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Polya Tree Case Study

A key issue in the consolidation process of the
nuclear fuel cycle is the safe disposal of
radioactive waste.

At present, deep geological disposal based on a
multibarrier concept is considered the most
promising option (visualize a deep underground
chamber within which radioactive materials such
as spent fuel rods are entombed in layers of
concrete and other barriers;

e.g,, PSAC User Group, 1989).

The safety of this concept ultimately relies on the
safety of the mechanical, chemical and physical
barriers offered by the geological formation itself.

In spite of recent worldwide efforts, the
physico-chemical behavior of such a disposal
system over geological time scales (hundreds or
thousands of years) is far from known with
certainty (e.g., Sinclair, 1996).

Goal: Predicting outcomes, including radioactive
dose for people on the earth’'s surface, as a
function of factors like time, how far the disposal
chamber is underground, ...



Uncertainty

Radioactive dose is estimated by computer simulation
models such as AEA’s MASCOT, which numerically solve
complex systems
of partial differential equations.

The output of such models is deterministic given fixed
scenario and parametric inputs, but these are uncertain.
Structural and predictive uncertainty are also part of a full
uncertainty audit (Fig. 1; Draper, 1997).

MASCOT
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Inputs —— Processes outbuts
(Scenario) (Structural) p
‘ (Predictive)
Chemical Constants
(Parametric) Actual
Outputs

Figure 1. Illustrating the four potential sources of
uncertainty in stochastic modeling of radioactive dose
with programs like MASCOT.

Parametric uncertainty is typically quantified with
probability distributions across all the model inputs: the
program is run N times, with different stochastically
generated inputs each time, obtaining N dose estimates
at each of T time points.



Focus on the Mean

Regulatory bodies insist on summarizing the dose
distribution f at a given time point by its
mean 9 = [yf(y)dy| (even though this may be a
very unstably estimated quantity;

Sinclair and Robinson, 1994).

Technical challenge: f is typically extremely
(positively) skewed, with many zeros and a few
comparatively huge values, and the number of
Monte Carlo repetitions N is constrained
by time and money (often < 10, 000,
sometimes < 500—-1000).

With relatively small N, the concern is that you
haven’t seen all of the right tail yet.

Problem statement in contract proposal:

To develop an improved understanding of the issue
of convergence of probabilistic safety assessment
(PSA) calculations, together with specific
algorithms that could underlie improved analysis of
statistical errors associated with estimating mean
values or other statistical performance measures,
in the context of risk assessments for long-term
safety studies in radioactive waste disposal.
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The Problem (continued)

Recent elaboration by Jim Sinclair:

Given a set of observations,
what can I say about the true mean?

Is the internal evidence of my sample distribution
sufficient for me to quote a best estimate and
some interval limits?

Is the evidence such that I can say I shouldn’t
even be estimating a mean unless I get many
more samples?

What kind of external information about the
distribution, such as knowledge of its general
shape, or something like an upper bound, could
improve my ability to predict the mean?

Time permitting, can similar questions be
answered about other statistics, such as various
percentiles of the distribution?

Can the extent to which, say, the 99th percentile
IS more robustly predictable
than the mean be quantified?



An Example of the Data

Consider N = 10,000 dose values from MASCOT at
t = 100 years, based on a scenario permitting
relatively large doses of Strontium 90 (Sr—90)
with relatively low probability. The outcome
examined is total dose from three nuclides
including Sr—90.

9864 (98.6%) of the 10,000 values are 0; 134 of the other
136 (1.36%) range smoothly from 1.059e—14 to 8.552e—01;
the two largest values are 3.866 and 189.3 (!). The sample
mean is 0.01964. (The true mean at 100 years, obtained
from another program, AEA’s ESCORT, is 9.382e—4 (21 times
smaller); the sample mean omitting the largest observation is
7.138e—4.)
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Figure 2. A normal quantile-quantile plot of the positive log
dose values (the line shows ideal behavior if Gaussian).
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Method 1: Naive
Frequentist Nonparametrics

This distribution fairly closely follows a two-part
or mixture model, in which each observation is
O with probability p and lognormal with
probability (1 —p) (Fig. 2).

Method 1: Central Limit Theorem (CLT). We
are trying to estimate 6, the population mean.
Why not use 6; = the sample mean?

Dose values D;,t=1,..., N,

_ 1 N
Point estimate 0; =D = N Z (1)

The standard (frequentist) interval estimate is
pbased on the hope—with such a large N—that the
distribution of 871 in repeated sampling from the
population density f is close to normal (by the
Central Limit Theorem):

. ~ SD
95% Interval estimate 67 +1.96——, 2

where sp is the sample standard deviation

Ve SN (D; - D)2,

This is a nonparametric method, because no
assumptions about f are used (except that its
variance is finite).




Method 1: CLT (continued)

Here 6, = D = 0.01964, sp = 1.893,
and the 95% interval estimate is

0.01964 + 1.96\/% = (—0.01746,0.05675), which does

include the true value 9.382¢e—4
but has made itself look silly in doing so
by going negative. (“Guttman” multiplier 2.68 [Woo0, 1989]
just makes this problem worse.)

Moreover the largest observation occurred at iteration
number 6132, and many of the CLT intervals based on
observations 1—k for k£ < 6132 fail to cover: only 63% of the
100 “95%" intervals based on observations 1-100, 1-200, ...
include the true value.
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Iteration Number (k)

Figure 3. Upper and lower 95% Central Limit Theorem

intervals, with the true mean superimposed, based on

observations 1—100; 1-200; ..., 1-10,000. 73 of these
100 intervals go negative.



Method 1: Simulation Results

I regarded the 10,000 dose values at 100 years as
a population to be sampled with replacement.
I repeatedly (S = 5,000 times) took samples of
size N from this population, with N varying from
100 to 1,000,000, and computed the actual
coverage of nominal “95%" intervals from the
CLT method, with results as shown in Table 1.

Table 1. Actual coverage of nominal 95% intervals based on
the Central Limit Theorem, as a function of sample size N
(simulation standard errors in parenthesis; results for the
2.68 multiplier were only slightly better).

Sample Coverage % Left
Size (1.96 Endpoint Average
(N) Multiplier) Negative Length
100 0296 (2.41e-3) 747 0914 (1.14e-2)
1,000 .0976 (4.20e—3) 99.3 0757 (3.17e=3)
5,000 .391 (6.90e—3) 81.4 .0656 (1.16e—3)
10,000 622 (6.86e—3) 76.5 .0565 (6.53e—4)
25,000 .878 (4.63e—3) 67.9 0434 (2.55e—4)
50,000 .909 (4.07e-3) 25.9 .0324 (1.13e—-4)
100,000  .930 (3.61e—3) 0.8 .0231 (5.32e-5)
500,000  .950 (3.08e—3) 0.0 .0105 (2.12e-5)
1,000,000 .945 (3.22e-3) 0.0 .00742 (5.28e—6)

For N < 10,000 mistakes were always from the
interval lying entirely to the left of the true
mean. 24.1% of the data sets with N = 100

consisted of all zeros, but this
dropped to 0% for N > 500.



Failure of the CLT
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Figure 4. Log mean interval length and coverage rate
against log(N) for the CLT intervals.

log(interval length) vs. log(/N) should be linear if
the sample SD is doing its job properly:
length = 3.92-s5/V/N, so for N
large enough that sy = o = 1.893,
log(length) = 2.004 — 0.510g(NN); but the actual
curve (Fig. 4) does not approximate this line
until N > exp(10) = 22, 000.

Not coincidentally, that is just about exactly where
the CLT starts producing decent performance:
coverage rate against log(/N) shows an ogive shape
that does not exceed (say) 0.9 until N is also
roughly 22,000 or more.
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Failure of the CLT

The reason this method performs so poorly is that

even with (say) 7,500 observations going into each

average, the distribution of the sample mean is far

from Gaussian (Fig. 4.1), because of the extreme
skewness of the population.

N = 7,500
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Figure 4.1. Normal quantile-quantile plot of the 5,000
simulated means in Table 1, each based on N = 7,500
observations.
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CLT Nightmare

In fact with this population you don't even begin to get a
really decent normal approximation to the mean until N >

Means of N Observations
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Figure 5. Normal quantile-quantile plot of 5,000 simulated
means, each based on N = 100,000 observations.
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Figure 6. Histogram of the 5,000
simulated means in Fig. 5.
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Method 2: Less Naive
Frequentist Nonparametrics

The best frequentist nonparametric confidence
interval technology to date is the BC, method,
based on the bootstrap
(Efron and Tibshirani, 1993).

The bootstrap idea in this context is to repeatedly
(B = 1,000 times, say) choose a sample of size N
with replacement from Dq,..., Dy, calculate the
means of each of these samples, and use the
distribution D of these B means as the basis for
confidence intervals.

The percentile method is literal: to produce a
95% interval, choose the a3 = 2.5% and
ar> = 97.5% points of D.

This method works OK with large samples from
reasonably ‘“‘standard” data sets (not too far from
Gaussian), but can produce poor coverage for
small N and with (e.g.) highly skewed data.

The BC, method improves on the percentile
method by choosing different a7 and ao values
which yield better (closer to
nominal) coverage.
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T he Bootstrap

This method also makes no use of information
about f apart from assuming its variance is finite.

With the N = 10,000 dose values at 100 years the
BC, method yields the nominal 95% interval
(3.64e—4, 0.134), which also includes the true

mean; moreover, BC, intervals are
incapable of going negative.

However, in the analogue of Fig. 3 for the
bootstrap (Fig. 4), it is still true that only 85% of
the nominal 95% intervals include the truth.

0.10 0.15

Confidence Limits based on the first k iterations
0.05

0.0

T T T T T T
0 2000 4000 6000 8000 10000
Iteration Number (k)

Figure 7. Upper and lower 95% bootstrap intervals, with the
true mean superimposed, based on observations 1—100;
1-200; ..., 1—-10,000. None of these intervals go negative.
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Bootstrap Results

Performance in the analogue of Table 1
IS a bit better, but still pretty bad:

Table 2. Actual coverage of nominal 95% intervals based on
the bootstrap, as a function of sample size N (simulation
standard errors in parenthesis; number of simulation
repetitions S = 1000 except where otherwise indicated).

Sample Actual Mean

Size (N) Coverage Length
100 .0373 (2.68e—3) .0695 (9.89e—3)
500 .100 (4.24e-3) .0727 (4.42e-3)

1,000 .0938 (4.12e-3) .0689 (2.99e—3)
5,000 .394 (6.91e-3) .0655 (1.16e—3)
10,000 .632 (6.82e—3) .0582 (6.65e—4)

(No point in continuing the simulations:
very similar to Table 1.)

Mistakes for small N were again always from the
interval lying entirely to the left of the true
mean. These intervals cover slightly more often
than the CLT intervals, and are slightly narrower.

However the coverage is still abysmal, and the BC,
method is slow: it took 25 minutes of CPU time
to do the calculations leading to Fig. 5, and 51

hours of CPU time to produce Table 2, on an
otherwise unburdened 333Mhz DECalpha
workstation.
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Method 3: Parametric Bayesian

The data analysis on p. 6 above suggests the
following mixture model.

At a particular time ¢, let D; be the observed dose

on simulation run ¢ =1,..., N. Then
D — 0 with probability D (3)
©™ 1 LN(u,o02) with probability (1 —p) [’

where LN (u,0?) denotes the lognormal
distribution with mean p and standard deviation o
on the log scale.

In this model the true population mean 6 is given
theoretically (Johnson and Kotz, 1970) by

6= (1—p)etao’ (4)

In a Bayesian formulation prior distributions are
needed for the parameters p, u, and o (or 02, or
the precision r = ).

I have so far used diffuse priors that are relatively
flat in the regions of high likelihood for the
parameters.

With N = 10,000 observations this is reasonable;
with N < 1,000 (say) the priors would probably
need to be more informative.
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MCMC

One simple initial idea for fitting the mixture
model (3): Gibbs sampling via |WinBUGS
(Spiegelhalter et al., 1997).

Unfortunately winBUGS cannot fit model (3) above,
but it can fit a functionally equivalent model:

[ LN(p1,0%) with probability p1
v { LN (up,05) with probability py = (1 — p1) }
(5)
where the zeros in the data set are replaced by
values of the form (e £ tiny lognormal noise) to
correspond to the first component of the mixture.

In this model the underlying mean of the
distribution of the D, is theoretically

1 1
0 = p1exp (Ml + 50%) + po exp (Mz + 503) . (6)

With the N = 10,000 observations of dose at
t = 100 years examined on p. 6, I used initial values
that permitted a short burn-in (100 iterations):

list( mu = c(-45.03454, NA ), eta = 29.31891,
p =c(0.0136, NA ),tau = c( 0.2522539, 0.01351527 ) )
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An Example WinBUGS Program

mu[l] ~ dnorm( mu.mul.p, tau.mul.p );

mul[2] <- mul[l] + eta;

eta ” dnorm( mu.eta.p, tau.eta.p ) I( 0, );
alpha[1] <- 1;

alpha[2] <- 1;

p[] = ddirch( alphal]l );

taul[l] ~ dgamma( epsilon, epsilon );

taul[2] ~ dgamma( epsilon, epsilon );

for (i in 1:N ) {

T[il ~ dcat( pl] );
d[i] ~ dlnorm( mul T[i] 1, taul T[i] ] );

}

theta <- p[1] * exp( mul[l] + 0.5 / taul[l] ) +
pl2] * exp( mu[2] + 0.5 * kappa / taul[2] );
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Extreme Behavior
of Lognormal Model

With values for the parameters similar to those in
the dose data at 100 years (with 0's changed to
lognormal draws centered at a very small positive
value) (,ul = —45.0,01 = 1.99, up = —15.7, 00 =
8.60,p = 0.986), formula (6) gives a shock: 6
comes out 2.46e+47!

To look at this from another angle, I repeatedly (10,000
times) sampled 10,000 draws from model (5) and calculated
the mean of these draws.

The smallest of the 10,000 means was 5.33e—6, and their
median was 0.0787; but their mean was 1.36e+4, and the
biggest was 9.88e-}7!

The problem is that the lognormal distribution is
extremely sensitive to assumptions about the rate
at which the tails fall off toward O in the
normal distribution.

With a mean of —15.7 and an SD of 8.60 on the
log scale, the median observation on the dose
scale would be 1.52e—7, but one time in 10,000
you would get a value like exp(—15.7 4+ 3.72 - 8.60)
= 1.21e+47 (which contributes .0001- 1.21e+47 =
1.21e+4 to the mean), one time in 100,000 you
would get something like exp(—15.7 + 4.26 - 8.60)
= 1.32e+49 (which adds another 1.32e+4-4),
and so on.
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Parametric Bayesian Results

One possible fix is to use a truncated lognormal
model: in the second component,
log(D;) = uo> + ooe;, with e¢; ~ N(0,1) truncated at
—A and A (or just at A). Then for this component
of the mixture V[log(D;)] = ko3 with

20711 —y) g[@ (1 — )]
1 — 2~ ’
where v = o (—A).

k=1

(7)

Table 2.5. Rough estimates in the truncated lognormal
mixture model as a function of the number of points k set
aside in each tail.

—~

k fio 52 0

0 -15.68 8.601 24,086,800.
1 -15.71 8.352 585,834.
2 -15.71 8.157  50,485.
3 -15.71 7.988 6,739.

4 -15.72 7.843 1,176.

5 -15.73 7.692 248.8

6 -15.74 7.539 60.89

8 -15.77 7.250 5.086

10 -15.79 6.952 0.5939
12 -15.82 6.695 0.08936
14 -15.83 6.434 0.01645

To bring 6 in line with the true mean, k£ = 14
(about v = 10% in each tail) corresponds to
k = 0.43.
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Parametric Bayesian Results

Figs. 8—11 and Table 3 present exploratory results with this

model on the modified 100-year dose data, using a burn-in of

500 and a monitoring run of 5000 draws (this took 4.5 hours
of CPU time at 333Mhz).
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Figure 8. Time series trace for a%, showing a bit of positive
serial correlation (0.26) but not enough to be worrisome (the
traces for the other parameters are similar).
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Figure 8.1. ggplot of log(predictive dose) against
log(actual dose) at 100 years.
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Bayesian Results (continued)

mul mu?2
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-4510 -45.05 -45.00 -44.95 -20 -18 -16 -14 -12
mul mu2

Figure 9. Density traces of the marginal posterior
distributions of u1 and uo, both of which are
not far from normal.
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Figure 10. Density traces of the marginal posterior
distributions of 0% and o3, both of which exhibit the sort of
skewness you would expect for variances.
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Bayesian Results (continued)

pl log( theta)
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Density
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Figure 11. Density traces of the marginal posterior
distributions of p1 and log(0). NB 6's distribution is even
heavier-tailed than lognormal.

Table 3. Numerical summaries of the posterior distributions
for the parameters of model (5) with the 100-year dose data

(k = 0.43).
Posterior Maximum Likelihood
Variable Mean SD* Estimate SE**
p1 0.986 1.16e—3 0.986 1.16e—-3
41 —45.0 0.0203 -45.0 0.0199
a% 3.96 0.0563 3.96 0.0563
P2 0.0139 1.16e-3 0.0139 1.16e-3
(42 —16.0 0.812 -15.7 0.738
o3 82.5 11.9 74.0 10.0
0 28.0 959 (1) 0.076 0.205

* SD = standard deviation ** SE = standard error
NB median(f#) = 0.058, gss = 1.0, max = 47728 (!),
95% central interval = (9.35e-4, 19.2);

95% maximum likelihood CI = (3.92e-4, 14.7)
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Method 4: Bayesian Nonparametrics

Method 3 coverage properties. I repeatedly
(100 times) drew samples of size 10,000 with
replacement from the modified 100-year dose data
and used BUGS to construct 95% interval estimates
of the true mean 0.0196 (based on the 2.5%
and 97.5% points of the
simulated posterior distributions).

With « = 0.43, actual coverage was 89% (with
simulation SE 3.1%), but the intervals were
extremely long (median length 238 (!), mean

length 409 (1)).

Tentative conclusion: Intervals probably still wider than

necessary for decent coverage. How well will this method
work with small N (500, say)? Still have to actually

implement truncated lognormal idea instead of
approximation. (Work in progress.)

Method 4: Bayesian Nonparametrics| A

sample of size N = 1000 from the 100-year dose
data would only be expected to have about 14
values from the non-zero part of the distribution.

Clearly with such samples it would be necessary to
teach the interval-generating process about the
right tail, above and beyond what it can learn
directly from the data (the lack of such a way to
learn is why the bootstrap fails).
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Bayesian Nonparametrics (continued)

One approach: the parametric Bayesian Method 3. But the

lognormal is only approximately ‘“correct” at ¢t = 100 years,

and the approximation may well be even more vague at other
times and for other scenarios.

It would be good to be able to build a model that is
centered at the lognormal, but which can adapt to other
distributions when the data
suggest this is necessary.

Continuing Part 3, a fairly recently developed modeling
approach based on POlya trees (Lavine, 1992, 1994; Walker
et al., 1998), first studied by Ferguson (1974), is promising.

Consider just the n = 136 non-zero dose values Y; in the
100-year data. One way to write the parametric Bayesian
lognormal model is

log(Y;) = p+toe

(1,0%)  ~ pu,a?) (8)

e; '/ N(0,1),

for some prior distribution p(u,c?) on u and o2.

The Polya trees idea is to replace the last line of (7), which
expresses certainty about the distribution of the ¢;, with a
distribution on the set of possible distributions F' for the
€;.
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Polya Trees

The new model is

l0g(Y;) = pntoe;
(,0%) ~ p(p,o?) (9)
(;|F) '® F (mean 0, SD 1)

F ~ PT(M,A).

Here (a) N = {B¢} is a binary tree partition of
the real line, where € is a binary sequence which
locates the set B¢ in the tree.

You get to choose these sets B¢ in a way that
centers the Podlya tree on any distribution you
want, in this case the standard normal.

This is done by choosing the cutpoints on the line,
which define the partitions, based on
the quantiles of N(0,1):

Level Sets Cutpoint(s)
1 (Bo,By) 11 =0
5> (Boo,Boi,  ®7'(3) =-0674,971(3) =0,
Bio, B11) P-1(3) = +0.674

(® is the N(0,1) CDF.) In practice this process
has to stop somewhere; I use a tree defined down
to level M = 8, which is like working with
random histograms, each with 28 = 256 bins.
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Polya Trees (continued)

And (b) Walker et al. (1998):

A helpful image is that of a particle cascading through the
partitions B.. It starts [on the real line] and moves into B
with probability Cy or into B; with probability C1 = 1 — Cy. In
general, on entering B, the particle could either move into
B, or into B.;. Let it move into the former with probability
C.o or into the latter with probability C.1 =1 — Cg. For
Polya trees, these probabilities are random, beta variables,
(Ce,Ce1) ~ beta(aeo, ac1) with non-negative a.o and ;. If
we denote the collection of a's by A, a particular Pdlya tree
distribution is completely defined by N and A.

To make a PoOlya tree distribution choose a
continuous distribution with probability 1, the a's
have to grow quickly as the level m of the tree
increases. Following Walker et al. (1998) I take

ae = cm? whenever ¢ defines a set at level m,
(10)
and this defines A..

c > 0 is a kind of tuning constant: with small ¢
the posterior distribution for the CDF of the e; will
be based almost completely on F,,, the empirical
CDF (the “data distribution ) for the e;, whereas
with large ¢ the posterior will be based almost
completely on the prior centering distribution, in
this case N(0,1).
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Prior to Posterior Updating

Prior to posterior updating is easy
with POlya trees: if

F ~ PT(N,A)

(V;|F) = F (11)

and (say) Y7 is observed, then the posterior
p(F|Y71) for F given Y7 is also a Polya tree with

(@41 ifY; €Be
(aelY1) = { ae  otherwise } (12)

In other words the updating follows a Polya urn
scheme (e.g., Feller, 1968): at each level
of the tree, if Y7 falls into a particular
partition set B¢, then 1 is added
to the « for that set.
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Inference for u and o2

With Y = (Y7,...,Yy) as the vector of non-zero
dose values, as usual Bayes' Theorem gives

p(u, o?|Y) o< p(u, a2) 1(p, o?|Y). (13)
Here I use the conjugate prior for u and 02,

2 —2 2
o ~ X (Vpaap)

52
(ulo?) ~ N<up7—> (14)

Rp
(X_Q denotes the distribution of the reciprocal of a
x? variate), and I(u, c?]Y) is the likelihood
function (the sampling distribution for Y given u
and o2, re-interpreted as a function of u and o2
for fixed Y).

(13) is hard to use to draw inferences about p and
o2 for two reasons: (a) there is the usual difficulty
in extracting marginal information about u or o2
singly, and (b) I(u,c?]Y) is not directly evaluable,
and depends in a complicated way on something
that is directly computable, the conditional
likelihood I(u, o?|Y, F).

Figs. 12—14 plot the conditional likelihood, which
has a remarkable, almost fractal, character in this
nonparametric setting.
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Conditional Likelihood Plots

M= 8, sigma2 = 73.99

Log Likelihood
0.56 0.58 0.60 0.62

0.54

0.52
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Figure 12. The conditional log likelihood function for u given
a particular estimate of F' based on the 100 year data and
with 2 = 73.99. The log likelihood in the parametric version

of this model is much smoother.
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Figure 13. The (joint) conditional log likelihood function for
w and o2 with the 100 year data. The global maximum is
barely visible near (u,c?) = (—15,80).
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MCMC Again
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Figure 14. A contour plot of the same (joint) conditional log

likelihood function for u and o2 as in Fig. 13. Now the global

max is easier to spot, as the only place with a conditional log
likelihood of 0.6.

To overcome the computational problems I again
use MCMC. Walker et al. (1998) sketch a
Metropolis within Gibbs algorithm for a model
like (8), except they pretend that o2 is known. I
have extended this algorithm to the more realistic

case of unknown o2.

(Sample F from its full conditional given (u,0?) (easy: just Pdlya
updating), and use a random-walk Metropolis to sample [u, log(c?)],
given F', with a bivariate normal proposal distribution. On each MCMC
sweep renormalize F to have mean 0 and SD 1.)

31



Inference for 6

It still remains to relate all this to 6y = E(Y) (and
to incorporate the mixture aspect of model (5)).

With W = log(Y’), each iteration of the MCMC obtains an
estimate of the CDF Fy (in the form of a histogram
estimate of the density fir with 2 = 256 bins). But

0. @]

0y = E(Y) = E(") = / e fu (w) duw, (15)
SO Oy can be estimated
from each MCMC iteration by

2M
Oy =) evip;(w)), (16)
j=1
where the p's are the current bin proportions
and the w; are the bin centers.

As an example of the results, Figs. 15—18 present posterior
summaries based on 5,000 monitoring iterations, arising from
the following modeling inputs: (Polya tree prior)

M =8,c=1 (NB and the centering distribution was the
standard normal Winsorized to +£2.42 (roughly the 0.008
point of the distribution), to damp down the tail); (prior on
p2 and o3) v, = Kkp = 50, = —15.7 and o7 = 74.0 (the
sample mean and variance of the log(y;)); and Metropolis
proposal distribution bivariate normal with covariance matrix

B 0.54 0.000
> = K( 0.00 0.015 ) (17)

(the matrix values are based on Fisher information), with
K = 0.5 (Metropolis acceptance rate 76%).
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Results
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Figure 15. Time series trace, kernel density trace,
autocorrelation and partial autocorrelation functions for .
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Results (continued)
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Figure 16. Time series trace, kernel density trace,
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Figure 18. Prior (standard normal) for CDF F of

standardized log(y) and density trace of sample of y values
(bold lines), with 25 density traces of MCMC draws from the

posterior of ' (dotted lines). Note the compromise effected
between the prior and the sample with ¢ = 1.
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Results (continued)

Preliminary results are given in Table 4 for the 100
year data, using ¢ =1 as a kind of compromise
tuning constant. The sample mean of the &Y
values in the data was 1.44.

Table 4. Parametric versus nonparametric results
with the nonzero part of the 100 year data.

Parametric Nonparametric

Posterior Posterior
Parameter Mean SD Mean SD
42 —-16.0 0.812 -15.9 1.17
o5 82.5 11.9 76.1 15.1
Oy 28.0 959 14.7 78.7

(median of 8y = 1.80,
95% central interval = (0.0660, 102.8))

Note that the nonparametric approach results in
larger posterior SDs for uo, and 0% (correctly
acknowledging greater uncertainty) but a smaller
posterior SD for 6 (correctly damping down the
extreme lognormal tail).

It appears from a small preliminary simulation that
by varying ¢ from 0.1 to 10 it is possible to obtain
actual coverage close to 95% for nominal 95%
intervals with this approach without unnecessarily

wide intervals (work in progress).
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DP Mixture Model Case Study

e (joint work with Thanasis Kottas and Milovan Krnjaji¢)

e We describe parametric and BNP approaches to modeling
count data and demonstrate advantages of BNP modeling
using empirical, predictive, graphical and formal model
comparisons (LS and LSrg).

e We examine models suitable for analyzing data in control
(C) and treatment (T) setting as in the IHGA case study
(Hendriksen et al. 1984; Part 1) in which a number of elderly
people were randomized in C group, receiving standard care,
and T group, which also received in-home geriatric
assessment (IHGA).

e T he outcome of interest was number of hospitalizations
during two years.

e Parametric random-effects Poisson (PREP) model is
natural choice for C and T data sets (in parallel):

(yil0i) '~ Poisson(exp(6;))
01G) % G (18)
G = N(p,0?)

assuming a parametric CDF G for latent variables 6;
(random effects).

e What if this assumption is wrong~

e WWant to remove the parametric assumption on
distribution of random effects by building a prior model on
CDF @G that may be centered on N(u,c?), but permits
adaptation (learning from data).
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Dirichlet Process Mixture Model

e Specifying prior for an unknown distribution requires a
stochastic process with realizations (sample paths) that are
CDFs.

e \We use Dirichlet process (DP), in notation
G ~ DP(a,Gp), where Gg is the center or base distribution
of the process and a a precision parameter (Ferguson 1973,
Antoniak 1974).

e Poisson DP mixture model:

(vi | 0) ™ Poisson (exp(6;))
0:1G) ~ G (19)

G ~ DP(aGo), Go= Go(-;v),
where i = 1,...,n (we refer to (19) as BNP model 1).

e Equivalent formulation of the Poisson DP mixture model:

(5 | &) 5 @) = / Poisson(yi; exp(8))dG(6), G ~ DP(aGo),
(20)
where i = 1,...,n and Go = N(u, c?).

e MCMC implemented for a marginalized version of DP
mixture. Key idea: G is integrated out over its prior
distribution, (Antoniak 1974, Escobar and West 1995),
resulting in [01,...,0, | o, ] that follows Polya urn structure
(Blackwell and MacQueen, 1973).

e Specifically, [01,...,0, | a,] is

n,

(8%

grO(erl | ,UT‘,O'E) 7“ grO(Qri | ,urao-g)—l_
o Lo +:-—1

1—1
1
dg,(0ri) ¢ -
a0

=1
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DP Mixture Model
with Stochastic Order

e T here are cases when treatment always has an effect,
only the extent of which is unknown. This can be expressed
by introducing stochastic order for the random effects
distributions: G1(0) > G2(0),0 € R, denoted by G1 <4 G>.

e Posterior predictive inference can be improved under this
assumption if we incorporate stochastic order in the model.
To that end we introduce a prior over the space P =
{(G1,G2) 1 G1 <st Ga}.

e A convenient way to specify such a prior is to work with
subspace P’ of P, where P’ =
{(Gl,Gg) . Gl = Hl,GQ = H1H2}, with H; and H» d.f.-s on R,
and then place independent DP priors on H; and Ho.

e Note: to obtain a sample 0 from Go> = H1H>,
independently draw 61 from H; and 6> from H», and then
set 6 = max(61,6>).

e Specifying independent DP priors on mixing
distributions H; and H> we obtain the following model:

Y1 | 0; nd Poisson(exp(6;)),is = 1,n1

Yoi | O1mths 0ok~ Poisson(exp(max(f1n,4+,02x))),k = 1,n2
01i | H1 pi Hi,i=1n14+no
O | Ho e Ho k= 1,no

H, | apy pir, 02  ~ DP(arHro)

(21)
where the base distributions of Dirichlet processes, Hip and
H>g, are again Normal with parametric priors on
hyperparameters. We refer to (21) as BNP model 2.

e We implement a standard MCMC with an extension for
stochastic order (Gelfand and Kottas, 2002).
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Posterior Predictive Distributions

e TO create a level playing field to compare
quality of PREP and BNP models we compute
predictive distributions for future data, based on
predictive distribution for latent variables and
posterior parameter samples.

e For BNP model 1 the posterior predictive for a
future Y&W js

[Y"®W | data] = // Poisson(Y"®V; exp(0"*"))[0"*" | n][n | data],

(22)

where "W is associated with YW and 7 collects

all model parameters except 6s (we use bracket

notation of Gelfand and Smith (1990) to denote
distribution function).

e [ he posterior predictive for latent variables,
induced by PoOlya urn structure of DP, is

«

new —_—
[0 |n]—a+n

1 n
Gro(6™" | “r’02)+T D nede, (0"%). (23)
87 né:l
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Simulation:

Random-Effects and Data Sets
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Simulation data sets for control (C) and treatment (T)

(n = 300 observations in each), and distributions of latent

variables (Di: C and T both Gaussian; D,: C skewed, T
bimodal; D3: C Gaussian, T bimodal, C <4 T).
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Predictive: PREP Versus BNP Model
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Posterior Inference for &G

e Perhaps more interestingly, using generic
approach for inference about random mixing
distribution, we can obtain [G | data], based on
which we can compute posterior of any linear
functional of G, e.g. [E(y|G)].

e With G ~ DP(aGyp),, following Ferguson (1973)
and Antoniak (1974),

[G|data] = /[G|9,a,¢]d[e, o, |datal. (24)

where [G|0, a, ] is also a DP with parameters
o = + n and

/ 1 n
Goll) = ———Goll¥) + 37 1oy ()
(25)

where 0 = (61, ...,6,) and 9 collects parameters of
Go.

e Using (24), (25) and the definition of DP we
develop computationally efficient approach to
obtaining posterior sample paths from [G | data].
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Normal Random
Effects: PREP vs. BNP

PREP

BNP model 1

Normal random effects (data set D;): Posterior MCMC
estimates of the random effects distributions for PREP
model (first row) and BNP model 1 (second row).

When PREP is correct it (naturally) yields narrower
uncertainty bands.
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Skewed and Bimodal
Random Effects, PREP vs. BNP

PREP

BNP model 1

Skewed and bimodal random effects (data set D5):
Posterior MCMC estimates of random effects distributions
for PREP model (first row) and BNP model 1 (second row).

When PREP is incorrect it continues to yield narrower
uncertainty bands that unfortunately fail to include the
truth, whereas BNP model 1 adapts successfully to the

data-generating mechanism.
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Bimodal Random Effects: BNP
With and Without Stochastic Order

BNP model 1

BNP model, stoch. ord.

T
3

Bimodal random effects in T (data set D3): Posterior
MCMC estimates of random effects distributions for BNP
model 1 (first row) and BNP model with stochastic order

(second row).

Extra assumption of stochastic order, when true, vields
narrower uncertainty bands (as it should).
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LS and LSgg
For PREP and BNP Models
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LS (left panel) versus full-sample log-score LSrg (right
panel) for PREP and BNP models for all 3 data sets
(C and T), Dl,C, ceey D3,T.

When PREP is correct (1C, 1T, 3C), LS and LSgg for
PREP and BNP nearly coincide (as they should), but when
PREP is incorrect (2C, 2T, 3T) both kinds of LS give a
clear preference for BNP model 1 (also as they should).
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Conclusions

e The BNP methods we illustrate here allow the
fitting of random-effects models without making
restrictive (and potentially incorrect) parametric
distributional assumptions about the random
effects; these methods provide posterior inference
for the unknown random effects distribution G
and associated functionals of interest, as well as
predictive distributions for future data (useful for
model comparison).

e In Milovan’'s dissertation work, besides the BNP
models shown here, we have also considered one
more BNP model, with bivariate base
distribution for DP to induce dependence
between random effects C' and T distributions.

e All BNP models exhibit superior performance
compared to their parametric counterparts on all
data sets not generated from the parametric
model (e.g., with random effects drawn from
skewed and bimodal distributions).
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