
Bayesian Modeling,
Inference, Prediction
and Decision-Making

5: Bayesian Model Specification

(Section 2)

David Draper

Department of Applied Mathematics and Statistics

University of California, Santa Cruz

draper@ams.ucsc.edu

www.ams.ucsc.edu/∼draper

eBay/Google

10 Fridays, 11 Jan–22 Mar 2013 (except 25 Jan)

Short course web page:

www.ams.ucsc.edu/∼draper/eBay-Google-2013.html

(This section of the notes is based in part on unpublished joint work with
a recent Ph.D. student of mine, Milovan Krnjajić.)

c© 2013 David Draper (all rights reserved)

1

What is a Bayesian Model?

Definition: A Bayesian model is a mathematical
framework (embodying assumptions and judgments) for
quantifying uncertainty about unknown quantities by

relating them to known quantities.

Desirable for the assumptions and judgments in the model
to arise as directly as possible from contextual information

in the problem under study.

The most satisfying approach to achieving this goal
appears to be that of de Finetti (1990): a Bayesian model

is a joint predictive distribution

p(y) = p(y1, . . . , yn) (1)

for as-yet-unobserved observables y = (y1, . . . , yn).

Example 1: Data = health outcomes for all patients at

one hospital with heart attack admission diagnosis.

Simplest possible: yi = 1 if patient i dies within 30 days of
admission, 0 otherwise.

de Finetti (1930): in absence of any other information,
my predictive uncertainty about yi is exchangeable.

Representation theorem for binary data: if I’m willing to
regard (y1, . . . , yn) as part of an infinitely exchangeable

sequence (meaning that I judge all finite subsets
exchangeable; this is like thinking of the yi as having been
randomly sampled from the population (y1, y2, . . .)), then
to be coherent my joint predictive distribution p(y1, . . . , yn)

must have the simple hierarchical form

θ ∼ p(θ) (2)

(yi|θ) IID∼ Bernoulli(θ),

where θ = P(yi = 1) = limiting value of mean of yi in
infinite sequence.

2

Model = Prior (Sometimes)

Mathematically p(θ) is mixing distribution in

p(y1, . . . , yn) =

∫ 1

0
θs(1− θ)n−s p(θ) dθ, (3)

where s =
∑n

i=1 yi; statistically, p(θ) provides

opportunity to quantify prior information about θ

and combine with information in y.

Thus, in simplest situation, Bayesian model

specification = choice of scientifically

appropriate prior distribution p(θ).

Example 2 (elaborating Example 1): Now I want to

predict real-valued sickness-at-admission score instead of
mortality (still no covariates).

Uncertainty about yi still exchangeable; de

Finetti’s (1937) representation theorem for

real-valued data: if (y1, . . . , yn) part of infinitely

exchangeable sequence, all coherent joint

predictive distributions p(y1, . . . , yn) must have

hierarchical form

F ∼ p(F) (4)

(yi|F)
IID∼ F,

where F = limiting empirical cumulative

distribution function (CDF) of

infinite sequence (y1, y2, . . .).

3

Bayesian Nonparametrics

Thus here Bayesian model specification =

choosing scientifically appropriate mixing

(prior) distribution p(F) for F .

However, F is infinite-dimensional parameter;

putting probability distribution on

D = {all possible CDFs} is harder.

Specifying distributions on function spaces is task

of Bayesian nonparametric (BNP) modeling (e.g.,

Dey et al. 1998).

Example 3 (elaborating Example 2): In practice, in

addition to outcomes yi, covariates xij

will typically be available.

For instance (Hendriksen et al. 1984), 572 elderly people
randomized, 287 to control (C) group (standard care) and
285 to treatment (T) group (standard care plus in-home
geriatric assessment (IHGA): preventive medicine in
which each person’s medical/social needs assessed, acted

upon individually).

One important outcome was number of hospitalizations
(in two years).

yTi , yCj = numbers of hospitalizations for treatment person
i, control person j, respectively.

Suppose treatment/control (T/C) status is
only available covariate.

4

Conditional Exchangeability

Unconditional judgment of exchangeability across

all 572 outcomes no longer automatically

scientifically appropriate.

Instead design of experiment compels (at least

initially) judgment of conditional exchangeability

given T/C status (e.g., de Finetti 1938, Draper

et al. 1993), as in

(FT , FC) ∼ p(FT , FC)

(yTi |FT , FC)
IID∼ FT (yCj |FT , FC)

IID∼ FC

(5)

This framework, in which (a) covariates specify

conditional exchangeability judgments, (b) de

Finetti’s representation theorem reduces model

specification task to placing appropriate prior

distributions on CDFs, covers much of field of

statistical inference/prediction.

Note that even in this rather general

nonparametric framework it will be necessary to

have a good tool for discriminating between

the quality of two models (here: unconditional

exchangeability (FT = FC; T has same effect as

C) versus conditional exchangeability (FT 6= FC;

T and C effects differ)).

5

Data-Analytic Model Specification

Basic problem of Bayesian model choice: Given

future observables y = (y1, . . . , yn), I’m uncertain

about y (first-order), but I’m also uncertain

about how to specify my uncertainty about y

(second-order).

Standard (data-analytic) approach to model

specification involves initial choice, for structure

of model, of standard parametric family,

followed by modification of initial choice—once

data begin to arrive—if data suggest deficiencies

in original specification.

This approach (e.g., Draper 1995) is incoherent (unless I
pay an appropriate price for shopping around for the

model): it uses data both to specify prior distribution on
structure space and to update using data-determined
prior (result will typically be uncalibrated (too narrow)

predictive distributions for future data).

Dilemma is example of Cromwell’s Rule (if

p(θ) = 0 then p(θ|y) = 0 for all y): initial model

choice placed 0 prior probability on large regions

of model space; formally all such regions must

also have 0 posterior probability even if data

indicate different prior on model space would

have been better.

6

Two Possible Solutions

• If use prior on F that places non-zero probability on all
Kullback-Leibler neighborhoods of all densities (Walker

et al. 2003; e.g., Pólya trees, Dirichlet process mixture
priors, when chosen well), then BNP directly avoids

Cromwell’s Rule dilemma, at least for large n: as n → ∞
posterior on F will shrug off any incorrect details of prior
specification, will fully adapt to actual data-generating F

(NB this assumes correct exchangeability judgments).

• Three-way cross-validation (3CV; Draper and Krnjajić
2005): taking usual cross-validation idea one step further,

(1) Partition data at random into three (non-overlapping
and exhaustive) subsets Si.

(2) Fit tentative {likelihood + prior} to S1. Expand initial
model in all feasible ways suggested by data exploration

using S1. Iterate until you’re happy.

(3) Use final model (fit to S1) from (2) to create predictive
distributions for all data points in S2. Compare actual

outcomes with these distributions, checking for predictive
calibration. Go back to (2), change likelihood as necessary,

retune prior as necessary, to get good calibration.
Iterate until you’re happy.

(4) Announce final model (fit to S1 ∪ S2) from (3), and
report predictive calibration of this model on data points in
S3 as indication of how well it would perform with new data.

With large n probably only need to do this once; with small
and moderate n probably best to repeat (1–4) several
times and combine results in some appropriate way

(e.g., model averaging).

7

Model Selection
as a Decision Problem

Given method like 3CV which permits hunting around in
model space without forfeiting calibration, two kinds of
model specification questions (in both parametric and

nonparametric Bayesian modeling) arise:

(1) Is M1 better than M2? (this tells me when it’s OK to
discard a model in my search)

(2) Is M1 good enough? (this tells me when it’s OK to
stop searching)

It would seem self-evident that to specify a model you
have to say to what purpose the model will be put, for

how else can you answer these two questions?

Specifying this purpose demands decision-theoretic basis
for model choice (e.g., Draper 1996; Key et al. 1998).

To take two examples,

(Case 1) If you’re going to choose which of several ways

to behave in future, then model has to be good enough to
reliably aid in choosing best behavior (see, e.g., Draper

and Fouskakis example below); or

(Case 2) If you wish to make scientific summary of what’s

known, then—remembering that hallmark of good science is
good prediction—the model has to be good enough to
make sufficiently accurate predictions of observable

outcomes (in which dimensions along which accuracy is to
be monitored are driven by what’s scientifically relevant;

see, e.g., log score results below).

8

Utility-Based Variable Selection

Example 4 (Case 1): Draper and Fouskakis (2000, 2004)

(also see Fouskakis and Draper 2002) give one example of
decision-theoretic model choice in action, demonstrating

that variable selection in regression models should often
be governed by principle that final model should only contain
variables that predict well enough given how much they
cost to collect (see the figure below, which compares

214 = 16,384 models).

-1
6

-1
4

-1
2

-1
0

-8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

E
st

im
at

ed
 E

xp
ec

te
d

U
til

ity

Number of Variables

Estimated expected utility as function of number of predictor
variables, in problem involving construction of cost-effective
scale to measure sickness at hospital admission of elderly
pneumonia patients. Best models only have 4–6 sickness

indicators out of 14 possible predictors.

9

Choosing Utility Function

Any reasonable utility function in Example 4 will have two
components, one quantifying data collection costs

associated with construction of given sickness scale, other
rewarding and penalizing scale’s
predictive successes, failures.

(Case 2) Sometimes the main goal instead is summary of

scientific knowledge, which suggests (as noted above) a
utility function that rewards predictive accuracy.

How can such a utility function be specified in a
reasonably general way to answer model specification

question (1) above? (Is M1 better than M2?)

Need scoring rule that measures discrepancy between
observation y∗ and predictive distribution p(·|y,Mi) for y∗

under model Mi given data y.

As noted (e.g.) by Good (1950) and O’Hagan and Forster
(2004), the optimal (impartial, symmetric, proper)

scoring rules are linear functions of log p(y∗|y) .

On calibration grounds it would seem to be a mistake to
use data twice in measuring this sort of thing (once to
make predictions, again with same data to see how good

they are; but ...).

Out-of-sample predictive validation (e.g., Geisser and
Eddy 1979, Gelfand et al. 1992) solves this problem: e.g.,
successively remove each observation yj one at a time,

construct predictive distribution for yj based on y−j (data
vector with yj removed), see where yj falls in this

distribution.

10

Log Score as Utility

This motivates cross-validated version of log scoring rule
(e.g., Gelfand and Dey 1994; Bernardo and Smith 1994):
with n data values yj, when choosing among k models

Mi, i ∈ I, find that model Mi which maximizes

LSCV (Mi|y) =
1

n

n
∑

j=1

log p(yj|Mi, y−j). (6)

It has been argued that this can be given direct
decision-theoretic justification: with utility function for

model i

U(Mi|y) = log p(y∗|Mi, y), (7)

where y∗ is future data value, expectation in MEU is over
uncertainty about y∗; Gelfand et al. (1992) and Bernardo

and Smith (1994) claim that this expectation can be
accurately estimated (assuming exchangeability) by (6)

(I’ll revisit this claim below).

With approximately Gaussian predictive distributions it can
also be revealing to compute predictive z–scores, for

observation j under model i:

zij =
yj − E(yj|Mi, y−j)
√

V (yj|Mi, y−j)
. (8)

For good predictive calibration of Mi, {zij, j = 1, . . . , n}
should have mean 0, standard deviation (SD) 1; often find

instead that SD is larger than 1 (predictive uncertainty
bands not wide enough).

11

Approximating Log Score Utility

With large data sets, in situations in which predictive
distribution has to be estimated by MCMC, direct

calculation of LSCV is computationally expensive; need
fast approximation to it.

To see how this might be obtained, examine log score in
simplest possible model M0: for i = 1, . . . , n,

µ ∼ N
(

µ0, σ
2
µ

)

(Yi|µ) IID∼ N(µ, σ2) (9)

with σ known, take highly diffuse prior on µ so that
posterior for µ is approximately

(µ|y) = (µ|ȳ) ·∼ N

(

ȳ,
σ2

n

)

, (10)

where y = (y1, . . . , yn).

Then predictive distribution for next observation
is approximately

(yn+1|y) = (yn+1|ȳ) ·∼ N

[

ȳ, σ2

(

1+
1

n

)]

, (11)

and LSCV , ignoring linear scaling constants, is

LSCV (M0|y) =

n
∑

j=1

ln p(yj|y−j) , (12)

where as before y−j is y with observation j set aside.

But by same reasoning

p(yj|y−j)
.
= N

(

ȳ−j, σ
2
n

)

, (13)

where ȳ−j is sample mean with observation j omitted,

σ2
n = σ2

(

1+ 1
n−1

)

, so that

12

LSCV Approximation (continued)

ln p(yj|y−j)
.
= c− 1

2σ2
n

(yj − ȳ−j)
2 and

LSCV (M0|y)
.
= c1 − c2

n
∑

j=1

(yj − ȳ−j)
2 (14)

for some constants c1 and c2 with c2 > 0.

Now it’s interesting fact (related to behavior of jackknife),
which you can prove by induction, that

n
∑

j=1

(yj − ȳ−j)
2 = c

n
∑

j=1

(yj − ȳ)2 (15)

for some c > 0, so finally for c2 > 0 the result is that

LSCV (M0|y)
.
= c1 − c2

n
∑

j=1

(yj − ȳ)2, (16)

i.e., in this model log score is almost perfectly negatively
correlated with sample variance.

But in this model the deviance (minus twice the log
likelihood) is

D(µ) = −2 ln l(µ|y) = c0 − 2 ln p(y|µ)

= c0 + c3

n
∑

j=1

(yj − µ)2 (17)

for some c3 > 0, encouraging suspicion that log score
should be strongly related to deviance.

13

Deviance Information Criterion (DIC)

Given parametric model p(y|θ), Spiegelhalter et al. (2002)
define deviance information criterion (DIC) (by analogy

with other information criteria) to be estimate D(θ̄) of
model (lack of) fit (as measured by deviance) plus penalty

for complexity equal to twice effective number of
parameters pD of model:

DIC(M |y) = D(θ̄) + 2 p̂D, (18)

where θ̄ is posterior mean of θ; they suggest that models
with low DIC value are to be preferred over those with

higher value.

When pD is difficult to read directly from model (e.g., in
complex hierarchical models, especially those with

random effects), they motivate the following estimate,
which is easy to compute from standard MCMC output:

p̂D = D(θ)−D(θ̄), (19)

i.e., difference between posterior mean of deviance and
deviance evaluated at posterior mean of parameters
(WinBUGS release 1.4 will estimate these quantities).

In model M0, pD is of course 1, and θ̄ = ȳ, so

DIC(M0|y) = c0 + c3

n
∑

j=1

(yj − ȳ)2 + 2 (20)

and conclusion is that

−DIC(M0|y)
.
= c1 + c2LSCV (M0|y) (21)

for c2 > 0, i.e., (if this generalizes) choosing model by
maximizing LSCV and by minimizing DIC are

approximately equivalent behaviors.

(This connection was hinted at in discussion of
Spiegelhalter et al. 2002 but never really made explicit.)

14

LSCV ↔ DIC?

Milovan and I are now (work in progress) exploring the
scope of (21); in several simple models M so far we find

for c2 > 0 that

−DIC(M |y) .
= c1 + c2LSCV (M |y), (22)

i.e., across repeated data sets generated from given model,
even with small n DIC and LSCV can be fairly strongly

negatively correlated.

Above argument generalizes to any situation in which
predictive distribution is approximately Gaussian (e.g.,
Poisson(λ) likelihood with large λ, Beta(α, β) likelihood

with large (α+ β), etc.).

Example 3 continued. With one-sample count data

(like number of hospitalizations in the T and C portions of
IHGA data), people often choose between fixed- and
random-effects Poisson model formulations: for

i = 1, . . . , n, and, e.g., with diffuse priors,

M1:

{

λ ∼ p(λ)

(yi|λ) IID∼ Poisson(λ)

}

versus (23)

M2:

(β0, σ
2) ∼ p(β0, σ

2)

(yi|λi)
indep∼ Poisson(λi)

log(λi) = β0 + ei

ei
IID∼ N(0, σ2)

(24)

M1 is special case of M2 with
(

σ2 = 0, λ = eβ0

)

; likelihood in
M2 is Lognormal mixture of Poissons (often similar to
fitting negative binomial distribution, which is Gamma

mixture of Poissons).

15

LSCV ↔ DIC? (continued)

We conducted partial-factorial simulation study with
factors {n = 18,32,42,56,100}, {β0 = 0.0,1.0,2.0},

{σ2 = 0.0,0.5,1.0,1.5,2.0} in which
(data-generating mechanism, assumed model) =

{(M1,M1), (M1,M2), (M2,M1), (M2,M2)}; in each cell of this
grid we used 100 simulation replications.

−1.8 −1.6 −1.4 −1.2 −1.0 −0.8

30
40

50
60

FEPR nn=18 sig2=2 beta.0=0

log.score

D
IC

corr = −0.999

−2.2 −2.0 −1.8 −1.6

55
65

75

FEPR nn=18 sig2=2 beta.0=1

log.score

D
IC

corr = −0.999

−3.0 −2.8 −2.6 −2.4 −2.2

80
90

10
0

FEPR nn=18 sig2=2 beta.0=2

log.score

D
IC

corr = −1

−3.0 −2.5 −2.0 −1.5 −1.0

40
60

80

FEPR nn=18 sig2=1.5 beta.0=0

log.score

D
IC

corr = −0.999

−5 −4 −3 −2

60
12

0
18

0

FEPR nn=18 sig2=1.5 beta.0=1

log.score

D
IC

corr = −0.999

−9 −8 −7 −6 −5 −4 −310
0

20
0

30
0

FEPR nn=18 sig2=1.5 beta.0=2

log.score

D
IC

corr = −1

−5 −4 −3 −2

40
80

12
0

FEPR nn=18 sig2=1 beta.0=0

log.score

D
IC

corr = −0.999

−10 −8 −6 −4 −2

10
0

20
0

30
0

FEPR nn=18 sig2=1 beta.0=1

log.score

D
IC

corr = −0.999

−30 −25 −20 −15 −10 −5

20
0

60
0

10
00

FEPR nn=18 sig2=1 beta.0=2

log.score

D
IC

corr = −0.999

−10 −8 −6 −4 −2

50
15

0
25

0

FEPR nn=18 sig2=0.5 beta.0=0

log.score

D
IC

corr = −0.999

−30 −25 −20 −15 −10 −5

20
0

60
0

10
00 FEPR nn=18 sig2=0.5 beta.0=1

log.score

D
IC

corr = −0.999

−50 −40 −30 −20 −10

50
0

15
00

FEPR nn=18 sig2=0.5 beta.0=2

log.score

D
IC

corr = −1

−15 −10 −5

10
0

30
0

50
0

FEPR nn=18 sig2=0 beta.0=0

log.score

D
IC

corr = −0.998

−50 −40 −30 −20 −10

20
0

80
0

14
00

FEPR nn=18 sig2=0 beta.0=1

log.score

D
IC

corr = −0.999

−80 −60 −40 −20

50
0

15
00

FEPR nn=18 sig2=0 beta.0=2

log.score

D
IC

corr = −0.999

When assumed model is M1 (fixed-effects Poisson), LSCV

and DIC are almost perfectly negatively correlated (we
have mathematical explanation of this).

16

LSCV ↔ DIC? (continued)

−1.5 −1.4 −1.3 −1.2 −1.1

12
0

15
0

REPR nn=56 sig2=2 beta.0=0

log.score

D
IC

corr = −0.995

−2.0 −1.9 −1.8 −1.7

19
0

21
0

23
0

REPR nn=56 sig2=2 beta.0=1

log.score

D
IC

corr = −0.988

−2.6 −2.5 −2.4 −2.325
0

27
0

29
0

REPR nn=56 sig2=2 beta.0=2

log.score

D
IC

corr = −0.984

−1.8 −1.6 −1.4 −1.2

14
0

18
0

22
0

REPR nn=56 sig2=1.5 beta.0=0

log.score

D
IC

corr = −0.962

−3.0 −2.8 −2.6 −2.4 −2.225
0

35
0

REPR nn=56 sig2=1.5 beta.0=1

log.score

D
IC

corr = −0.81

−4.4 −4.0 −3.6 −3.240
0

60
0

80
0

REPR nn=56 sig2=1.5 beta.0=2

log.score

D
IC

corr = −0.6

−2.4 −2.2 −2.0 −1.8 −1.6

20
0

30
0

40
0

REPR nn=56 sig2=1 beta.0=0

log.score

D
IC

corr = −0.814

−4.0 −3.5 −3.0 −2.5

30
0

50
0

70
0 REPR nn=56 sig2=1 beta.0=1

log.score

D
IC

corr = −0.884

−6.0 −5.5 −5.0 −4.5 −4.040
0

10
00

18
00

REPR nn=56 sig2=1 beta.0=2

log.score
D

IC

corr = −0.845

−3.0 −2.5 −2.0 −1.5

20
0

50
0

80
0

REPR nn=56 sig2=0.5 beta.0=0

log.score

D
IC

corr = −0.679

−6.0 −5.0 −4.0 −3.0

40
0

10
00

REPR nn=56 sig2=0.5 beta.0=1

log.score

D
IC

corr = −0.855

−6.5 −6.0 −5.5 −5.0 −4.5

10
00

40
00

REPR nn=56 sig2=0.5 beta.0=2

log.score

D
IC

corr = −0.756

−3.5 −3.0 −2.5 −2.020
0

60
0

10
00

REPR nn=56 sig2=0 beta.0=0

log.score

D
IC

corr = −0.845

−6 −5 −4 −3

50
0

15
00

30
00 REPR nn=56 sig2=0 beta.0=1

log.score

D
IC

corr = −0.835

−7.0 −6.5 −6.0 −5.5 −5.010
00

30
00

50
00

REPR nn=56 sig2=0 beta.0=2

log.score

D
IC

corr = −0.799

When assumed model is M2 (random-effects Poisson),
LSCV and DIC are less strongly negatively correlated

(DIC can misbehave with mixture models; see below), but
correlation increases with n.

17

Example 3

As example of correspondence between LSCV and DIC in
real problem, IHGA data were as follows:

Distribution of number of hospitalizations in IHGA study
over two-year period:

Number of Hospitalizations
Group 0 1 2 3 4 5 6 7 n Mean SD

Control 138 77 46 12 8 4 0 2 287 0.944 1.24
Treatment 147 83 37 13 3 1 1 0 285 0.768 1.01

Evidently IHGA lowered mean hospitalization rate (for
these elderly Danish people, at least) by (0.944− 0.768) =
0.176, which is about 100

(

0.768−0.944
0.944

)

= 19% reduction
from control level, a difference that’s large in clinical terms.

Four possible models for these data (not all of them good):

• Two-independent-sample Gaussian (diffuse priors);

• One-sample Poisson (diffuse prior), pretending treatment
and control λs are equal;

• Two-independent-sample Poisson (diffuse priors), which
is equivalent to fixed-effects Poisson regression

(FEPR); and

• Random-effects Poisson regression (REPR), because C
and T variance-to-mean ratios (VTMRs) are 1.63 and

1.32, respectively:

(yi |λi)
indep∼ Poisson(λi)

log(λi) = β0 + β1xi + ei (25)

ei
IID∼ N

(

0, σ2
e

)

(

β0, β1, σ
2
e

)

∼ diffuse ,

where xi = 1 is a binary indicator for T/C status.

18

DIC Example

To use the DIC feature in WinBUGS to produce the

screen shot above, I fit the REPR model as usual,

did a burn-in of 1,000, selected DIC as a

pull-down option from the Inference menu,

clicked the set button in the DIC Tool window

that popped up, changed the 1,000 to 10,000 in

the updates window of the Update Tool, clicked

update, and then clicked DIC in the DIC Tool when

the monitoring run of 10,000 was finished—the

DIC results window appears, with the Dbar (D(θ)),

Dhat (D(θ̄)), pD (p̂D), and DIC (DIC(y)) values.

19

DIC Example (continued)

DIC and LS results on these four models:

Model D(θ) D(θ̄) p̂D DIC(y) LS(y)

1 (Gaussian) 1749.6 1745.6 3.99 1753.5 −1.552
2 (Poisson,
common λ)

1499.9 1498.8 1.02 1500.9 −1.316

3 (FEPR,
different λs)

1495.4 1493.4 1.98 1497.4 −1.314

4 (REPR)
1275.7
1274.7
1274.4

1132.0
1131.3
1130.2

143.2
143.5
144.2

1418.3
1418.2
1418.6

−1.180

(3 REPR rows were based on different monitoring runs, all of length
10,000, to give idea of Monte Carlo noise level.)

As σe → 0 in REPR model, you get FEPR model, with
pD = 2 parameters; as σe → ∞, in effect all subjects in

study have their own λ and pD would be 572; in between at
σe

.
= 0.675 (posterior mean), WinBUGS estimates that there

are about 143 effective parameters in REPR model, but
its deviance D(θ̄) is so much lower that it wins DIC contest

hands down.

−1.5 −1.4 −1.3 −1.2

14
50

15
00

15
50

16
00

16
50

17
00

17
50

Log Score

D
IC

Correlation between LS and DIC
across these four models is –0.98.

20

But DIC Can Misbehave

y = (0,0,1,1,1,1,2,2,2,2,3,3,3,4,4,5,6) is a data set
generated from the negative binomial distribution with

parameters (p, r) = (0.82,10.8) (in WinBUGS notation); y has
mean 2.35 and VTMR 1.22.

Using standard diffuse priors for p and r as in the BUGS
examples manuals, the effective number of parameters pD
for the negative binomial model (which fits the data quite

well) is estimated at –66.2:

The basic problem here is that the MCMC estimate of pD
can be quite poor if the marginal posteriors for one or more
parameters (using the parameterization that defines the

deviance) are far from normal; reparameterization helps
but can still lead to poor estimates of pD.

21

Fast (Direct) Approximation to LSCV

We’ve seen above that DIC can sometimes provide an
accurate and fast (indirect) approximation to LSCV ; what

about a fast direct approximation?

An obvious thing to try is the following full-sample version
of LS: in the one-sample situation, for instance, compute a
single predictive distribution p(·|y,Mi) for a future data

value with each model Mi under consideration, based on the
entire data set y (without omitting any observations),

and define

LSFS(Mi|y) =
1

n

n
∑

j=1

log p(yj|y,Mi). (26)

The naive approach to calculating LSCV , when MCMC is
needed to compute the predictive distributions, requires n

MCMC runs, one for each omitted observation; by
contrast LSFS needs only a single MCMC run, making its

computational speed (a) n times faster than naive
implementations of LSCV and (b) equivalent to that of DIC.

• The log score approach works equally well with
parametric and nonparametric Bayesian models; DIC is

only defined for parametric models.

• When parametric model Mi with parameter vector θi is fit
via MCMC, the predictive ordinate p(y∗|y,Mi) in LSFS is
easy to approximate: with m identically distributed (not
necessarily independent) MCMC monitoring draws (θi)

∗
k

from p(θi|y,Mi),

p(y∗|y,Mi) =

∫

p(y∗|θi,Mi) p(θi|y,Mi)dθi

= E(θi|y,Mi) [p(y
∗|θi,Mi)] (27)

.
=

1

m

m
∑

k=1

p(y∗|(θi)∗k,Mi).

22

Example of LSFS Calculations

Example. I’d like to use LSFS and DIC to compare the
Gaussian and t models we discussed earlier for the

NB10 data.

The files NB10-model-2.txt, NB10-data.txt, and
NB10-initial-values-2.txt on the course web page contain

the WinBUGS implementation of

M2: µ ∼ N(0,precision = 1.0E-6), σ ∼ U(0,9.0),

ν ∼ U(2.0,12.0), (yi|µ, σ, ν) IID∼ tν(µ, σ2)

I collect 100,000 monitoring iterations for M2,
remembering to hit the set button on the DIC tool before
the monitoring begins; I use the coda button to store the
µ, σ, and ν columns of the MCMC data set in files called

nb10-model-2-mu.txt, nb10-model-2-sigma.txt, and
nb10-model-2-nu.txt, respectively; and I hit the DIC button on
the DIC tool to record that the DIC value for this model is

618.2 (note that DIC has misbehaved again: pD is
estimated to be -1.1).

23

LSFS Calculations (continued)

I go through a similar process with the files
NB10-model-1.txt, NB10-data.txt, and

NB10-initial-values-1.txt to fit

M1: µ ∼ N(0,precision = 1.0E-6), σ ∼ U(0,9.0),

(yi|µ, σ) IID∼ N(µ, σ2)

and store the µ and σ columns of the MCMC data set in files
called nb10-model-1-mu.txt and nb10-model-1-sigma.txt,

respectively; this time the DIC value is 660.1 and DIC is
better-behaved (pD is estimated to be 1.9, which is

about right).

On the basis of DIC I would conclude that M2 (618.2 with 3
parameters) is (substantially) better than M1 (660.1 with 2).

Here is some R code (also available on the web page) to
compute the log score values for both models.

> y <- dget("nb10-data.txt")

> y <- sort(y$y)

> mu.G <- matrix(scan("nb10-model-1-mu.txt"),
100000, 2, byrow = T)[, 2]

> sigma.G <- matrix(scan("nb10-model-1-sigma.txt"),
100000, 2, byrow = T)[, 2]

> mu.t <- matrix(scan("nb10-model-2-mu.txt"),
100000, 2, byrow = T)[, 2]

> sigma.t <- matrix(scan("nb10-model-2-sigma.txt"),
100000, 2, byrow = T)[, 2]

> nu.t <- matrix(scan("nb10-model-2-nu.txt"),
100000, 2, byrow = T)[, 2]

24

LSFS Calculations (continued)

> dt.s <- function(y, mu, sigma, nu) {

> exp(lgamma((nu + 1) / 2) - ((nu + 1) / 2) *
> log(1 + (y - mu)^2 / (nu * sigma^2)) -
> lgamma(nu / 2) - log(nu * pi) / 2 - log(sigma))

> }

> LS.contributions <- matrix(0, 100, 2)

> for (j in 1:100) {

> LS.contributions[j, 1] <- log(mean(dt.s(y[j],
> mu.t, sigma.t, nu.t)))

> LS.contributions[j, 2] <- log(mean(dnorm(y[j],
> mu.G, sigma.G)))

> }

> cbind(y, LS.contributions,
> 0 + LS.contributions[, 1] > LS.contributions[, 2])

t
better
than

t Gaussian G

[1,] 375 -8.586208 -12.204954 1
[2,] 392 -5.349809 -4.639139 0
[3,] 393 -5.077313 -4.362693 0
[4,] 397 -3.903555 -3.475233 0
[5,] 398 -3.602015 -3.309458 0
[6,] 398 -3.602015 -3.309458 0
[7,] 399 -3.307381 -3.166624 0
[8,] 399 -3.307381 -3.166624 0

25

LSFS Calculations (continued)

[9,] 399 -3.307381 -3.166624 0
[10,] 399 -3.307381 -3.166624 0
[11,] 399 -3.307381 -3.166624 0
[12,] 399 -3.307381 -3.166624 0
[13,] 399 -3.307381 -3.166624 0
[14,] 400 -3.028685 -3.046933 1
[15,] 400 -3.028685 -3.046933 1
[16,] 400 -3.028685 -3.046933 1
[17,] 400 -3.028685 -3.046933 1
[18,] 401 -2.778176 -2.950552 1
[19,] 401 -2.778176 -2.950552 1
[20,] 401 -2.778176 -2.950552 1
[21,] 401 -2.778176 -2.950552 1
[22,] 401 -2.778176 -2.950552 1
[23,] 401 -2.778176 -2.950552 1
[24,] 401 -2.778176 -2.950552 1
[25,] 401 -2.778176 -2.950552 1
[26,] 401 -2.778176 -2.950552 1
[27,] 401 -2.778176 -2.950552 1
[28,] 401 -2.778176 -2.950552 1
[29,] 401 -2.778176 -2.950552 1
[30,] 402 -2.571441 -2.877618 1
[31,] 402 -2.571441 -2.877618 1
[32,] 402 -2.571441 -2.877618 1
[33,] 402 -2.571441 -2.877618 1
[34,] 402 -2.571441 -2.877618 1
[35,] 402 -2.571441 -2.877618 1
[36,] 402 -2.571441 -2.877618 1
[37,] 402 -2.571441 -2.877618 1
[38,] 403 -2.426129 -2.828236 1
[39,] 403 -2.426129 -2.828236 1
[40,] 403 -2.426129 -2.828236 1
[41,] 403 -2.426129 -2.828236 1
[42,] 403 -2.426129 -2.828236 1
[43,] 403 -2.426129 -2.828236 1
[44,] 404 -2.358212 -2.802475 1

26

LSFS Calculations (continued)

[45,] 404 -2.358212 -2.802475 1
[46,] 404 -2.358212 -2.802475 1
[47,] 404 -2.358212 -2.802475 1
[48,] 404 -2.358212 -2.802475 1
[49,] 404 -2.358212 -2.802475 1
[50,] 404 -2.358212 -2.802475 1
[51,] 404 -2.358212 -2.802475 1
[52,] 404 -2.358212 -2.802475 1
[53,] 405 -2.376305 -2.800373 1
[54,] 405 -2.376305 -2.800373 1
[55,] 405 -2.376305 -2.800373 1
[56,] 405 -2.376305 -2.800373 1
[57,] 405 -2.376305 -2.800373 1
[58,] 406 -2.477698 -2.821932 1
[59,] 406 -2.477698 -2.821932 1
[60,] 406 -2.477698 -2.821932 1
[61,] 406 -2.477698 -2.821932 1
[62,] 406 -2.477698 -2.821932 1
[63,] 406 -2.477698 -2.821932 1
[64,] 406 -2.477698 -2.821932 1
[65,] 406 -2.477698 -2.821932 1
[66,] 406 -2.477698 -2.821932 1
[67,] 406 -2.477698 -2.821932 1
[68,] 406 -2.477698 -2.821932 1
[69,] 406 -2.477698 -2.821932 1
[70,] 407 -2.649778 -2.867123 1
[71,] 407 -2.649778 -2.867123 1
[72,] 407 -2.649778 -2.867123 1
[73,] 407 -2.649778 -2.867123 1
[74,] 407 -2.649778 -2.867123 1
[75,] 407 -2.649778 -2.867123 1
[76,] 407 -2.649778 -2.867123 1
[77,] 407 -2.649778 -2.867123 1
[78,] 408 -2.875393 -2.935880 1
[79,] 408 -2.875393 -2.935880 1
[80,] 408 -2.875393 -2.935880 1

27

LSFS Calculations (continued)

[81,] 408 -2.875393 -2.935880 1
[82,] 408 -2.875393 -2.935880 1
[83,] 409 -3.137771 -3.028107 0
[84,] 409 -3.137771 -3.028107 0
[85,] 409 -3.137771 -3.028107 0
[86,] 409 -3.137771 -3.028107 0
[87,] 409 -3.137771 -3.028107 0
[88,] 410 -3.422943 -3.143672 0
[89,] 410 -3.422943 -3.143672 0
[90,] 410 -3.422943 -3.143672 0
[91,] 410 -3.422943 -3.143672 0
[92,] 411 -3.720225 -3.282413 0
[93,] 412 -4.021816 -3.444136 0
[94,] 412 -4.021816 -3.444136 0
[95,] 412 -4.021816 -3.444136 0
[96,] 413 -4.322196 -3.628616 0
[97,] 415 -4.905384 -4.064801 0
[98,] 418 -5.710652 -4.882504 0
[99,] 423 -6.845648 -6.656119 0
[100,] 437 -9.016222 -13.896384 1

> sum(LS.contributions[, 1] > LS.contributions[, 2]) /
> length(y)

[1] 0.71

Thus t model is predictively better than Gaussian for
71% of the data points.

LS.t <- mean(LS.contributions[, 1])

LS.G <- mean(LS.contributions[, 2])

c(LS.t, LS.G)

[1] -3.082331 -3.262142

28

LSFS Calculations (continued)

Although it’s not immediately obvious, the log score for the
t model (−3.08) is substantially higher than that for the
Gaussian model (−3.26), so LS and DIC have reached the

same conclusion here.

> plot(y, LS.contributions[, 1],
> ylim = c(min(LS.contributions),
> max(LS.contributions)),
> ylab = ’Log Score Contributions’)

> lines(y, LS.contributions[, 1], lty = 1)

> points(y, LS.contributions[, 2], pch = 2)

> lines(y, LS.contributions[, 2], lty = 2)

> legend(397.5, -10, c("t", "Gaussian"), pch = c(1, 2))

380 390 400 410 420 430

−
14

−
12

−
10

−
8

−
6

−
4

−
2

y

Lo
g

S
co

re
 C

on
tr

ib
ut

io
ns

t
Gaussian

The t model fits better both in the tails (where the most
influential observations are from the Gaussian point of

view) and in the center (where most of the data values are).

29

Asymptotic Properties of LSFS

Recall the claim that LSCV approximates

expectation of logarithmic utility:

E [U(Mi|y)] ≈ LSCV =
1

n

n
∑

j=1

log p(yj|Mi, y−j) (28)

Berger et al. (2005) recently proved that

difference between LHS and RHS of (28) does

not vanish for large n but is instead Op(
√
n).

(However unpleasant, this fact does not automatically
invalidate use of LSCV as estimated expected utility, since
when comparing two models we effectively look at the

difference between two LSCV values, and the discrepancy
should largely cancel out.)

We have proved for a simple model that LSFS is

free from this deficiency: the difference between

E[U(Mi|y)] and LSFS = 1
n

n
∑

j=1
log p(yj|y,Mi) is

Op(1) (we expect the general proof to go

through as well).

Q: Does this asymptotic superiority of LSFS over LSCV

translate into better small-sample performance?

30

LSCV , LSFS and DIC

Model Discrimination

We now have three behavioral rules: maximize

LSCV , maximize LSFS, minimize DIC.

With (e.g.) two models to choose between, how

accurately do these behavioral rules discriminate

between M1 and M2?

Example: Recall that in earlier simulation

study, for i = 1, . . . , n, and with diffuse priors,

we considered

M1:

{

λ ∼ p(λ)

(yi|λ)
IID∼ Poisson(λ)

}

versus

M2:

(β0, σ
2) ∼ p(β0, σ

2)

(yi|λi)
indep∼ Poisson(λi)

log(λi) = β0 + ei

ei
IID∼ N(0, σ2)

31

Model Discrimination (continued)

As extension of previous simulation study, we

generated data from M2 and computed LSCV ,

LSFS, and DIC for models M1 and M2 in

full-factorial grid {n = 32,42,56,100},
{β0 = 0.0,1.0}, σ2 = 0.1,0.25,0.5,1.0,1.5,2.0},

with 100 simulation replications in each cell, and

monitored percentages of correct model choice

(here M2 is always correct).

Examples of results for (e.g.) LSCV :

n = 32

% Correct Decision Mean Absolute Difference in LSCV

β0 β0

σ2 0 1 σ2 0 1
0.10 31 47 0.10 0.001 0.002
0.25 49 85 0.25 0.002 0.013
0.50 76 95 0.50 0.017 0.221
1.00 97 100 1.00 0.237 4.07
1.50 98 100 1.50 1.44 17.4
2.00 100 100 2.00 12.8 63.9

Even with n only 32, LSCV makes the right model

choice more than 90% of the time when

σ2 > 0.5 for β0 = 1 and when σ2 > 1.0 for β0 = 0.

32

Model Discrimination (continued)

0.5 1.0 1.5 2.0

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

n = 32

0.5 1.0 1.5 2.0

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

n = 32

0.5 1.0 1.5 2.0

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

n = 42

0.5 1.0 1.5 2.0

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

n = 42

0.5 1.0 1.5 2.0

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

n = 56

0.5 1.0 1.5 2.0

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

n = 56

0.5 1.0 1.5 2.0

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

n = 100

0.5 1.0 1.5 2.0
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9
1.

0

n = 100

The plots above compare Bayesian decision-theoretic
power curves for LSCV (solid lines), LSFS (long dotted

lines), and DIC (short dotted lines)
(column 1: β0 = 0; column 2: β0 = 1).

Remarkably, not only is LSFS much quicker
computationally than LSCV , it’s also more accurate at

identifying the correct model than LSCV or DIC.

To summarize, in computational efficiency

LSCV < DIC
.
= LSFS (29)

and in fixed- and random-effects Poisson modeling the
results in model discrimination power are

LSCV
.
= DIC < LSFS (30)

33

Why Not Bayes Factors?

Much has been written about use of Bayes factors for
model choice (e.g., Jeffreys 1939, Kass and Raftery 1995;
excellent recent book by O’Hagan and Forster 2004 devotes

almost 40 pages to this topic).

Why not use probability scale to choose between
M1 and M2?

[

p(M1|y)
p(M2|y)

]

=

[

p(M1)

p(M2)

]

·
[

p(y|M1)

p(y|M2)

]

(31)

(

posterior
odds

)

=

(

prior
odds

)

·
(

Bayes
factor

)

Kass and Raftery (1995) note that

log

[

p(y|M1)

p(y|M2)

]

= log p(y|M1)− log p(y|M2) (32)

= LS∗(M1|y)− LS∗(M2|y),
where

LS∗(Mi|y) ≡ log p(y|Mi)

= log [p(y1|Mi) p(y2|y1,Mi) · · · p(yn|y1, . . . , yn−1,Mi)]

= log p(y1|M) +

n
∑

j=2

log p(yj|y1, . . . , yj−1,Mi).

Thus log Bayes factor equals difference between models in
something that looks like a log score, i.e., aren’t LSCV

and LSFS equivalent to choosing Mi whenever the Bayes
factor in favor of Mi exceeds 1?

34

LS 6= BF

No ; crucially, LS∗ is defined via sequential

prediction of y2 from y1, y3 from (y1, y2), etc.,

whereas LSCV and LSFS are based on averaging

over all possible out-of-sample predictions.

This distinction really matters: as is well known,

with diffuse priors Bayes factors are hideously

sensitive to particular form in which diffuseness is

specified, but this defect is entirely absent from

LSCV and LSFS (and from other properly-defined

utility-based model choice criteria).

Example: Integer-valued data y = (y1, . . . , yn);

M1 = Geometric(θ1) likelihood with Beta(α1, β1) prior on θ1;

M2 = Poisson(θ2) likelihood with Gamma(α2, β2) prior
on θ2.

Bayes factor in favor of M1 over M2 is

Γ(α1 + β1)Γ(n+ α1)Γ(nȳ + β1)Γ(α2)(n+ β2)
nȳ+α2

(
∏n

i=1 yi!
)

Γ(α1)Γ(β1)Γ(n+ nȳ + α1 + β1)Γ(nȳ + α2)β
α2

2 .

Diffuse priors: take (α1, β1) = (1,1) and (α2, β2) = (ε, ε) for
some ε > 0.

Bayes factor reduces to

Γ(n+1)Γ(nȳ + 1)Γ(ε)(n+ ε)nȳ+ε
(
∏n

i=1 yi!
)

Γ(n+ nȳ + 2)Γ(nȳ + ε)εε
.

35

LS 6= BF (continued)

This goes to +∞ as ε ↓ 0, i.e., you can make the evidence in
favor of the Geometric model over the Poisson as large

as you want as a function of a quantity near 0 that
scientifically you have no basis to specify.

By contrast, e.g.,

LSCV (M1|y) = log
[(α1 + n− 1)Γ(β1 + s)

Γ(α1 + n+ β1 + s)

]

+
1

n

n
∑

i=1

log
[Γ(α1 + n− 1 + β1 + si)

Γ(β1 + si)

]

and

LSCV = (M2|y) =
1

n

n
∑

i=1

log

[

Γ(α2 + s)

Γ(yi +1)Γ(α2 + si)

·
(β2 + n

β2 + n+1

)α2+si
(1

β2 + n+ 1

)yi

]

(with similar expressions for LSFS); both of these quantities
are entirely stable as a function of (α1, β1) and (α2, β2)

near zero.

(Various attempts have been made to fix this defect of
Bayes factors, e.g., {partial, intrinsic, fractional} Bayes

factors, well calibrated priors, conventional priors, intrinsic
priors, expected posterior priors, ... (e.g., Pericchi 2004); all
of these methods appear to require an appeal to ad-hockery

which is not required by the log score approach.)

(Some bridges can be built between LS and BF, e.g.,
Berger et al. (2005) re-interpret LSCV as the “Gelfand-Dey
(1994) predictive Bayes factor” BFGD; connections like

these are the subject of ongoing investigation.)

36

What LSFS Is Not

(1) Likelihood part of (parametric) model

Mj: (yi|θj,Mj)
IID∼ p(yi|θj,Mj)(j = 1,2), with prior p(θj|Mj) for

model Mj.

Ordinary Bayes factor involves comparing quantities
of the form

p(y|Mj) =

∫

[

n
∏

i=1

p(yi|θj,Mj)

]

p(θj|Mj) dθj,

= E(θj |Mj)L(θj|y,Mj), (33)

i.e., Bayes factor involves comparing expectations of
likelihoods with respect to the priors in the models under

comparison (this is why ordinary Bayes factors behave so
badly with diffuse priors).

Aitkin (1991; posterior Bayes factors): compute
expectations instead with respect to the posteriors, i.e.,

PBF: favor model M1 if log L̄A
1 > log L̄A

2 , where

log L̄A
j = log

∫

[

n
∏

i=1

p(yi|θj,Mj)

]

p(θj|y,Mj) dθj. (34)

This solves the problem of sensitivity to a diffuse prior but
creates new problems of its own, e.g., it’s incoherent.

It may seem at first glance (e.g., O’Hagan and Forster
(2004) think so) that PBF is the same thing as LSFS:

favor model M1 if

nLSFS(M1|y) > nLSFS(M2|y). (35)

But not so:

nLSFS(Mj|y) = log

n
∏

i=1

[
∫

p(yi|θj,Mj) p(θj|y,Mj) dθj

]

, (36)

and this is not the same because the integral and product
operators do not commute.

37

What LSFS Is Not (continued)

Also, some people (e.g., Geweke (2005)) like to compare
models based on the posterior expectation of the log

likelihood (this is one of the ingredients in DIC), and this
is not the same as LSFS either: by Jensen’s inequality

nLSFS(Mj|y) =

n
∑

i=1

log p(yi|y,Mj)

=

n
∑

i=1

log

∫

p(yi|θj,Mj) p(θj|y,Mj) dθj

=

n
∑

i=1

logE(θj |y,Mj)L(θj|yi,Mj)

>

n
∑

i=1

E(θj |y,Mj) logL(θj|yi,Mj) (37)

= E(θj|y,Mj)

n
∑

i=1

logL(θj|yi,Mj)

= E(θj|y,Mj) log

n
∏

i=1

L(θj|yi,Mj)

= E(θj|y,Mj) logL(θj|y,Mj).

38

When Is a Model Good Enough?

LSFS method described here (not LS∗ method) can stably
and reliably help in choosing between M1 and M2; but
suppose M1 has a (substantially) higher LSFS than M2.

This doesn’t say that M1 is adequate—it just says that M1

is better than M2, i.e., what about model specification
question (2): Is M1 good enough?

As mentioned above, a full judgment of adequacy requires
real-world input (to what purpose will the model be put?),
but you can answer a somewhat related question—could the
data have arisen from a given model?—in a general way
by simulating from that model many times, developing a
distribution of (e.g.) LSFS values, and seeing how unusual

the actual data set’s log score is in this distribution
(Draper and Krnjajić 2004).

This is related to the posterior predictive model-checking
method of Gelman, Meng and Stern (1996); however, this
sort of thing cannot be done naively, or result will be poor
calibration—indeed, Robins et al. (2000) demonstrated that
the Gelman et al. procedure may be (sharply) conservative.

Using modification of idea in Robins et al., we have
developed method for accurately calibrating

the log score scale.

Inputs to our procedure: (1) A data set (e.g., with
regression structure); (2) A model (can be parametric,

non-parametric, or semi-parametric).

Simple example: data set y = (1,2,2,3,3,3,4,6,7,11),
n = 10.

Given model (∗)
(λ) ∼ Gamma(0.001,0.001) (38)

(yi|λ) IID∼ Poisson(λ)

39

Calibrating LSFS Scale

Step 1:

Calculate LSFS for this data set; say get LSFS = −1.1; call
this actual log score (ALS).

Obtain posterior for λ given y based on this data set; call
this actual posterior.

Step 2:

for (i in 1:m1) {

make a lambda draw from the actual posterior;
call it lambda[i]

generate a data set of size n from the second
line of model (*) above, using
lambda = lambda[i]

compute the log score for this generated
data set; call it LS[i]

}

Output of this loop is a vector of log scores; call this V.LS.

Locate ALS in distribution of LSFS values by computing
percentage of LSFS values in V.LS that are ≤ ALS; call this
percentage unadjusted actual tail area (say this is 0.22).

So far this is just Gelman et al. with LSFS as the
discrepancy function.

We know from our own simulations and the literature
(Robins et al. 2000) that this tail area (a p-value for a
composite null hypothesis, e.g., Poisson(λ) with λ

unspecified) is conservative, i.e., with the 0.22 example
above an adjusted version of it that is well calibrated would

be smaller.

40

Calibrating LSFS Scale (continued)

We’ve modified and implemented one of the ways suggested
by Robins et al., and we’ve shown that it does indeed work

even in rather small-sample situations, although our
approach to implementing the basic idea can be

computationally intensive.

Step 3:

for (j in 1:m2){

make a lambda draw from the actual posterior;
call it lambda*.

generate a data set of size n from the second line
of model (*) above, using lambda = lambda*;
call this the simulated data set

repeat steps 1, 2 above on this
simulated data set

}

The result will be a vector of unadjusted tail areas;
call this V.P.

Compute the percentage of tail areas in V.P that are ≤ the
unadjusted actual tail area; this is the

adjusted actual tail area.

41

Calibrating LSFS Scale (continued)

The claim is that the 3-step procedure above is
well-calibrated, i.e., if the sampling part of model (∗) really
did generate the observed data, the distribution of adjusted
actual tail areas obtained in this way would be uniform,

apart from simulation noise.

Step 3 in this procedure solves the calibration problem by
applying the old idea that if X ∼ FX then FX(X) ∼ U(0,1).

This claim can be verified by building a big loop around
steps 1–3 as follows:

Choose a lambda value of interest; call it lambda.sim

for (k in 1:m3) {

generate a data set of size n from the
second line of model (*) above, using
lambda = lambda.sim; call this the
validation data set

repeat steps 1-3 on the validation data set

}

The result will be a vector of adjusted P-values;
call this V.Pa.

We have verified (via simulation) in several simple (and
some less simple) situations that the values in V.Pa are close

to U(0,1) in distribution.

Two examples—Poisson(λ) and Gaussian(µ, σ2):

42

Uncalibrated p-values

n= 10 lambda= 0.14

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

n= 10 lambda= 0.37

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

n= 10 lambda= 1

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

n= 10 lambda= 2.72

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

n= 10 lambda= 7.39

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

n= 25 lambda= 0.14

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

n= 25 lambda= 0.37

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

n= 25 lambda= 1

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

n= 25 lambda= 2.72

0.0 0.2 0.4 0.6 0.8 1.0
0

2
4

6
8

n= 25 lambda= 7.39

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

n= 50 lambda= 0.14

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

n= 50 lambda= 0.37

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

n= 50 lambda= 1

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

n= 50 lambda= 2.72

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

n= 50 lambda= 7.39

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

n= 100 lambda= 0.14

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

n= 100 lambda= 0.37

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

n= 100 lambda= 1

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

n= 100 lambda= 2.72

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

n= 100 lambda= 7.39

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

n= 250 lambda= 0.14

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

n= 250 lambda= 0.37

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

n= 250 lambda= 1

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

n= 250 lambda= 2.72

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

n= 250 lambda= 7.39

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8

Null Poisson model: Uncalibrated p−values

43

Calibrated p-values

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n= 10 lambda= 0.14

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n= 10 lambda= 0.37

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n= 10 lambda= 1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n= 10 lambda= 2.72

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n= 10 lambda= 7.39

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n= 25 lambda= 0.14

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n= 25 lambda= 0.37

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n= 25 lambda= 1

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

n= 25 lambda= 2.72

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n= 25 lambda= 7.39

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n= 50 lambda= 0.14

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n= 50 lambda= 0.37

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n= 50 lambda= 1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n= 50 lambda= 2.72

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n= 50 lambda= 7.39

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n= 100 lambda= 0.14

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n= 100 lambda= 0.37

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n= 100 lambda= 1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n= 100 lambda= 2.72

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n= 100 lambda= 7.39

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n= 250 lambda= 0.14

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n= 250 lambda= 0.37

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n= 250 lambda= 1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n= 250 lambda= 2.72

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

n= 250 lambda= 7.39

Null Poisson model: Calibrated p−values vs uniform(0,1)

44

Uncalibrated p-values

n= 10 mu= −1 sig2= 10

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

n= 25 mu= −1 sig2= 10

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

n= 50 mu= −1 sig2= 10

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

n= 10 mu= −1 sig2= 1

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

n= 25 mu= −1 sig2= 1

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

n= 50 mu= −1 sig2= 1

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

n= 10 mu= −1 sig2= 0.1

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

n= 25 mu= −1 sig2= 0.1

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

n= 50 mu= −1 sig2= 0.1

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

n= 10 mu= 0 sig2= 10

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

n= 25 mu= 0 sig2= 10

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

n= 50 mu= 0 sig2= 10

0.0 0.2 0.4 0.6 0.8 1.0
0

2
4

6

n= 10 mu= 0 sig2= 1

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

n= 25 mu= 0 sig2= 1

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

n= 50 mu= 0 sig2= 1

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

n= 10 mu= 0 sig2= 0.1

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

n= 25 mu= 0 sig2= 0.1

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

n= 50 mu= 0 sig2= 0.1

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

n= 10 mu= 1 sig2= 10

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

n= 25 mu= 1 sig2= 10

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

n= 50 mu= 1 sig2= 10

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

n= 10 mu= 1 sig2= 1

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

n= 25 mu= 1 sig2= 1

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

n= 50 mu= 1 sig2= 1

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

n= 10 mu= 1 sig2= 0.1

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

n= 25 mu= 1 sig2= 0.1

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

n= 50 mu= 1 sig2= 0.1

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

Null Gaussian model: Uncalibrated p−values

45

Calibrated p-values

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

n= 10 mu= −1 sig2= 10

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

n= 25 mu= −1 sig2= 10

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
6

1.
0

n= 50 mu= −1 sig2= 10

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

n= 10 mu= −1 sig2= 1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

n= 25 mu= −1 sig2= 1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

n= 50 mu= −1 sig2= 1

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
6

1.
0

n= 10 mu= −1 sig2= 0.1

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
6

1.
0

n= 25 mu= −1 sig2= 0.1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

n= 50 mu= −1 sig2= 0.1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

n= 10 mu= 0 sig2= 10

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
6

1.
0 n= 25 mu= 0 sig2= 10

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

4
0.

8

n= 50 mu= 0 sig2= 10

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
6

1.
0

n= 10 mu= 0 sig2= 1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

n= 25 mu= 0 sig2= 1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

n= 50 mu= 0 sig2= 1

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
6

1.
0

n= 10 mu= 0 sig2= 0.1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

n= 25 mu= 0 sig2= 0.1

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
6

1.
0

n= 50 mu= 0 sig2= 0.1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

n= 10 mu= 1 sig2= 10

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

n= 25 mu= 1 sig2= 10

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

n= 50 mu= 1 sig2= 10

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
6

1.
0

n= 10 mu= 1 sig2= 1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

n= 25 mu= 1 sig2= 1

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
6

1.
0

n= 50 mu= 1 sig2= 1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

n= 10 mu= 1 sig2= 0.1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

n= 25 mu= 1 sig2= 0.1

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

n= 50 mu= 1 sig2= 0.1

Null Gaussian model: Calibrated p−values vs uniform(0,1)

46

R Implementation

Here’s some R code (available at the course web site) to
implement our method for calibrating the log score scale
in a one-sample Poisson setting, applied first to the length
of stay data from part 2b and then to a simulated data set

that was not generated by the Poisson model.

> print(y <- c(0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 4, 6))
[1] 0 1 1 1 1 1 2 2 2 2 3 3 4 6

> print(epsilon <- 0.001)
[1] 0.001

> ln.poisson.gamma <- function(y, alpha, beta) {
+
+ lgamma(alpha + y) + alpha * log(beta /
+ (beta + 1)) + y * log(1 / (beta + 1)) -
+ lgamma(alpha) - lgamma(y + 1)
+
+ }

> step1 <- function(y, epsilon) {
+
+ n <- length(y)
+
+ s <- sum(y)
+
+ als <- mean(ln.poisson.gamma(y, epsilon + s,
+ epsilon + n))
+
+ return(c(n, s, als))
+
+ }

> print(step1.result <- step1(y, epsilon))
[1] 14.00000 29.00000 -1.71309

So the actual log score for the LoS data set is −1.71, but
is this unusually small if the data really were Poisson?

47

R Implementation (continued)

> step2 <- function(n, s, epsilon, als, m1) {
+
+ lambda <- rgamma(m1, epsilon + s, epsilon + n)
+
+ ls <- rep(0, m1)
+
+ for (i in 1:m1) {
+
+ y.star <- rpois(n, lambda[i])
+
+ s.star <- sum(y.star)
+
+ ls[i] <- mean(ln.poisson.gamma(y.star,
+ epsilon + s.star, epsilon + n))
+
+ }
+
+ uata <- sum(ls <= als) / m1
+
+ write(ls, "ls.out")
+
+ return(uata)
+
+ }

> m1 <- 1000
>
> print(step2.result <- step2(step1.result[1],
+ step1.result[2], epsilon, step1.result[3], m1))
[1] 0.418

> v.ls <- scan("ls.out")
Read 1000 items
>
> hist(v.ls, nclass = 20, probability = T,
+ main = ’’, xlab = ’uncalibrated log score’)
>
> abline(v = step1.result[3])

48

R Implementation (continued)

uncalibrated log score

D
en

si
ty

−2.4 −2.2 −2.0 −1.8 −1.6 −1.4 −1.2

0.
0

0.
5

1.
0

1.
5

2.
0

The actual log score doesn’t look at all unusual in this
plot, but recall from the discussion above that it may not

yet be properly calibrated.

> step3 <- function(y, epsilon, m1, m2) {
+
+ step1.result <- step1(y, epsilon)
+
+ n <- step1.result[1]
+
+ s.actual <- step1.result[2]
+
+ uata <- step2(step1.result[1], step1.result[2],
+ epsilon, step1.result[3], m1)
+
+ v.p <- rep(0, m2)

49

R Implementation (continued)

+ for (j in 1:m2) {
+
+ lambda.star <- rgamma(1, epsilon + s.actual,
+ epsilon + n)
+
+ y.sim <- rpois(n, lambda.star)
+
+ step1.result <- step1(y.sim, epsilon)
+
+ v.p[j] <- step2(step1.result[1],
+ step1.result[2], epsilon, step1.result[3], m1)
+
+ }
+
+ aata <- sum(v.p <= uata) / m2
+
+ write(v.p, "v.p.out")
+
+ return(aata)
+
+ }

> m2 <- 100
>
> print(step3.result <- step3(y, epsilon, m1, m2))
[1] 0.4

Here the recalibration has not had much effect, but (as
the plots above showed) this will not always be the case.

50

R Implementation (continued)

> v.p <- scan("v.p.out")
Read 100 items
>
> hist(v.p, nclass = 20, probability = T, xlim = c(0, 1),
+ main = ’’, xlab = ’calibrated tail areas’)
>
> abline(v = step2.result)

calibrated tail areas

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

For a second example let’s look at a data set generated as
a lognormal mixture of Poissons with a

substantial VTMR.

> n <- 10
>
> e <- rnorm(n, 0.0, 0.5)
>
> mu <- 0
>
> lambda <- rep(0, n)

51

R Implementation (continued)

> y <- rep(0, n)

> for (i in 1:n) {
+
+ lambda[i] <- exp(mu + e[i])
+
+ y[i] <- rpois(1, lambda[i])
+
+ }

> print(y <- sort(y))

[1] 0 0 0 1 1 1 2 3 4 4

> var(y) / mean(y)

[1] 1.555556

> print(step1.result <- step1(y, epsilon))

[1] 10.000000 16.000000 -1.715601

> print(step2.result <- step2(step1.result[1],
+ step1.result[2], epsilon, step1.result[3], m1))

[1] 0.178

> v.ls <- scan("ls.out")

> hist(v.ls, nclass = 20, probability = T,
+ main = ’’, xlab = ’uncalibrated log score’)

> abline(v = step1.result[3])

52

R Implementation (continued)

uncalibrated log score

D
en

si
ty

−2.0 −1.5 −1.0 −0.5 0.0

0.
0

0.
5

1.
0

1.
5

2.
0

> m2 <- 1000

> print(step3.result <- step3(y, epsilon, m1, m2))

[1] 0.099

So here’s an example where the uncalibrated tail area is
about twice as big as it should be.

> v.p <- scan("v.p.out")

> hist(v.p, nclass = 20, probability = T, xlim = c(0, 1),
+ main = ’’, xlab = ’calibrated tail areas’)

> abline(v = step2.result)

53

R Implementation (continued)

calibrated tail areas

D
en

si
ty

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

The true calibrated tail-area distribution is far from
uniform, so 0.178 is actually substantially farther out in

the true tail than it seems.

54

Conclusions

• {Exchangeability judgments plus nonparametric (BNP)
modeling} = Bayesian model specification in

many problems.

• BNP is one way to avoid the dilemma posed by
Cromwell’s Rule in Bayesian model specification;
three-way cross-validation (3CV) is another.

• Model choice is really a decision problem and should be
approached via MEU, with a utility structure that’s

sensitive to the real-world context.

• When the goal is to make an accurate scientific
summary of what’s known about something, the predictive
log score has a sound generic utility basis and can yield

stable and accurate model specification decisions.

• DIC can be thought of as a fast approximation to the
leave-one-out predictive log score (LSCV), but DIC can

behave unstably as a function of parameterization.

• The full-sample log score (LSFS) is n times faster than
naive implementations of LSCV , has better small-sample

model discrimination power than either LSCV or DIC, and
has better asymptotic behavior than LSCV .

• Generic Bayes factors are highly unstable when context
suggests diffuse prior information; many methods for fixing
this have been proposed, most of which seem to require an

appeal to ad-hockery which is absent from the
LSFS approach.

• The basic Gelman et al. (1996) method of posterior
predictive model-checking is badly calibrated: when it gives
you a tail area of, e.g., 0.4, the calibrated equivalent may

well be 0.04 or even 0.004.

• We have modified an approach suggested by Robins et
al. (2000) to help answer the question “Could the data have

arisen from model M?” in a well-calibrated way.

55

References

Bernardo JM, Smith AFM (1994). Bayesian Theory. New York: Wiley.

Dey D, Mueller P, Sinha D (1998). Practical Nonparametric and Semipara-
metric Bayesian Statistics. New York: Springer Verlag (Lecture Notes in
Statistics, Volume 133).

de Finetti B (1930). Funzione caratteristica de un fenomeno aleatorio.
Mem. Acad. Naz. Lincei, 4, 86–133.

de Finetti B (1937). La prévision: ses lois logiques, ses sources subjectives.
Ann. Inst. H. Poincaré, 7, 1–68.

de Finetti B (1938). Sur la condition d’equivalence partielle. Actualités
Scientifiques et Industrielles, 739.

de Finetti B (1990). Theory of Probability. New York: Wiley Classics
Library.

Draper D (1995). Assessment and propagation of model uncertainty (with
discussion). Journal of the Royal Statistical Society Series B, 57, 45–97.

Draper D (1996). Utility, sensitivity analysis, and cross-validation in Bayesian
model-checking. Statistica Sinica, 6, 760–767 (discussion of “Posterior
predictive assessment of model fitness via realized discrepancies,” by A
Gelman, X-L Meng, and H Stern).

Draper D, Fouskakis D (2000). A case study of stochastic optimization
in health policy: problem formulation and preliminary results. Journal of
Global Optimization, 18, 399–416.

Draper D, Fouskakis D (2004). Stochastic optimization methods for cost-
effective quality assessment in health. Submitted.

Draper D, Krnjajić M (2005). Three-way cross-validation for well-calibrated
model exploration. In preparation.

Draper D, Hodges J, Mallows C, Pregibon D (1993). Exchangeability and
data analysis (with discussion). Journal of the Royal Statistical Society
Series A, 156, 9–37.

Fouskakis D, Draper D (2002). Stochastic optimization: a review. Interna-
tional Statistical Review, 70, 315–349.

56

References (continued)

Geisser S, Eddy WF (1979). A predictive approach to model selection.
Journal of the American Statistical Association, 74, 153–160.

Gelfand AE, Dey DK, Chang H (1992). Model determination using predic-
tive distributions, with implementation via sampling-based methods (with
discussion). In Bayesian Statistics 4 (Bernardo JM, Berger JO, Dawid AP,
Smith AFM, editors), Oxford: Oxford University Press, 147–167.

Gelman A, Meng X-L, Stern H (1996). Posterior predictive assessment of
model fitness via realized discrepancies (with discussion). Statistica Sinica,
6, 733–760.

Good IJ (1950). Probability and the Weighing of Evidence. London: Griffin.

Hendriksen C, Lund E, Stromgard E (1984). Consequences of assessment
and intervention among elderly people: a three year randomised controlled
trial. British Medical Journal, 289, 1522–1524.

Jeffreys H (1939). Theory of Probability. Oxford: Oxford University Press.

Kass RE, Raftery AE (1995). Bayes factors. Journal of the American
Statistical Association, 90, 773–795.

Key JT, Pericchi LR, Smith AFM (1998). Bayesian model choice: what and
why? (with discussion). In Bayesian Statistics 6, Bernardo JM, Berger
JO, Dawid AP, Smith AFM (editors). Oxford University Press, 343–370.

O’Hagan A, Forster J (2004). Bayesian Inference, second edition. London:
Arnold.

Pericchi L (2004). Model selection and hypothesis testing based on objective
probabilities and Bayes factors. Manuscript.

Robins JM, van der Vaart A, Ventura V (2000). Asymptotic distribution of
P values in composite null models. Journal of the American Statistical
Association, 95, 1143–1156.

Spiegelhalter DJ, Best NG, Carlin BR, van der Linde A (2002). Bayesian
measures of model complexity and fit (with discussion). Journal of the
Royal Statistical Society Series B, 64, 583–616.

Walker S, Damien P, Lenk P (2004). On priors with a Kullback-Leibler
property. Journal of the American Statistical Association, 99, 404–408.

57

