Bayesian Modeling, Inference, Prediction and Decision-Making

5: Bayesian Model Specification (Section 2)

David Draper

Department of Applied Mathematics and Statistics University of California, Santa Cruz

draper@ams.ucsc.edu www.ams.ucsc.edu/~draper
eBay/Google
10 Fridays, 11 Jan-22 Mar 2013 (except 25 Jan)

```
                        Short course web page:
www.ams.ucsc.edu/~draper/eBay-Google-2013.html
```

(This section of the notes is based in part on unpublished joint work with a recent Ph.D. student of mine, Milovan Krnjajić.)
(C) 2013 David Draper (all rights reserved)

What is a Bayesian Model?

Definition: A Bayesian model is a mathematical framework (embodying assumptions and judgments) for quantifying uncertainty about unknown quantities by relating them to known quantities.

Desirable for the assumptions and judgments in the model to arise as directly as possible from contextual information in the problem under study.

The most satisfying approach to achieving this goal appears to be that of de Finetti (1990): a Bayesian model is a joint predictive distribution

$$
\begin{equation*}
p(y)=p\left(y_{1}, \ldots, y_{n}\right) \tag{1}
\end{equation*}
$$

for as-yet-unobserved observables $y=\left(y_{1}, \ldots, y_{n}\right)$.
Example 1: Data $=$ health outcomes for all patients at one hospital with heart attack admission diagnosis.

Simplest possible: $y_{i}=1$ if patient i dies within 30 days of admission, 0 otherwise.
de Finetti (1930): in absence of any other information, my predictive uncertainty about y_{i} is exchangeable.

Representation theorem for binary data: if I'm willing to regard (y_{1}, \ldots, y_{n}) as part of an infinitely exchangeable sequence (meaning that I judge all finite subsets exchangeable; this is like thinking of the y_{i} as having been randomly sampled from the population (y_{1}, y_{2}, \ldots), then to be coherent my joint predictive distribution $p\left(y_{1}, \ldots, y_{n}\right)$ must have the simple hierarchical form

$$
\begin{array}{rll}
\theta & \sim p(\theta) \\
\left(y_{i} \mid \theta\right) & \stackrel{\text { IID }}{\sim} & \operatorname{Bernoulli}(\theta),
\end{array}
$$

where $\theta=P\left(y_{i}=1\right)=$ limiting value of mean of y_{i} in infinite sequence.

Model $=$ Prior (Sometimes)

Mathematically $p(\theta)$ is mixing distribution in

$$
\begin{equation*}
p\left(y_{1}, \ldots, y_{n}\right)=\int_{0}^{1} \theta^{s}(1-\theta)^{n-s} p(\theta) d \theta \tag{3}
\end{equation*}
$$

where $s=\sum_{i=1}^{n} y_{i}$; statistically, $p(\theta)$ provides opportunity to quantify prior information about θ and combine with information in y.

Thus, in simplest situation, Bayesian model specification $=$ choice of scientifically appropriate prior distribution $p(\theta)$.

Example 2 (elaborating Example 1): Now I want to predict real-valued sickness-at-admission score instead of mortality (still no covariates).

Uncertainty about y_{i} still exchangeable; de Finetti's (1937) representation theorem for real-valued data: if $\left(y_{1}, \ldots, y_{n}\right)$ part of infinitely exchangeable sequence, all coherent joint predictive distributions $p\left(y_{1}, \ldots, y_{n}\right)$ must have hierarchical form

$$
\begin{align*}
F & \sim p(F) \tag{4}\\
\left(y_{i} \mid F\right) & \stackrel{\text { IID }}{\sim} F
\end{align*}
$$

where $F=$ limiting empirical cumulative distribution function (CDF) of infinite sequence $\left(y_{1}, y_{2}, \ldots\right)$.

Bayesian Nonparametrics

Thus here Bayesian model specification $=$ choosing scientifically appropriate mixing (prior) distribution $p(F)$ for F.

However, F is infinite-dimensional parameter; putting probability distribution on $\mathcal{D}=\{$ all possible CDFs $\}$ is harder.

Specifying distributions on function spaces is task of Bayesian nonparametric (BNP) modeling (e.g., Dey et al. 1998).

Example 3 (elaborating Example 2): In practice, in addition to outcomes y_{i}, covariates $x_{i j}$ will typically be available.

For instance (Hendriksen et al. 1984), 572 elderly people randomized, 287 to control (C) group (standard care) and 285 to treatment (T) group (standard care plus in-home geriatric assessment (IHGA): preventive medicine in which each person's medical/social needs assessed, acted upon individually).

One important outcome was number of hospitalizations (in two years).
$y_{i}^{T}, y_{j}^{C}=$ numbers of hospitalizations for treatment person i, control person j, respectively.

Suppose treatment/control (T/C) status is only available covariate.

Conditional Exchangeability

Unconditional judgment of exchangeability across all 572 outcomes no longer automatically scientifically appropriate.

Instead design of experiment compels (at least initially) judgment of conditional exchangeability given T/C status (e.g., de Finetti 1938, Draper et al. 1993), as in

$$
\begin{array}{r}
\left(F_{T_{T}} \mid F_{T}, F_{C}\right) \stackrel{p\left(F_{T}, F_{C}\right)}{\sim}{ }_{F_{T}} \tilde{\mid\left(y_{j}^{C} \mid F_{T}, F_{C}\right)} \stackrel{\text { IID }}{\sim} F_{C} . \tag{5}
\end{array}
$$

This framework, in which (a) covariates specify conditional exchangeability judgments, (b) de Finetti's representation theorem reduces model specification task to placing appropriate prior distributions on CDFs, covers much of field of statistical inference/prediction.

Note that even in this rather general nonparametric framework it will be necessary to have a good tool for discriminating between the quality of two models (here: unconditional exchangeability ($F_{T}=F_{C} ; T$ has same effect as C) versus conditional exchangeability ($F_{T} \neq F_{C}$; T and C effects differ)).

Data-Analytic Model Specification

Basic problem of Bayesian model choice: Given future observables $y=\left(y_{1}, \ldots, y_{n}\right)$, I'm uncertain about y (first-order), but I'm also uncertain about how to specify my uncertainty about y (second-order).

Standard (data-analytic) approach to model specification involves initial choice, for structure of model, of standard parametric family, followed by modification of initial choice-once data begin to arrive-if data suggest deficiencies in original specification.

This approach (e.g., Draper 1995) is incoherent (unless I pay an appropriate price for shopping around for the model): it uses data both to specify prior distribution on structure space and to update using data-determined prior (result will typically be uncalibrated (too narrow) predictive distributions for future data).

Dilemma is example of Cromwell's Rule (if $p(\theta)=0$ then $p(\theta \mid y)=0$ for all $y)$: initial model choice placed 0 prior probability on large regions of model space; formally all such regions must also have 0 posterior probability even if data indicate different prior on model space would have been better.

Two Possible Solutions

- If use prior on F that places non-zero probability on all Kullback-Leibler neighborhoods of all densities (Walker et al. 2003; e.g., Pólya trees, Dirichlet process mixture priors, when chosen well), then BNP directly avoids Cromwell's Rule dilemma, at least for large n : as $n \rightarrow \infty$ posterior on F will shrug off any incorrect details of prior specification, will fully adapt to actual data-generating F

NB this assumes correct exchangeability judgments).

- Three-way cross-validation (3CV; Draper and Krnjajić 2005): taking usual cross-validation idea one step further,
(1) Partition data at random into three (non-overlapping and exhaustive) subsets S_{i}.
(2) Fit tentative $\{$ likelihood + prior $\}$ to S_{1}. Expand initial model in all feasible ways suggested by data exploration using S_{1}. Iterate until you're happy.
(3) Use final model (fit to S_{1}) from (2) to create predictive distributions for all data points in S_{2}. Compare actual outcomes with these distributions, checking for predictive calibration. Go back to (2), change likelihood as necessary, retune prior as necessary, to get good calibration. Iterate until you're happy.
(4) Announce final model (fit to $S_{1} \cup S_{2}$) from (3), and report predictive calibration of this model on data points in S_{3} as indication of how well it would perform with new data.

With large n probably only need to do this once; with small and moderate n probably best to repeat (1-4) several times and combine results in some appropriate way (e.g., model averaging).

Model Selection as a Decision Problem

Given method like 3CV which permits hunting around in model space without forfeiting calibration, two kinds of model specification questions (in both parametric and nonparametric Bayesian modeling) arise:
(1) Is M_{1} better than M_{2} ? (this tells me when it's OK to discard a model in my search)
(2) Is M_{1} good enough? (this tells me when it's OK to stop searching)

It would seem self-evident that to specify a model you have to say to what purpose the model will be put, for how else can you answer these two questions?

Specifying this purpose demands decision-theoretic basis for model choice (e.g., Draper 1996; Key et al. 1998).

To take two examples,
(Case 1) If you're going to choose which of several ways to behave in future, then model has to be good enough to reliably aid in choosing best behavior (see, e.g., Draper and Fouskakis example below); or
(Case 2) If you wish to make scientific summary of what's known, then-remembering that hallmark of good science is good prediction-the model has to be good enough to make sufficiently accurate predictions of observable outcomes (in which dimensions along which accuracy is to be monitored are driven by what's scientifically relevant; see, e.g., log score results below).

Utility-Based Variable Selection

Example 4 (Case 1): Draper and Fouskakis $(2000,2004)$ (also see Fouskakis and Draper 2002) give one example of decision-theoretic model choice in action, demonstrating that variable selection in regression models should often be governed by principle that final model should only contain variables that predict well enough given how much they cost to collect (see the figure below, which compares $2^{14}=\mathbf{1 6 , 3 8 4}$ models) .

Estimated expected utility as function of number of predictor variables, in problem involving construction of cost-effective scale to measure sickness at hospital admission of elderly pneumonia patients. Best models only have 4-6 sickness indicators out of 14 possible predictors.

Choosing Utility Function

Any reasonable utility function in Example 4 will have two components, one quantifying data collection costs associated with construction of given sickness scale, other rewarding and penalizing scale's predictive successes, failures.
(Case 2) Sometimes the main goal instead is summary of scientific knowledge, which suggests (as noted above) a utility function that rewards predictive accuracy.

How can such a utility function be specified in a reasonably general way to answer model specification question (1) above? (Is M_{1} better than M_{2} ?)

Need scoring rule that measures discrepancy between observation y^{*} and predictive distribution $p\left(\cdot \mid y, M_{i}\right)$ for y^{*} under model M_{i} given data y.

As noted (e.g.) by Good (1950) and O'Hagan and Forster (2004), the optimal (impartial, symmetric, proper) scoring rules are linear functions of $\log p\left(y^{*} \mid y\right)$.

On calibration grounds it would seem to be a mistake to use data twice in measuring this sort of thing (once to make predictions, again with same data to see how good they are; but ...).

Out-of-sample predictive validation (e.g., Geisser and Eddy 1979, Gelfand et al. 1992) solves this problem: e.g., successively remove each observation y_{j} one at a time, construct predictive distribution for y_{j} based on y_{-j} (data vector with y_{j} removed), see where y_{j} falls in this distribution.

Log Score as Utility

This motivates cross-validated version of log scoring rule (e.g., Gelfand and Dey 1994; Bernardo and Smith 1994): with n data values y_{j}, when choosing among k models $M_{i}, i \in I$, find that model M_{i} which maximizes

$$
\begin{equation*}
L S_{C V}\left(M_{i} \mid y\right)=\frac{1}{n} \sum_{j=1}^{n} \log p\left(y_{j} \mid M_{i}, y_{-j}\right) \tag{6}
\end{equation*}
$$

It has been argued that this can be given direct decision-theoretic justification: with utility function for model i

$$
\begin{equation*}
U\left(M_{i} \mid y\right)=\log p\left(y^{*} \mid M_{i}, y\right) \tag{7}
\end{equation*}
$$

where y^{*} is future data value, expectation in MEU is over uncertainty about y^{*}; Gelfand et al. (1992) and Bernardo and Smith (1994) claim that this expectation can be accurately estimated (assuming exchangeability) by (6) (I'll revisit this claim below).

With approximately Gaussian predictive distributions it can also be revealing to compute predictive z-scores, for observation j under model i :

$$
\begin{equation*}
z_{i j}=\frac{y_{j}-E\left(y_{j} \mid M_{i}, y_{-j}\right)}{\sqrt{V\left(y_{j} \mid M_{i}, y_{-j}\right)}} \tag{8}
\end{equation*}
$$

For good predictive calibration of $M_{i},\left\{z_{i j}, j=1, \ldots, n\right\}$ should have mean 0, standard deviation (SD) 1; often find instead that SD is larger than 1 (predictive uncertainty bands not wide enough).

Approximating Log Score Utility

With large data sets, in situations in which predictive distribution has to be estimated by MCMC, direct calculation of $L S_{C V}$ is computationally expensive; need fast approximation to it.

To see how this might be obtained, examine log score in simplest possible model M_{0} : for $i=1, \ldots, n$,

$$
\begin{align*}
\mu & \sim N\left(\mu_{0}, \sigma_{\mu}^{2}\right) \\
\left(Y_{i} \mid \mu\right) & \stackrel{\text { IID }}{\sim} N\left(\mu, \sigma^{2}\right) \tag{9}
\end{align*}
$$

with σ known, take highly diffuse prior on μ so that posterior for μ is approximately

$$
\begin{gather*}
(\mu \mid y)=(\mu \mid \bar{y}) \dot{\sim} N\left(\bar{y}, \frac{\sigma^{2}}{n}\right), \tag{10}\\
\text { where } y=\left(y_{1}, \ldots, y_{n}\right)
\end{gather*}
$$

Then predictive distribution for next observation is approximately

$$
\begin{equation*}
\left(y_{n+1} \mid y\right)=\left(y_{n+1} \mid \bar{y}\right) \dot{\sim} N\left[\bar{y}, \sigma^{2}\left(1+\frac{1}{n}\right)\right] \tag{11}
\end{equation*}
$$

and $L S_{C V}$, ignoring linear scaling constants, is

$$
\begin{equation*}
L S_{C V}\left(M_{0} \mid y\right)=\sum_{j=1}^{n} \ln p\left(y_{j} \mid y_{-j}\right) \tag{12}
\end{equation*}
$$

where as before y_{-j} is y with observation j set aside.
But by same reasoning

$$
\begin{equation*}
p\left(y_{j} \mid y_{-j}\right) \doteq N\left(\bar{y}_{-j}, \sigma_{n}^{2}\right) \tag{13}
\end{equation*}
$$

where \bar{y}_{-j} is sample mean with observation j omitted,

$$
\sigma_{n}^{2}=\sigma^{2}\left(1+\frac{1}{n-1}\right), \text { so that }
$$

$L S_{C V}$ Approximation (continued)

$$
\begin{align*}
\ln p\left(y_{j} \mid y_{-j}\right) & \doteq c-\frac{1}{2 \sigma_{n}^{2}}\left(y_{j}-\bar{y}_{-j}\right)^{2} \quad \text { and } \\
L S_{C V}\left(M_{0} \mid y\right) & \doteq c_{1}-c_{2} \sum_{j=1}^{n}\left(y_{j}-\bar{y}_{-j}\right)^{2} \tag{14}
\end{align*}
$$

for some constants c_{1} and c_{2} with $c_{2}>0$.
Now it's interesting fact (related to behavior of jackknife), which you can prove by induction, that

$$
\begin{equation*}
\sum_{j=1}^{n}\left(y_{j}-\bar{y}_{-j}\right)^{2}=c \sum_{j=1}^{n}\left(y_{j}-\bar{y}\right)^{2} \tag{15}
\end{equation*}
$$

for some $c>0$, so finally for $c_{2}>0$ the result is that

$$
\begin{equation*}
L S_{C V}\left(M_{0} \mid y\right) \doteq c_{1}-c_{2} \sum_{j=1}^{n}\left(y_{j}-\bar{y}\right)^{2} \tag{16}
\end{equation*}
$$

i.e., in this model log score is almost perfectly negatively correlated with sample variance.

But in this model the deviance (minus twice the log likelihood) is

$$
\begin{align*}
D(\mu) & =-2 \ln l(\mu \mid y)=c_{0}-2 \ln p(y \mid \mu) \\
& =c_{0}+c_{3} \sum_{j=1}^{n}\left(y_{j}-\mu\right)^{2} \tag{17}
\end{align*}
$$

for some $c_{3}>0$, encouraging suspicion that log score should be strongly related to deviance.

Deviance Information Criterion (DIC)

Given parametric model $p(y \mid \theta)$, Spiegelhalter et al. (2002) define deviance information criterion (DIC) (by analogy with other information criteria) to be estimate $D(\bar{\theta})$ of model (lack of) fit (as measured by deviance) plus penalty for complexity equal to twice effective number of
parameters p_{D} of model:
$D I C(M \mid y)=D(\bar{\theta})+2 \widehat{p}_{D}$,
where $\bar{\theta}$ is posterior mean of θ; they suggest that models with low $D I C$ value are to be preferred over those with higher value.

When p_{D} is difficult to read directly from model (e.g., in complex hierarchical models, especially those with random effects), they motivate the following estimate, which is easy to compute from standard MCMC output:

$$
\begin{equation*}
\widehat{p}_{D}=\overline{D(\theta)}-D(\bar{\theta}), \tag{19}
\end{equation*}
$$

i.e., difference between posterior mean of deviance and deviance evaluated at posterior mean of parameters
(WinBUGS release 1.4 will estimate these quantities).
In model M_{0}, p_{D} is of course 1 , and $\bar{\theta}=\bar{y}$, so

$$
\begin{equation*}
\operatorname{DIC}\left(M_{0} \mid y\right)=c_{0}+c_{3} \sum_{j=1}^{n}\left(y_{j}-\bar{y}\right)^{2}+2 \tag{20}
\end{equation*}
$$

and conclusion is that

$$
\begin{equation*}
-D I C\left(M_{0} \mid y\right) \doteq c_{1}+c_{2} L S_{C V}\left(M_{0} \mid y\right) \tag{21}
\end{equation*}
$$

for $c_{2}>0$, i.e., (if this generalizes) choosing model by maximizing $L S_{C V}$ and by minimizing $D I C$ are approximately equivalent behaviors.
(This connection was hinted at in discussion of Spiegelhalter et al. 2002 but never really made explicit.)

$\underline{L S_{C V} \leftrightarrow D I C} \boldsymbol{?}$

Milovan and I are now (work in progress) exploring the scope of (21); in several simple models M so far we find for $c_{2}>0$ that

$$
\begin{equation*}
-D I C(M \mid y) \doteq c_{1}+c_{2} L S_{C V}(M \mid y) \tag{22}
\end{equation*}
$$

i.e., across repeated data sets generated from given model, even with small $n D I C$ and $L S_{C V}$ can be fairly strongly negatively correlated.

Above argument generalizes to any situation in which predictive distribution is approximately Gaussian (e.g., Poisson (λ) likelihood with large λ, $\operatorname{Beta}(\alpha, \beta)$ likelihood with large $(\alpha+\beta)$, etc.).

Example 3 continued. With one-sample count data (like number of hospitalizations in the T and C portions of IHGA data), people often choose between fixed- and random-effects Poisson model formulations: for $i=1, \ldots, n$, and, e.g., with diffuse priors,

$$
\begin{gather*}
M_{1}:\left\{\begin{array}{ccc}
\lambda & \stackrel{\sim}{\sim} & p(\lambda) \\
\left(y_{i} \mid \lambda\right) & \stackrel{\text { IID }}{\sim} & \text { Poisson }(\lambda)
\end{array}\right\} \text { versus } \tag{23}\\
M_{2}:\left\{\begin{array}{ccc}
\left(\beta_{0}, \sigma^{2}\right) & \underset{\sim}{\sim} & p\left(\beta_{0}, \sigma^{2}\right) \\
\left(y_{i} \mid \lambda_{i}\right) & \underset{\sim}{\sim} \\
\log \left(\lambda_{i}\right) & \underset{\sim}{\sim} & \operatorname{Poisson}_{0}\left(\lambda_{i}\right) \\
e_{i} & \stackrel{\text { IID }}{\sim} & N\left(0, \sigma^{2}\right)
\end{array}\right\} \tag{24}
\end{gather*}
$$

M_{1} is special case of M_{2} with ($\sigma^{2}=0, \lambda=e^{\beta_{0}}$); likelihood in M_{2} is Lognormal mixture of Poissons (often similar to fitting negative binomial distribution, which is Gamma mixture of Poissons).

$\underline{L S_{C V} \leftrightarrow D I C \boldsymbol{?} \quad \text { (continued) }}$

We conducted partial-factorial simulation study with factors $\{n=18,32,42,56,100\},\left\{\beta_{0}=0.0,1.0,2.0\right\}$, $\left\{\sigma^{2}=0.0,0.5,1.0,1.5,2.0\right\}$ in which
(data-generating mechanism, assumed model) $=$ $\left\{\left(M_{1}, M_{1}\right),\left(M_{1}, M_{2}\right),\left(M_{2}, M_{1}\right),\left(M_{2}, M_{2}\right)\right\}$; in each cell of this grid we used 100 simulation replications.

When assumed model is M_{1} (fixed-effects Poisson), $L S_{C V}$ and DIC are almost perfectly negatively correlated (we have mathematical explanation of this).

$\underline{L S_{C V} \leftrightarrow D I C ? ~(c o n t i n u e d) ~}$

When assumed model is M_{2} (random-effects Poisson), $L S_{C V}$ and $D I C$ are less strongly negatively correlated ($D I C$ can misbehave with mixture models; see below), but correlation increases with n.

Example 3

As example of correspondence between $L S_{C V}$ and $D I C$ in real problem, IHGA data were as follows:

Distribution of number of hospitalizations in IHGA study over two-year period:

	Number of Hospitalizations										
Group	0	1	2	3	4	5	6	7	n	Mean	SD
Contro	138	77	46	12	8	4	0	2	287	0.944	1.24
Treatment	147	83	37	13	3	1	1	0	285	0.768	1.01

Evidently IHGA Iowered mean hospitalization rate (for these elderly Danish people, at least) by ($0.944-0.768$) $=$
$\mathbf{0 . 1 7 6}$, which is about $100\left(\frac{0.768-0.944}{0.944}\right)=\mathbf{1 9 \%}$ reduction from control level, a difference that's large in clinical terms.

Four possible models for these data (not all of them good):

- Two-independent-sample Gaussian (diffuse priors);
- One-sample Poisson (diffuse prior), pretending treatment and control λ s are equal;
- Two-independent-sample Poisson (diffuse priors), which is equivalent to fixed-effects Poisson regression (FEPR); and
- Random-effects Poisson regression (REPR), because C and T variance-to-mean ratios (VTMRs) are 1.63 and 1.32, respectively:

$\left(y_{i} \mid \lambda_{i}\right)$	$\stackrel{\text { indep }}{\sim}$
$\log \left(\lambda_{i}\right)$	$=\beta_{0}+\beta_{1} x_{i}+e_{i}$
e_{i}	$\stackrel{\text { IID }}{\sim}$
$\left(\beta_{0}, \beta_{1}, \sigma_{e}^{2}\right)$	$\sim\left(0, \sigma_{e}^{2}\right)$
\sim	diffuse,

where $x_{i}=1$ is a binary indicator for T / C status.

DIC Example

To use the DIC feature in WinBUGS to produce the screen shot above, I fit the REPR model as usual, did a burn-in of 1,000 , selected DIC as a pull-down option from the Inference menu, clicked the set button in the DIC Tool window that popped up, changed the 1,000 to 10,000 in the updates window of the Update Tool, clicked update, and then clicked DIC in the DIC Tool when the monitoring run of 10,000 was finished-the DIC results window appears, with the Dbar $(\overline{D(\theta)})$, Dhat $(D(\bar{\theta})), \mathrm{pD}\left(\hat{p}_{D}\right)$, and DIC ($\left.D I C(y)\right)$ values.

DIC Example (continued)

DIC and LS results on these four models:

Model	$\overline{D(\theta)}$	$D(\bar{\theta})$	\hat{p}_{D}	$D I C(y)$	$L S(y)$
1 (Gaussian)	1749.6	1745.6	3.99	1753.5	-1.552
2 (Poisson,	1499.9	1498.8	1.02	1500.9	-1.316
common λ)					

(3 REPR rows were based on different monitoring runs, all of length 10,000, to give idea of Monte Carlo noise level.)

As $\sigma_{e} \rightarrow 0$ in REPR model, you get FEPR model, with $p_{D}=2$ parameters; as $\sigma_{e} \rightarrow \infty$, in effect all subjects in study have their own λ and p_{D} would be 572; in between at $\sigma_{e} \doteq 0.675$ (posterior mean), WinBUGS estimates that there are about 143 effective parameters in REPR model, but its deviance $D(\bar{\theta})$ is so much lower that it wins DIC contest hands down.

Correlation between LS and DIC across these four models is $\mathbf{- 0 . 9 8}$.

But DIC Can Misbehave

$y=(0,0,1,1,1,1,2,2,2,2,3,3,3,4,4,5,6)$ is a data set

 generated from the negative binomial distribution with parameters $(p, r)=(0.82,10.8)$ (in WinBUGS notation); y has mean 2.35 and VTMR 1.22.Using standard diffuse priors for p and r as in the BUGS examples manuals, the effective number of parameters p_{D} for the negative binomial model (which fits the data quite well) is estimated at -66.2:

 $\because:$ WinBUGS14汭: WinBUGS14 $0 \Rightarrow$ 为 $12: 21 \mathrm{PM}$

The basic problem here is that the MCMC estimate of p_{D} can be quite poor if the marginal posteriors for one or more parameters (using the parameterization that defines the deviance) are far from normal; reparameterization helps but can still lead to poor estimates of p_{D}.

Fast (Direct) Approximation to $L S_{C V}$

We've seen above that DIC can sometimes provide an accurate and fast (indirect) approximation to $L S_{C V}$; what about a fast direct approximation?

An obvious thing to try is the following full-sample version of $L S$: in the one-sample situation, for instance, compute a single predictive distribution $p\left(\cdot \mid y, M_{i}\right)$ for a future data value with each model M_{i} under consideration, based on the entire data set y (without omitting any observations), and define

$$
\begin{equation*}
L S_{F S}\left(M_{i} \mid y\right)=\frac{1}{n} \sum_{j=1}^{n} \log p\left(y_{j} \mid y, M_{i}\right) \tag{26}
\end{equation*}
$$

The naive approach to calculating $L S_{C V}$, when MCMC is needed to compute the predictive distributions, requires n

MCMC runs, one for each omitted observation; by contrast $L S_{F S}$ needs only a single MCMC run, making its computational speed (a) n times faster than naive implementations of $L S_{C V}$ and (b) equivalent to that of DIC.

- The log score approach works equally well with parametric and nonparametric Bayesian models; DIC is only defined for parametric models.
- When parametric model M_{i} with parameter vector θ_{i} is fit via MCMC, the predictive ordinate $p\left(y^{*} \mid y, M_{i}\right)$ in $L S_{F S}$ is easy to approximate: with m identically distributed (not necessarily independent) MCMC monitoring draws $\left(\theta_{i}\right)_{k}^{*}$

$$
\text { from } p\left(\theta_{i} \mid y, M_{i}\right) \text {, }
$$

$$
\begin{align*}
p\left(y^{*} \mid y, M_{i}\right) & =\int p\left(y^{*} \mid \theta_{i}, M_{i}\right) p\left(\theta_{i} \mid y, M_{i}\right) d \theta_{i} \\
& =E_{\left(\theta_{i} \mid y, M_{i}\right)}\left[p\left(y^{*} \mid \theta_{i}, M_{i}\right)\right] \tag{27}\\
& \doteq \frac{1}{m} \sum_{k=1}^{m} p\left(y^{*} \mid\left(\theta_{i}\right)_{k}^{*}, M_{i}\right) .
\end{align*}
$$

Example of $L S_{F S}$ Calculations

Example. I'd like to use $L S_{F S}$ and $D I C$ to compare the Gaussian and t models we discussed earlier for the NB10 data.

The files NB10-model-2.txt, NB10-data.txt, and NB10-initial-values-2.txt on the course web page contain the WinBUGS implementation of

$$
\begin{aligned}
M_{2}: \mu & \sim N(0, \text { precision }=1.0 \mathrm{E}-6), \sigma \sim U(0,9.0), \\
\nu & \sim U(2.0,12.0),\left(y_{i} \mid \mu, \sigma, \nu\right)
\end{aligned}
$$

I collect 100,000 monitoring iterations for M_{2}, remembering to hit the set button on the DIC tool before the monitoring begins; I use the coda button to store the μ, σ, and ν columns of the MCMC data set in files called nb10-model-2-mu.txt, nb10-model-2-sigma.txt, and nb10-model-2-nu.txt, respectively; and I hit the DIC button on the DIC tool to record that the DIC value for this model is 618.2 (note that $D I C$ has misbehaved again: p_{D} is estimated to be -1.1).

$\underline{L S_{F S} \text { Calculations (continued) }}$

I go through a similar process with the files NB10-model-1.txt, NB10-data.txt, and NB10-initial-values-1.txt to fit

$$
\begin{gathered}
M_{1}: \mu \sim N(0, \text { precision }=1.0 \mathrm{E}-6), \sigma \sim U(0,9.0), \\
\left(y_{i} \mid \mu, \sigma\right) \stackrel{\text { IID }}{\sim} N\left(\mu, \sigma^{2}\right)
\end{gathered}
$$

and store the μ and σ columns of the MCMC data set in files
called nb10-model-1-mu.txt and nb10-model-1-sigma.txt, respectively; this time the DIC value is $\mathbf{6 6 0 . 1}$ and DIC is better-behaved (p_{D} is estimated to be 1.9 , which is about right).

On the basis of DIC I would conclude that M_{2} (618.2 with 3 parameters) is (substantially) better than M_{1} (660.1 with 2).

Here is some R code (also available on the web page) to compute the log score values for both models.
> y <- dget("nb10-data.txt")
> $\mathrm{y}<-\operatorname{sort}(\mathrm{y} \$ \mathrm{y})$
> mu.G <- matrix(scan("nb10-model-1-mu.txt"), 100000, 2, byrow = T) [, 2]
> sigma.G <- matrix(scan("nb10-model-1-sigma.txt"), 100000, 2, byrow = T) [, 2]
> mu.t <- matrix(scan("nb10-model-2-mu.txt"), 100000, 2, byrow = T) [, 2]
> sigma.t <- matrix(scan("nb10-model-2-sigma.txt"), 100000, 2, byrow = T) [, 2]
> nu.t <- matrix(scan("nb10-model-2-nu.txt"), 100000, 2, byrow = T) [, 2]

$\underline{L S_{F S} \text { Calculations (continued) }}$

> dt.s <- function(y, mu, sigma, nu) \{
$>\exp (\operatorname{lgamma}((n u+1) / 2)-((n u+1) / 2) *$
$>\quad \log \left(1+(y-m u){ }^{\wedge} 2 /\left(n u * \operatorname{sigma}{ }^{\wedge} 2\right)\right)-$
$>\quad \operatorname{lgamma}(\mathrm{nu} / 2)-\log (\mathrm{nu} * \mathrm{pi}) / 2-\log ($ sigma $))$
$>\}$
> LS.contributions <- matrix (0, 100, 2)
$>$ for $(j$ in 1:100) \{
$>$ LS.contributions $[\mathrm{j}, 1]<-\log (\operatorname{mean}(\mathrm{dt} . \mathrm{s}(\mathrm{y}[\mathrm{j}]$, > mu.t, sigma.t, nu.t)))
> LS.contributions[j, 2]<- log(mean(dnorm(y[j], > mu.G, sigma.G)))
$>\}$
> cbind(y, LS.contributions,
> 0 + LS.contributions [, 1] > LS.contributions[, 2])

		t	Gaussian
[1,]	375	-8.586208	-12. 204954
[2,]	392	-5.349809	-4.639139
[3,]	393	-5.077313	-4.362693
[4,]	397	-3.903555	-3.475233
[5,]	398	-3.602015	-3.309458
[6,]	398	-3.602015	-3.309458
[7,]	399	-3.307381	-3.166624
[8,]	399	-3.307381	-3.166624

$L S_{F S}$ Calculations (continued)

$[9]$,	399	-3.307381	-3.166624	0
$[10]$,	399	-3.307381	-3.166624	0
$[11]$,	399	-3.307381	-3.166624	0
$[12]$,	399	-3.307381	-3.166624	0
$[13]$,	399	-3.307381	-3.166624	0
$[14]$,	400	-3.028685	-3.046933	1
$[15]$,	400	-3.028685	-3.046933	1
$[16]$,	400	-3.028685	-3.046933	1
$[17]$,	400	-3.028685	-3.046933	1
$[18]$,	401	-2.778176	-2.950552	1
$[19]$,	401	-2.778176	-2.950552	1
$[20]$,	401	-2.778176	-2.950552	1
$[21]$,	401	-2.778176	-2.950552	1
$[22]$,	401	-2.778176	-2.950552	1
$[23]$,	401	-2.778176	-2.950552	1
$[24]$,	401	-2.778176	-2.950552	1
$[25]$,	401	-2.778176	-2.950552	1
$[26]$,	401	-2.778176	-2.950552	1
$[27]$,	401	-2.778176	-2.950552	1
$[28]$,	401	-2.778176	-2.950552	1
$[29]$,	401	-2.778176	-2.950552	1
$[30]$,	402	-2.571441	-2.877618	1
$[31]$,	402	-2.571441	-2.877618	1
$[32]$,	402	-2.571441	-2.877618	1
$[33]$,	402	-2.571441	-2.877618	1
$[34]$,	402	-2.571441	-2.877618	1
$[35]$,	402	-2.571441	-2.877618	1
$[36]$,	402	-2.571441	-2.877618	1
$[37]$,	402	-2.571441	-2.877618	1
$[38]$,	403	-2.426129	-2.828236	1
$[39]$,	403	-2.426129	-2.828236	1
$[40]$,	403	-2.426129	-2.828236	1
$[41]$,	403	-2.426129	-2.828236	1
$[42]$,	403	-2.426129	-2.828236	1
$[43]$,	403	-2.426129	-2.828236	1
$[44]$,	404	-2.358212	-2.802475	1

$L S_{F S}$ Calculations (continued)

$[45]$,	404	-2.358212	-2.802475	1
$[46]$,	404	-2.358212	-2.802475	1
$[47]$,	404	-2.358212	-2.802475	1
$[48]$,	404	-2.358212	-2.802475	1
$[49]$,	404	-2.358212	-2.802475	1
$[50]$,	404	-2.358212	-2.802475	1
$[51]$,	404	-2.358212	-2.802475	1
$[52]$,	404	-2.358212	-2.802475	1
$[53]$,	405	-2.376305	-2.800373	1
$[54]$,	405	-2.376305	-2.800373	1
$[55]$,	405	-2.376305	-2.800373	1
$[56]$,	405	-2.376305	-2.800373	1
$[57]$,	405	-2.376305	-2.800373	1
$[58]$,	406	-2.477698	-2.821932	1
$[59]$,	406	-2.477698	-2.821932	1
$[60]$,	406	-2.477698	-2.821932	1
$[61]$,	406	-2.477698	-2.821932	1
$[62]$,	406	-2.477698	-2.821932	1
$[63]$,	406	-2.477698	-2.821932	1
$[64]$,	406	-2.477698	-2.821932	1
$[65]$,	406	-2.477698	-2.821932	1
$[66]$,	406	-2.477698	-2.821932	1
$[67]$,	406	-2.477698	-2.821932	1
$[68]$,	406	-2.477698	-2.821932	1
$[69]$,	406	-2.477698	-2.821932	1
$[70]$,	407	-2.649778	-2.867123	1
$[71]$,	407	-2.649778	-2.867123	1
$[72]$,	407	-2.649778	-2.867123	1
$[73]$,	407	-2.649778	-2.867123	1
$[74]$,	407	-2.649778	-2.867123	1
$[75]$,	407	-2.649778	-2.867123	1
$[76]$,	407	-2.649778	-2.867123	1
$[77]$,	407	-2.649778	-2.867123	1
$[78]$,	408	-2.875393	-2.935880	1
$[79]$,	408	-2.875393	-2.935880	1
$[80]$,	408	-2.875393	-2.935880	1

$L S_{F S}$ Calculations (continued)

$[81]$,	408	-2.875393	-2.935880	1
$[82]$,	408	-2.875393	-2.935880	1
$[83]$,	409	-3.137771	-3.028107	0
$[84]$,	409	-3.137771	-3.028107	0
$[85]$,	409	-3.137771	-3.028107	0
$[86]$,	409	-3.137771	-3.028107	0
$[87]$,	409	-3.137771	-3.028107	0
$[88]$,	410	-3.422943	-3.143672	0
$[89]$,	410	-3.422943	-3.143672	0
$[90]$,	410	-3.422943	-3.143672	0
$[91]$,	410	-3.422943	-3.143672	0
$[92]$,	411	-3.720225	-3.282413	0
$[93]$,	412	-4.021816	-3.444136	0
$[94]$,	412	-4.021816	-3.444136	0
$[95]$,	412	-4.021816	-3.444136	0
$[96]$,	413	-4.322196	-3.628616	0
$[97]$,	415	-4.905384	-4.064801	0
$[98]$,	418	-5.710652	-4.882504	0
$[99]$,	423	-6.845648	-6.656119	0
$[100]$,	437	-9.016222	-13.896384	1

> sum(LS.contributions[, 1] > LS.contributions[, 2]) / $>$ length (y)
[1] 0.71
\# Thus t model is predictively better than Gaussian for \# 71% of the data points.

LS.t <- mean(LS.contributions[, 1])

LS.G <- mean(LS.contributions [, 2])
c (LS.t, LS.G)
[1] -3.082331 -3. 262142

$L S_{F S}$ Calculations (continued)

Although it's not immediately obvious, the log score for the t model (-3.08) is substantially higher than that for the Gaussian model (-3.26), so $L S$ and $D I C$ have reached the same conclusion here.
> plot(y, LS.contributions [, 1],
$>y \operatorname{ylim}=c(\min ($ LS.contributions $)$,
$>\max ($ LS.contributions)),
> ylab = 'Log Score Contributions')
> lines (y, LS.contributions [, 1], lty = 1)
> points (y, LS.contributions [, 2], pch = 2)
> lines (y, LS.contributions [, 2], lty = 2)
> legend (397.5, -10, c("t", "Gaussian"), pch =c(1, 2))

The t model fits better both in the tails (where the most influential observations are from the Gaussian point of view) and in the center (where most of the data values are).

Asymptotic Properties of $L S_{F S}$

Recall the claim that $L S_{C V}$ approximates expectation of logarithmic utility:

$$
\begin{equation*}
E\left[U\left(M_{i} \mid y\right)\right] \approx L S_{C V}=\frac{1}{n} \sum_{j=1}^{n} \log p\left(y_{j} \mid M_{i}, y_{-j}\right) \tag{28}
\end{equation*}
$$

Berger et al. (2005) recently proved that difference between LHS and RHS of (28) does not vanish for large n but is instead $O_{p}(\sqrt{n})$.
(However unpleasant, this fact does not automatically invalidate use of $L S_{C V}$ as estimated expected utility, since when comparing two models we effectively look at the difference between two $L S_{C V}$ values, and the discrepancy should largely cancel out.)

We have proved for a simple model that $L S_{F S}$ is free from this deficiency: the difference between
$E\left[U\left(M_{i} \mid y\right)\right]$ and $L S_{F S}=\frac{1}{n} \sum_{j=1}^{n} \log p\left(y_{j} \mid y, M_{i}\right)$ is $O_{p}(1)$ (we expect the general proof to go through as well).

Q: Does this asymptotic superiority of $L S_{F S}$ over $L S_{C V}$ translate into better small-sample performance?

$L S_{C V}, L S_{F S}$ and $D I C$
 Model Discrimination

We now have three behavioral rules: maximize $L S_{C V}$, maximize $L S_{F S}$, minimize $D I C$.

With (e.g.) two models to choose between, how accurately do these behavioral rules discriminate between M_{1} and M_{2} ?

Example: Recall that in earlier simulation study, for $i=1, \ldots, n$, and with diffuse priors, we considered
$M_{1}:\left\{\begin{array}{ccc}\lambda & \sim & p(\lambda) \\ \left(y_{i} \mid \lambda\right) & \stackrel{\text { IID }}{\sim} & \operatorname{Poisson}(\lambda)\end{array}\right\} \quad$ versus

$$
M_{2}:\left\{\begin{array}{ccc}
\left(\beta_{0}, \sigma^{2}\right) & \sim & p\left(\beta_{0}, \sigma^{2}\right) \\
\left(y_{i} \mid \lambda_{i}\right) & \stackrel{\text { indep }}{\sim} & \text { Poisson }\left(\lambda_{i}\right) \\
\log \left(\lambda_{i}\right) & \underset{=}{=} & \beta_{0}+e_{i} \\
e_{i} & \underset{\sim}{\mathrm{ID}} & N\left(0, \sigma^{2}\right)
\end{array}\right\}
$$

Model Discrimination (continued)

As extension of previous simulation study, we generated data from M_{2} and computed $L S_{C V}$, $L S_{F S}$, and DIC for models M_{1} and M_{2} in full-factorial grid $\{n=32,42,56,100\}$, $\left.\left\{\beta_{0}=0.0,1.0\right\}, \sigma^{2}=0.1,0.25,0.5,1.0,1.5,2.0\right\}$, with 100 simulation replications in each cell, and monitored percentages of correct model choice (here M_{2} is always correct).

Examples of results for (e.g.) $L S_{C V}$:

$$
n=32
$$

\% Correct Decision

	β_{0}	
σ^{2}	0	
0.10	1	
0.25	41	
0.57		
0.50	76	
1.05		
1.00	97	
1.50	98	
2.00	100	
	100	

Mean Absolute Difference in $L S_{C V}$

	β_{0}	
σ^{2}	0	1
0.10	0.001	0.002
0.25	0.002	0.013
0.50	0.017	0.221
1.00	0.237	4.07
1.50	1.44	17.4
2.00	12.8	63.9

Even with n only $32, L S_{C V}$ makes the right model choice more than 90% of the time when $\sigma^{2}>0.5$ for $\beta_{0}=1$ and when $\sigma^{2}>1.0$ for $\beta_{0}=0$.

Model Discrimination (continued)

The plots above compare Bayesian decision-theoretic power curves for $L S_{C V}$ (solid lines), $L S_{F S}$ (Iong dotted lines), and DIC (short dotted lines)
(column 1: $\beta_{0}=0$; column 2: $\beta_{0}=1$).
Remarkably, not only is $L S_{F S}$ much quicker computationally than $L S_{C V}$, it's also more accurate at identifying the correct model than $L S_{C V}$ or DIC.

To summarize, in computational efficiency

$$
\begin{equation*}
L S_{C V}<D I C \doteq L S_{F S} \tag{29}
\end{equation*}
$$

and in fixed- and random-effects Poisson modeling the results in model discrimination power are

$$
\begin{equation*}
L S_{C V} \doteq D I C<L S_{F S} \tag{30}
\end{equation*}
$$

Why Not Bayes Factors?

Much has been written about use of Bayes factors for model choice (e.g., Jeffreys 1939, Kass and Raftery 1995; excellent recent book by O'Hagan and Forster 2004 devotes almost 40 pages to this topic).

Why not use probability scale to choose between M_{1} and M_{2} ?

$$
\begin{align*}
{\left[\frac{p\left(M_{1} \mid y\right)}{p\left(M_{2} \mid y\right)}\right] } & =\left[\frac{p\left(M_{1}\right)}{p\left(M_{2}\right)}\right] \cdot\left[\frac{p\left(y \mid M_{1}\right)}{p\left(y \mid M_{2}\right)}\right] \tag{31}\\
\binom{\text { posterior }}{\text { odds }} & =\binom{\text { prior }}{\text { odds }} \cdot\binom{\text { Bayes }}{\text { factor }}
\end{align*}
$$

Kass and Raftery (1995) note that

$$
\begin{align*}
\log \left[\frac{p\left(y \mid M_{1}\right)}{p\left(y \mid M_{2}\right)}\right]= & \log p\left(y \mid M_{1}\right)-\log p\left(y \mid M_{2}\right) \tag{32}\\
= & L S^{*}\left(M_{1} \mid y\right)-L S^{*}\left(M_{2} \mid y\right) \\
& \text { where }
\end{align*}
$$

$L S^{*}\left(M_{i} \mid y\right) \equiv \log p\left(y \mid M_{i}\right)$

$$
=\log \left[p\left(y_{1} \mid M_{i}\right) p\left(y_{2} \mid y_{1}, M_{i}\right) \cdots p\left(y_{n} \mid y_{1}, \ldots, y_{n-1}, M_{i}\right)\right]
$$

$$
=\log p\left(y_{1} \mid M\right)+\sum_{j=2}^{n} \log p\left(y_{j} \mid y_{1}, \ldots, y_{j-1}, M_{i}\right)
$$

Thus log Bayes factor equals difference between models in something that looks like a log score, i.e., aren't $L S_{C V}$ and $L S_{F S}$ equivalent to choosing M_{i} whenever the Bayes factor in favor of M_{i} exceeds 1 ?

$L S \neq B F$

No; crucially, LS* is defined via sequential prediction of y_{2} from y_{1}, y_{3} from $\left(y_{1}, y_{2}\right)$, etc., whereas $L S_{C V}$ and $L S_{F S}$ are based on averaging over all possible out-of-sample predictions.

This distinction really matters: as is well known, with diffuse priors Bayes factors are hideously sensitive to particular form in which diffuseness is specified, but this defect is entirely absent from $L S_{C V}$ and $L S_{F S}$ (and from other properly-defined utility-based model choice criteria).

Example: Integer-valued data $y=\left(y_{1}, \ldots, y_{n}\right)$;
$M_{1}=\boldsymbol{\operatorname { G e o m e t r i c }}\left(\theta_{1}\right)$ likelihood with $\operatorname{Beta}\left(\alpha_{1}, \beta_{1}\right)$ prior on θ_{1};
$M_{2}=\operatorname{Poisson}\left(\theta_{2}\right)$ likelihood with $\operatorname{Gamma}\left(\alpha_{2}, \beta_{2}\right)$ prior on θ_{2}.

Bayes factor in favor of M_{1} over M_{2} is

$$
\frac{\Gamma\left(\alpha_{1}+\beta_{1}\right) \Gamma\left(n+\alpha_{1}\right) \Gamma\left(n \bar{y}+\beta_{1}\right) \Gamma\left(\alpha_{2}\right)\left(n+\beta_{2}\right)^{n \bar{y}+\alpha_{2}}\left(\prod_{i=1}^{n} y_{i}!\right)}{\Gamma\left(\alpha_{1}\right) \Gamma\left(\beta_{1}\right) \Gamma\left(n+n \bar{y}+\alpha_{1}+\beta_{1}\right) \Gamma\left(n \bar{y}+\alpha_{2}\right) \beta_{2}^{\alpha_{2}}}
$$

Diffuse priors: take $\left(\alpha_{1}, \beta_{1}\right)=(1,1)$ and $\left(\alpha_{2}, \beta_{2}\right)=(\epsilon, \epsilon)$ for some $\epsilon>0$.

Bayes factor reduces to

$$
\frac{\Gamma(n+1) \Gamma(n \bar{y}+1) \Gamma(\epsilon)(n+\epsilon)^{n \bar{y}+\epsilon}\left(\prod_{i=1}^{n} y_{i}!\right)}{\Gamma(n+n \bar{y}+2) \Gamma(n \bar{y}+\epsilon) \epsilon^{\epsilon}} .
$$

$L S \neq B F$ (continued)

This goes to $+\infty$ as $\epsilon \downarrow 0$, i.e., you can make the evidence in favor of the Geometric model over the Poisson as large as you want as a function of a quantity near 0 that scientifically you have no basis to specify.

By contrast, e.g.,

$$
\begin{aligned}
L S_{C V}\left(M_{1} \mid y\right)= & \log \left[\frac{\left(\alpha_{1}+n-1\right) \Gamma\left(\beta_{1}+s\right)}{\Gamma\left(\alpha_{1}+n+\beta_{1}+s\right)}\right] \\
& +\frac{1}{n} \sum_{i=1}^{n} \log \left[\frac{\Gamma\left(\alpha_{1}+n-1+\beta_{1}+s_{i}\right)}{\Gamma\left(\beta_{1}+s_{i}\right)}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
L S_{C V}=\left(M_{2} \mid y\right)= & \frac{1}{n} \sum_{i=1}^{n} \log \left[\frac{\Gamma\left(\alpha_{2}+s\right)}{\Gamma\left(y_{i}+1\right) \Gamma\left(\alpha_{2}+s_{i}\right)}\right. \\
& \left.\cdot\left(\frac{\beta_{2}+n}{\beta_{2}+n+1}\right)^{\alpha_{2}+s_{i}}\left(\frac{1}{\beta_{2}+n+1}\right)^{y_{i}}\right]
\end{aligned}
$$

(with similar expressions for $L S_{F S}$); both of these quantities are entirely stable as a function of (α_{1}, β_{1}) and (α_{2}, β_{2}) near zero.
(Various attempts have been made to fix this defect of Bayes factors, e.g., \{partial, intrinsic, fractional\} Bayes factors, well calibrated priors, conventional priors, intrinsic priors, expected posterior priors, ... (e.g., Pericchi 2004); all of these methods appear to require an appeal to ad-hockery which is not required by the log score approach.)
(Some bridges can be built between LS and BF, e.g., Berger et al. (2005) re-interpret $L S_{C V}$ as the "Gelfand-Dey (1994) predictive Bayes factor" $B F^{G D}$; connections like these are the subject of ongoing investigation.)

What $L S_{F S}$ Is Not

(1) Likelihood part of (parametric) model
$M_{j}:\left(y_{i} \mid \theta_{j}, M_{j}\right) \stackrel{\text { IID }}{\sim} p\left(y_{i} \mid \theta_{j}, M_{j}\right)(j=1,2)$, with prior $p\left(\theta_{j} \mid M_{j}\right)$ for model M_{j}.

Ordinary Bayes factor involves comparing quantities of the form

$$
\begin{align*}
p\left(y \mid M_{j}\right) & =\int\left[\prod_{i=1}^{n} p\left(y_{i} \mid \theta_{j}, M_{j}\right)\right] p\left(\theta_{j} \mid M_{j}\right) d \theta_{j} \\
& =E_{\left(\theta_{j} \mid M_{j}\right)} L\left(\theta_{j} \mid y, M_{j}\right) \tag{33}
\end{align*}
$$

i.e., Bayes factor involves comparing expectations of likelihoods with respect to the priors in the models under comparison (this is why ordinary Bayes factors behave so badly with diffuse priors).
Aitkin (1991; posterior Bayes factors): compute expectations instead with respect to the posteriors, i.e.,

PBF: favor model M_{1} if $\log \bar{L}_{1}^{A}>\log \bar{L}_{2}^{A}$, where

$$
\begin{equation*}
\log \bar{L}_{j}^{A}=\log \int\left[\prod_{i=1}^{n} p\left(y_{i} \mid \theta_{j}, M_{j}\right)\right] p\left(\theta_{j} \mid y, M_{j}\right) d \theta_{j} \tag{34}
\end{equation*}
$$

This solves the problem of sensitivity to a diffuse prior but creates new problems of its own, e.g., it's incoherent.

It may seem at first glance (e.g., O'Hagan and Forster (2004) think so) that PBF is the same thing as $L S_{F S}$: favor model M_{1} if

$$
\begin{equation*}
n L S_{F S}\left(M_{1} \mid y\right)>n L S_{F S}\left(M_{2} \mid y\right) \tag{35}
\end{equation*}
$$

But not so:

$$
\begin{equation*}
n L S_{F S}\left(M_{j} \mid y\right)=\log \prod_{i=1}^{n}\left[\int p\left(y_{i} \mid \theta_{j}, M_{j}\right) p\left(\theta_{j} \mid y, M_{j}\right) d \theta_{j}\right] \tag{36}
\end{equation*}
$$

and this is not the same because the integral and product operators do not commute.

What $L S_{F S}$ Is Not (continued)

Also, some people (e.g., Geweke (2005)) like to compare models based on the posterior expectation of the log likelihood (this is one of the ingredients in DIC), and this is not the same as $L S_{F S}$ either: by Jensen's inequality

$$
\begin{align*}
n L S_{F S}\left(M_{j} \mid y\right) & =\sum_{i=1}^{n} \log p\left(y_{i} \mid y, M_{j}\right) \\
& =\sum_{i=1}^{n} \log \int p\left(y_{i} \mid \theta_{j}, M_{j}\right) p\left(\theta_{j} \mid y, M_{j}\right) d \theta_{j} \\
& =\sum_{i=1}^{n} \log E_{\left(\theta_{j} \mid y, M_{j}\right)} L\left(\theta_{j} \mid y_{i}, M_{j}\right) \\
& >\sum_{i=1}^{n} E_{\left(\theta_{j} \mid y, M_{j}\right)} \log L\left(\theta_{j} \mid y_{i}, M_{j}\right) \tag{37}\\
& =E_{\left(\theta_{j} \mid y, M_{j}\right)} \sum_{i=1}^{n} \log L\left(\theta_{j} \mid y_{i}, M_{j}\right) \\
& =E_{\left(\theta_{j} \mid y, M_{j}\right)} \log \prod_{i=1}^{n} L\left(\theta_{j} \mid y_{i}, M_{j}\right) \\
& =E_{\left(\theta_{j} \mid y, M_{j}\right)} \log L\left(\theta_{j} \mid y, M_{j}\right)
\end{align*}
$$

When Is a Model Good Enough?

$L S_{F S}$ method described here (not LS* method) can stably and reliably help in choosing between M_{1} and M_{2}; but suppose M_{1} has a (substantially) higher $L S_{F S}$ than M_{2}.

This doesn't say that M_{1} is adequate-it just says that M_{1} is better than M_{2}, i.e., what about model specification question (2): Is M_{1} good enough?

As mentioned above, a full judgment of adequacy requires real-world input (to what purpose will the model be put?), but you can answer a somewhat related question-could the data have arisen from a given model?-in a general way by simulating from that model many times, developing a distribution of (e.g.) $L S_{F S}$ values, and seeing how unusual
the actual data set's log score is in this distribution (Draper and Krnjajić 2004).

This is related to the posterior predictive model-checking method of Gelman, Meng and Stern (1996); however, this sort of thing cannot be done naively, or result will be poor calibration-indeed, Robins et al. (2000) demonstrated that the Gelman et al. procedure may be (sharply) conservative.

Using modification of idea in Robins et al., we have developed method for accurately calibrating the log score scale.

Inputs to our procedure: (1) A data set (e.g., with regression structure); (2) A model (can be parametric, non-parametric, or semi-parametric).

Simple example: data set $y=(1,2,2,3,3,3,4,6,7,11)$,

$$
n=10 .
$$

Given model (*)
(λ) \sim Gamma(0.001, 0.001)

$$
\begin{equation*}
\left(y_{i} \mid \lambda\right) \stackrel{\text { IID }}{\sim} \operatorname{Poisson}(\lambda) \tag{38}
\end{equation*}
$$

Calibrating $L S_{F S}$ Scale

Step 1:

Calculate $L S_{F S}$ for this data set; say get $L S_{F S}=-1.1$; call this actual log score (ALS).

Obtain posterior for λ given y based on this data set; call this actual posterior.

Step 2:

for (i in 1:m1) \{
make a lambda draw from the actual posterior;
call it lambda[i]
generate a data set of size n from the second line of model (*) above, using lambda = lambda[i]
compute the log score for this generated data set; call it LS[i]
\}
Output of this loop is a vector of log scores; call this V.LS.
Locate ALS in distribution of $L S_{F S}$ values by computing percentage of $L S_{F S}$ values in V.LS that are \leq ALS; call this percentage unadjusted actual tail area (say this is 0.22).

So far this is just Gelman et al. with $L S_{F S}$ as the discrepancy function.

We know from our own simulations and the literature (Robins et al. 2000) that this tail area (a p-value for a composite null hypothesis, e.g., Poisson(λ) with λ unspecified) is conservative, i.e., with the 0.22 example above an adjusted version of it that is well calibrated would be smaller.

Calibrating $L S F S$ Scale (continued)

We've modified and implemented one of the ways suggested by Robins et al., and we've shown that it does indeed work even in rather small-sample situations, although our approach to implementing the basic idea can be computationally intensive.

Step 3:

for (j in 1:m2) \{
make a lambda draw from the actual posterior; call it lambda*.
generate a data set of size n from the second line of model (*) above, using lambda = lambda*;
call this the simulated data set
repeat steps 1,2 above on this simulated data set
\}
The result will be a vector of unadjusted tail areas; call this V.P.

Compute the percentage of tail areas in V.P that are \leq the unadjusted actual tail area; this is the adjusted actual tail area.

Calibrating $L S_{F S}$ Scale (continued)

The claim is that the 3-step procedure above is well-calibrated, i.e., if the sampling part of model (*) really did generate the observed data, the distribution of adjusted actual tail areas obtained in this way would be uniform, apart from simulation noise.

Step 3 in this procedure solves the calibration problem by applying the old idea that if $X \sim F_{X}$ then $F_{X}(X) \sim U(0,1)$.

This claim can be verified by building a big loop around steps 1-3 as follows:

Choose a lambda value of interest; call it lambda.sim for (k in 1:m3) \{
generate a data set of size n from the second line of model (*) above, using lambda $=$ lambda.sim; call this the validation data set
repeat steps $1-3$ on the validation data set
\}
The result will be a vector of adjusted P-values; call this V.Pa.

We have verified (via simulation) in several simple (and some less simple) situations that the values in V.Pa are close to $U(0,1)$ in distribution.

Two examples-Poisson (λ) and Gaussian $\left(\mu, \sigma^{2}\right)$:

Uncalibrated p-values

Null Poisson model: Uncalibrated p-values

Calibrated p-values

Null Poisson model: Calibrated p-values vs uniform(0,1)

Uncalibrated p-values

Null Gaussian model: Uncalibrated p-values

Calibrated p-values

Null Gaussian model: Calibrated p-values vs uniform $(0,1)$

R Implementation

Here's some R code (available at the course web site) to implement our method for calibrating the log score scale in a one-sample Poisson setting, applied first to the length of stay data from part 2 b and then to a simulated data set that was not generated by the Poisson model.

```
> print( y <- c( 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 6 ) )
```

 [1] \(0 \begin{array}{llllllllllllll} & 1 & 1 & 1 & 2 & 2 & 2 & 3 & 3 & 6\end{array}\)
 > print (epsilon <- 0.001)
[1] 0.001
> ln.poisson.gamma <- function(y, alpha, beta) \{
$+$
$+\quad$ lgamma (alpha +y$)+$ alpha $* \log ($ beta /
$+(\operatorname{beta}+1))+y * \log (1 /(b e t a+1))-$

+ lgamma(alpha) - lgamma(y + 1)
$+$
$+\}$
> step1 <- function (y, epsilon) \{
$+$
$+\mathrm{n}<-$ length (y$)$
$+$
$+\quad s<-\operatorname{sum}(y)$
$+$
$+\quad$ als <- mean(ln.poisson.gamma(y, epsilon + s,
$+\quad$ epsilon +n))
$+$
$+\operatorname{return}(\mathrm{c}(\mathrm{n}, \mathrm{s}, \mathrm{als}))$
$+$
+ \}
> print(step1.result <- step1 (y, epsilon))
[1] $14.0000029 .00000-1.71309$

So the actual log score for the LoS data set is -1.71 , but is this unusually small if the data really were Poisson?

R Implementation (continued)

```
> step2 <- function( n, s, epsilon, als, m1 ) {
+
+ lambda <- rgamma( m1, epsilon + s, epsilon + n )
+
+ ls <- rep( 0,m1 )
+
+ for ( i in 1:m1 ) {
+
+ y.star <- rpois( n, lambda[ i ] )
    s.star <- sum( y.star )
    ls[ i ] <- mean( ln.poisson.gamma( y.star,
        epsilon + s.star, epsilon + n ) )
    }
    uata <- sum( ls <= als ) / m1
        write( ls, "ls.out" )
        return( uata )
+
+ }
```

```
> mi <- 1000
```

> mi <- 1000
>
> print(step2.result <- step2(step1.result[1],

+ step1.result[2], epsilon, step1.result[3], m1))
[1] 0.418
> v.ls <- scan("ls.out")
Read 1000 items
>
> hist(v.ls, nclass = 20, probability = T,
+ main = '', xlab = 'uncalibrated log score')
>
> abline(v = step1.result[3])

```

\section*{R Implementation (continued)}


The actual log score doesn't look at all unusual in this plot, but recall from the discussion above that it may not yet be properly calibrated.
> step <- function( y, epsilon, mi, m2 ) \{
\(+\)
\(+\quad\) step1.result <- step ( y, epsilon )
\(+\)
\(+\quad \mathrm{n}<-\) step1.result[ 1 ]
\(+\)
+ s.actual <- step1.result[ 2 ]
\(+\)
+ uata <- step( step1.result[ 1 ], step1.result[ 2 ],
\(+\quad\) epsilon, step1.result[ 3 ], mi )
\(+\)
\(+\quad \mathrm{v} \cdot \mathrm{p}<-\operatorname{rep}(0, \mathrm{~m} 2)\)

\section*{R Implementation (continued)}
+ for ( \(j\) in 1:m2 ) \{
\(+\)
\(+\quad\) lambda.star <- rama( 1, epsilon + s.actual,
\(+\quad\) epsilon + n )
\(+\)
\(+\quad\) y.sim <- rpois( n, lambda.star )
\(+\)
\(+\quad\) step1.result <- step( y.sim, epsilon )
\(+\)
\(+\quad \mathrm{v} . \mathrm{p}[\mathrm{j}]<-\) step( step1.result[ 1 ],
\(+\)
\(+\)
\(+\quad\}\)
\(+\)
\(+\quad\) alta <- sum ( v.p <= uata ) / m2
\(+\)
+ write( v.p, "v.p.out" )
\(+\)
\(+\quad\) return ( anta )
\(+\)
\(+\}\)
\(>\mathrm{m} 2<-100\)
\(>\)
> print ( step3.result <- step( y, epsilon, mi, m2 ) )
[1] 0.4
Here the recalibration has not had much effect, but (as the plots above showed) this will not always be the case.

\section*{R Implementation (continued)}
```

> v.p <- scan("v.p.out")
Read 100 items
>
> hist(v.p, nclass = 20, probability = T, xlim = c(0, 1),

+ main = ',, xlab = 'calibrated tail areas')
>
> abline(v = step2.result)

```


For a second example let's look at a data set generated as a lognormal mixture of Poissons with a substantial VTMR.
\[
\begin{aligned}
& >\mathrm{n}<-10 \\
& > \\
& >\mathrm{e}<-\operatorname{rnorm}(\mathrm{n}, 0.0,0.5) \\
& > \\
& >\mathrm{mu}<-0 \\
& > \\
& >\text { lambda <- rep }(0, \mathrm{n})
\end{aligned}
\]

\section*{R Implementation (continued)}
\[
\begin{aligned}
& >y<-\operatorname{rep}(0, n) \\
& >\text { for }(i \operatorname{in} 1: n)\{ \\
& + \\
& +\operatorname{lambda}[i]<-\exp (\operatorname{mu}+e[i]) \\
& + \\
& +y[i]<-\operatorname{rpois}(1, \operatorname{lambda}[i]) \\
& + \\
& +\}
\end{aligned}
\]
\[
\text { > print }(\mathrm{y}<-\operatorname{sort}(\mathrm{y}) \text { ) }
\]
\[
>\operatorname{var}(\mathrm{y}) / \operatorname{mean}(\mathrm{y})
\]
[1] 1.555556
> print ( step1.result <- step1 ( y, epsilon ) )
[1] \(10.00000016 .000000-1.715601\)
> print ( step2.result <- step2( step1.result[ 1 ],
+ step1.result[ 2 ], epsilon, step1.result[ 3 ], m1 ) )
[1] 0.178
> v.ls <- scan( "ls.out" )
> hist( v.ls, nclass \(=20\), probability \(=\mathrm{T}\),
+ main \(=\) ', \(x\) lab = 'uncalibrated log score' )
> abline( v = step1.result[ 3 ] )

\section*{R Implementation (continued)}

uncalibrated log score
\(>\mathrm{m} 2<-1000\)
> print ( step3.result <- step3 ( y, epsilon, m1, m2 ) )
[1] 0.099
So here's an example where the uncalibrated tail area is about twice as big as it should be.
> v.p <- scan( "v.p.out")
> hist( v.p, nclass \(=20\), probability \(=T, x \lim =c(0,1)\),
+ main \(=\) ', , xlab = 'calibrated tail areas' )
> abline( v = step2.result )

\section*{R Implementation (continued)}


The true calibrated tail-area distribution is far from uniform, so 0.178 is actually substantially farther out in the true tail than it seems.

\section*{Conclusions}
- \{Exchangeability judgments plus nonparametric (BNP) modeling \(\}=\) Bayesian model specification in many problems.
- BNP is one way to avoid the dilemma posed by Cromwell's Rule in Bayesian model specification; three-way cross-validation (3CV) is another.

Model choice is really a decision problem and should be approached via MEU, with a utility structure that's sensitive to the real-world context.
- When the goal is to make an accurate scientific summary of what's known about something, the predictive log score has a sound generic utility basis and can yield stable and accurate model specification decisions.
- DIC can be thought of as a fast approximation to the leave-one-out predictive log score ( \(L S_{C V}\) ), but DIC can behave unstably as a function of parameterization.
- The full-sample \(\log\) score \(\left(L S_{F S}\right)\) is \(n\) times faster than naive implementations of \(L S_{C V}\), has better small-sample model discrimination power than either \(L S_{C V}\) or DIC, and has better asymptotic behavior than \(L S_{C V}\).
- Generic Bayes factors are highly unstable when context suggests diffuse prior information; many methods for fixing this have been proposed, most of which seem to require an appeal to ad-hockery which is absent from the \(L S_{F S}\) approach.
- The basic Gelman et al. (1996) method of posterior predictive model-checking is badly calibrated: when it gives you a tail area of, e.g., 0.4, the calibrated equivalent may well be \(\mathbf{0 . 0 4}\) or even \(\mathbf{0 . 0 0 4}\).
- We have modified an approach suggested by Robins et al. (2000) to help answer the question "Could the data have arisen from model \(M\) ?" in a well-calibrated way.

\section*{References}

Bernardo JM, Smith AFM (1994). Bayesian Theory. New York: Wiley.
Dey D, Mueller P, Sinha D (1998). Practical Nonparametric and Semiparametric Bayesian Statistics. New York: Springer Verlag (Lecture Notes in Statistics, Volume 133).
de Finetti B (1930). Funzione caratteristica de un fenomeno aleatorio. Mem. Acad. Naz. Lincei, 4, 86-133.
de Finetti B (1937). La prévision: ses lois logiques, ses sources subjectives. Ann. Inst. H. Poincaré, 7, 1-68.
de Finetti B (1938). Sur la condition d'equivalence partielle. Actualités Scientifiques et Industrielles, 739.
de Finetti B (1990). Theory of Probability. New York: Wiley Classics Library.

Draper D (1995). Assessment and propagation of model uncertainty (with discussion). Journal of the Royal Statistical Society Series B, 57, 45-97.

Draper D (1996). Utility, sensitivity analysis, and cross-validation in Bayesian model-checking. Statistica Sinica, 6, 760-767 (discussion of "Posterior predictive assessment of model fitness via realized discrepancies," by A Gelman, X-L Meng, and H Stern).

Draper D, Fouskakis D (2000). A case study of stochastic optimization in health policy: problem formulation and preliminary results. Journal of Global Optimization, 18, 399-416.

Draper D, Fouskakis D (2004). Stochastic optimization methods for costeffective quality assessment in health. Submitted.

Draper D, Krnjajić M (2005). Three-way cross-validation for well-calibrated model exploration. In preparation.

Draper D, Hodges J, Mallows C, Pregibon D (1993). Exchangeability and data analysis (with discussion). Journal of the Royal Statistical Society Series A, 156, 9-37.

Fouskakis D, Draper D (2002). Stochastic optimization: a review. International Statistical Review, 70, 315-349.

\section*{References (continued)}

Geisser S, Eddy WF (1979). A predictive approach to model selection. Journal of the American Statistical Association, 74, 153-160.

Gelfand AE, Dey DK, Chang H (1992). Model determination using predictive distributions, with implementation via sampling-based methods (with discussion). In Bayesian Statistics 4 (Bernardo JM, Berger JO, Dawid AP, Smith AFM, editors), Oxford: Oxford University Press, 147-167.

Gelman A, Meng X-L, Stern H (1996). Posterior predictive assessment of model fitness via realized discrepancies (with discussion). Statistica Sinica, 6, 733-760.

Good IJ (1950). Probability and the Weighing of Evidence. London: Griffin.
Hendriksen C, Lund E, Stromgard E (1984). Consequences of assessment and intervention among elderly people: a three year randomised controlled trial. British Medical Journal, 289, 1522-1524.

Jeffreys H (1939). Theory of Probability. Oxford: Oxford University Press.
Kass RE, Raftery AE (1995). Bayes factors. Journal of the American Statistical Association, 90, 773-795.

Key JT, Pericchi LR, Smith AFM (1998). Bayesian model choice: what and why? (with discussion). In Bayesian Statistics 6, Bernardo JM, Berger JO, Dawid AP, Smith AFM (editors). Oxford University Press, 343-370.

O'Hagan A, Forster J (2004). Bayesian Inference, second edition. London: Arnold.

Pericchi L (2004). Model selection and hypothesis testing based on objective probabilities and Bayes factors. Manuscript.

Robins JM, van der Vaart A, Ventura V (2000). Asymptotic distribution of \(P\) values in composite null models. Journal of the American Statistical Association, 95, 1143-1156.

Spiegelhalter DJ, Best NG, Carlin BR, van der Linde A (2002). Bayesian measures of model complexity and fit (with discussion). Journal of the Royal Statistical Society Series B, 64, 583-616.

Walker S, Damien P, Lenk P (2004). On priors with a Kullback-Leibler property. Journal of the American Statistical Association, 99, 404-408.```

