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Building a Nonparametric Prior

Suppose in the future I’ll observe real-valued y = (y1, . . . , yn)
and I have no covariate information, so that my

uncertainty about the yi is exchangeable.

Then if I’m willing to regard y as part of an infinitely
exchangeable sequence (which is like thinking of the yi as

having been randomly sampled from the population
(y1, y2, . . .)), then to be coherent my joint predictive

distribution p(y1, . . . , yn) must have the hierarchical form

F ∼ p(F) (1)

(yi|F)
IID
∼ F,

where F is the limiting empirical cumulative distribution
function (CDF) of the infinite sequence (y1, y2, . . .).

How do I construct such a prior on F in a meaningful way?

Two main approaches have so far been fully developed:
Dirichlet processes and Pólya trees.

Case study (introducing the Dirichlet process): Fixing the
broken bootstrap (joint work with a former Bath MSc

student, Callum McKail).

Goal: Nonparametric interval estimates of the variance
(or standard deviation (SD)).

One (frequentist nonparametric) approach:
the bootstrap.

Best bootstrap technology at present for nonparametric
interval estimates is BCa method (e.g., Efron and

Tibshirani, 1993) or the its computationally less intensive
cousin, the ABC method; we work here with ABC (roughly

same performance, much faster).
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Bootstrap

(We also tried iterated bootstrap (e.g., Lee and Young,
1995) on problem below but it performed worse than BCa

and ABC.)

Bootstrap propaganda:

“One of the principal goals of bootstrap theory is
to produce good confidence intervals automatically.
“Good means that the bootstrap intervals should
closely match exact confidence intervals in those spe-
cial situations where statistical theory yields an exact
answer, and should give dependably accurate cover-
age probabilities in all situations. ... [The BCa inter-
vals] come close to [these] criteria of goodness”
(Efron and Tibshirani, 1993).
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Figure 1. Standard lognormal distribution LN(0,1),
i.e., Y ∼ LN(0,1) ⇐⇒ ln(Y ) ∼ N(0,1).

Lognormal distribution provides good test of bootstrap: it
is highly skewed and heavy-tailed.
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Bootstrap (continued)

Consider sample y = (y1, . . . , yn) from model

F = LN(0,1)

(Y1, . . . , Yn|F)
IID
∼ F, (2)

and suppose functional of F of interest is

V (F) =

∫

[y −E(F)]2 dF(y), where E(F) =

∫

y dF(y). (3)

Usual unbiased sample variance

s2 =
1

n− 1

n
∑

i=1

(yi − ȳ)2, ȳ =

n
∑

i=1

yi, (4)

is (almost) nonparametric MLE of V (F), and it serves as
basis of ABC intervals; population value for V (F) with

LN(0,1) is e(e− 1) = 4.67.

n mean median % < 4.67 90th percentile
10 4.66 (0.49) 1.88 (0.09) 77.1 (1.2) 9.43 (0.75)
20 4.68 (0.34) 2.52 (0.09) 74.0 (1.4) 9.37 (0.60)
50 4.68 (0.21) 3.20 (0.08) 70.4 (1.5) 8.59 (0.43)

100 4.67 (0.15) 3.62 (0.08) 67.6 (1.5) 7.98 (0.31)
500 4.68 (0.07) 4.23 (0.05) 62.6 (1.4) 6.64 (0.13)

Table 1. Distribution of sample variance for LN(0,1) data,
based on 1000 simulation repetitions

(simulation SE in parentheses).

s2 achieves unbiasedness by being too small most of the
time and much too large some of the time; does not

bode well for bootstrap.
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Bootstrap Calibration Failure
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Figure 2. Histogram of first 950 ordered values of the
sample variance for n = 10.

actual mean median % on % on
n cov. (%) length length left right

10 36.0 (1.5) 8.08 (0.68) 2.43 (1.13) 61.1 (1.5) 2.9 (0.5)
20 49.4 (1.6) 9.42 (0.77) 3.79 (1.32) 48.6 (1.6) 2.0 (0.4)
50 61.9 (1.5) 10.1 (0.61) 4.56 (0.75) 35.4 (1.5) 2.7 (0.5)

100 68.6 (1.5) 8.76 (0.49) 4.63 (0.72) 27.4 (1.4) 4.0 (0.6)
500 76.8 (1.3) 5.43 (0.21) 3.51 (0.27) 18.5 (1.2) 4.7 (0.7)

Table 2. ABC, nominal 90% intervals, LN(0,1) data

With n = 10, nominal 90% intervals only cover

36% of the time, and even with n = 500 actual

coverage is only up to 77%!

Mistakes are almost always from interval lying

entirely to left of true V (F ).
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Bootstrap Failure (continued)

Bootstrap fails because it is based solely on

empirical CDF F̂n, which is ignorant of right tail

behavior beyond Y(n) = maxi Yi.

To improve must bring in prior information

about tail weight and skewness.

Problem is of course not unsolvable

parametrically: consider model

(µ, σ2) ∼ p(µ, σ2)

(Y1, . . . , Yn|µ, σ
2)

IID
∼ LN(µ, σ2), (5)

and take proper but highly diffuse prior on (µ, σ2).

Easy to use Gibbs sampling (even in BUGS) to show

that Bayesian intervals are well-calibrated (but

note interval lengths!):

actual mean median % on % on
n cov. (%) length length left right

10 88.7 (1.0) 6 · 105 (2 · 105) 194.6 (29.3) 4.9 (0.7) 6.4 (0.8)
20 89.3 (1.0) 145.2 (14.9) 39.6 (2.0) 4.9 (0.7) 5.8 (0.7)
50 89.1 (1.0) 17.8 (0.5) 12.6 (0.5) 5.3 (0.7) 5.6 (0.7)

100 90.6 (0.9) 8.9 (0.2) 7.6 (0.2) 4.0 (0.6) 5.4 (0.7)
500 89.9 (1.0) 3.0 (0.02) 3.0 (0.02) 5.5 (0.7) 4.6 (0.7)

Table 3. Lognormal model, N(0,104) prior for µ,
Γ(0.001,0.001) prior for τ = 1

σ2 , nominal 90%, LN(0,1) data
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Parametric Bayes Fails

But parametric Bayesian inference based on LN

distribution is horribly non-robust:

actual mean % on % on
n cov. (%) length left right

10 0.0 (0.0) 6.851 (0.03) 0.0 (0.0) 100.0 (0.0)
20 5.1 (0.7) 2.542 (0.01) 0.0 (0.0) 94.9 (0.7)
50 44.2 (1.6) 0.990 (0.004) 0.0 (0.0) 55.8 (1.6)

100 64.1 (1.5) 0.586 (0.002) 0.0 (0.0) 35.9 (1.5)
500 85.3 (1.2) 0.221 (0.0004) 1.1 (0.3) 13.6 (1.1)

Table 4. Lognormal model, N(0,104) prior for µ,
Γ(0.001,0.001) prior for τ = 1

σ2, nominal 90%, N(0,10) data

Need to bring in tail-weight and skewness

nonparametrically.

Method 0: Appended ABC (ad hoc).

Given sample of size n, and using conjugate prior
distribution, it is often helpful to think of prior as equivalent
to data set with effective sample size m (for some m)

which can be appended to the n data values.

The combined data set of (m+ n) observations can then be
analyzed in frequentist way. Idea is to “teach” bootstrap

about part of heavy tail of underlying lognormal distribution
beyond largest data point y(n). Can try to do this by

sampling m “prior data points” beyond a certain point, c,
and then bootstrapping sample variance of (m+ n) points

taken together.
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Appended ABC Method
actual mean % on % on mean

m cov. (%) length left right variance
0 36.0 (1.5) 8.1 (0.7) 61.1 (1.5) 2.9 (0.5) 4.66 (0.49)
1 88.7 (1.0) 22.5 (1.6) 0.4 (0.2) 10.9 (1.0) 11.7 (0.66)
2 67.2 (1.5) 27.4 (1.8) 0.0 (0.0) 32.8 (1.5) 16.0 (0.73)
3 29.8 (1.4) 33.4 (1.9) 0.0 (0.0) 70.2 (1.4) 20.5 (0.74)

Table 5. Appended ABC method, n = 10,
nominal 90%, c = 5.60 = E(y(n))

actual mean % on % on mean
m coverage (%) length left right variance
0 76.8 (1.3) 5.43 (0.2) 18.5 (1.2) 4.7 (0.7) 4.68 (0.09)
1 82.4 (1.2) 10.5 (0.3) 0.0 (0.0) 17.6 (1.2) 6.67 (0.09)
2 53.7 (1.6) 13.9 (0.5) 0.0 (0.0) 46.3 (1.6) 8.58 (0.13)
3 20.7 (1.3) 16.7 (0.6) 0.0 (0.0) 79.3 (1.3) 10.5 (0.15)

Table 6. Appended ABC method, n = 500,
nominal 90%, c = 22.49 = E(y(n))

This sort of works with m = 1, but (a) highly

imbalanced errors left-right and

(b) coverage gets worse as n increases!

Method 1: Dirichlet process priors. To remove

ad-hockery, work with

Bayesian nonparametric model

F ∼ p(F )

(Y1, . . . , Yn|F )
IID
∼ F, (6)

for some prior p(F ) on infinite-dimensional space D
of all possible CDFs F . Use p(F ) to teach

interval-generating method about tailweight

and skewness.
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Dirichlet Process Priors

Simplest p(F ) is class of Dirichlet process priors

(Freedman, 1963; Ferguson, 1973).

Intuition: Freedman wanted to find conjugate

prior for empirical CDF F̂n.

IID sampling from F̂n = mass 1
n

on each of

y1, . . . , yn is multinomial:

Sort yi into k ≤ n bins b1, . . . , bk (k < n if ties) and

let nj = #(yi in bin bj); then

Y ∗ ∼ F̂n ⇐⇒ p(y∗) = c θ
n1
1 · · · θ

nk
k , (7)

θ = (θ1, . . . , θk), θj ≥ 0,
∑k

j=1 θj = 1.

Conjugate prior for multinomial is Dirichlet: with

α = (α1, . . . , αk), αj ≥ 0,

θ ∼ D(α) ⇐⇒ p(θ) = c θ
α1−1
1 · · · θ

αk−1
k . (8)
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Dirichlet Process Priors (continued)

So Freedman defined Dirichlet process as

follows, e.g., for random variables on <1 and with

F having a density f :

Definition (Freedman, 1963). CDF F ∼ D(α) (F

follows a Dirichlet process with parameter α, α

itself a distribution) ⇐⇒ for any (measurable)

partition A1, . . . , Ak of <1, the random vector

[F (A1), . . . , F (Ak)] follows a Dirichlet distribution

with parameter [α(A1), . . . , α(Ak)], where F (Aj)

means the mass assigned to Aj by f .

Useful to express α in form α(·) = cF0(·), where F0

is the centering or base distribution—in the

sense that E(F ) = F0—and c acts like a prior

sample size.

With this way of writing α, conjugate updating

becomes clear:

F ∼ D(cF0), (Yi|F )
IID
∼ F → (F |Y ) ∼ D(c∗F ∗)

c∗ = c+ n, F ∗ =
cF0 + nF̂n

c+ n
. (9)
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Dirichlet Process Sampling

Sethuraman and Tiwari (1982) showed how to

sample from a Dirichlet process:

F ∼ D(cF0) → F =
∞
∑

j=1

Vj δθj , where

V1 = W1, Vj = Wj

j−1
∏

k=1

(1−Wk), j = 2,3, ...(10)

Here W1,W2, . . . are IID Beta(1, c), θ1, θ2, . . . are IID

from F0, and δθj is point mass at θj (this is the

so-called stick-breaking algorithm, to be

examined further in Parts 4–6).

This shows that Dirichlet processes place all

their mass on discrete CDFs, which is in some

contexts a drawback; Dirichlet process mixture

models (Parts 4–6) solve this problem.

As c increases with F ∼ D(cF0), the sampling

envelope around F0 becomes tighter, because for

any member A of a (measurable) partition of <1,

V [F (A)] =
F0(A)[1− F0(A)]

c+1
, (11)

and increasing c decreases variability around F0.

11



R Code for Dirichlet Process Sampling

rdir.ln <- function( m, cc ) {

theta <- rlnorm( m, 0.0, 1.0 )

v <- rep( 0, m )

w <- rbeta( m, 1.0, cc )

v[1] <- w[1]

for ( j in 2:m ) {

v[j] <- w[j] * v[j-1] * ( 1.0 - w[j - 1] ) / w[j - 1]

}

print( sum( v ) )

temp <- cbind( v, theta )

return( temp[order(temp[, 2], temp[, 1]), 1:2] )

}

rdir.Fstar <- function( m, cc, y ) {

n <- length( y )

theta <- rep( 0, m )

for ( i in 1:m ) {

U <- runif( 1 )

S <- U < ( cc / ( cc + n ) )

if ( S ) theta[i] <- rlnorm( 1, 0.0, 1.0 )

else theta[i] <- sample( y, 1 )

}
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R Code (continued)

v <- rep( 0, m )

w <- rbeta( m, 1.0, cc )

v[1] <- w[1]

for ( j in 2:m ) {

v[j] <- w[j] * v[j-1] * ( 1.0 - w[j - 1] ) / w[j - 1]

}

print( sum( v ) )

temp <- cbind( v, theta )

return( temp[order(temp[, 2], temp[, 1]), 1:2] )

}

test <- function( n, m, cc ) {

y.1 <- rep( 0, n )

y.2 <- rep( 0, n )

for ( i in 1:n ) {

sample <- rdir.ln( m, cc )

y.1[i] <- sum( sample[,1] * sample[,2] )

y.2[i] <- sum( sample[,1] * sample[,2]^2 )

}

return( c( mean( y.1 ), mean( y.2 - y.1^2 ) ) )

}
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R Code (continued)

grid <- seq(0,8,length=500)

plot(grid,dlnorm(grid),type=’l’,lwd=2,ylim=c(0,0.8))

for ( i in 1:50) {

temp <- rdir.ln(100,10)

data <- rep( temp[,2], round(10000*temp[,1]) )

temp <- density(log(data),width=(max(data)-min(data))/4)

temp$x <- exp(temp$x)

lines(temp,lty=2)

}

grid <- log(seq(0,25,length=1000))

plot(grid,dnorm(grid),type=’l’,lwd=2,ylim=c(0,1.5),

xlim=c(-4,4),xlab=’log(y)’,ylab=’Density’)

for ( i in 1:50) {

temp <- rdir.ln(100,5)

data <- rep( temp[,2], round(10000*temp[,1]) )

temp <- density(log(data),width=(max(data)-min(data))/8)

lines(temp,lty=2)

}
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R Code (continued)

y = rlnorm( 100 ) + 1

grid <- log(seq(0,25,length=1000))

plot(grid,dnorm(grid),type=’l’,lwd=2,ylim=c(0,1.5),

xlim=c(-4,4),xlab=’log(y)’,ylab=’Density’)

for ( i in 1:50) {

temp <- rdir.Fstar(150,15,y)

data <- rep( temp[,2], round(10000*temp[,1]) )

temp <- density(log(data),width=(max(data)-min(data))/8)

lines(temp,lty=2)

}
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Dirichlet Process Sampling (continued)
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Figures 3, 4. Standard normal density (solid curve) and
smoothed density traces of 50 draws (plotted on the log
scale) from the Dirichlet process prior D(cF0) with c = 5
(above) and 50 (below) and F0 = the standard lognormal

distribution (dotted curves).
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Bayesian Nonparametric Intervals

[show R movies now]

From (8), sampling draws from F ∗ with Dirichlet

process prior is easy:

Generate S ∼ U(0,1), then sample from F0 if

S ≤ c
c+n

and from F̂n otherwise.

Direct generalization of bootstrap (also see

Rubin, 1981): when c = 0 sample entirely from F̂n

(bootstrap), but when c > 0 tail-weight and

skewness information comes in from F0.

Now to simulate from posterior distribution of

V (F ), just repeatedly draw F ∗ from D(cF0 + nF̂n)

and calculate V (F ∗).

c acts like tuning constant: successful

nonparametric intervals for V (F ) will result if

compromise c can be found that leads to

well-calibrated intervals across broad range of

underlying F .
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Calibration Properties

Table 7. Actual coverage of nominal 90% intervals for
population variance, using Dirichlet process prior

centered at LN(0,1).

Actual Mean % on % on
n Distribution c Coverage Length Left Right

Gaussian 3.1 90.6 5.22 8.7 0.7
10 Gamma 3.9 90.8 6.91 8.1 1.1

Lognormal 4.3 89.7 8.70 9.2 1.1

Gaussian 3.7 89.3 4.26 10.0 0.7
20 Gamma 6.6 90.0 6.40 9.5 0.5

Lognormal 8.3 90.9 7.69 8.2 0.9

Gaussian 4.8 90.4 3.00 8.5 1.1
50 Gamma 14.1 89.8 4.90 9.7 0.5

Lognormal 20.2 90.4 6.68 8.7 0.9

Gaussian 5.5 91.1 2.19 7.1 1.8
100 Gamma 18.0 90.1 3.93 9.1 0.8

Lognormal 37.8 89.3 5.94 9.7 1.0

Compromise c are possible, e.g., with n = 10,

c
.
= 4.3 produces actual coverage near 90% for the

lognormal and coverage slightly in excess of 90%

for lighter-tailed, less skewed data.

Note how much narrower intervals are than

parametric Bayesian intervals in lognormal model

(Table 3), e.g., with n = 20 parametric intervals

had mean length 145.2 (versus 7.7 above)!

However, errors in Table 7 are still badly

asymmetric.
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Next Step

Table 7 is still cheating, though: F0 = LN(0,1),

and mean and variance of data-generating

distributions were chosen to match those of F0 to

avoid location and scale inconsistencies.

Solution: allow base distribution to be indexed

parametrically, as in the model

zi = ln(yi),

(zi|F )
IID
∼ F (12)

F ∼ D(cF0),

F0 = N(µ, σ2)

(µ, σ2) ∼ p(µ, σ2)

c ∼ p(c)

This model may be fit via MCMC, using methods

to be described in Parts 4–6.
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Pólya Trees

Case study (introducing Pólya trees): risk assessment in
nuclear waste disposal.

This case study will be examined in more detail in Part 8; it
turns out that it also involves data that would be

parametrically modeled as lognormal.

As Part 8 will make clear, in this problem would be good to
be able to build a model that is centered at the lognormal,
but which can adapt to other distributions when the data

suggest this is necessary.

A modeling approach based on Pólya trees (Lavine, 1992,
1994; Walker et al., 1998), first studied by Ferguson (1974),

is one way forward.

The model in Part 8 will involve a mixture of a point mass
at 0 and positive values with a highly skewed distribution.

One way to write the parametric Bayesian lognormal
model for the positive data values is

log(Yi) = µ+ σ ei

(µ, σ2) ∼ p(µ, σ2) (13)

ei
IID
∼ N(0,1),

for some prior distribution p(µ, σ2) on µ and σ2.

The Pólya trees idea is to replace the last line of (13), which
expresses certainty about the distribution of the ei, with a

distribution on the set of possible distributions F
for the ei.
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Pólya Trees (continued)

The new model is

log(Yi) = µ+ σ ei

(µ, σ2) ∼ p(µ, σ2) (14)

(ei|F )
IID
∼ F (mean 0, SD 1)

F ∼ PT (Π,Ac) .

Here (a) Π = {Bε} is a binary tree partition of

the real line, where ε is a binary sequence which

locates the set Bε in the tree.

You get to choose these sets Bε in a way that

centers the Pólya tree on any distribution you

want, in this case the standard normal.

This is done by choosing the cutpoints on the line,

which define the partitions, based on

the quantiles of N(0,1):

Level Sets Cutpoint(s)

1 (B0, B1) Φ−1(1
2
) = 0

2
(B00, B01,
B10, B11)

Φ−1(1
4
) = −0.674,Φ−1(1

2
) = 0,

Φ−1(3
4
) = +0.674

... ... ...

(Φ is the N(0,1) CDF.) In practice this process

has to stop somewhere; I use a tree defined down

to level M = 8, which is like working with

random histograms, each with 28 = 256 bins.
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Pólya Trees (continued)

And (b) Walker et al. (1998):

A helpful image is that of a particle cascading through the
partitions Bε. It starts [on the real line] and moves into B0

with probability C0 or into B1 with probability C1 = 1−C0. In
general, on entering Bε the particle could either move into
Bε0 or into Bε1. Let it move into the former with probability

Cε0 or into the latter with probability Cε1 = 1− Cε0. For
Pólya trees, these probabilities are random, beta variables,
(Cε0, Cε1) ∼ beta(αε0, αε1) with non-negative αε0 and αε1. If

we denote the collection of α’s by A, a particular Pólya tree
distribution is completely defined by Π and A.

To make a Pólya tree distribution choose a

continuous distribution with probability 1, the α’s

have to grow quickly as the level m of the tree

increases. Following Walker et al. (1998) I take

αε = cm2 whenever ε defines a set at level m,

(15)

and this defines Ac.

c > 0 is a kind of tuning constant: with small c

the posterior distribution for the CDF of the ei will

be based almost completely on F̂n, the empirical

CDF (the “data distribution”) for the ei, whereas

with large c the posterior will be based almost

completely on the prior centering distribution, in

this case N(0,1).
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Prior to Posterior Updating

Prior to posterior updating is easy

with Pólya trees: if

F ∼ PT (Π,A)

(Yi|F )
IID
∼ F (16)

and (say) Y1 is observed, then the posterior

p(F |Y1) for F given Y1 is also a Pólya tree with

(αε|Y1) =

{

αε +1 if Y1 ∈ Bε

αε otherwise

}

. (17)

In other words the updating follows a Pólya urn

scheme (e.g., Feller, 1968): at each level

of the tree, if Y1 falls into a particular

partition set Bε, then 1 is added

to the α for that set.

Figs. 5–7 show the variation around N(0,1) obtained by
sampling from a PT(Π,Ac) prior for F as c varies from 10
down to 0.1, and Figs. 8–10 illustrate prior to posterior

updating for the same range of c with a
fairly skewed data set.

R code to perform these Pólya-tree simulations is given on
the next several pages.

[show R movie now]
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R Code For Pólya Trees

polya.sim1 <- function( M, n.sim, cc ) {

b <- matrix( 0, M, 2^M - 1 )

for ( i in 1:M ) {

b[i,1:( 2^i - 1 )] <- qnorm( ( 1:( 2^i - 1 ) ) / 2^i )

}

alpha <- matrix( 0, M, 2^M )

for ( i in 1:M ) {

alpha[i, 1:( 2^i )] <- cc * rep( i^2, 2^i )

}

par( mfrow = c( 2, 1 ) )

plot( seq( -3, 3, length = 500 ), dnorm( seq( -3, 3,
length = 500 ) ),

type = ’l’, xlab = ’y’, ylab = ’Density’, ylim = c( 0, 1.5 ) )

# main = paste( ’c =’, cc, ’, n.sim =’, n.sim ) )

F.star.cumulative <- rep( 0, 2^M )

b.star <- c( -3, b[M,], 3 )

for ( i in 1:n.sim ) {

F.star <- rep( 1, 2^M )

for ( j in 1:M ) {

for ( k in 1:( 2^( j - 1 ) ) ) {

C <- rbeta( 1, alpha[j, 2 * k - 1], alpha[j, 2 * k] )

F.star[( 1 + ( k - 1 ) * 2^( M - j + 1 ) ):( ( 2 * k - 1 ) *

2^( M - j ) )] <- F.star[( 1 + ( k - 1 ) * 2^( M - j + 1 ) ):

( ( 2 * k - 1 ) * 2^( M - j ) )] * C

24



R Code (continued)

F.star[( ( 2 * k - 1 ) * 2^( M - j ) + 1 ):( k * 2^( M - j +

1 ) )] <- F.star[( ( 2 * k - 1 ) * 2^( M - j ) + 1 ):( k *
2^( M - j + 1 ) )] * ( 1 - C )

}

}

F.star.cumulative <- F.star.cumulative + F.star

n <- round( 10000 * F.star )

y <- NULL

for ( j in 1:2^M ) {

y <- c( y, runif( n[j], b.star[j], b.star[j+1] ) )

}

lines( density( y ), lty = 2 )

print( i )

}

F.star.cumulative <- F.star.cumulative / n.sim

n <- round( 10000 * F.star.cumulative )

y <- NULL

for ( i in 1:2^M ) {

y <- c( y, runif( n[i], b.star[i], b.star[i+1] ) )

}

hist( y, nclass = 20, probability = T, ylab = ’Density’,

xlim = c( -3, 3 ), ylim = c( 0, 0.5 ), xlab = ’y’ )

lines( seq( -3, 3, length = 500 ), dnorm( seq( -3, 3, length = 500 ) ) )
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R Code (continued)

lines( density( y ), lty = 2 )

return( cat( "\007" ) )

}

y <- exp( rnorm( 100 ) ) - 2

polya.update <- function( M, n.sim, cc, y ) {

b <- matrix( 0, M, 2^M - 1 )

for ( i in 1:M ) {

b[i,1:( 2^i - 1 )] <- qnorm( ( 1:( 2^i - 1 ) ) / 2^i )

}

b.star <- c( -3, b[ M, ], 3 )

infinity <- 2 * abs( max( min( y ), max( y ), min( b ), max( b ) ) )

alpha <- matrix( 0, M, 2^M )

for ( i in 1:M ) {

alpha[i, 1:( 2^i )] <- cc * rep( i^2, 2^i )

}

par( mfrow = c( 1, 1 ) )

hist( y, xlim = c( -3, max( y ) ), ylim = c( 0, 1.5 ), xlab = ’y’,

ylab = ’Density’, probability = T, nclass = 20,
main = paste( ’n.sim =’, n.sim, ’, c =’, cc, ’, n = ’, length( y ) ) )

for ( i in 1:n.sim ) {

F.star <- rep( 1, 2^M )

for ( j in 1:M ) {

for ( k in 1:( 2^( j - 1 ) ) ) {
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R Code (continued)

C <- rbeta( 1, alpha[j, 2 * k - 1], alpha[j, 2 * k] )

F.star[( 1 + ( k - 1 ) * 2^( M - j + 1 ) ):( ( 2 * k - 1 ) *

2^( M - j ) )] <- F.star[( 1 + ( k - 1 ) * 2^( M - j + 1 ) ):
( ( 2 * k - 1 ) * 2^( M - j ) )] * C

F.star[( ( 2 * k - 1 ) * 2^( M - j ) + 1 ):( k * 2^( M - j +

1 ) )] <- F.star[( ( 2 * k - 1 ) * 2^( M - j ) + 1 ):( k *
2^( M - j + 1 ) )] * ( 1 - C )

}

}

n <- round( 10000 * F.star )

y.star <- NULL

for ( j in 1:2^M ) {

y.star <- c( y.star, runif( n[j], b.star[j], b.star[j+1] ) )

}

lines( density( y.star ), lty = 1 )

}

for ( i in 1:M ) {

n <- hist( y, breaks = c( - infinity, b[i,1:( 2^i - 1 )],

infinity ), plot = F )$counts
alpha[i, 1:( 2^i )] <- alpha[i, 1:( 2^i )] + n

}

for ( i in 1:n.sim ) {

F.star <- rep( 1, 2^M )

for ( j in 1:M ) {

for ( k in 1:( 2^( j - 1 ) ) ) {
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R Code (continued)

C <- rbeta( 1, alpha[j, 2 * k - 1], alpha[j, 2 * k] )

F.star[( 1 + ( k - 1 ) * 2^( M - j + 1 ) ):( ( 2 * k - 1 ) *

2^( M - j ) )] <- F.star[( 1 + ( k - 1 ) * 2^( M - j + 1 ) ):

( ( 2 * k - 1 ) * 2^( M - j ) )] * C

F.star[( ( 2 * k - 1 ) * 2^( M - j ) + 1 ):( k * 2^( M - j +

1 ) )] <- F.star[( ( 2 * k - 1 ) * 2^( M - j ) + 1 ):( k *

2^( M - j + 1 ) )] * ( 1 - C )

}

}

n <- round( 10000 * F.star )

y.star <- NULL

for ( j in 1:2^M ) {

y.star <- c( y.star, runif( n[j], b.star[j], b.star[j+1] ) )

}

lines( density( y.star ), lty = 2 )

}

return( "quack!" )

}
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Sampling From the Prior
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Figure 5. Sampling from a PT(Π,Ac) prior for F
centered at N(0,1) (solid line) with c = 10. For large c the

sampled distribution follows the prior pretty closely.
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Figure 6. Like Fig. 5 but with c = 1. The sampled F ’s are
varying more around N(0,1) with a smaller c.
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Pólya Tree Illustrations
c =  0.1

y

D
en

si
ty

-3 -2 -1 0 1 2 3

0.
0

0.
5

1.
0

1.
5

Figure 7. Like Figs. 5 and 6 but with c = 0.1. With small c
the sampled F bears little relation

to the centering distribution.
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Figure 8. Draws from the prior (solid lines); data (histogram,
n = 100); and draws from the posterior (dotted lines), with
c = 0.1. With c close to 0 the posterior almost coincides

with the data.
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More Pólya Tree Illustrations
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Figure 9. Like Fig. 8 but with c = 1. The posterior is now a
compromise between the prior and the data.
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Figure 10. Like Figs. 8 and 9 but with c = 10. Now the
posterior is much closer to the prior.
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