1 Feb 2013
eBay/Google short course: Problem set 3 solutions

I. (a) The idea behind the change-of-variables formula is to work out the density of =
g(A) = 5 by first expressing the CDF of 7 in terms of the CDF of A and then differentiating.

Herefort>0
Re) = Posy=P(5<) 8 P(h2 )
_ 1~—-P(A<i) Ql-—P()\Sl)ml—F,\() (1)

in which (i) relies on the fact that A > 0 and (i) is because A is being treated as a
continuous random variable (so that P(A ) 0). Now differentiating the left- and
right-most expressions in (1) gives '

o+

o %, 1 1
to-no-Slon@lon e
But for any argument s > 0, pa(s) = ﬁ%wy s+t exp (_g) so finally
B ﬁa 1 —{a+1) ,B o ﬁa . }
0= () en(f) -

which is recognizable as the I'(, 8) density. Thus if A ~ I (e, 8) then = A™t ~ T'{e, 8),
i.e., to go from one to the other you don’t have to do anything complicated with the
parameters o and f—they stay the same.

(b) In terms of A the likelihood function is
V) = ex™exp (-3 ), 4
where s = 7, y;; to get (4) in terms of 7 you just substitute A = %, yielding

Hnly) = cn™ exp(—ns). (5)
This is the I'(n + 1, s) density, and the posterior is |

pnly) = ep(n) Unly) = en™ =t @), (6)
ie., (ly) ~ T(a+n,B+s). With the values from Homework 2-—aq = 8.25; By = 32,625;n =
14; s = 70612~~the plot of the prior, likelihood, and posterior from Maple comes out as in
Figure 1 below. To figure out the range over which to make this plot you can recall from
Homework 2 that the posterior mean and SD for A were 4858 and 1080, respectively, so that
a 3-SD range for A Would run from about 1618 ’co 8098 therefore a 3-SD range for n = 3
should run from about g = .00001 to about 75 1618 = .0006. I have used the slightly larger
range (0,.0007) just to be safe The Maple code to produce Figure 1 is as follows:
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Figure 1. Prior (shortest), likelihood (middle), and posterior (tallest) for n in the exponeniial
failure model of Homework 1.

rosalind 738> maple

_ N~/ ~ Maple V Release 5 (University of California, Santa Cruz)
N |/|_. Copyright (¢) 1981-1997 by Waterloo Maple Inc. All rights
\ MAPLE / reserved. Maple and Maple V are registered trademarks of
<o > Waterloo Maple Inc.

I Type 7 for help.

> gamma_density := ( eta, alpha, beta ) -> beta"alpha * eta”( alpha - 1) *
exp( - beta * eta ) / GAMMA( alpha );

alpha (alpha - 1)
beta eta exp(-beta eta)
gamma_density := (eta, alpha, beta) > ~——————————————-——mrr ' -
' GAMMA (alpha)

> alpha 0 := 8.2b;

alpha 0 := 8.25



> beta_0 := 32625;
beta 0 := 32625

> prior := gamma_density( eta, alpha 0, beta_0 );

: 34 7.2b
prior := .2059342392 10 eta exp(-32625 eta)
>n = 14; .
n = 14
> g8 1= 70614;
s := 70614

> likelihood := gamma._density( eta, n+ 1, s );
likelihood :=

10874917540669157487327304210061718756967424209596707663103000902416

175175
14
eta  exp(-70614 eta)
> posterior := gamma_density( eta, alpha 0 + n, beta_0 + s );
92 21.25
posterior := .3280441542 10 eta exp(-103239 eta)

> plotsetup( x11 J;

> plot( { prior, likelihood, posterior }, eta = 0 .. 0.0007, color = black );

(c) Using the facts that the I'(, #) distribution has mean § and variance g, and treating
the likelihood literally as a I'(n + 1, s) density, you get the following values for the prior,
likelihood, and posterior means and SDs:

Prior Likelihood Posterior
Mean 2.53e-04 2.12e-04 - 2.16e-04
SD  8.80e-05 5.48e-05 4.57e-00

If you try to literally solve the equation which would attempt to express the posterior mean



as a weighted average of the prior and likelihood means,

z‘gi}w(%f%u—w)(”jl), (7)
for the weight w, you get |
. ﬁo _ 5
v (ﬁo-l-S) ll SQQ"‘('H"‘I),BU] ’ ®)

But to be a proper weighted average this expression has to be between 0 and 1, and this
will only be true if :
Qg n 4

B_O‘ > s (9)
Le., if the prior mean is at least as large as the likelihood mean. That does happen,
coincidentally, to be true for this data set and prior but would not be true in general, so you
can’t always express the posterior mean as a weighted average of the prior and likelihood
means when the quantity of interest is 5 = -)1; But if you make an 0(5 approximation by

replacing the likelihood mean 212 by % (in effect this treats the likelihood distribution as
I'(n, s) instead of I'(n + 1, 5)), the following approximate expression results:
oo tn . Fo(5) s (3)

Bots Bots - (10)

Within the scope of this approximation there’s an analogy between {ag and n} on the one
hand and {8y and s} on the other hand, so I guess you could say that o acts like the prior
sample size and J like the sum of the values in the data set that the prior is equivalent to.

sap > (n+1)Fs ¢

2. (a) Since, as the problem says, the only way all of the 3; can be < § is if m, the largest
Yis is S 95

i6ly) = [1pwi9)= 1510 <w<0)

i=1

= "0y, <@foralli=1,...,n)=0""I{m < 8). (11)

m is thus sufficient for # in this model because the likelihood function depends on the data
vector y = (41, .., Ys) only through m.

(b) A rough sketch of the likelihood function looks like
- ¥

a._

and this function is clearly maximized at ¢ = Ous = m. The maximum of the likelihood or
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log likelihood function occurs at a point of sharp discontinuity, so derivative-based methods
for finding extreme points fail in this case.

¢) Rewriting equation (12) of the homework assignment as
( ) g eq ( ) f g

and ignoring the constant o 8%, the likelihood function is evidently a constant multiple
of the Pareto(n — 1,m) distribution. [If the prior is Pareto(w, ) and the likelihood is
Pareto(n — 1,m) then the posterior must be '

pBly) = capfee VIO > 860 > m) |
= ¢f~ @110 > max(8, m)], (13)

which is recognizable as the Pareto [@ + n, max(3,m)] distribution, i.e., the Pareto prior is
conjugate to the Uniform(0, §) likelihood.

(d) The plot, and the Mapie code to generate it, are below.
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Figure 2: Prior (shortest), likelihood (middle), and posterior (tallest) for 6 with the paleob-
otany data. '

rosalind 764> maple

N/ Maple V Release 5 (University of California, Santa Cruz)
._INl |/I_. Copyright (c) 1981-1997 by Waterloo Maple Inc. All rights
\ MAPLE / reserved. Maple and Maple V are registered trademarks of
< > Waterloo Maple Inc.

I Type ? for help.



> assume( alpha > 0, beta > 0, theta > 0 );
> pareto := ( alpha, beta, theta ) -> piecewise(

theta < beta, 0, ‘
theta >= beta, alpha # beta”alpha * theta~( - ( alpha + 1) )

)s
pareto := (alpha, beta, theta) —-> plecewise(theta < beta, 0, beta <= theta,

~ alpha (-alpha - 1)
alpha beta  theta )

> plotsetup( x11 };

> plot( { pareto( 2.5, 4, theta ), pareto( 10.0, 5.1, theta ),
pareto( 13.5, 5.1, theta ) }, theta = 3.5 .. 10.0, color = black Y

The prior is evidently the distribution which begins at S5 = 4. The posterior is always at
least as peaked as the likelihood (to reflect the combining of prior and data information),
s0 it’s the tallest curve, and the likelihood is in between, Iere the posterior is noticeably
more concentrated near 5.1 than the likelihood is, reflecting the substantial contribution of
the prior information.

(e) Plugging the indicated values into the mean and variance formulas for the Pareto yields
Table 1 below.

Table 1. Summaries of a Bayesian analysis of the paleobotany daia.

Summary | Prior Likelihood Posterior
Mean 6.67 5.67 5.51
SD | 596 0.63 0.44

The prior mean, for example, is 2£- = K%Ls(él = 6.67, and the likelihood SD is 4/ (;%21-%% =

a—1

y/ »1%2—%2 = 0.63. Here, while it is true that the posterior SD is smaller than either the prior
or likelihood SDs, it is—unusually, and interestingly—not true that the posterior mean is
a weighted average of the prior and likelihood means (the former is smaller than either of
the latter). In fact, it’s the posterior mode that has to lie somewhere between the prior and

likelihood modes (inclusive) in this model, not the mean.

(f) The posterior is Paretola + n, max(3,m)| and so has variance

_ (o +n)[max(8,m)’ |
Vbly) = (a+n—-1%a+n-—2) (14)
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The unusual thing about this expression is that it is O(;lg), i.e., it goes to zero at rate 7,
whereas in every other example in this course the posterior variance (for parameter estima-
tion, not prediction)} decreases like % In all of our earlier examples the parameters either
tracked the location or scale of the distribution; here f is a range-restricting parameter, and
the moral of the story is that learning about such parameters takes place much faster than
with location or scale parameters. This is reflected in Table 1 above: look at how much
smaller the posterior SD is than the prior SD (even with a sample size of only 10).

Log Likelihood
a4
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sigma2

Figure 3: Log likelihood in the N(0,c?) model for the football point spread data.

3. (a) The likelihood and log likelihood functions for o are

no & = S50
(Pld) = ][ Wexp (—202) =c (02) * exp (— 57 ) and

log(a?) — 556 (15)

202’

U(c®ld) = c—

b2 | 3

where SSQ = Y, d7, or any nontrivial function of it like 5% = £55Q), is evidently sufficient
for o2. Differentiating the log likelihood with respect to ¢ and setting to 0 gives
a n §5Q _55Q

- 2 —_ : 2 _ ~2 — 1
ooz U(o®ld) =~ + e iff 0% =63 =— (16)

The log likelihood function is plotted in Figure'S; its shape guarantees that the critical
point found in (16) is the global max. The slight skewness evident in this plot corresponds
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to a mild long right-hand tail in the sampling distribution of 52 Whlch is to be expected
for variance estimates even with large n. :

(b) Multiplying prior p(e?) = ¢y (02 )™ and likelihood (o?|d) = ¢ (0,2)"% exp (—%ﬁ%) gives

p(c?d) = c (02)_(%+1) exp (—— SSQ) , (17)

202

which is recognizable from equation (13) of the homework assignment as the x =2 distribution
with parameters n and 285Q), i.e., x7%(n,&%). The prior is evidently the nearly-constant
curve (the small dotted lines) in Figure 4 below, and it will act to slightly pull the likelihood
back toward 0, so the likelihood and posterior densities must be the large dotted and sclid
lines, respectively. It is evident that the “noninformative” prior has been successful in
forcing the posterior to virtually coincide with the likelihood with these data.

As T mentioned in class, Maple is surprisingly good at working with enormously big and
enormously small numbers, but its abilities in this regard are limited, and this problem
stretches them beyond the breaking point when you try to do the calculations for the
density plots on the raw density scale (for example, on that scale you end up asking Maple
to multlply numbers like 192% times 20073, and 192%% is on the order of 107 (NB
if you've ever heard of a googol, that term was invented to describe an astoundingly big
number, 101%; these numbers are bigger). Here’s some quite straightforward code in R to
make Figure 4 below; this relies on recognizing that the likelihood is equivalent to a positive
constant times the x™#(n— 2, -256*%) distribution. The main point of the code is to evaluate
the density on the log scale (using the lngamma function) and exponentiate at the end, to
avoid working with fantastically small and fantastically large numbers multiplied together.

> sichi? <- function{ theta, nu, s2 ) { -
return( exp( (ou / 2°) * log( nu / 2 ) +
(nu/2) % log{s2)-(nu/2+1) * log( theta ) — nu * s2 /
( 2 % theta ) - lgamma( nu / 2 ) ) )
}

>n < 872

> g2 <- 191.8

v

x11( )

A%

theta <- seq( 160, 240, length = 50O )

'

plot( theta, sichi2( theta, n, s2 ), type = *17, xlab = ’sigma2’,
ylab = ’Density’ )

v

lines( theta, sichi2( theta, n - 2, n *s2/ (n-2) ), Ity =2 )
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Figure 4: Prior, likelihood, and posterior densities with the football point spread data.

> lines( theta, 2.5 / theta, Ity = 3 )

4, (a) This process is clearly Markovian, because you only need to know how much money Y;
the gambler has at any given time ¢ to determine the probability distribution for where her
fortune will be at time (¢£+ 1), i.e., the past history of the process is irrelevant in simulating
her next move. Assuming that none of the following values goes above N (I'm going to omit
all monetary units in the interests of brevity) or below 0 (when her fortune reaches N or 0
the game stops), here are the possible states as time unfolds: at £ = 0 her fortune ¥} has to
be M; at £ = 1,Y7 can only be (M — 1) or (M +1); at t = 2,Y; can only be (M —~2), M, or
(M +2); at t = 3,Y3 can only be (M —3),(M — 1), (M + 1), or (M + 3); and so on. Every
time the chain tries to go below 0 or above N it has to try to pass through 0 or N to do so,
and states 0 and N are absorbing (once you reach them you can’t leave them), so clearly
the only possible states for the chain are {0,1,..., N}. Notice that this Markov chain is
not aperiodic-—it has period 2 (the amount of time it takes to get back to any state, having
started there, is a multiple of 2).

(b) T'll sketch the mathematical solution to this problem (based on the treatment in the
1970 Holden-Day book by SM Ross called Applied Probability Models with Oplimization
Applications); if you worked on it from a simulation point of view you probably got results
that are similar to those described here. Before going any further, let’s think about the
 qualitative behavior that P should satisfy as a function of M, N, and p.

(1) For fixed N and p, P should increase as M increases, because the more money you
have to start with the easier it is to break the bank (that’s shorthand for reaching N
and causing the casino to admit defeat);

(2) For fixed M and p, P should decrease as N increases, since it’s harder to break the
bank if the casino has more money to begin with; and

(8) For fixed M and N, P should increase as p increases, because it’s easier to win the
overall game if your winning probability on any single play is higher.



For any states ¢ and j in a finite-state-space Markov chain, let f; be the probability that,
starting in 4, the first transition into j occurs at time £. Then fi; = 3222, fj is the probability
of ever making a transition into j, given that the chain started in . Any given state ¢ is
called recurrent if fi; = 1, and transient otherwise. Thus 7 is recurrent iff with probability 1
the process will return to 4 if it started there. Because states 0 and N are absorbing, they're
both (trivially) recurrent, and moreover all the other states are transient (assuming that
the probabilities (1 — p) and p of moving left and right on any given play are both strictly
between 0 and 1, if you start anywhere from 1 to (N — 1) there is a positive probability you
will be absorbed at 0 or N before you get back to where you started). Denoting (as we did
in class) by P; the probability of moving from 4 to j in one iteration, and letting 7' stand
for the set of transient states for the process, it’s a basic fact from Markov chain theory
that

If § is recurrent, then the set of probabilities { f;,7 € T} satisfies the relation

fi=> Pypfe;+ > Px foranyicT, - (18)

kET kER

where R denotes the set of states communicating with j.

(Letting P% be the probability of moving from 4 to j in ¢ iterations, state j is accessible
from state 17 if for some ¢ > 0, P, > 0; two states ¢ and j that are accessible to each other
are said to communicate.) From the result in the box above, the f;; for the gambler’s ruin
problem must satisfy the following equations:

Jfon = 0 _
fivn’ = pfin+{(1—p) fiany fori=1,.. ., (N-1) (19)
.fNN - 1.'
Rearrange these equations and write f; for f;y to get
1— :
firn— fi= (Tp) (fi— ficr) fori=1,... (N -1). (20)

But this defines a recurrence relation among the f;:
fam=fi = (—) f
| p )"

fomfr =

1— 'J;N—1 = (1._ p) (];N—l — J;N—B) :. (1——*‘?‘) N_l fi
)

Add these equations to get _
2 : i1
+(1—p) +...+(—1_p> for i > 1, (22)
P P

fz fl fl [( D




which can be simplified (remembering how geometric series work) to yield

e T S
fi=$ =(E)7 P for i > 1. (23)
ifa if 1—;2 =1

Finally use the fact that fiy = 1 and simplify further to obtain that fori=1,..., N

() if p # 3
fin =1 =(52) 2 (24)
~ ifp=13

Since state 0 is absorbing, substituting ¢ = M in the expression for f;x in (24) gives the
probability we wanted, namely the chance P that the gambler will break the bank (reach
N) before going broke (reach 0): '

) 1
p={ Ty M7 (25
% ifp:%

Perhaps the first thing to note about (25) is that it’s continuous in p. (i.e., the limit of the
upper expression as p — 3 is the lower expression, as you can verify with an application of
I"Hospital’s rule or a session with Maple). The next thing to note (by inspection) is that
(25) satisfies all three of the qualitative behaviors mentioned on the bottom of page 9. 1
recommend an extended plotting session with Maple to discover other properties of (25);
since it depends on three quantities it’s hard to summarize its behavior neatly (to take a
practical example of direct interest to the gambler, can you succinctly specify the regions
in (M, N, p) space such that P > 7).

(c) As N — oo with the gambler’s initial capital M held fixed, things simplify: for p = 1,
evidently P — 0 in (25); for p < 3, l;pp > 1 and it’s better to think of (25) as

G -

As N — oo the denominator of (26) becomes indefinitely large with the numerator fixed, so
in this case it’s also true (how could it be otherwise?) that P — 0. If p > 7, however, there’s
some hope for the gambler; in that case %2 < 1 and the denominator of the top expression

in (25) goes to 1 as N — 00, s0 in the limit P — 1 — (1—;E)M (we would interpret this as
the probability of the gambler’s fortune increasing indefinitely). As p — 1 this expression
goes to 1, and as M increases it also tends to 1, both of which make good qualitative sense.
The most interesting of all these cases is p = : even if she starts with a huge value of M,
if the game is fair and the casino has an infinite initial supply of money she will eventually
go broke (because her goal is infinitely far to the right of where she started on the number
line}.
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