Bayesian Modeling, Inference, Prediction and Decision-Making

6: Bayesian Nonparametric Modeling (Section 1)

David Draper

Department of Applied Mathematics and Statistics University of California, Santa Cruz
draper@ams.ucsc.edu
http://www.ams.ucsc.edu/~draper
eBay/Google

10 Fridays, 11 Jan-22 Mar 2013 (except 25 Jan)

Short course web page:
www.ams.ucsc.edu/~draper/eBay-Google-2013.html
(C) 2013 David Draper (all rights reserved)

Building a Nonparametric Prior

Suppose in the future I'll observe real-valued $y=\left(y_{1}, \ldots, y_{n}\right)$ and I have no covariate information, so that my uncertainty about the y_{i} is exchangeable.

Then if I'm willing to regard y as part of an infinitely exchangeable sequence (which is like thinking of the y_{i} as having been randomly sampled from the population
$\left(y_{1}, y_{2}, \ldots\right)$), then to be coherent my joint predictive distribution $p\left(y_{1}, \ldots, y_{n}\right)$ must have the hierarchical form

$$
\begin{align*}
F & \underset{\sim}{\sim} p(F) \tag{1}\\
\left(y_{i} \mid F\right) & \stackrel{\text { IDD }}{\sim} F,
\end{align*}
$$

where F is the limiting empirical cumulative distribution function (CDF) of the infinite sequence (y_{1}, y_{2}, \ldots).

How do I construct such a prior on F in a meaningful way?
Two main approaches have so far been fully developed: Dirichlet processes and Pólya trees.

Case study (introducing the Dirichlet process): Fixing the broken bootstrap (joint work with a former Bath MSc student, Callum McKail).

Goal: Nonparametric interval estimates of the variance (or standard deviation (SD)).

One (frequentist nonparametric) approach: the bootstrap.

Best bootstrap technology at present for nonparametric interval estimates is $B C_{a}$ method (e.g., Efron and Tibshirani, 1993) or the its computationally less intensive cousin, the $A B C$ method; we work here with $A B C$ (roughly same performance, much faster).

Bootstrap

(We also tried iterated bootstrap (e.g., Lee and Young, 1995) on problem below but it performed worse than $B C_{a}$ and $A B C$.)

Bootstrap propaganda:

"One of the principal goals of bootstrap theory is to produce good confidence intervals automatically. "Good means that the bootstrap intervals should closely match exact confidence intervals in those special situations where statistical theory yields an exact answer, and should give dependably accurate coverage probabilities in all situations. ... [The $B C_{a}$ intervals] come close to [these] criteria of goodness" (Efron and Tibshirani, 1993).

Figure 1. Standard lognormal distribution $L N(0,1)$,

$$
\text { i.e., } Y \sim L N(0,1) \Longleftrightarrow \ln (Y) \sim N(0,1) .
$$

Lognormal distribution provides good test of bootstrap: it is highly skewed and heavy-tailed.

Bootstrap (continued)

Consider sample $y=\left(y_{1}, \ldots, y_{n}\right)$ from model

$$
\begin{align*}
F & =L N(0,1) \\
\left(Y_{1}, \ldots, Y_{n} \mid F\right) & \stackrel{\text { IID }}{\sim} F, \tag{2}
\end{align*}
$$

and suppose functional of F of interest is

$$
\begin{equation*}
V(F)=\int[y-E(F)]^{2} d F(y), \quad \text { where } E(F)=\int y d F(y) \tag{3}
\end{equation*}
$$

Usual unbiased sample variance

$$
\begin{equation*}
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}, \quad \bar{y}=\sum_{i=1}^{n} y_{i}, \tag{4}
\end{equation*}
$$

is (almost) nonparametric MLE of $V(F)$, and it serves as basis of $A B C$ intervals; population value for $V(F)$ with $\operatorname{LN}(0,1)$ is $e(e-1)=4.67$.

n	mean	median	$\%<4.67$	90th percentile
10	$4.66(0.49)$	$1.88(0.09)$	$77.1(1.2)$	$9.43(0.75)$
20	$4.68(0.34)$	$2.52(0.09)$	$74.0(1.4)$	$9.37(0.60)$
50	$4.68(0.21)$	$3.20(0.08)$	$70.4(1.5)$	$8.59(0.43)$
100	$4.67(0.15)$	$3.62(0.08)$	$67.6(1.5)$	$7.98(0.31)$
500	$4.68(0.07)$	$4.23(0.05)$	$62.6(1.4)$	$6.64(0.13)$

Table 1. Distribution of sample variance for $L N(0,1)$ data, based on 1000 simulation repetitions (simulation SE in parentheses).
s^{2} achieves unbiasedness by being too small most of the time and much too large some of the time; does not bode well for bootstrap.

Bootstrap Calibration Failure

Figure 2. Histogram of first 950 ordered values of the sample variance for $n=10$.

n	actual cov. (\%)	mean length	median length	\% on left	\% on right
10	$36.0(1.5)$	$8.08(0.68)$	$2.43(1.13)$	$61.1(1.5)$	$2.9(0.5)$
20	$49.4(1.6)$	$9.42(0.77)$	$3.79(1.32)$	$48.6(1.6)$	$2.0(0.4)$
50	$61.9(1.5)$	$10.1(0.61)$	$4.56(0.75)$	$35.4(1.5)$	$2.7(0.5)$
100	$68.6(1.5)$	$8.76(0.49)$	$4.63(0.72)$	$27.4(1.4)$	$4.0(0.6)$
500	$76.8(1.3)$	$5.43(0.21)$	$3.51(0.27)$	$18.5(1.2)$	$4.7(0.7)$

Table 2. ABC, nominal 90% intervals, $L N(0,1)$ data

With $n=10$, nominal 90% intervals only cover
36% of the time, and even with $n=500$ actual coverage is only up to 77% !

Mistakes are almost always from interval lying entirely to left of true $V(F)$.

Bootstrap Failure (continued)

Bootstrap fails because it is based solely on empirical CDF \widehat{F}_{n}, which is ignorant of right tail behavior beyond $Y_{(n)}=\max _{i} Y_{i}$.

To improve must bring in prior information about tail weight and skewness.

Problem is of course not unsolvable parametrically: consider model

$$
\begin{align*}
\left(\mu, \sigma^{2}\right) & \stackrel{\sim}{\sim} p\left(\mu, \sigma^{2}\right) \\
\left(Y_{1}, \ldots, Y_{n} \mid \mu, \sigma^{2}\right) & \stackrel{\text { ID }}{\sim} L N\left(\mu, \sigma^{2}\right), \tag{5}
\end{align*}
$$

and take proper but highly diffuse prior on $\left(\mu, \sigma^{2}\right)$.

Easy to use Gibbs sampling (even in BUGS) to show that Bayesian intervals are well-calibrated (but note interval lengths!):

n	actual cov. (\%)	mean length	median length	\% on left	\% on right
10	$88.7(1.0)$	$6 \cdot 10^{5}\left(2.10^{5}\right)$	$194.6(29.3)$	$4.9(0.7)$	$6.4(0.8)$
20	$89.3(1.0)$	$145.2(14.9)$	$39.6(2.0)$	$4.9(0.7)$	$5.8(0.7)$
50	$89.1(1.0)$	$17.8(0.5)$	$12.6(0.5)$	$5.3(0.7)$	$5.6(0.7)$
100	$90.6(0.9)$	$8.9(0.2)$	$7.6(0.2)$	$4.0(0.6)$	$5.4(0.7)$
500	$89.9(1.0)$	$3.0(0.02)$	$3.0(0.02)$	$5.5(0.7)$	$4.6(0.7)$

Table 3. Lognormal model, $N\left(0,10^{4}\right)$ prior for μ, $\Gamma(0.001,0.001)$ prior for $\tau=\frac{1}{\sigma^{2}}$, nominal $90 \%, L N(0,1)$ data

Parametric Bayes Fails

But parametric Bayesian inference based on $L N$ distribution is horribly non-robust:

n	actual cov. (\%)	mean length	\% On left	\% On right
10	$0.0(0.0)$	$6.851(0.03)$	$0.0(0.0)$	$100.0(0.0)$
20	$5.1(0.7)$	$2.542(0.01)$	$0.0(0.0)$	$94.9(0.7)$
50	$44.2(1.6)$	$0.990(0.004)$	$0.0(0.0)$	$55.8(1.6)$
100	$64.1(1.5)$	$0.586(0.002)$	$0.0(0.0)$	$35.9(1.5)$
500	$85.3(1.2)$	$0.221(0.0004)$	$1.1(0.3)$	$13.6(1.1)$

Table 4. Lognormal model, $N\left(0,10^{4}\right)$ prior for μ, $\Gamma(0.001,0.001)$ prior for $\tau=\frac{1}{\sigma^{2}}$, nominal $90 \%, N(0,10)$ data

Need to bring in tail-weight and skewness nonparametrically.

Method 0: Appended $A B C$ (ad hoc).

Given sample of size n, and using conjugate prior distribution, it is often helpful to think of prior as equivalent to data set with effective sample size m (for some m) which can be appended to the n data values.

The combined data set of $(m+n)$ observations can then be analyzed in frequentist way. Idea is to "teach" bootstrap about part of heavy tail of underlying lognormal distribution
beyond largest data point $y_{(n)}$. Can try to do this by sampling m "prior data points" beyond a certain point, c, and then bootstrapping sample variance of $(m+n)$ points taken together.

Appended $A B C$ Method

m	actual cov. (\%)	mean length	\% on left	\% on right	mean variance
0	$36.0(1.5)$	$8.1(0.7)$	$61.1(1.5)$	$2.9(0.5)$	$4.66(0.49)$
1	$88.7(1.0)$	$22.5(1.6)$	$0.4(0.2)$	$10.9(1.0)$	$11.7(0.66)$
2	$67.2(1.5)$	$27.4(1.8)$	$0.0(0.0)$	$32.8(1.5)$	$16.0(0.73)$
3	$29.8(1.4)$	$33.4(1.9)$	$0.0(0.0)$	$70.2(1.4)$	$20.5(0.74)$

Table 5. Appended $A B C$ method, $n=10$, nominal $90 \%, c=5.60=E\left(y_{(n)}\right)$

m	actual coverage (\%)	mean length	\% on left	\% on right	mean variance
0	$76.8(1.3)$	$5.43(0.2)$	$18.5(1.2)$	$4.7(0.7)$	$4.68(0.09)$
1	$82.4(1.2)$	$10.5(0.3)$	$0.0(0.0)$	$17.6(1.2)$	$6.67(0.09)$
2	$53.7(1.6)$	$13.9(0.5)$	$0.0(0.0)$	$46.3(1.6)$	$8.58(0.13)$
3	$20.7(1.3)$	$16.7(0.6)$	$0.0(0.0)$	$79.3(1.3)$	$10.5(0.15)$

Table 6. Appended ABC method, $n=500$, nominal $90 \%, c=22.49=E\left(y_{(n)}\right)$

This sort of works with $m=1$, but (a) highly imbalanced errors left-right and
(b) coverage gets worse as n increases!

Method 1: Dirichlet process priors. To remove ad-hockery, work with
Bayesian nonparametric model

$$
\begin{align*}
F & \stackrel{\sim}{\sim} p(F) \\
\left(Y_{1}, \ldots, Y_{n} \mid F\right) & \stackrel{\text { IID }}{\sim} F, \tag{6}
\end{align*}
$$

for some prior $p(F)$ on infinite-dimensional space \mathcal{D} of all possible CDFs F. Use $p(F)$ to teach interval-generating method about tailweight and skewness.

Dirichlet Process Priors

Simplest $p(F)$ is class of Dirichlet process priors (Freedman, 1963; Ferguson, 1973).

Intuition: Freedman wanted to find conjugate prior for empirical CDF \widehat{F}_{n}.

IID sampling from $\widehat{F}_{n}=$ mass $\frac{1}{n}$ on each of y_{1}, \ldots, y_{n} is multinomial:

Sort y_{i} into $k \leq n$ bins b_{1}, \ldots, b_{k} ($k<n$ if ties) and let $n_{j}=\#\left(y_{i}\right.$ in bin $\left.b_{j}\right)$; then

$$
\begin{equation*}
Y^{*} \sim \hat{F}_{n} \Longleftrightarrow p\left(y^{*}\right)=c \theta_{1}^{n_{1}} \cdots \theta_{k}^{n_{k}}, \tag{7}
\end{equation*}
$$

$$
\theta=\left(\theta_{1}, \ldots, \theta_{k}\right), \theta_{j} \geq 0, \sum_{j=1}^{k} \theta_{j}=1
$$

Conjugate prior for multinomial is Dirichlet: with

$$
\begin{gather*}
\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right), \alpha_{j} \geq 0 \\
\theta \sim D(\alpha) \Longleftrightarrow p(\theta)=c \theta_{1}^{\alpha_{1}-1} \cdots \theta_{k}^{\alpha_{k}-1} . \tag{8}
\end{gather*}
$$

Dirichlet Process Priors (continued)

So Freedman defined Dirichlet process as follows, e.g., for random variables on \Re^{1} and with F having a density f :

Definition (Freedman, 1963). CDF $F \sim \mathcal{D}(\alpha)$ (F follows a Dirichlet process with parameter α, α itself a distribution) \Longleftrightarrow for any (measurable)
partition A_{1}, \ldots, A_{k} of \Re^{1}, the random vector [$F\left(A_{1}\right), \ldots, F\left(A_{k}\right)$] follows a Dirichlet distribution with parameter $\left[\alpha\left(A_{1}\right), \ldots, \alpha\left(A_{k}\right)\right]$, where $F\left(A_{j}\right)$ means the mass assigned to A_{j} by f.

Useful to express α in form $\alpha(\cdot)=c F_{0}(\cdot)$, where F_{0} is the centering or base distribution-in the sense that $E(F)=F_{0}$-and c acts like a prior sample size.

With this way of writing α, conjugate updating becomes clear:

$$
\begin{align*}
F \sim \mathcal{D}\left(c F_{0}\right), \quad\left(Y_{i} \mid F\right) & \stackrel{\text { IID }}{\sim} F \rightarrow(F \mid Y) \sim \mathcal{D}\left(c^{*} F^{*}\right) \\
c^{*}=c+n, \quad F^{*} & =\frac{c F_{0}+n \widehat{F}_{n}}{c+n} . \tag{9}
\end{align*}
$$

Dirichlet Process Sampling

Sethuraman and Tiwari (1982) showed how to sample from a Dirichlet process:

$$
\begin{aligned}
& F \sim \mathcal{D}\left(c F_{0}\right) \rightarrow F=\sum_{j=1}^{\infty} V_{j} \delta_{\theta_{j}}, \quad \text { where } \\
& V_{1}=W_{1}, V_{j}=W_{j} \prod_{k=1}^{j-1}\left(1-W_{k}\right), j=2,3, \ldots(10)
\end{aligned}
$$

Here W_{1}, W_{2}, \ldots are IID $\operatorname{Beta}(1, c), \theta_{1}, \theta_{2}, \ldots$ are IID from F_{0}, and $\delta_{\theta_{j}}$ is point mass at θ_{j} (this is the so-called stick-breaking algorithm, to be examined further in Parts 4-6).

This shows that Dirichlet processes place all their mass on discrete CDFs, which is in some contexts a drawback; Dirichlet process mixture models (Parts 4-6) solve this problem.

As c increases with $F \sim \mathcal{D}\left(c F_{0}\right)$, the sampling envelope around F_{0} becomes tighter, because for any member A of a (measurable) partition of \Re^{1},

$$
\begin{equation*}
V[F(A)]=\frac{F_{0}(A)\left[1-F_{0}(A)\right]}{c+1}, \tag{11}
\end{equation*}
$$

and increasing c decreases variability around F_{0}.

R Code for Dirichlet Process Sampling

```
rdir.ln <- function( m, cc ) {
    theta <- rlnorm( m, 0.0, 1.0 )
    v <- rep( 0,m )
    w <- rbeta( m, 1.0, cc )
    v[1] <- w[1]
    for ( j in 2:m ) {
        v[j] <- w[j] * v[j-1] * ( 1.0 - w[j - 1] ) / w[j - 1]
    }
    print( sum( v ) )
    temp <- cbind( v, theta )
    return( temp[order(temp[, 2], temp[, 1]), 1:2] )
}
rdir.Fstar <- function( m, cc, y ) {
    n <- length( y )
    theta <- rep( 0, m )
    for ( i in 1:m ) {
        U <- runif( 1 )
        S <- U < ( cc / ( cc + n ) )
        if ( S ) theta[i] <- rlnorm( 1, 0.0, 1.0 )
        else theta[i] <- sample( y, 1 )
    }
```


R Code (continued)

```
    v <- rep( 0, m )
    w <- rbeta( m, 1.0, cc )
    v[1] <- w[1]
    for ( j in 2:m ) {
        v[j] <- w[j] * v[j-1] * ( 1.0 - w[j - 1] ) / w[j - 1]
    }
    print( sum( v ) )
    temp <- cbind( v, theta )
    return( temp[order(temp[, 2], temp[, 1]), 1:2] )
}
test <- function( n, m, cc ) {
    y.1 <- rep( 0, n )
    y.2 <- rep( 0, n )
    for ( i in 1:n ) {
        sample <- rdir.ln( m, cc )
        y.1[i] <- sum( sample[,1] * sample[,2] )
        y.2[i] <- sum( sample[,1] * sample[,2]^2 )
    }
    return( c( mean( y.1 ), mean( y.2 - y.1^2 ) ) )
}
```


R Code (continued)

```
grid <- seq(0,8,length=500)
plot(grid,dlnorm(grid),type='l',lwd=2,ylim=c(0,0.8))
for ( i in 1:50) {
    temp <- rdir.ln(100,10)
    data <- rep( temp[,2], round(10000*temp[,1]) )
    temp <- density(log(data),width=(max(data)-min(data))/4)
    temp$x <- exp(temp$x)
    lines(temp,lty=2)
}
grid <- log(seq(0,25,length=1000))
plot(grid,dnorm(grid),type='l',lwd=2,ylim=c(0,1.5),
    xlim=c(-4,4),xlab='log(y)',ylab='Density')
for ( i in 1:50) {
    temp <- rdir.ln(100,5)
    data <- rep( temp[,2], round(10000*temp[,1]) )
    temp <- density(log(data),width=(max(data)-min(data))/8)
    lines(temp,lty=2)
}
```


R Code (continued)

```
y = rlnorm( 100 ) + 1
grid <- log(seq(0,25,length=1000))
plot(grid,dnorm(grid),type='l',lwd=2,ylim=c(0,1.5),
        xlim=c(-4,4),xlab='log(y)',ylab='Density')
for ( i in 1:50) {
    temp <- rdir.Fstar(150,15,y)
    data <- rep( temp[,2], round(10000*temp[,1]) )
    temp <- density(log(data),width=(max(data)-min(data))/8)
    lines(temp,lty=2)
}
```


Dirichlet Process Sampling (continued)

Figures 3, 4. Standard normal density (solid curve) and smoothed density traces of 50 draws (plotted on the log scale) from the Dirichlet process prior $\mathcal{D}\left(c F_{0}\right)$ with $c=5$ (above) and 50 (below) and $F_{0}=$ the standard lognormal distribution (dotted curves).

Bayesian Nonparametric Intervals

[show R movies now]

From (8), sampling draws from F^{*} with Dirichlet process prior is easy:

Generate $S \sim U(0,1)$, then sample from F_{0} if $S \leq \frac{c}{c+n}$ and from \hat{F}_{n} otherwise.

Direct generalization of bootstrap (also see Rubin, 1981): when $c=0$ sample entirely from \hat{F}_{n} (bootstrap), but when $c>0$ tail-weight and skewness information comes in from F_{0}.

Now to simulate from posterior distribution of $V(F)$, just repeatedly draw F^{*} from $\mathcal{D}\left(c F_{0}+n \hat{F}_{n}\right)$ and calculate $V\left(F^{*}\right)$.
c acts like tuning constant: successful nonparametric intervals for $V(F)$ will result if
compromise c can be found that leads to well-calibrated intervals across broad range of underlying F.

Calibration Properties

Table 7. Actual coverage of nominal 90% intervals for population variance, using Dirichlet process prior centered at $L N(0,1)$.

n	Distribution	c	Actual Coverage	Mean Length	\% on Left	\% on Right
10	Gaussian	3.1	90.6	5.22	8.7	0.7
	Gamma	3.9	90.8	6.91	8.1	1.1
	Lognormal	4.3	89.7	8.70	9.2	1.1
20	Gaussian	3.7	89.3	4.26	10.0	0.7
	Gamma	6.6	90.0	6.40	9.5	0.5
	Lognormal	8.3	90.9	7.69	8.2	0.9
50	Gaussian	4.8	90.4	3.00	8.5	1.1
	Gamma	14.1	89.8	4.90	9.7	0.5
	Lognormal	20.2	90.4	6.68	8.7	0.9
100	Gaussian	5.5	91.1	2.19	7.1	1.8
	Gamma	18.0	90.1	3.93	9.1	0.8
	Lognormal	37.8	89.3	5.94	9.7	1.0

Compromise c are possible, e.g., with $n=10$, $c \doteq 4.3$ produces actual coverage near 90% for the lognormal and coverage slightly in excess of 90% for lighter-tailed, less skewed data.

Note how much narrower intervals are than parametric Bayesian intervals in lognormal model (Table 3), e.g., with $n=20$ parametric intervals had mean length 145.2 (versus 7.7 above)!

However, errors in Table 7 are still badly asymmetric.

Next Step

Table 7 is still cheating, though: $F_{0}=L N(0,1)$, and mean and variance of data-generating distributions were chosen to match those of F_{0} to avoid location and scale inconsistencies.

Solution: allow base distribution to be indexed parametrically, as in the model

$$
\begin{align*}
z_{i} & =\ln \left(y_{i}\right), \\
\left(z_{i} \mid F\right) & \stackrel{\mathrm{ID}}{\sim} \tag{12}\\
F & \sim \mathcal{D}\left(c F_{0}\right), \\
F_{0} & =N\left(\mu, \sigma^{2}\right) \\
\left(\mu, \sigma^{2}\right) & \sim p\left(\mu, \sigma^{2}\right) \\
c & \sim p(c)
\end{align*}
$$

This model may be fit via MCMC, using methods to be described in Parts 4-6.

Pólya Trees

Case study (introducing Pólya trees): risk assessment in nuclear waste disposal.

This case study will be examined in more detail in Part 8; it turns out that it also involves data that would be parametrically modeled as lognormal.

As Part 8 will make clear, in this problem would be good to be able to build a model that is centered at the lognormal, but which can adapt to other distributions when the data suggest this is necessary.

A modeling approach based on Pólya trees (Lavine, 1992, 1994; Walker et al., 1998), first studied by Ferguson (1974), is one way forward.

The model in Part 8 will involve a mixture of a point mass at \mathbf{O} and positive values with a highly skewed distribution.

One way to write the parametric Bayesian lognormal model for the positive data values is

$$
\begin{align*}
\log \left(Y_{i}\right) & =\mu+\sigma e_{i} \\
\left(\mu, \sigma^{2}\right) & \sim p\left(\mu, \sigma^{2}\right) \tag{13}\\
e_{i} & \stackrel{\text { IID }}{\sim} N(0,1),
\end{align*}
$$

for some prior distribution $p\left(\mu, \sigma^{2}\right)$ on μ and σ^{2}.
The Pólya trees idea is to replace the last line of (13), which expresses certainty about the distribution of the e_{i}, with a distribution on the set of possible distributions F for the e_{i}.

Pólya Trees (continued)

The new model is

$$
\begin{align*}
\log \left(Y_{i}\right) & =\mu+\sigma e_{i} \\
\left(\mu, \sigma^{2}\right) & \sim p\left(\mu, \sigma^{2}\right) \tag{14}\\
\left(e_{i} \mid F\right) & \stackrel{\sim}{\sim} \quad(\text { mean 0, SD 1) } \\
F & \sim P T\left(\Pi, \mathcal{A}_{c}\right) .
\end{align*}
$$

Here (a) $\Pi=\left\{B_{\epsilon}\right\}$ is a binary tree partition of the real line, where ϵ is a binary sequence which locates the set B_{ϵ} in the tree.

You get to choose these sets B_{ϵ} in a way that centers the Pólya tree on any distribution you want, in this case the standard normal.

This is done by choosing the cutpoints on the line, which define the partitions, based on the quantiles of $N(0,1)$:

(Φ is the $N(0,1)$ CDF.) In practice this process has to stop somewhere; I use a tree defined down to level $M=8$, which is like working with random histograms, each with $2^{8}=256$ bins.

Pólya Trees (continued)

And (b) Walker et al. (1998):

A helpful image is that of a particle cascading through the partitions B_{ϵ}. It starts [on the real line] and moves into B_{0} with probability C_{0} or into B_{1} with probability $C_{1}=1-C_{0}$. In general, on entering B_{ϵ} the particle could either move into $B_{\epsilon 0}$ or into $B_{\epsilon 1}$. Let it move into the former with probability $C_{\epsilon 0}$ or into the latter with probability $C_{\epsilon 1}=1-C_{\epsilon 0}$. For Pólya trees, these probabilities are random, beta variables, ($C_{\epsilon 0}, C_{\epsilon 1}$) $\sim \operatorname{beta}\left(\alpha_{\epsilon 0}, \alpha_{\epsilon 1}\right)$ with non-negative $\alpha_{\epsilon 0}$ and $\alpha_{\epsilon 1}$. If we denote the collection of α 's by \mathcal{A}, a particular Pólya tree distribution is completely defined by Π and \mathcal{A}.

To make a Pólya tree distribution choose a continuous distribution with probability 1 , the α 's have to grow quickly as the level m of the tree increases. Following Walker et al. (1998) I take

$$
\begin{equation*}
\alpha_{\epsilon}=\mathrm{cm}^{2} \text { whenever } \epsilon \text { defines a set at level } m \tag{15}
\end{equation*}
$$

and this defines \mathcal{A}_{c}.
$c>0$ is a kind of tuning constant: with small c the posterior distribution for the CDF of the e_{i} will be based almost completely on \widehat{F}_{n}, the empirical
CDF (the "data distribution") for the e_{i}, whereas with large c the posterior will be based almost completely on the prior centering distribution, in this case $N(0,1)$.

Prior to Posterior Updating

Prior to posterior updating is easy with Pólya trees: if

$$
\begin{align*}
F & \underset{\sim}{\sim} P T(\Pi, \mathcal{A}) \\
\left(Y_{i} \mid F\right) & \stackrel{\text { IID }}{\sim} F \tag{16}
\end{align*}
$$

and (say) Y_{1} is observed, then the posterior $p\left(F \mid Y_{1}\right)$ for F given Y_{1} is also a Pólya tree with

$$
\left(\alpha_{\epsilon} \mid Y_{1}\right)=\left\{\begin{array}{cl}
\alpha_{\epsilon}+1 & \text { if } Y_{1} \in B_{\epsilon} \tag{17}\\
\alpha_{\epsilon} & \text { otherwise }
\end{array}\right\} .
$$

In other words the updating follows a Pólya urn scheme (e.g., Feller, 1968): at each level of the tree, if Y_{1} falls into a particular partition set B_{ϵ}, then 1 is added to the α for that set.

Figs. 5-7 show the variation around $N(0,1)$ obtained by sampling from a $\operatorname{PT}\left(\Pi, \mathcal{A}_{c}\right)$ prior for F as c varies from 10 down to 0.1, and Figs. 8-10 illustrate prior to posterior
updating for the same range of c with a fairly skewed data set.

R code to perform these Pólya-tree simulations is given on the next several pages.
[show R movie now]

R Code For Pólya Trees

```
polya.sim1 <- function( M, n.sim, cc ) \{
    b <- matrix ( 0, M, 2^M - 1 )
    for ( i in 1:M ) \{
        b[i,1:( 2^i - 1 )] <- qnorm( ( \(1:\left(2^{\wedge} i-1\right)\) ) / 2^i )
    \}
```

 alpha <- matrix (0, M, 2^M)
 for (i in 1:M) \{
 alpha[i, 1:(2^i)] <- cc * rep(i^2, 2^i)
 \}
 \(\operatorname{par}(\operatorname{mfrow}=c(2,1))\)
 plot (seq(\(-3,3\), length \(=500\)), dnorm(seq(\(-3,3\),
 length = 500)),
 type = 'l', xlab = 'y', ylab = 'Density', ylim = c(0, 1.5))
 main = paste('c =', cc, ', n.sim =', n.sim))
 F.star.cumulative <- rep(0, 2^M)
 b.star <- c(\(-3, \mathrm{~b}[\mathrm{M}, \mathrm{]}, 3\))
 for (i in 1:n.sim) \{
 F.star <- rep (1, 2^M)
 for (j in 1:M) \{
 for (\(k\) in 1: (\(2^{\wedge}(\mathrm{j}-1\)))) \{
 C <- rbeta(1, alpha[j, 2 * k - 1], alpha[j, 2 * k])
 F.star \(\left[\left(1+(k-1) * 2^{\wedge}(M-j+1)\right):((2 * k-1) *\right.\)
 \(\left.\left.2^{\wedge}(\mathrm{M}-\mathrm{j})\right)\right]<-\mathrm{F} . \operatorname{star}[(1+(\mathrm{k}-1)\) * 2^(M - j + 1)):
 ((\(2 * \mathrm{k}-1\)) * \(\left.\left.2^{\wedge}(\mathrm{M}-\mathrm{j}) \mathrm{l}\right)\right] * C\)

R Code (continued)

```
            F.star[( ( 2 * k - 1 ) * 2^( M - j ) + 1 ):( k * 2^( M - j +
            1) )] <- F.star[( ( 2 * k - 1 ) * 2^( M - j ) + 1 ):( k *
            2^( M - j + 1 ) )] * ( 1 - C )
    }
    }
    F.star.cumulative <- F.star.cumulative + F.star
    n <- round( 10000 * F.star )
    y <- NULL
    for ( j in 1:2^M ) {
        y <- c( y, runif( n[j], b.star[j], b.star[j+1] ) )
    }
    lines( density( y ), lty = 2 )
    print( i )
}
F.star.cumulative <- F.star.cumulative / n.sim
n <- round( 10000 * F.star.cumulative )
y <- NULL
for ( i in 1:2^M ) {
    y <- c( y, runif( n[i], b.star[i], b.star[i+1] ) )
}
```

hist(y, nclass = 20, probability = T, ylab = 'Density',
xlim $=c(-3,3)$, ylim $=c(0,0.5), x \operatorname{lab}=' y ')$
lines (seq $(-3,3$, length $=500)$, dnorm (seq ($-3,3$, length $=500$))

R Code (continued)

lines(density (y), lty = 2)
return(cat("\007"))
\}

$$
\mathrm{y}<-\exp (\operatorname{rnorm}(100))-2
$$

polya.update <- function(M, n.sim, cc, y) \{
$b<-\operatorname{matrix}\left(0, M, 2^{\wedge} M-1\right)$
for (i in 1:M) \{

$$
\mathrm{b}\left[\mathrm{i}, 1:\left(2^{\wedge} \mathrm{i}-1\right)\right]<-\operatorname{qnorm}\left(\left(1:\left(2^{\wedge} i-1\right)\right) / 2^{\wedge} i\right)
$$

\}
b.star <- c $(-3, b[M], 3$,
infinity <- 2 * $\operatorname{abs}(\max (\min (\mathrm{y}), \max (\mathrm{y}), \min (\mathrm{b}), \max (\mathrm{b}))$)
alpha <- matrix (0, M, 2^M)
for (i in 1:M) \{ alpha[i, 1:(2^i)] <- cc * rep($\left.\mathrm{i}^{\wedge} 2,2^{\wedge} \mathrm{i}\right)$
\}
$\operatorname{par}(\operatorname{mfrow}=c(1,1))$
hist (y, xlim $=c(-3, \max (y)), y \lim =c(0,1.5), x l a b=' y$, ylab = 'Density', probability = T, nclass = 20, main = paste('n.sim =', n.sim, ', $c=$ ', cc, ', $n=$, length (y)))
for (i in 1:n.sim) \{

$$
\text { F.star <- rep }\left(1,2^{\wedge} M\right)
$$

for (j in 1:M) \{

$$
\text { for }\left(k \operatorname{in} 1:\left(2^{\wedge}(j-1)\right)\right)\{
$$

R Code (continued)

```
            C <- rbeta( 1, alpha[j, 2 * k - 1], alpha[j, 2 * k] )
            F.star[( 1 + ( k - 1 ) * 2^( M - j + 1 ) ):( ( 2 * k - 1 ) *
            2^( M - j ) )] <- F.star[( 1 + (k - 1 ) * 2^( M - j + 1 ) ):
            ( ( 2 * k - 1 ) * 2^( M - j ) )] * C
            F.star[(( 2 * k - 1 ) * 2^( M - j ) + 1 ):( k * 2^( M - j +
            1) )] <- F.star[( ( 2 * k - 1 ) * 2^( M - j ) + 1 ):( k *
            2^( M - j + 1 ) )] * ( 1 - C )
        }
    }
    n <- round( 10000 * F.star )
    y.star <- NULL
    for ( j in 1:2^M ) {
        y.star <- c( y.star, runif( n[j], b.star[j], b.star[j+1] ) )
    }
    lines( density( y.star ), lty = 1 )
}
for ( i in 1:M ) {
    n <- hist( y, breaks = c( - infinity, b[i,1:( 2^i - 1 )],
        infinity ), plot = F )$counts
    alpha[i, 1:( 2^i )] <- alpha[i, 1:( 2^i )] + n
}
for ( i in 1:n.sim ) {
    F.star <- rep( 1, 2^M )
    for ( j in 1:M ) {
        for (k in 1:( 2^( j - 1 ) ) ) {
```


R Code (continued)

```
                C <- rbeta( 1, alpha[j, 2 * k - 1], alpha[j, 2 * k] )
            F.star[( 1 + (k - 1) * 2^( M - j + 1 ) ):( ( 2 * k - 1 ) *
                        2^( M - j ) )] <- F.star[( 1 + (k - 1 ) * 2^( M - j + 1 ) ):
                ( ( 2 * k - 1 ) * 2^( M - j ) )] * C
            F.star[( ( 2 * k - 1 ) * 2^( M - j ) + 1 ):( k * 2^( M - j +
            1 ) )] <- F.star[( ( 2 * k - 1 ) * 2^( M - j ) + 1 ):( k *
            2^( M - j + 1 ) )] * ( 1 - C )
            }
        }
        n <- round( 10000 * F.star )
        y.star <- NULL
        for ( j in 1:2^M ) {
            y.star <- c( y.star, runif( n[j], b.star[j], b.star[j+1] ) )
        }
        lines( density( y.star ), lty = 2 )
    }
    return( "quack!" )
}
```


Sampling From the Prior

Figure 5. Sampling from a $\operatorname{PT}\left(\Pi, \mathcal{A}_{c}\right)$ prior for F centered at $N(0,1)$ (solid line) with $c=10$. For large c the sampled distribution follows the prior pretty closely.

Figure 6. Like Fig. 5 but with $c=1$. The sampled F 's are varying more around $N(0,1)$ with a smaller c.

Pólya Tree Illustrations
 $\mathrm{c}=0.1$

Figure 7. Like Figs. 5 and 6 but with $c=0.1$. With small c the sampled F bears little relation to the centering distribution.

Figure 8. Draws from the prior (solid lines); data (histogram, $n=100$); and draws from the posterior (dotted lines), with $c=0.1$. With c close to 0 the posterior almost coincides with the data.

More Pólya Tree Illustrations

n. $\operatorname{sim}=25, c=1, n=100$

Figure 9. Like Fig. 8 but with $c=1$. The posterior is now a compromise between the prior and the data.

Figure 10. Like Figs. 8 and 9 but with $c=10$. Now the posterior is much closer to the prior.

Part 3 References

Efron B, Tibshirani RJ (1993). An Introduction to the Bootstrap. London: Chapman \& Hall.

Escobar MD, West M (1995). Bayesian density estimation and inference using mixtures. Journal of the American Statistical Association, 90, 577-588.

Ferguson TS (1973). A Bayesian analysis of some non-parametric problems. Annals of Statistics, 1, 209-230.

Freedman DA (1963). On the asymptotic behavior of Bayes estimates in the discrete case I. Annals of Mathematical Statistics, 34, 1386-1403.

Lee SMS, Young GA (1995). Asymptotic iterated bootstrap confidence intervals. Annals of Statistics, 23, 1301-1330.

Rubin DB (1981). The Bayesian bootstrap. Annals of Statistics, 9, 130-134.

Sethuraman J, Tiwari R (1982). Convergence of Dirichlet measures and the interpretation of their parameter. Proceedings of the Third Purdue Symposium on statistical Decision Theory and Related Topics, SS Gupta, JO Berger (Eds.). New York: Academic press.

Walker SG, Damien P, Laud, PW, Smith AFM (1997) Bayesian nonparametric inference for random distributions and related functions. Technical Report, Department of Mathematics, Imperial College.

Part 3 References (continued)

Draper D (1997). Model uncertainty in "stochastic" and "deterministic" systems. In Proceedings of the 12th International Workshop on Statistical Modeling, Minder C, Friedl H (eds.), Vienna: Schriftenreihe der Österreichischen Statistichen Gesellschaft, 5, 43-59.

Draper D (2005). Bayesian Modeling, Inference and Prediction. New York: Springer-Verlag, forthcoming.

Efron B, Tibshirani RJ (1993). An Introduction to the Bootstrap. London: Chapman \& Hall.

Feller W (1968). An Introduction to Probability Theory and Its Applications, Volume I, Third Edition. New York: Wiley.

Ferguson TS (1974). Prior distributions on spaces of probability measures. Annals of Statistics, 2, 615-629.

Gilks WR, Richardson S, Spiegelhalter DJ (1996). Markov Chain Monte Carlo in Practice. London: Chapman \& Hall.

Johnson NL, Kotz S (1970). Distributions in Statistics: Continuous Univariate Distributions, Volume 1. Boston: Houghton-Mifflin.

Lavine M (1992). Some aspects of Pólya tree distributions for statistical modeling. Annals of Statistics, 20, 12031221.

Lavine M (1994). More aspects of Pólya trees for statistical modeling. Annals of Statistics, 20, 1161-1176.

PSAC (Probabilistic System Assessment Code) User Group (1989). PSACOIN Level E Intercomparison. Nuclear Energy Agency: Organization for Economic Co-operation and Development.

Part 3 References (continued)

Sinclair J (1996). Convergence of risk estimates obtained from highly skewed distributions. AEA Technology briefing.

Sinclair J, Robinson P (1994). The unsolved problem of convergence of PSA. Presentation at the 15th meeting of the NEA Probabilistic System Assessment Group, 1617 June 1994, Paris.

Spiegelhalter DJ, Thomas A, Best NG, Gilks WR (1997). BUGS: Bayesian inference Using Gibbs Sampling, Version O.6. Cambridge: Medical Research Council Biostatistics Unit.

Walker SG, Damien P, Laud PW, Smith AFM (1998). Bayesian nonparametric inference for random distributions and related functions. Technical report, Department of Mathematics, Imperial College, London.

Woo G (1989). Confidence bounds on risk assessments for underground nuclear waste repositories. Terra Nova, 1, 79-83.

