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eBay/Google short course: Problem set 3

1. (Bayesian transformation of variables) Continuing problem 2 from Problem Set 2, let’s
again consider the n = 14 failure time values yi given in the statement of that problem, for
which we saw that a reasonable (initial) model is based on the exponential distribution for
the yi,

{

λ ∼ Γ−1(α, β)

(yi|λ)
IID

∼ E(λ)

}

=⇒ (λ|y) ∼ Γ−1(α + n, β + nȳ). (1)

Here, as before, (i) ȳ = 1
n

∑n
i=1 yi, (ii) the sampling distribution for the yi is given by

(yi|λ)
IID

∼ p(yi|λ) =

{

1
λ
exp(−yi

λ
) yi > 0

0 otherwise

}

(2)

for some λ > 0, and (iii) the conjugate prior for λ is

λ ∼ Γ−1(α, β) ⇐⇒ p(λ) =

{

βα

Γ(α)
λ−(α+1) exp

(

−β

λ

)

λ > 0

0 otherwise

}

. (3)

In that problem I mentioned that the exponential model can either be parameterized in
terms of λ or 1

λ
. In this problem we’ll explore what happens when you’re more interested

in η = g(λ) = 1
λ
than in λ itself.

(a) Use the change-of-variables formula derived below to show that the prior and pos-
terior distributions for η are Γ(α, β) and Γ(α+ n, β + nȳ), respectively (which justifies the
name inverse gamma for the distribution of λ).

(b) Write out the likelihood function in terms of η instead of λ (just substitute η everywhere
you see 1

λ
), and use Maple (or some other environment of your choosing) to plot the prior,

likelihood, and posterior distributions for η on the same graph, using the data and prior
values given in Problem Set 2.

(c) Use the fact that the Γ(α, β) distribution has mean α
β
and variance α

β2 to numerically

compute the prior, likelihood, and posterior means and SDs for η (you don’t have to give
the likelihood-maximizing summaries if you don’t want to; it’s enough to give results based
on the likelihood-integrating approach). Is the posterior mean a weighted average of the
prior and data means in this model, and if so what interpretation would you give to α and
β in the Γ(α, β) prior for η? Explain briefly.

The change-of-variables formula. Consider a real-valued continuous random variable

Y with CDF FY (y) = P (Y ≤ y) and density fY (y), related as usual to the CDF by
FY (y) =

∫ y
−∞

fY (t) dt and fY (y) =
d
dy
FY (y). Suppose you’re interested mainly in a random

variable X which is a transformed version of Y : X = h(Y ) for some invertible (strictly
monotonic) function h. Such functions have to be either strictly increasing or decreasing;
as a first case assume the former. Then the CDF of X, FX(x) = P (X ≤ x), satisfies

FX(x) = P (X ≤ x) = P [h(Y ) ≤ x] = P [Y ≤ h−1(x)] = FY

[

h−1(x)
]

, (4)
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from which the density of X is

fX(x) =
d

dx
FX(x) =

d

dx
FY

[

h−1(x)
]

= fY
[

h−1(x)
] d

dx
h−1(x) = fY

[

h−1(x)
]

∣

∣

∣

∣

∣

d

dx
h−1(x)

∣

∣

∣

∣

∣

,

(5)
the last equality holding because h, and therefore h−1, are strictly increasing (and therefore
both have positive derivatives). Similarly, if h is strictly decreasing,

FX(x) = P (X ≤ x) = P [h(Y ) ≤ x] = P [Y ≥ h−1(x)] = 1− FY

[

h−1(x)
]

, (6)

from which the density of X is

fX(x) =
d

dx
FX(x) =

d

dx
FY

[

h−1(x)
]

= fY
[

h−1(x)
]

[

−
d

dx
h−1(x)

]

. (7)

But since h is strictly decreasing, so is h−1, and both therefore have negative derivatives,
so that

−
d

dx
h−1(x) =

∣

∣

∣

∣

∣

d

dx
h−1(x)

∣

∣

∣

∣

∣

. (8)

Thus the conclusion is that in either case

fX(x) = fY
[

h−1(x)
]

∣

∣

∣

∣

∣

d

dx
h−1(x)

∣

∣

∣

∣

∣

, (9)

which is the change-of-variables formula. (Since y = h−1(x), a simple mnemonic for this
formula, using a slightly old-fashioned notation for derivatives, is fX(x) |dx| = fY (y) |dy|.)

2. (Inference with the uniform distribution) Paleobotanists estimate the moment in the
remote past when a given species became extinct by taking cylindrical, vertical core samples
well below the earth’s surface and looking for the last occurrence of the species in the fossil
record, measured in meters above the point P at which the species was known to have first
emerged. Letting {yi, i = 1, . . . , n} denote a sample of such distances above P at a random

set of locations, the model (yi|θ)
IID

∼ Uniform(0, θ) (∗) emerges from simple and plausible

assumptions. In this model the unknown θ > 0 can be used, through carbon dating, to
estimate the species extinction time. This problem is about Bayesian inference for θ in
model (∗), and it will be seen that some of our usual intuitions (derived from the Bernoulli,
Poisson, and Gaussian case studies) do not quite hold in this case.

The marginal sampling distribution of a single observation yi in this model may be written

p(yi|θ) =

{

1
θ

if 0 ≤ yi ≤ θ

0 otherwise

}

=
1

θ
I (0 ≤ yi ≤ θ) , (10)

where I(A) = 1 if A is true and 0 otherwise.

(a) Use the fact that {0 ≤ yi ≤ θ for all i = 1, . . . , n} if and only if {m = max (y1, . . . yn) ≤
θ} to show that the likelihood function in this model is

l(θ|y) = θ−nI(θ ≥ m). (11)
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Briefly explain why this demonstrates that m is sufficient for θ in this model.

(b) As we saw in part 2 of the lecture notes (pages 17–18), the maximum likelihood estimator
(MLE) of a parameter θ is the value of θ (which will be a function of the data) that
maximizes the likelihood function, and this maximization is usually performed by setting
the derivative of the likelihood (or log likelihood) function to 0 and solving. Show by
means of a rough sketch of the likelihood function in (a) that m is the maximum likelihood
estimator (MLE) of θ, and briefly explain why the usual method for finding the MLE fails
in this case.

(c) A positive quantity θ follows the Pareto distribution (written θ ∼ Pareto(α, β)) if, for
parameters α, β > 0, it has density

p(θ) =

{

αβα θ−(α+1) if θ ≥ β

0 otherwise

}

. (12)

This distribution has mean αβ

α−1
(if α > 1) and variance αβ2

(α−1)2(α−2)
(if α > 2).

With the likelihood function viewed as (a constant multiple of) a density for θ, show that
equation (11) corresponds to the Pareto(n−1, m) distribution. Show further that if the prior
distribution for θ is taken to be (12), under the model (∗) above the posterior distribution
is p(θ|y) = Pareto [α + n,max(β,m)], thereby demonstrating that the Pareto distribution
is conjugate to the Uniform(0, θ) likelihood.

(d) In an experiment conducted in the Antarctic in the 1980s to study a particular species
of fossil ammonite, the following was a linearly rescaled version of the data obtained, in
ascending order: y = (y1, . . . , yn) = (0.4, 1.0, 1.5, 1.7, 2.0, 2.1, 2.8, 3.2, 3.7, 4.3, 5.1). Prior in-
formation equivalent to a Pareto prior specified by the choice (α, β) = (2.5, 4) was available.
Plot the prior, likelihood, and posterior distributions arising from this data set on the same
graph, explicitly identifying the three curves, and briefly discuss what this picture implies
about the updating of information from prior to posterior in this case.

(e) Make a table summarizing the mean and standard deviation (SD) for the prior (Pareto(α,
β)), likelihood (Pareto(n − 1, m)), and posterior (Pareto[α + n,max(β,m)]) distributions,
using the (α, β) choices and the data in part (d) above (as in problem 1, it’s enough to do
this using the likelihood-integrating approach). In Bayesian updating the posterior mean is
usually (at least approximately) a weighted average of the prior and likelihood means (with
weights between 0 and 1), and the posterior SD is typically smaller than either the prior or
likelihood SDs. Are each of these behaviors true in this case? Explain briefly.

(f) You’ve shown in (c) that the posterior for θ based on a sample of size n in model (∗)
is p(θ|y) = Pareto [α + n,max(β,m)]. Write down a symbolic expression for the posterior
variance of θ in terms of (α, β,m, n). When considered as a function of n, what’s unusual
about this expression in relation to the findings in our previous case studies in this course?
Explain briefly.

3. (Inference for the variance in the Gaussian model with known mean) As we saw in
problem 4 of Problem Set 1, American football experts provide a point spread for every
football game before it occurs, as a measure of the difference in ability between the two
teams (and taking account of where the game will be played). For example, if Denver is
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a 3.5–point favorite to defeat San Francisco, the implication is that betting on whether
Denver’s final score minus 3.5 points exceeds or falls short of San Francisco’s final score
is an even-money proposition. Figure 1 below (based on data from Gelman et al. 2003)
presents a histogram of the differences d = (actual outcome – point spread) for a sample of
n = 672 professional football games in the early 1980s, with a normal density superimposed
having the same mean d̄ = 0.07 and standard deviation (SD) s = 13.86 as the sample. You

can see from this figure that the model (Di|σ
2)

IID

∼ N(0, σ2) is reasonable for the observed
differences di (at least as a starting point in the modeling).
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Figure 1. Differences di between observed and predicted American football scores, 1981–1984.

(a) Write down the likelihood and log likelihood functions for σ2 in this model. Show that
σ̂2 = 1

n

∑n
i=1 d

2
i , which takes the value 191.8 with the data in Figure 1, is both sufficient

and the maximum likelihood estimator (MLE) for σ2. Plot the log likelihood function for
σ2 in the range from 160 to 240 with these data, briefly explaining why it should be slightly
skewed to the right.

(b) The conjugate prior for σ2 in this model is the scaled inverse chi-square distribution,

σ2 ∼ χ−2(ν0, σ
2
0), i.e., p(σ2) = c

(

σ2
)

−(ν0

2
+1)

exp

(

−
ν0σ

2
0

2σ2

)

, (13)

where ν0 is the prior sample size and σ2
0 is a prior estimate of σ2. In an attempt to be “non-

informative” people sometimes work with a version of (13) obtained by letting ν0 → 0,
namely p(σ2) = c0 (σ

2)
−1
. The resulting prior is improper in that it integrates to ∞, but it

turns out that posterior inferences will be sensible nonetheless (even with sample sizes as
small as n = 1). Show that with this prior, the posterior distribution is χ−2(n, σ̂2).

Figure 2 below plots the prior, likelihood, and posterior densities on the same graph using
the data in Figure 1 and taking c0 = 2.5 for convenience in the plot. Get R (or some
equivalent environment) to reproduce this figure (NB Maple has a hard time doing this).
You’ll need to be careful to use the correct normalizing constant c in (13), which can be
found either in the lecture notes or in Appendix A of Gelman et al. (2003); and because the
data values in this example lead to astoundingly large and small numbers on the original
scale, it’s necessary to do all possible computations on the log scale and wait to transform
back to the original scale until the last possible moment (you’ll need to use the built-in
function lgamma in R, or something like it in your favorite environment). Explicitly identify
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the three curves, and briefly discuss what this plot implies about the updating of information
from prior to posterior in this case.
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Figure 2. Prior, likelihood, and posterior densities with the football data of Figure 1.

4. (The gambler’s ruin) Consider a gambler at a casino who at each play of a game has
probability 0 < p < 1 of winning $1 and probability (1 − p) of losing $1. If the successive
plays of the game are assumed independent, the question this problem addresses is as
follows: what is the probability P that if she (the gambler) starts with $M > $0 she will
break the bank (reach $N > $M , for integer M and N ; here $N represents the initial capital
of the casino against which she’s playing1) before going broke (reaching $0)?

(a) If we let Yt denote her fortune after the tth play of the game, explain why the process
{Yt} is a Markov chain on the state space {$0, $1, . . . , $N}, and identify the possible states
the process could be in at times t = 0, 1, . . ..

(b) My intent is that this problem should be a somewhat playful environment within which
you can learn more about Markov chains than you already know (and the grading of the
problem will be accordingly liberal). Therefore, using whatever combination you like of
{simulation (R is a good language for this), looking around on the web, reading probability
books, etc.}, see how much progress you can make on the basic question posed at the
beginning of the problem. A fully satisfying mathematical answer to the question would be
symbolic in p,M , and N , but you’ll get nearly full credit for doing a good job of answering
it for a few (well-chosen) specific values of these quantities and speculating about the nature
of the dependence of P on p,M , and N . Explore the sensitivity of P to small changes in
p,M , and N : on which of these quantities does P depend most sensitively?

(c) Let N → ∞ and show that under these conditions, if p > 1
2
there is a positive probability

(specify it if you can) of the gambler’s fortune increasing indefinitely, but if p ≤ 1
2
she will go

broke with probability 1 against an infinitely rich adversary (this last fact is not surprising
for p < 1

2
, but what about p = 1

2
?).

1For the sake of this problem let’s pretend that once she reaches $N the casino judges that it has lost
enough money to her that it does not wish to continue playing against her, which is what “breaking the

bank” means.
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