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The Problem

Variable selection (choosing the “best” subset of predictors) in

generalized linear models is an old problem, dating back at least to the

1960s, and many methods have been proposed to try to solve it; but

virtually all of them ignore an aspect of the problem that can be important:

the cost of data collection of the predictors.

Case study. (Fouskakis and Draper, JASA, 2008; Fouskakis, Ntzoufras and

Draper (FND), submitted, 2007a, 2007b). In the field of quality of health

care measurement, patient sickness at admission is traditionally assessed

by using logistic regression of mortality within 30 days of admission on

a fairly large number of sickness indicators (on the order of 100) to

construct a sickness scale, employing standard variable selection methods

(e.g., backward selection from a model with all predictors) to find an

“optimal” subset of 10–20 indicators.

Such “benefit-only” methods ignore the considerable differences among the

sickness indicators in cost of data collection, an issue that’s crucial when

admission sickness is used to drive programs (now implemented or
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Choosing Utility Function (continued)

under consideration in several countries, including the U.S. and U.K.) that

attempt to identify substandard hospitals by comparing observed and

expected mortality rates (given admission sickness).

When both data-collection cost and accuracy of prediction of 30-day

mortality are considered, a large variable-selection problem arises in which

costly variables that do not predict well enough should be omitted from

the final scale.

There are two main ways to solve this problem — you can (a) put cost and

predictive accuracy on the same scale and optimize, or (b) maximize the

latter subject to a bound on the former — leading to three methods:

(1) a decision-theoretic cost-benefit approach based on maximizing

expected utility (Fouskakis and Draper, 2008),

(2) an alternative cost-benefit approach based on posterior model odds

(FND, 2007a), and

(3) a cost-restriction-benefit analysis that maximizes predictive

accuracy subject to a bound on cost (FND, 2007b).
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The Data

Data (Kahn et al., JAMA, 1990): p = 83 sickness indicators gathered on

representative sample of n = 2, 532 elderly American patients hospitalized in

the period 1980–86 with pneumonia; original RAND benefit-only scale

based on subset of 14 predictors:

Variable Cost (U.S.$) Correlation Good?

Total APACHE II

score (36-point scale)
3.33 0.39

Age 0.50 0.17 ∗

Systolic blood pressure

score (2-point scale)
0.17 0.29 ∗∗

Chest X-ray congestive

heart failure score (3-point scale)
0.83 0.10

Blood urea nitrogen 0.50 0.32 ∗∗

APACHE II coma

score (3-point scale)
0.83 0.35 ∗∗

Serum albumin (3-point scale) 0.50 0.20 ∗

Shortness of breath (yes, no) 0.33 0.13 ∗∗

Respiratory distress (yes, no) 0.33 0.18 ∗

Septic complications (yes, no) 1.00 0.06

Prior respiratory failure (yes, no) 0.67 0.08

Recently hospitalized (yes, no) 0.67 0.14

Ambulatory score (3-point scale) 0.83 0.22

Temperature 0.17 −0.16 ∗
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Decision-Theoretic Cost-Benefit Approach

Approach (1) (decision-theoretic cost-benefit). Problem formulation:

Suppose (a) the 30–day mortality outcome yi and data on p sickness

indicators (xi1, . . . , Xip) have been collected on n individuals sampled

exchangeably from a population P of patients with a given disease, and (b)

the goal is to predict the death outcome for n∗ new patients who will in the

future be sampled exchangeably from P, (c) on the basis of some or all of the

predictors X·j , when (d) the marginal costs of data collection per patient

c1, . . . , cp for the X·j vary considerably.

What is the best subset of the X·j to choose, if a fixed amount of money is

available for this task and you’re rewarded based on the

quality of your predictions?

Since data on future patients are not available, we use a cross-validation

approach in which (i) a random subset of nM observations is drawn for creation

of the mortality predictions (the modeling subsample) and (ii) the quality of

those predictions is assessed on the remaining nV = (n − nM ) observations (the

validation subsample, which serves as a proxy for future patients).
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Utility Elicitation

Here utility is quantified in monetary terms, so that data collection part

of utility function is simply negative of total amount of money required

to gather data on specified predictor subset (manual data abstraction from

hardcopy patient charts will gradually be replaced by electronic medical

records, but still widely used in quality of care studies).

Letting Ij = 1 if X·j is included in a given model (and 0 otherwise), the

data-collection utility associated with subset I = (I1, . . . , Ip) for patients in

the validation subsample is

UD(I) = −nV

p
∑

j=1

cjIj , (1)

where cj is the marginal cost per patient of data abstraction for variable

j (the second column in the table above gave examples of these marginal costs).

To measure the accuracy of a model’s predictions, a metric is needed that

quantifies the discrepancy between the actual and predicted values, and in

this problem the metric must come out in monetary terms on a scale

comparable to that employed with the data-collection utility.
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Utility Elicitation (continued)

In the setting of this problem the outcomes Yi are binary death indicators

and the predicted values p̂i, based on statistical modeling, take the form of

estimated death probabilities.

We use an approach to the comparison of actual and predicted values that

involves dichotomizing the p̂i with respect to a cutoff, to mimic the

decision-making reality that actions taken on the basis of

observed-versus-expected quality assessment will have an all-or-nothing

character at the hospital level (for example, regulators must decide either to

subject or not subject a given hospital to a more detailed, more expensive

quality audit based on process criteria).

In the first step of our approach, given a particular predictor subset I, we fit

a logistic regression model to the modeling subsample M and apply this

model to validation subsample V to create predicted death probabilities p̂I
i .

In more detail, letting Yi = 1 if patient i dies and 0 otherwise, and taking

Xi1, . . . , Xik to be the k sickness predictors for this patient under model I,

the usual sampling model which underlies logistic regression in this case is
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Utility Elicitation (continued)

(Yi | p
I
i )

indep
∼ Bernoulli(pI

i ),

log(
pI

i

1−pI
i

) = β0 + β1Xi1 + . . . + βkXik.

(2)

We use maximum likelihood to fit this model (as a computationally efficient

approximation to Bayesian fitting with relatively diffuse priors), obtaining a

vector β̂ of estimated logistic regression coefficients, from which the predicted

death probabilities for the patients in subsample V are as usual given by

p̂
I
i =

[

1 + exp

(

−

k
∑

j=0

β̂jXij

)]

−1

, (3)

where Xi0 = 1 (p̂I
i may be thought of as the sickness score for patient i under

model I).

In the second step of our approach we classify patient i in the validation

subsample as predicted dead or alive according to whether p̂I
i exceeds or

falls short of a cutoff p∗, which is chosen — by searching on a discrete grid

from 0.01 to 0.99 by steps of 0.01 — to maximize the predictive accuracy

of model I.
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Utility Elicitation (continued)

We then cross-tabulate actual versus predicted death status in a 2 × 2

contingency table, rewarding and penalizing model I according to the

numbers of patients in the validation sample which fall into the cells of the

right-hand part of the following table.

Rewards and

Penalties Counts

Predicted Predicted

Died Lived Died Lived

Died C11 C12 n11 n12
Actual

Lived C21 C22 n21 n22

The left-hand part of this table records the rewards and penalties in US$.

The predictive utility of model I is then

UP (I) =

2
∑

l=1

2
∑

m=1

Clm nlm. (4)

See Fouskakis-Draper (2008) for details on eliciting the utility values Clm.
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Utility Elicitation (continued)

The idea was (1) to draw correspondence between the above 2 × 2 table and

another such table cross-tabulating true hospital status (bad, good) against

action taken (process audit, no such audit), (2) to elicit C21 (cost of subjecting

a good hospital to an unnecessary audit) from health policy experts in the

U.S. and U.K., and (3) to elicit ratios relating the other Clm to C21.

The result was (C11, C12, C21, C22) = $(34.8, –139.2, –69.6, 8.7).

The findings in Fouskakis and Draper (2008) use these values; Draper and

Fouskakis (2000) present a sensitivity analysis on the choice of the Clm

which demonstrates broad stability of the findings when the utility values

mentioned above are perturbed in reasonable ways.

With the Clm in hand, the overall expected utility function to be

maximized over I is then simply

E [U(I)] = E [UD(I) + UP (I)] , (5)

where this expectation is over all possible cross-validation splits

of the data.
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Results

The number of possible cross-validation splits is far too large to evaluate the

expectation in (5) directly; in practice we therefore use Monte Carlo

methods to evaluate it, averaging over N random

modeling and validation splits.

Results. We explored this approach in two settings:

• a Small World created by focusing only on the p = 14 variables in the

original RAND scale (214 = 16, 384 is a small enough number of

possible models to do brute-force enumeration of the estimated expected

utility of all models), and

• the Big World defined by all p = 83 available predictors (283 .
= 1025 is far

too large for brute-force enumeration; we compared a variety of stochastic

optimization methods — including simulated annealing, genetic

algorithms, and tabu search — on their ability to find

good variable subsets).
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Results: Small World
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The 20 best models included the same three variables 18 or more times

out of 20, and never included six other variables; the five best models were

minor variations on each other, and included 4–6 variables (last column in

table on page 4).
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Approach (2)

The best models save almost $8 per patient over the full 14-variable model;

this would amount to significant savings if the observed-versus-expected

assessment method were applied widely.

Approach (2) (alternative cost-benefit) Maximizing expected utility, as

in Approach (1) above, is a natural Bayesian way forward in this problem, but

(a) the elicitation process was complicated and difficult and (b) the utility

structure we examine is only one of a number of plausible alternatives, with

utility framed from only one point of view; the broader question for a

decision-theoretic approach is whose utility should drive the

problem formulation.

It is well known (e.g., Arrow, 1963; Weerahandi and Zidek, 1981) that

Bayesian decision theory can be problematic when used normatively for

group decision-making, because of conflicts in preferences among

members of the group; in the context of the problem addressed here, it can be

difficult to identify a utility structure acceptable to all stakeholders

(including patients, doctors, hospitals, citizen watchdog groups, and state and

federal regulatory agencies) in the quality-of-care-assessment process.
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Approach (2) (continued)

As an alternative, in Approach (2) we propose a prior distribution that

accounts for the cost of each variable and results in a set of posterior model

probabilities which correspond to a generalized cost-adjusted version of

the Bayesian information criterion (BIC).

This provides a principled approach to performing a cost-benefit trade-off

that avoids ambiguities in identification of an appropriate utility

structure; we reason as follows.

(1) With (a) γ(k) as a binary vector specifying which variables are included

in model k, (b) f(y|β̂γ(k) , γ
(k)) as the log likelihood of model k evaluated at

the MLE β̂γ(k) of model k’s parameter vector βγ(k) , and (c) dγ(k) =
∑p

j=0 γj

as the dimension of model k, the usual O(1) approximation to the log

posterior model odds is

−2 log POk` = −2 log

[

f(y|β̂γ(k) , γ
(k))

f(y|β̂γ(`) , γ(`))

]

+
(

dγ(k) − dγ(`)

)

log n

−2 log
f(γ(k))

f(γ(`))
+ O(1) (6)
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Approach (2) (continued)

= BICk` − 2 log
f(γ(k))

f(γ(`))
+ O(1),

where BICk` is the Bayesian Information Criterion for choosing between

models γ(k).

(2) In the usual BIC approximation the “cost” of each variable is 1 if

included and 0 if not included in the model; we generalize this by bringing the

actual costs in through the prior:

(∗) f(γj) ∝ exp

[

−
γj

2

(

cj − c0

c0

)

log n

]

for j = 1, . . . , p, (7)

where cj is the marginal cost per observation for variable Xj and

c0 = min{cj , j = 1, . . . , p}.

With Cγ =
∑p

j=1 γjcj as the total cost of model γ, this yields our

generalized cost-adjusted version of BIC,

−2 log POk` = −2 log

[

f(y|β̂γ(k) , γ
(k))

f(y|β̂γ(`) , γ(`))

]

+
Cγ(k) − Cγ(`)

c0
log n + O(1). (8)
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Approach (2) (continued)

MCMC implementation. We use a two-step method:

(1) First we use a model search tool to identify variables with high

marginal posterior inclusion probabilities f(γj |y), and we create a

reduced model space consisting only of those variables whose marginal

probabilities are above a threshold value.

(2) Then we use a model search tool in the reduced model space to

estimate posterior model probabilities (and the corresponding odds).

We used both RJMCMC and MCMC model composition (MC3)

algorithm (Madigan-York, 1995) as model search tools; RJMCMC results below.

Results. The table below presents the marginal posterior probabilities of

the variables that exceeded the threshold value of 0.30, in each of the

benefit-only and cost-benefit analyses, together with their data collection

costs (in minutes of abstraction time rather than US$), in the Big World of all

83 predictors.

In both the benefit-only and cost-benefit situations our methods reduced

the initial list of p = 83 available candidates down to 13 predictors.
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Results (continued)

Marginal Posterior Probabilities

Variable Analysis

Index Name Cost Benefit-Only Cost-Benefit

1 SBP Score 0.50 0.99 0.99

2 Age 0.50 0.99 0.99

3 Blood Urea Nitrogen 1.50 1.00 0.99

4 Apache II Coma Score 2.50 1.00

5 Shortness of Breath Day 1? 1.00 0.97 0.79

8 Septic Complications? 3.00 0.88

12 Initial Temperature 0.50 0.98 0.96

13 Heart Rate Day 1 0.50 0.34

14 Chest Pain Day 1? 0.50 0.39

15 Cardiomegaly Score 1.50 0.71

27 Hematologic History Score 1.50 0.45

37 Apache Respiratory Rate Score 1.00 0.95 0.32

46 Admission SBP 0.50 0.68 0.90

49 Respiratory Rate Day 1 0.50 0.81

51 Confusion Day 1? 0.50 0.95

70 Apache pH Score 1.00 0.98 0.98

73 Morbid + Comorbid Score 7.50 0.96

78 Musculoskeletal Score 1.00 0.54

Note that the most expensive variables with high marginal posterior

probabilities in the benefit-only analysis were absent from the set of

promising variables in the cost-benefit analysis (e.g., Apache II Coma Score).
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Results (continued)

Common variables in both analyses: X1 + X2 + X3 + X5 + X12 + X70

Benefit-Only Analysis

Common Variables Additional Model Posterior

k Within Each Analysis Variables Cost Probabilities P O1k

1 X4 + X15 + X37 + X73 +X8 +X27+X46 22.5 0.3066 1.00

2 +X8 +X27 22.0 0.1969 1.56

3 +X8 20.5 0.1833 1.67

4 +X27+X46 19.5 0.0763 4.02

5 17.5 0.0383 8.00

Cost-Benefit Analysis

Common Variables Additional Model Posterior

k Within Each Analysis Variables Cost Probabilities P O1k

1 X46 + X51 +X49+X78 7.5 0.1460 1.00

2 +X14 +X49+X78 7.5 0.1168 1.27

3 +X13 +X49+X78 7.5 0.0866 1.69

4 +X13+X14 +X49+X78 8.0 0.0665 2.20

5 +X14 +X49 7.0 0.0461 3.17

6 +X49 6.5 0.0409 3.57

7 +X37 +X78 7.5 0.0382 3.82

8 +X13+X14 +X49 7.5 0.0369 3.96

9 +X13 6.5 0.0344 4.25
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Results (continued)

Analysis Percentage

Benefit-Only Cost-Benefit Difference

Minimum Deviance 1553.2 1635.8 +5.3

Median Deviance 1564.5 1644.8 +5.1

Cost 22.5 7.5 –66.7

Dimension 13 10 –23.1

• The minimum and median values of the posterior distribution of the

deviance statistic for the benefit-only analysis were lower by a relatively

modest 5.3% and 5.1% compared to the corresponding values of the

cost-benefit analysis, but the cost of the best model in the cost-benefit analysis

was almost 67% lower than that for the benefit-only analysis; similarly, the

dimensionality of the best model in the cost-benefit analysis was about

23% lower than that for the benefit-only analysis.

These values indicate that the loss of predictive accuracy with the

cost-benefit analysis is small compared to the substantial gains achieved

in cost and reduced model complexity.
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Utility Versus Cost-Adjusted BIC

Method

Variable Utility RJMCMC

Cost Posterior

Index Name (Minutes) Good? Good? Probability

1
Systolic Blood Pressure

Score (2-point scale)
0.5 ∗∗ ∗∗ 0.99

2 Age 0.5 ∗ ∗∗ 0.99

3 Blood Urea Nitrogen 1.5 ∗∗ ∗∗ 1.00

4
APACHE II Coma

Score (3-point scale)
2.5 ∗∗ ∗∗ 1.00

5 Shortness of Breath Day 1 (yes, no) 1.0 ∗∗ ∗∗ 0.99

6 Serum Albumin (3-point scale) 1.5 ∗ ∗∗ 0.55

7 Respiratory Distress (yes, no) 1.0 ∗ ∗∗ 0.92

8 Septic Complications (yes, no) 3.0 0.00

9 Prior Respiratory Failure (yes, no) 2.0 0.00

10 Recently Hospitalized (yes, no) 2.0 0.00

12 Initial Temperature 0.5 ∗ ∗∗ 0.95

17
Chest X-ray Congestive

Heart Failure Score (3-point scale)
2.5 0.00

18 Ambulatory Score (3-point scale) 2.5 0.00

48
Total APACHE II

Score (36-point scale)
10.0 0.00

It’s clear that the utility and cost-adjusted BIC approaches have reached

nearly identical conclusions in the Small World of p = 14 predictors.
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Utility Versus Cost-Adjusted BIC (continued)

With p = 83 the agreement between the two methods is also strong

(although not as strong as with p = 14): using a star system for variable

importance given in FND (2007a), 60 variables were ignored by both methods,

8 variables had identical star patterns, 3 variables were chosen as important

by both methods but with different star patterns, 10 variables were marked

as important by the utility approach and not by RJMCMC, and 2 variables

were singled out by RJMCMC and not by utility: thus the two methods

substantially agreed on the importance of 71 (86%) of the 83 variables.

Median

p Method Model Cost Deviance LSCV

14
RJMCMC

X1 + X2 + X3 + X4 + X5 + X6 + X7 + X12 9.0 1654 −0.329

X1 + X2 + X3 + X4 + X5 + X7 + X12 7.5 1676 −0.333

Utility X1 + X3 + X4 + X5 5.5 1726 −0.342

83

RJMCMC
X1 + X2 + X3 + X5 + X12

+X46 + X49 + X51 + X70 + X78
7.5 1645 −0.327

Utility
X1 + X3 + X4 + X12

+X46 + X49 + X57
6.5 1693 −0.336

To the extent that the two methods differ, the utility method favors models

that cost somewhat less but also predict somewhat less well.
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Utility Versus Cost-Adjusted BIC (continued)

The fact that the two methods may yield somewhat different results in

high-dimensional problems does not mean that either is wrong; they are

both valid solutions to similar but not identical problems.

Both methods lead to noticeably better models (in a cost-benefit sense)

than frequentist or Bayesian benefit-only approaches, when — as is often the

case — cost is an issue that must be included in the problem formulation to

arrive at a policy-relevant solution.

Summary. In comparing two or more models, to say whether one is

better than another I have to face the question: better for what purpose?

This makes model specification a decision problem: I need to either

(a) elicit a utility structure that’s specific to the goals of the current study

and maximize expected utility to find the best models, or

(b) (if (a) is too hard, e.g., because the problem has a group decision

character) I can look for a principled alternative (like the cost-adjusted

BIC method described here) that approximates the utility approach while

avoiding ambiguities in utility specification.

Bayesian variable selection in generalized linear models under cost constraints 22


	eBay-Google-2013-lecture-notes-part-7
	draper-isba-2008-poster

