 15
(3) - 15
(14) can also be used to work out a large-sample standard error for 4, which can be written
as a linear combination of the components of the 6 vector: 4 = a”6 for a” = (1,—1,0).
Your mathstat book will also no doubt mention that if # is a random vector with covariance
matrix V' then in repeated sampling

~ ~

V(§) =V (a"0) = a"Va. (16)

> assume( thetalhat > 0, thetalhat < 1, theta2hat > 0, theta2hat < 1,
theta3hat > 0, theta3hat < 1, n > 0 );

10



> Vhat := matrix( 3, 3, [ thetalhat * ( 1 - thetalhat ) / n, - thetalhat *
theta2hat / n, - thetalhat * theta3hat / n, - thetalhat *
theta2hat / n, theta2hat * ( 1 - theta2hat ) / n, - theta2hat *
theta3hat / n, - thetalhat * theta3hat / n, - theta2hat *
theta3hat / n, theta3hat * ( 1 - theta3hat ) / n ] ):

>a :=matrix( 3, 1, [ 1, -1, 01 );

[ 1]
[ ]
a := [-1]
[ ]
[ 0]
> evalm( transpose( a ) &* Vhat &* a );
[thetalhat™ (1 - thetalhat™) thetalhat™ theta2hat”
------------——————- + 2 ————
[ n” n~

Of course the other way to compute the repeated-sampling variance of 4 is to do so directly:

V(3) =V (01— 02) =V (61) + V() —2C(61,01), (17)
where C' (él,él) is the covariance of f; and ég, which is estimated in (14) to be —%.
Putting this together either way yields

_ 6, (1—6 6.6, 0,(1—0
SE(&):J 1 ( 1)+2”+2( 2). (18)
n n n

With the data from the CBS News poll the MLEs and their estimated standard errors
(in parentheses) work out as follows: ¢; = 0.502(0.0131), 6, = 0.403 (0.0129), 03 = 0.0947
(0.00770), and 4 = 0.0995 (0.0249).

(b) (to be continued)

11



