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Introducing Markov chain Monte
Carlo

Walter R Gilks
Sylvia Richardson
David J Spiegelhalter

1.1 Introduction

Markov chain Monte Carlo (MCMC) methodology provides enormous scope
for realistic statistical modelling. Until recently, acknowledging the fuil
complexity and structure in many applications was difficult and required
the development of specific methodology and purpose-built software. The
alternative was to coerce the .problem into the over-simple framework of
an available method. Now, MCMC methods provide a unifying framework
within which many complex problems can be analysed using generic soft-
ware. ‘

MCMC is essentially Monte Carlo integration using Markov chains. Bay-
esians, and sometimes also frequentists, need to integrate over possibly’
high-dimensional probability distributions to make inference. about model
parameters or to make predictions. Bayesians need. to integrate over the
posterior distribution of model parameters given the data, and frequentists
may need to integrate over the distribution of observables given parameter
values. As described below, Monte Carlo integration draws samples from
the the required distribution, and then forms sample averages to approx-
imate. expectations. Markov chain Monte Carlo draws these samples by
running a cleverly constructed Markov chain for a long time. There are
many ways of constructing these chains, but all of them, including the
Gibbs sampler (Geman and Geman, 1984), are special cases of the general
framework of Metropolis et al. (1953) and Hastings (1970).
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It took nearly 40 years for MCMC to penetrate mainstream statistical
practice. It originated in the statistical physics literature, and has been
used for a decade in spatial statistics and image analysis. In the last few
years, MCMC has had a profound effect on Bayesian statistics, and has
also found applications in classical statistics. Recent research has added
considerably to its breadth of application, the richness of its methodology,
and its theoretical underpinnings.

The purpose of this book is to introduce MCMC methods and their
applications, and to provide pointers to the literature for further details.
Having in mind principally an applied readership, our role as editors has
been to keep the technical content of the book to a minimum and to con-
centrate on methods which have been shown to help in real applications.
However, some theoretical background is also provided. The applications
featured in this volume draw from a wide range of statistical practice, but
to some extent reflect our own biostatistical bias. The chapters have been
written by researchers who have made key contributions in the recent devel-
opment of MCMC methodology and its application. Regrettably, we were
not able to include all _mm.&bm researchers in our list of contributors, nor
were we able to cover all areas of theory, methods and application in the
depth they deserve.

Our aim has been to keep each chapter self-contained, including notation
and references, although chapters may assume knowledge of the basics de-
scribed in this chapter. This chapter contains enough information to allow
the reader to start applying MCMC in a basic way. In 1t we describe the
Metropolis—Hastings algorithm, the Gibbs sampler, and the main issues
arising in implementing MCMC methods. We also give a brief introduction
to Bayesian inference, since many of the following chapters assume a basic
knowledge. Chapter 2 illustrates many of the main issues in a worked ex-
ample. Chapters 3 and 4 give an introduction to important concepts and
results in discrete and general state-space Markov chain theory. Chapters 5
through 8 give more information on techniques for implementing MCMC
or improving its performance. Chapters 9 through 13 describe methods
for assessing model adequacy and choosing between models, using MCMC.
Chapters 14 and 15 describe MCMC methods for non-Bayesian inference,
and Chapters 16 through 25 describe applications or summarize application
domains.

1.2 The problem
1.2.1 Bayesian inference

Most applications of MCMC to date, including the majority of those de-
scribed in the following chapters, are oriented towards Bayesian inference.
From a Bayesian perspective, there is no fundamental distinction between

THE PROBLEM 3
observables.and parameters of a statistical model: all are considered random
quantities. Let D denote the observed data, and 6 denote model parameters
and missing data. Formal inference then requires setting up a joint probabil-
ity &mEvﬁSos P(D,$) over all random quantities. This joint distribution
comprises two parts: a prior distribution P(8) and a lkelihood P(D|6).
Specifying P(8) and P(DI8) gives a full probability model, in which

P(D,8) =-P(DI|9) P(9).

Having observed D, Bayes theorem is used to determine the distribution
of 8 conditional on D: ‘

P(68)P(DI|9)
%wﬁmvﬁﬁb_&%.
This is called the posterior distribution of §, and is the object of all Bayesian
inference.
. Any features of the voﬂmlm:. distribution are legitimate for Bayesian
inference: moments, quantiles, highest posterior density regions, etc. All

auamm. quantities can be expressed in terms of posterior expectations of
functions of 8. The posterior expectation of a function f(9) is

_ [ F(®)P(6)P(D|6)ds
~ [P(§)P(DI6)ds

The integrations in this expression have until Hmn.owa% been the source of
most of the practical difficulties in Bayesian inference, especially in high di-
.Boaﬂoam. In most applications, analytic evaluation of E| f(6)|D] is imposs-
ible. Alternative approaches include numerical evaluation, which is difficult
w.:a inaccurate in greater than about 20 dimensions; analytic approxima-
tion such as the Laplace approximation (Kass et al., 1988), which is some-
times appropriate; and Monte Carlo integration, including MCMC.

P(8|D) =

E[£(6)|D]

1.2.2 Calculating ezpectations

The problem of calculating expectations in high-dimensional distributions
also occurs in some areas of frequentist inference; see Geyer ﬁcomv and
Diebolt and Ip (1995) in this volume. To avoid an unnecessarily Bayesian
flavour in the following discussion, we restate the problem in more general
terms. Let X be a vector of k random variables, with distribution 7(.).
In Bayesian applications, X will comprise model parameters and missing
data; in frequentist applications, it may comprise data or random effects.
For Bayesians, 7(.) will be a posterior distribution, and for frequentists it
will be a likelihood. Either way, the task is to evaluate the expectation

By =1 m@i@%

7(z)dz v ,. : GC
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for some function of interest f(.). Here we allow for the possibility that the
distribution of X is known only up to a constant of normalization. That is,
J m(z)dz is unknown. This is a common situation in practice, for example in
Bayesian inference we know P(#|D) « P(8)P(D|8), but we cannot easily
evaluate the normalization constant [ P(6)P(D|8)dd. For simplicity, we
assume that X takes values in k-dimensional Euclidean space, i.e. that X
comprises k& continuous random variables. However, the methods described
here are quite general. For example, X could consist of discrete random
variables, so then the integrals in (1.1) would be replaced by summations.
Alternatively, X could be a mixture of discrete and continuous random
variables, or indeed a collection of random variables on any probability
space. Indeed, k can itself be variable: see Section 1.3.3. Measure theoretic
notation in (1.1) would of course concisely accommodate all these possib-
ilities, but the essential message can be expressed without it. We use the
terms distribution and density interchangeably.

1.3 Markov chain Monte Carlo
X

In this section, we introduce MCMC as a method for evaluating expressions
of the form of (1.1). We begin by describing its constituent parts: Monte
Carlo integration and Markov chains. We then describe the general form
of MCMC given by the Metropolis-Hastings algorithm, and a special case:
the Gibbs sampler.

1.8.1 Monte Carlo integration

Monte Carlo integration evaluates E[f(X)] by drawing samples {X;, ¢t =
1,...,n} from 7(.) and then approximating

B (X)) = 2 3 £(X0).

So the population mean of f(X) is estimated by a sample mean. When
the samples {X,} are independent, laws of large numbers ensure that the
approximation can be made as accurate as desired by increasing the sample
size n. Note that here n is under the control of the analyst: it is not the
size of a fixed data sample.

In general, drawing samples {X;} independently from 7(.) is not feasible,
since w(.) can be quite non-standard. However the {X;} need not neces-
sarily be independent. The {X:} can be generated by any process which,
loosely speaking, draws samples throughout the support of 7(.) in the cor-
rect proportions. One way of doing this is through a Markov chain having
m(.) as its stationary distribution. This is then Markov chain Monte Carlo.

MARKOV CHAIN MONTE CARLO 5

1.8.2 Markov chains

such that at each time ¢ > 0, the next state Xi41 is sampled from a
distribution P(X,41|X;) which depends only on the current state of the
chain, X;. That is, given X;, the next state Xt41 does not depend further
on the history of the chain {Xo,X1,.. .y Xt—1}. This sequence is called a
Markov chain, and P(.|.) is called the transition kernel of the chain. We will
assume that the chain is time-homogenous: that is, P(.].) does not &mvmum
on t.

How does the starting state X, affect X:7 This question concerns the
distribution of X given X;, which we denote P®(X;)X,). Here we are not
given the intervening variables {X1,Xo,..., Xe— 1}, so X; depends directly
on Xo. Subject to regularity conditions, the chain will gradually ‘forget’ its
initial state and P()(.|X,) will eventually. converge to a unique stationary
(or invariant) distribution, which does not depend on ¢ or Xj. For the
moment, we denote the stationary distribution by #(.). Thus as ¢ increases,
the sampled points {X;} will look increasingly like dependent samples from
¢(.). This is illustrated in Figure 1.1, where ¢(.) is univariate standard
normal. Note that convergence is much quicker in Figure 1.1(a) than in
Figures 1.1(b) or 1.1(c).

Thus, after a sufficiently long burn-in of say m iterations, points {X;;
t = m+1,...,n} will be dependent samples approximately from é().
We discuss methods for determining m in Section 1.4.6. We can now use
the output from the Markov chain to estimate the expectation E[f(X)],
where X has distribution ¢(.). Burn-in samples are usually discarded for
this calculation, giving an estimator ,

Suppose we generate a sequence of random variables, {Xo, X1, X,,...},

- 1 =
f=r > f(Xy). (1.2)
t=m+1 -
This is called an ergodic average. Convergence to the required expectation
is ensured by the ergodic theorem.
See Roberts (1995) and Tierney (1995) in this volume for more technical
discussion of several of the issues raised here.

1.3.8 The Metropolis~Hastings algorithm

Equation (1.2) shows how a Markov chain can be used to estimate Elf(X)],
where the expectation is taken over its stationary distribution ¢(.). This
would seem to provide the solution to our problem, but first we need to dis-
cover how to construct a Markov chain such that its stationary distribution
¢(.) is precisely our distribution of interest 7(.).

Constructing such a Markov chain is surprisingly easy. We describe the
form due to Hastings (1970), which is a generalization of the method
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first proposed by Metropolis et .al. (1953). For the Metropolis-Hastings
(or Hastings~Metropolis) algorithm, at each time ¢, the next state Xig1 18
chosen by first sampling a candidate point®Y from a proposal distribution
q(.}X:). Note that the proposal distribution may depend on the current
point X;. For example, ¢(.|X) might be a multivariate normal distribution
with mean X and a fixed covariance matrix. The candidate point Y is then
accepted with probability o/(X;,Y) where

i.iﬁ%m _Sv .
«1,¥) = min (1, 2 ()

If the candidate point is accepted, the next state becomes Xi41 =Y. If the

candidate is rejected, the chain does not move, i.e. Xyy1 = X;. Figure 1.1

illustrates this for univariate normal proposal and target distributions; Fig-

ure 1.1(c) showing many instances where the chain did not move for several

iterations.

Thus the Metropolis-Hastings algorithm is extremely simple:

Initialize Xj; set t=0.
Repeat { ,
Sample a point Y from ¢(.|X;)
Sample a Uniform(0,1) random variable U
It U IA: QAX?QV set .N.TTH =Y
otherwise set X; i = X;
Increment ¢
}.

Remarkably, the proposal distribution ¢(.].) can have any form and the
stationary distribution of the chain will be 7(.). (For regularity conditiors
see Roberts, 1995: this volume.) This can be seen from the following argu-
ment. The transition kernel for the Metropolis-Hastings algorithm is

PXe1lXe) = o(Xn)X)a(Xy, Xip1) |
HXe = X1~ [ o(¥1X)a(x, V)av], (14)

where I(.) denotes the indicator function (taking the value 1 when its
argument is true, and 0 otherwise). The first term in (1.4) arises from
acceptance of a candidate ¥ = Xi¢t1, and the second term arises from
rejection, for all possible candidates Y. Using the fact that

(X )e( Keg1|Xe)a( Xy, Xi41) = T(Xe41)a(Xe| Xeg1)a(Xoga, Xs)
which follows from (1.3), we obtain the detailed balance equation:
(X ) P(Ki41]Xe) = 71(Xo1 ) P(Xe| Xega). (1.5)
Integrating both sides of (1.5) with respect to X, gives;

\ M) P(Xe41 | X)X = 7(Xeia). (1.6)
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The left-hand side of equation (1.6) gives the marginal distribution of Xy,
under the assumption that X, is from 7(.). Therefore (1.6) says that if X, is
from (), then X;4, will be also. Thus, once a sample from the stationary
distribution has been obtained, all subsequent samples will be from that
distribution. This only proves that the stationary distribution is 7(.), and
is not a complete justification for the Metropolis—Hastings algorithm. A
full justification requires a proof that P(*)(X;|X,) will converge to the sta-
tionary distribution. See Roberts (1995) and Tierney (1995) in this volume
for further details.

So far we have assumed that X is a fixed-length vector of k continuous
random variables. As noted in Section 1.2, there are many other possib-
ilities, in particular X can be of variable dimension. For example, in a
Bayesian mixture model, the number of mixture components may be vari-
able: each component possessing its own scale and location parameters.
In this situation, =(.) must specify the joint distribution of k and X, and
¢(Y|X) must be able to propose moves between spaces of differing dimen-
sion. Then Metropolis—Hastings is as described above, with formally the
same expression (1.3) for the acceptance probability, but where dimension-
matching conditions for moves between spaces of differing dimension must
be carefully considered (Green, 1994a,b). See also Geyer and Mgller (1993),
Grenander and Miller (1994), and Phillips and Smith (1995: this volume)
for MCMC methodology in variably dimensioned problems.

1.4 Implementation

There are several issues which arise when implementing MCMC. We discuss
these briefly here. Further details can be found throughout this volume, and
in particular in Chapters 5-8. The most immediate issue is the choice of
proposal distribution ¢(.|.).

1.4.1 Canonical forms of proposal disiribution

As already noted, any proposal distribution will ultimately deliver sam-
ples from the target distribution x(.). However, the rate of convergence
to the stationary distribution will depend crucially on the relationship be-
tween ¢(.|.) and m(.). Moreover, having ‘converged’, the chain may still miz
slowly (i.e. move slowly around the support of n(.)). These phenomena
are illustrated in Figure 1.1. Figure 1.1(a) shows rapid convergence from a
somewhat extreme starting value: thereafter the chain mixes rapidly. Fig-
ure 1.1(b),(c) shows slow mixing chains: these would have to be run much
longer to obtain reliable estimates from (1.2), despite having been started
at the mode of #(.).

In high-dimensional problems with little symmetry, it is often necessary
to perform exploratory analyses to determine roughly the shape and ori-
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entation of 7(.). This will help in constructing a proposal ¢(.|.) which leads
to rapid mixing. Progress in practice often depends on experimentation
and Qw#EmEE? although untuned canonical forms for q(.].) often work
mzww%mpum_% well. For computational efficiency, ¢(.|.) should be chosen so
that it can be easily sampled and evaluated. :

Here we describe some canonical forms for g(.|.). Roberts (1995), Tier-
ney (1995) and Gilks and Roberts (1995) in this volume discuss rates of
convergence and strategies for choosing g(.].) in more detail.

The Metropolis Algorithm

H.&m Metropolis algorithm (Metropolis et al., 1953) considers only symmet-
rc proposals, having the form ¢(Y|X) = ¢(X|Y) for all X and Y. For
S.EBEm, when X is continuous, ¢(.|X ) might be a multivariate normal
&mgvﬂwao: with mean X and constant covariance matrix X. Often it is
ooEz.wEmbﬁ to choose a proposal which generates each nOE@Obm.EU of Y
conditionally independently, given X;. For the Metropolis algorithm, the
acceptance probability (1.3) reduces to ,

I. AQ\
| QAN.L\VIBE AHJ_.ANWV : (1.7
A m.vm&m_ case of the Metropolis algorithm is random-walk Metropolis, for
which ¢(Y|X) = ¢(|X — Y[). The data in Figure 1.1 were generated by
random-walk Metropolis algorithms.

When choosing a proposal distribution, its scale. (for example ¥) may
need to be chosen carefully. A cautious proposal distribution generating
mﬂwz steps ¥ — X; will generally have a high acceptance rate (1.7), but
will nevertheless mix slowly. This is illustrated in Figure 1.1(b). A bold
proposal distribution generating large steps will often propose moves from
the body to the tails of the distribution, giving small valaes of n(Y)/7(X:)
E&. a low probability of acceptance. Such a chain will frequently not move,
again resulting in slow mixing as illustrated in Figure 1.1(c). Ideally; the
proposal distribution should be scaled to avoid both these extremes.

The independence sampler

Hro independence sampler (Tierney, 1994) is a Metropolis-Hastings algo-
rithm whose proposal 9(Y|X) = q(Y) does not depend on X. For this, the
acceptance probability (1.3) can be written in the form .

‘ . u\v.
QXL\H F
Avssm.“ %ov “ (1.8)
where w(X) = m(X)/q(X).

In general, the independence sampler can work very well or very badly
(see Roberts, 1995: this volume). For the independence sampler to work
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well, g(.) should be a good approximation to «(.), but it is safest if q(.) is
heavier-tailed than 7(.). To see this, suppose g(.) is lighter-tailed than m(.),
and that X, is currently in the tails of x(.). Most candidates will not be in
the tails, so w(X;) will be much larger than w(Y') giving a low acceptance
probability (1.8). Thus heavy-tailed independence proposals help to avoid
long periods stuck in the tails, at the expense of an increased overall rate
of candidate rejection.

In some situations, in particular where it is thought that large-sample
theory might be operating, a multivariate normal proposal might be tried,
with mean at the mode of m(.) and covariance matrix somewhat greater
than the inverse Hessian matrix

T d%log ij -

dzTdz

evaluated at the mode.

Sipgle-component M &ngmﬂm astings

Instead of updating the whole of X en bloc, it is often more convenient and
computationally efficient to divide X into components {X.1,X.2,---; X}
of possibly differing dimension, and then update these components one by
one. This was the framework for MCMC originally proposed by Metropolis
et al. (1953), and we refer to it as single-component Metropolis—Hastings.
Let X —; = {Xa1,..» Xi-1 Xiytr--Xn}, 50 X~ comprises all of X
except Xi. |

An iteration of the single-component Metropolis—Hastings algorithm com-
prises h updating steps, as follows. Let X:; denote the state of X, at
the end of iteration t. For step ¢ of iteration t 4+ 1, X ; is updated using
Metropolis-Hastings. The candidate Y is generated from a proposal dis-
tribution EAN&_N“....N#LY where X, —; denotes the value of X._; after
completing step i — 1 of iteration t 4 1:

Xe—i = {Xe41.1s -+ Xetri-1 Xtiit1y - S Xenh

where components 1,2,...,1—1 have already been updated. Thus the ith
proposal distribution gi(.]., .) generates a candidate only for the i** compon-
ent of X, and may depend on the current values of any of the components
of X. The candidate is accepted with probability (X -, Xi.4,Y;) where

AAN.._N..;.VEAN... Y, X —i)
) iN..._N.l.vﬁQ\;._N.rN.l,.vv . (1.9)

Here 7{X; | X ;) is the full conditional distribution for X ; under 7(.) (see
below). If Y; is accepted, we set Xi414 = Y ;; otherwise, we set X1 =
X,.;. The remaining components are not changed at step .

Thus each updating step produces a move in the direction of a coordinate
axis (if the candidate is accepted), as illustrated in Figure 1.2. The proposal

QAX.ITX.?M\.-.V = min AH
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&m.ﬁ.:cﬁ.mou gi(.].,.) can be chosen in any of the ways discussed earlier in
this section.

X.2

> Xﬁi
i
X ) ™)
oo A \w
V_Ao “a \\\\\ \
\
—, p ] \H\\\
‘“ $ 74

—> VA.._

.ﬂmﬁm 1.2 EE?@&:& a single-component Metropolis—Hastings algorithm for a
Seagmm target distribution w(.). Components 1 and 2 are updated alternately,
producing alternate moves in horizontal and vertical directions.

.“:.Hro ,?: conditional distribution 7(X ;|X —;) is the distribution of the
** component of X conditioning on all the remaining components, where
X has distribution «(.): |
")
fm(X)dX ;"

ﬂs: conditional distributions play a prominent role in many of the applica-
tions in this volume, and are considered in detail by Gilks (1995: this vol-
ume). That the single-component Metropolis—Hastings algorithm with ac-
ceptance probability given by (1.9) does indeed generate samples from the
target distribution m(.) results from the fact that m(.) is uniquely deter-
mined by the set of its full conditional distributions (Besag, 1974).

In applications, (1.9) often simplifies considerably, particularly when 7(.)

(X X.—i) = (1.10)

derives from a conditional independence model: see Spiegelhalter et al.

(1995) and Gilks (1995) in this volume. This provides an important com-
vzgﬁ.owmp advantage. Another important advantage of mwbmﬂ,m-noﬂ%obma
updating occurs when the target distribution 7(.) is naturally specified in
terms of its full conditional distributions,-as commonly occurs in spatial



12 INTRODUCING MARKOV CHAIN MONTE CARLO

models; see Besag (1974), Besag et al. (1995) and Green (1995: this vol-
ume).

Gibbs sampling

A special case of single-component Metropolis—Hastings is the Gibbs sam-
pler. The Gibbs sampler was given its name by Geman and Geman Qowwvv
who used it for analysing Gibbs distributions on lattices. However, :H_m
applicability is not limited to Gibbs distributions, so thvvm mmﬂwzwmv.a
really a misnoma. Moreover, the same method was already in use in statis-
tical physics, and was known there as the heat bath algorithm. Nevertheless,
the work of Geman and Geman (1984) led to the introduction of MCMC
into mainstream statistics via the articles by Gelfand and Smith (1990)
and Gelfand et al. (1990). To date, most statistical applications of MCMC
have used Gibbs sampling. .

For the Gibbs sampler, the proposal distribution for updating the **
component of X is

i (Yil Xy X.i) = m(YalX ) (1.11)

where 7(Y;|X ;) is the full conditional distribution (1.10). m.sgﬁ.g?
ing (1.11) into (1.9) gives an acceptance probability of 1; 2:.; is, Q_,.c_om
sampler candidates are always accepted. Thus Gibbs mmn.G_Em_ consists
purely in sampling from full conditional &mﬁlvﬁ‘poam:z_omromm for sam-
pling from full conditional distributions are described in Gilks (1995: this
volume).

1.4.2 Blocking

Our description of single-component samplers in Section 1.4.1 said _.noﬁizm
about how the components should be chosen. Typically, low-dimensional or
scalar components are used. In some situations, multivariate noBvQﬂoﬁm
are natural. For example, in a Bayesian random-effects model, an entire
precision matrix would usually comprise a single o.o_.b.won.ob? When com-
ponents are highly correlated in the stationary distribution i..v. mixing
can be slow; see Gilks and Roberts (1995: this volume). Blocking highly
correlated components into a higher-dimensional component may improve
mixing, but this depends on the choice of proposal.

1.4.3 Updating order

In the above description of the single-component Metropolis—Hastings al-
gorithm and Gibbs sampling, we assumed a fixed =vmmﬁ.um order for the
components of X;. Although this is usual, a fixed order is not necessary:
random permutations of the updating order are quite acceptable. More-
over, not all components need be updated in each iteration. For example,

IMPLEMENTATION 13
we could instead update only one component per iteration, selecting com-
ponent ¢ with some fixed probability s(s). A natural choice would be to
set s(2) = w Zeger and Karim (1991) suggest updating highly correlated
components more frequently than other components, to improve mixing.
Note that if s(z) is allowed to depend on X; then the acceptance prob-
ability (1.9) should be modified, otherwise the stationary distribution of
the chain may no longer be the target distribution 7(.). Specifically, the
acceptance probability becomes ’

-~

min O (il X - )s(ilY s, X.m0)gs(X [ Vi, X.s) v .
(XX )8 (X s, X Z5)s(Yal X2, X—)

1.4.4 Number of chains

So far we have considered ‘running only one chain, but multiple chains
are permissible.. Recommendations in the literature have been conflicting,
ranging from many short chains (Gelfand and Smith, 1990), to several long
ones (Gelman and Rubin, 1992a,b), to one very long one .AQmwmw, 1992). It
is now generally agreed that running many short chains, motivated by a
desire to obtain independent samples from =(.), is misguided unless there
is some special reason for needing independent samples. Certainly, inde-
pendent samples are not required for ergodic averaging in (1.2). The de-
bate between the several-long-runs school and the one-very-long-run school
seems set to continue. The latter maintains that one very long run has
the best chance of finding new modes, and comparison between chains
can never prove convergence, whilst the former maintains that comparing
several seemingly converged chains might reveal genuine differences if the
chains have not yet approached stationarity; see Gelman (1995: this vol-

ume). If several processors are available, running one ‘chain on each will
generally be worthwhile.

1.4.5 Starting values : '

Not much has been written on this topic. If the chain is irreducible, the
choice of starting values Xy will not affect the stationary distribution. A
rapidly mixing chain, such as in Figure 1.1(a), will quickly find its way
from extreme starting values. Starting values may need to be chosen more
carefully for slow-mixing chains, to avoid a lengthy burn-in. However, it is
seldom necessary to expend much effort in choosing starting values. Gelman
and Rubin (1992a,b) suggest using ‘over-dispersed’ starting values in multi-

ple chains, to assist in assessing convergence; see below and Gelman (1995:
this volume).
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1.4.6 Determining burn-in

The length of burn-in m depends on Xp, on the rate of convergence of
Nuﬁvﬁmﬁ_umo.v to m(X;) and on how similar P(*)(.|.) and =(.) are required
to be. Theoretically, having specified a criterion of ‘similar enough’, m
can be determined analytically. However, this calculation is far from com-
putationally feasible in most situations (see Roberts, 1995: this volume).
Visual inspection of plots of (functions of) the Monte-Carlo output {X:,
t=1,...,n}is the most obvious and commonly used method for determin-
ing burn-in, as in Figure 1.1. Starting the chain close to the mode of x(.)
does-not remove the need for a burn-in, as the chain should still be run long
enough for it to ‘forget’ its starting position. For example, in Figure 1.1(b)
the chain has not wandered far from its starting position in 500 iterations.
In this case, m should be set greater than 500.

More formal tools for determining m, called convergence diagnostics,
have been proposed. Convergence diagnostics use a variety of theoretical
methods and approximations, but all make use of the Monte Carlo output in
some way. By now, at least 10 convergence diagnostics have been proposed;
for a recent review, see Cowled and Carlin (1994). Some of these diagnostics
are also suited to determining run length n (see below).

Convergence diagnostics can be classified by whether or not they are

~.

based on an arbitrary function f(X) of the Monte Carlo output; whether -

they use output from a single chain or from multiple chains; and whether
they can be based purely on the Monte Carlo output.

Methods which rely on monitoring {f(X:),t = 1,...,n} (e.g. Gelman
and Rubin, 1992b; Raftery and Lewis, 1992; Geweke, 1992) are easy to
apply; but may be misleading since f(X;) may appear to have converged
in distribution by iteration m, whilst another unmonitored function 9(X:)
may not have. Whatever functions f(.) are monitored, there may be others
which behave differently. :

From a theoretical perspective, it is better to compare globally the full
joint distribution P()(.) with =(.). To avoid having to deal with P(*)() dir-
ectly, several methods obtain samples from it by running multiple parallel
chains (Ritter and Tanner, 1992; Roberts, 1992; Liu and Liu, 1993), and
make use of the transition kernel P(.|.). However, for stability in the proced-
ures, it may be necessary to run many parallel chains. When convergence
is slow, this is a serious practical limitation.

Running parallel chains obviously increases the computational burden,
but can be useful, even informally, to diagnose slow convergence. For ex-
ample, several parallel chains might individually appear to have converged,
but comparisons between them may reveal marked differences in the ap-
parent stationary distributions (Gelman and Rubin, 1992a).

From a practical perspective, methods which are based purely on the
Monte Carlo output are particularly convenient, allowing assessment of
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convergence without recourse to the transition kernel P(.|.), and hence
without model-specific coding.

This volume does not contain a review of convergence diagnostics. This
is still an active area of research, and much remains to be learnt about
the behaviour of existing: methods. in real. applications, particularly in high
dimensions and when convergence-is slow. Instead, the chapters by Raftery
and Lewis (1995) and Gelman (1995) in this volume contain descriptions
of two of the most popular methods. Both- methods monitor an arbitrary
function f(.), and are based purely on.the Monte Carlo output. The former
uses a single chain and the latter multiple chains.

Geyer (1992) suggests that calculation of the length of burn-in is un-
necessary, as it is likely to be less than 1% of the total length of a run
sufficiently long to obtain adequate precision in the estimator f in (1.2),
(see below). If extreme staiting values are avoided, Geyer suggests setting
m to between 1% and 2% of the run length n.

1.4.7 Determining stopping time

Deciding when to stop the chain is an important practical matter. The aim
is to run the chain long enough to obtain adequate precision in the estimator
[ in (1.2). Estimation of the variance of F (called the Monte Carlo variance)
1s complicated by lack of independence in the iterates {X:}.

The most obvious informal method for determining run length n is to
run several chains in parallel, with different starting values, and compare
the estimates f from (1.2). If they do not agree adequately, n must be
increased. More formal methods which aim to estimate the variance of f
have been proposed: see Roberts (1995) and Raftery and Lewis (1995) in
this volume for further details. _

¢

1.4.8 Outpul analysis

In Bayesian inference, it is usual to summarize the posterior distribution
7(.) in terms of means, standard deviations, correlations, credible intervals
and marginal distributions for components X ; of interest. Means, standard
deviations and correlations can all be estimated by their sample equivalents
in the Monte Carlo output {X;;, t = m+ 1,...,n}, according to (1.2). For
example, the marginal mean and variance of X . are estimated by

— 1 id
Xi= —— M Xt

and




16 INTRODUCING MARKOV CHAIN MONTE CARLO

Note that these estimates simply ignore other components in the Monte
Carlo output.

A 100(1 — 2p)% credible interval [ep, c1~p] for a scalar component X ;
can be estimated by setting c, equal to the p'* quantile of {Xii, t =
m+1,...,n}, and ¢;—, equal to the (1 — p)** quantile. Besag et al. (1995)
give a procedure for calculating rectangular credible regions in two or more
dimensions.

Marginal distributions can be estimated by kernel density estimation.
For the marginal distribution of X ;, this is

~
1

q_.AN‘L.v ~ ——

Y K(Xs)Xd),
t=m+1 .
where K(.|X;) is a density concentrated around X; ;. A natural choice for
K(X;|X:) is the full conditional distribution (X i|Xt.~;). Gelfand and
Smith (1990) use this construction to estimate expectations under w(.).
Thus their Rao-Blackwellized estimator of E[f(X ;)] is

Fre = :|lw«ﬂ Blf(X.4)|X:.~i],

t=m<+41

(1.12)

where the expectation is with respect to the full conditional 7(X il Xt i)
With reasonably long runs, the improvement from using (1.12) instead
of (1.2) is usually slight, and in any case (1.12) requires a closed form for
the full conditional expectation.

1.5 Discussion

This chapter provides a brief introduction to MCMC. We hope we have
convinced readers that MCMC is a simple idea with enormous potential.
The following chapters fill out many of the ideas sketched here, and in
particular give some indication of where the methods work well and where
they need some tuning or further development.

MCMC methodology and Bayesian estimation go together naturally, as
many of the chapters in this volume testify. However, Bayesian model vali-
dation is still a difficult area. Some techniques for Bayesian model validation
using MCMC are described in Chapters 9-13.

The philosophical debate between Bayesians and non-Bayesians has con-
tinued for decades and has largely been sterile from a practical perspective.
For many applied statisticians, the most persuasive argument is the avail-
ability of robust methods and software. For many years, Bayesians had dif-
ficulty solving problems which were straightforward for non-Bayesians, so
1t is not surprising that most applied statisticians today are non-Bayesian.
With the arrival of MCMC and related software, notably the Gibbs sam-
pling program BUGS (see Spiegelhalter et al., 1995: this volume), we hope
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more applied statisticians will become familiar and cormfortable with Bayes-
ian ideas, and apply them.
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Full conditional distributions

~ Walter R Gilks

5.1 Introduction

As described in Gilks et al. (1995b: this volume), Gibbs sampling involves
little more than sampling from full conditional distributions. This chapter
shows how full conditional distributions are derived, and describes methods
for sampling from them.

To establish notation, vector X denotes a point in the state-space of the
Gibbs sampler and 7(X) denotes its stationary distribution. The elements
of X are partitioned into k components (X 1,X.3,...,X ). Each of the
k components of X may be scalar or vector. We define an iteration of
the Gibbs sampler to be an updating of one component of X; X; denotes
the state of X at iteration ¢. Vector X without component s is denoted

X =(Xa,.. 3 X.5=1, X s41,...,X ). The full conditional distribution

for X, at iteration ¢ is denoted (X 5| Xt.—s). To avoid measure-theoretic
notation, all random vVariables are assumed real and continuous, although
much of this chapter applies also to other kinds of variable. P(.) generically
denotes a probability density function. _

5.2 Deriving full conditional distributions
Full conditional distributions are derived from the joint distribtion of the
variables:

ﬁ-ﬁx.h‘ Xﬂ.lwv
.‘.‘, q_.A.N‘:: X#Iav&k.u '

(X5l Xtms) = (5.1)

5.2.1 A simple ezample

Consider the following simple two-parameter Bayesian model:
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¥vi ~ N(g, b, i=1,...,n; (5.2)
B~ N(0,1);
T ~ Ga(2,1),

where N(a, b) generically denotes a normal distribution with mean a and
variance b, and Ga(a, b) generically denotes a gamma distribution with
mean a/b and variance a/b®. Here we assume the {y;} are conditionally
independent given p and 7, and p and T are themselves independent. Let
y={w; i=1,...,n}.

The joint distribution of y, y and 7 is

.NUAm\“tvq.v ENVAQ._tqﬁv&UAtvaﬂv

a1 1 _
) 1 exp {3200 = ) oxp { =37} e

2
(5.3)
When y is observed, the joint posterior distribution of 4 and r is
Py, p, 1)
= = . 4
ﬂ.At‘ ﬂv - NVQ}A._HQV ,\,.Tﬁncvts ﬂv&t&ﬂ Am v
From (5.1) and (5.4), the full conditional for 4 is
_ Plurly)
S.At_q.v - .NuA.ﬂ_“Qv
_ Pl 5.5
-~ P(y,7) (55)
x Py, p, 7).

Here, proportionality follows because 7(u|r) is a distribution for 4, and
the denominator of (5.5) does not depend on y. Thus, to construct the full
conditional for y, we need only pick out the terms in (5.3) which involve

B, giving:

m(p|T) o« exp AIWM@.. - tvwvoﬁv *IW‘QNV

1 ﬂM@.. 2
1
x exp IMQ +n7) Ah “Tinr :ﬂv

Thus, the full conditional for x is a normal distribution with mean mwbm

and variance (14 n7)~1. Similarly, the full oosﬁﬁon& for r depends only
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on the terms in (5.3) involving 7, giving:

iﬂ_tv, o T%exp AIWMA.S — tvwv e T

= ¥ exp ﬁlﬂ T + wm@m - EN_ v .

which is the kernel of a gamma distribution with index 2 + % and scale
1+ 35(y; — p)?.

In this simple example, prior distributions are conjugate to the likeli-
hood (5.2), so full conditionals reduce analytically to closed-form distribu-

tions. Highly efficient sampling routines are available for these distributions;
see for example Ripley (1987).

5.2.2 Graphical models

Full conditional distributions for complex models can also be constructed
easily. In particular, for Bayesian directed acyclic graphical (DAG) models,
the joint distribution of the data and parameters is a product of many
terms, each involving only a subset of the parameters. For such models, the
full conditional distribution for any given parameter can be constructed
from those few terms of the Joint distribution which depend on it; see
Spiegelhalter et al. (1995b: this volume).

Normal random-effects model

For example, consider the random-effects model:

Yij ~ N(a;, 71, j=1,...,m, i=1,...,n;
@ ~ N(p,wl), i=1,...,n;

B~ N(0, 1); ) )

T ~ Ga(2, 1) ,

w ~ @Ga(l, 1),

where we assume independence between the {#:;} given all model para-
meters; between the {«;} given the hyperparameters y, T and w; and be-
tween the hyperparameters themselves. The Joint distribution of the data
and parameters for this model is:

n

P(y,e,m7,0) =TT 4 TT Plasslos, 9)P(asli,) b POiyP(r)PLo).

i=1 {j=1

Then the full conditional for «; is

m; S .
maily, amiy g, w) o HHw@“..‘\._.Q:JNuAE_PEV‘. (5:6)
i=1
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_ 2
1 wp + ﬂmm.:u.H Yij
o exp IMA8+3.§V a; — PR

which is a normal distribution with mean
wp + I Ui
w4+ mT

and variance (w +m;7)™L

Logistic regression model

Although for DAG models it is trivial to write down expressions for full
conditionals, as in (5.6), it is often not possible to Bw_mo ?Her.ow. progress
analytically. For example, consider the following Bayesian logistic regres-
sion model of y on covariate z: :

1 . .
yi ~ Bernoulli AH n m|?+.3_.vv ) i=1,...,m (5.7
a ~ N(0,1)
p ~ N(0,1),

where we assume conditional independence between the {y;} given the
model parameters and covariates, and wbmmvmumon.pom between the para-
meters themselves. Here, the full conditional for « is
n
m(alp) « e~ 5o H.I.TH + ml?+§$|$? + nt+§.@$|~. (5.8)
i=1
which unfortunately does not simplify. Thus methods are mmaﬁﬂmm .moH. sam-
pling from arbitrarily complex full conditional distributions. This is the
subject of the remainder of this chapter.

Undirected graphical models

For non-DAG models, full conditionals may be difficult to derive, although
for some partially-DAG models the derivation is straightforward; see for
example Mollié (1995: this volume).

5.3 Sampling from full conditional distributions

Full conditionals change from iteration to iteration as the oon&ﬂosz.pm
X:.—, changes, so each full conditional is used only once ws.m ﬁrma. %m.v
posed of. Thus it is essential that sampling from full owu&fo:m_ m:maﬂ-
butions is highly efficient computationally. When analytical reduction of
a full conditional is not possible, it will be necessary to m<w~=wﬁw\ the full
conditional function at a number of points, and in typical applications each
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function evaluation will be computationally expensive. Thus any method
for sampling from full conditional distributions should aim to minimize the

- number of function evaluations. Sampling methods such as inversion (see

Ripley, 1987), which require a large number of function evaluations, should
be avoided if possible. .

Two techniques for sampling from a general density g(y) are rejection
sampling and the ratio-of-uniforms method. A third method, which does
not produce independent samples, is the Metropolis—Hastings algorithm.
All three methods can be used for sampling multivariate distributions, and
none require evaluation of the normalizing constant for g. This is an im-
portant practical point, since the normalizing constant for full conditional
distributions is typically unavailable in closed form (as in (5.8), for exam-
ple). We now describe these methods, and hybrids of them, for sampling
from full conditional distributions. Below, Y represents Xiy1,s and g(Y) is
proportional to the density of interest (X¢y1.5|Xs.—,). ,

5.3.1 Rejection sampling

Rejection sampling requires an envelope function G of g (so G(Y) > ¢(Y)
for all Y: see Figure 5.1). Samples are drawn from the density proportional
to G, and each sampled point Y is subjected to an accept/reject test. This
test takes the form: accept point ¥ with probability g(Y)/G(Y). If the
point is not accepted, it is discarded. Sampling continues until the required
number of points have been accepted: for Gibbs sampling just one point
is required from each full conditional g. Accepted points are then exactly
independent samples from the density proportional to g (see for example
Ripley, 1987).
- The algorithm then is:
Repeat {
Sample a point Y from G{.);
Sample a Uniform(0, 1) random variable U;
If U<Lg(Y)/G(Y) accept V; }
until one Y is accepted.

Several rejections may occur before an acceptance. Each accept /reject

~ test involves evaluating g(Y) and G(Y), and typically the former will be

computationally expensive. Marginally, the probability of accepting a point
is [g(Y)dY /[ G(Y)dY,so to reduce the number of rejections, it is essential
that the envelope G be close to g. For computational efficiency, it is also
essential that- G be cheap to evaluate and sample from.

Some computational savings may result from using squeezing functions

a(Y') and b(Y), where a(Y) > g(Y) > 5(Y) for-all Y, and a and b are
- cheaper to evaluate than g (see Figure 5.1). The accept/reject test on line
4 of the above algorithm can then be replaced by .
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Figure 5.1 Functions for rejection sampling. Thin line: envelope G(Y); heavy line:
density g(Y'); broken lines: squeezing functions a(Y) and b(Y).

If U>a(Y)/G(Y) reject Y;
else if U < b(Y)/G(Y) accept Y;
else if U < g(Y)/G(Y) accept Y.
The first two tests enable a decision to be made about Y without calculating
g(Y).

Zeger and Karim (1991) and Carlin and Gelfand (1991) propose rejection
sampling for multivariate full conditional distributions, using multivariate
normal and multivariate split-t distributions as envelopes. A difficulty with
these methods is in establishing that the proposed envelopes are true en-
velopes. Bennett ¢t al. (1995: this volume) use rejection sampling for multi-
variate full conditional distributions in nonlinear models. For the envelope
function G, they use the prior distribution multiplied by the likelihood at
the maximum likelihood estimate.

5.3.2 Ratio-of-uniforms method

Suppose Y is univariate. Let' U and V be two real variables, and let D de-
note a region in U, V space defined by 0 < U < /g(V/U) (see Figure 5.2).
Sample a point U,V uniformly from D. This can be done by first deter-
mining an envelope region £ which contains 2 and from which it is easy to
sample uniformly. U and V can then be generated by rejection sampling
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from . Rather surprisingly, Y = V/U is a sample from the mmrmw@ pro-
portional to g (see for example Ripley, 1987).

| . ] = U

“Figure 5.2 An envelope & (broken line) for a region D defined by

0<U< V9(V/U), for the ratio-of-uniforms method.

*

" Typically £ is chosen to be a rectangle with vertices at (0,v-); (uy,v-);
(0,v4); and (u4,vs), where constants uy, v_ and vy are such that £

- contains D. This leads to the following algorithm.

Determine constants Uy, Vey Uy

Repeat {
Sample a Uniform(0, u.) random variable U;
Sample a Uniform(v_, v;) random variable V;
If (U,V) is in D, accept Y =V/U; }

until one Y is accepted.

.. Asin pure rejection sampling, it is important for computational efficiency

to keep the number of rejections low. If squeezing regions can be found, ef-

- ficiency may be improved. Wakefield et al. (1991) give a multivariate gener-
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alization of the ratio-of-uniforms method, and suggest variable transforma-
tions to improve its efficiency. Bennett et al. (1995: this volume) compare
the ratio-of-uniforms method with other methods for sampling from full
conditional distributions in nonlinear models.

5.3.3 Adaptive rejection sampling

The practical problem with both rejection sampling and the ratio-of-uni-
forms method is in finding a tight envelope function G or region £. Often
this will involve time-consuming maximizations, exploiting features pecu-
liar to g. However, for the important class of log-concave univariate den-
sities, efficient methods of envelope construction have been developed. A
function g(Y') is log-concave if the determinant of WM\F%W% is non-positive.
In many applications of Gibbs sampling, all full conditional densities
g(Y) are log-concave (Gilks and Wild, 1992). In particular, this is true
for all generalized linear models with canonical link function (Dellaportas
and Smith, 1993). For example, full conditional distributions in the logistic
regression model (5.7) are log-concave. Gilks and Wild (1992) show that,
for univariate Y, an envelope function log Gs(Y) for log g(Y) can be con-
structed by drawing tangents to logg at each abscissa in a given set of
abscissae S. An envelope between any two adjacent abscissae is then con-
structed from the tangents at either end of that interval (Figure 5.3(a)).
An alternative envelope construction which does not require evaluation of

derivatives of logg is given by Gilks (1992). For this, secants are drawn .

through log g at adjacent abscissae, and the envelope between any two ad-
Jacent abscissae is constructed from the secants immediately to the left
and right of that interval (Figure 5.3(b)). For both constructions, the en-
velope is piece-wise exponential, from which sampling is straightforward.
Also, both constructions automatically provide a lower squeezing function
logbs(Y).

Three or four starting abscissae usually suffice, unless the density is ex-
ceptionally concentrated. Both methods require starting abscissae to be
placed on both sides of the mode if the-support of g is unbounded. This
does not involve locating the mode, since gradients of tangents or secants
determine whether the starting abscissae are acceptable. If desired, start-
Ing abscissae can be set with reference to the envelope constructed at the
previous Gibbs iteration.

The important feature of both of these envelope constructions is that
they can be used adaptively. When a Y is sampled, g(Y") must be evaluated
to perform the rejection step. Then, with negligible computational cost,
the point (Y, g(Y)) can be incorporated in the envelope, just as if ¥ had
been among the initial abscissae. This is called adaptive rejection sampling

(ARS):
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(b)

» N

Figure 5.3 Adaptive rejection sampling: (a) tangent method; (b) secant method.
Heavy line: log g(Y); thin line: envelope log Gs(Y); broken line: squeezing func-

tionlogbs(Y); arrows: abscissae used in the construction.
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Initialize S

Repeat {
Sample Y from Gs(.);
Sample U from Uniform(0,1);
It U <g(Y)/Gs(Y) accept Y;
“Include Y in S; }

until one Y is accepted.

At each iteration of ARS, the envelope Gs(Y') is brought closer to g and

the risk of further rejections and function evaluations is reduced. To accept
one Y, the tangent version of adaptive rejection sampling typically involves

about four function evaluations including those at the initial abscissae; for -

the secant version, five or six function evaluations are usually required.
These performance figures are surprisingly robust to location of starting
abscissae and to the form of g. .

Multivariate generalizations of adaptive rejection sampling are possible,
but have not yet been implemented. The amount of computation for such
methods could be of order m5, where m is the number of dimensions. Thus
multivariate adaptive rejection sampling would probably be useful only in
low dimensions.

5.3.4 Metropolis—-Hastings algorithm

When an approximation A(Y) to full conditional g(Y) is available, from
which sampling is easy, it is tempting to sample from h instead of from g.
Then ergodic averages calculated from the output of the Gibbs sampler will
not correspond exactly to x, no matter how long the chain is run. Ritter and
Tanner (1992) propose grid-based methods for approximate sampling from
full conditional distributions, successively refining the grid as the iterations
proceed to reduce the element of approximation. Thus, approximation is
improved at the cost of increasing computational burden. _

Tierney (1991) and Gelman (1992) suggest a way to sample from approx-
imate full conditional distributions whilst maintaining exactly the required
stationary distribution of the Markov chain. This involves using the approx-
imate full conditional % as a proposal distribution in an independence-type
Metropolis—Hastings algorithm (see Gilks et al., 1995b: this volume):

Sample a point Y from A(.);

Sample a Uniform(0, 1) random variable U;

If U <minfl, wArw\\ww%im.\.W_ accept Y;

else set Y equal to Y';

where Y/ = X;, is the ‘old’ value of X ,. Note that only one iteration
of Metropolis—Hastings is required, because if X, is from , then so is
Xi+1 = (Xi41.5, Xt.—5)- Note also that multivariate full conditionals can
be handled using this technique.
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If g(Y) is unimodal and not heavy-tailed, a convenient independence-type
proposal A(Y') might be a normal distribution whose scale and location are
chosen to match g, perhaps via a least-squares fit of log h to log g at sev-

“eral well-spaced points. For more complex g, proposals could be mixtures
- of normals or scale- and location-shifted t-distributions. In general, if h
" approximates g well, there will be few Metropolis—Hastings rejections, and

this will generally assist mixing in the Markov chain. However, there is
clearly a trade-off between reducing the rejection rate and the computa-
tional burden of calculating good approximations to g.

- The above algorithm'is nio longer purely Gibbs sampling: it produces a
different Markov chain but with the same stationary distribution r. The
proposal density h need not be an approximation to g, nor need it be of
the independence type. Tierney (1991) and Besag and Green (1993) suggest
that it can be advantageous to use an A which is distinctly different from

"¢, to produce an antithetic variables effect in the output which will reduce
* "Monte-Carlo standard errors in ergodic averages. Such chains have been
“called ‘Metropolis-Hastings-within-Gibbs’, but as the original algorithm

described by Metropolis et al. (1953) uses single-component updating, the
term ‘single-component Metropolis—-Hastings’ is more appropriate (Besag
and Green, 1993).

5.3.5 Hybrid adaptive rejection and Metropolis—Hastings

Tierney (1991) discusses the use of Metropolis-Hastings in conjunction

- with rejection sampling.  Extending this idea, ARS can be used to sample

adaptively from non-log-concave univariate full conditional distributions.

- For non-log-concave densities, the ‘envelope’ functions Gs(Y') calculated

as described in Section 5.3.3 may not be true envelopes; in places the full
conditional g(Y') may protrude above Gs(Y). Then the sample delivered
by ARS will be from the density proportional to (Y = min[g(Y), Gs(Y))],
where & is the set of abscissae used in the final accept/reject step of ARS.
A sample Y from g can then be obtained by appending the following
Metropolis—Hastings step to ARS:

Sample U from Uniform(0, 1);

It U Mgiu.%w accept Y;
else set Y equal to Y'.

‘Here, as before, Y/ = X, ,. This is adaptive rejection Metropolis sampling

(ARMS) (Gilks et al., 1995a).

ARMS works well when ¢ is nearly log-concave, and reduces to ARS
when g is exactly log-concave. When g is grossly non-log-concave, ARMS
still delivers samples from g, but rejectionsat the Metropolis—Hastings step
will be more frequent. As for ARS, the initial set of abscissae in S may be
chosen to depend on Gs constructed at the previous Gibbs iteration:
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Besag et al. (1995) note that the number of iterations in the repeat loop
of ARS (or ARMS) is unbounded, and suggest using Metropolis~Hastings
to curtail the number of these iterations. Roberts et al, (1995). suggest the
following implementation of that idea. Let ¢ denote the maximum per-
mitted number of iterations of the repeat loop of ARS. If each of the ¢
iterations result in rejection, perform a Metropolis—Hastings step as for
ARMS above, but with A(Y) = Gs(Y) — min[g(Y), Gs(Y')], and using the
value of Y generated at the c** step of ARS. It is unlikely that curtailment
for log-concave g would offer computational advantages, since log-concavity
ensures acceptance of a Y within very few iterations. However, curtailment
for very non-log-concave g may sometimes be worthwhile.

5.4 Discussion

In general, the Gibbs sampler will be more efficient (better mixing) if the
number of components k of X is small (and the dimensionality of the indi-
vidual components is correspondingly large). However, sampling from com-
plex multivariate distributions is generally not possible unless MCMGC itself
Is used, as in Section 5.3.4. Why not therefore abandon Gibbs sampling in
favour of Metropolis—Hastings applied to the whole of X simultaneously?
Often this would be a sensible strategy, but Metropolis-Hastings requires
finding a reasonably efficient proposal distribution, which can be difficult
in problems where dimensions are scaled very differently to each other. In
many problems, Gibbs sampling applied to univariate full conditional dis-
tributions works well, as demonstrated by the wealth of problems efficiently
handled by the BUGS software (Spiegelhalter et al., 1994, 1995a), but for
difficult problems and for robust general-purpose software, hybrid methods
are likely to be most powerful. See Gilks and Roberts (1995: this volume)
for a discussion of techniques for improving the efficiency of MCMC, and
Bennett et al. (1995: this volume) for a comparison of various methods
for sampling from full conditional distributions in the context of nonlinear
models.

FORTRAN code for ARS and C code for ARMS are available from the
author (e-mail wally.gilks@mrc-bsu.cam.ac.uk). .
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Strategies for wwbwwoiwm MCMC

Walter R Gilks
Gareth O Roberts

6.1 Introduction

In many applications raw MCMC methods, in particular the Gibbs sam-
pler, work surprisingly well. However, as models become more complex,
it becomes increasingly likely that untuned methods will not miz rapidly.
That is, the Markov chain will not move rapidly throughout the support of
the target distribution. Consequently, unless the chain is run for very many
iterations, Monte-Carlo standard errors in output sample averages will be
large. See Roberts (1995) and Tierney (1995) in this volume for further
discussion of Monte-Carlo standard errors and Markov chain mixing.

In almost any application of MCMC, many models must be explored
and refined. Thus poor mixing can be ‘severely inhibiting. Run times of the
order of seconds or minutes are desirable, runs taking hours are tolerable,
but longer run times are practically impossible to work with. As models
become more ambitious, the practitioner must be prepared to experiment
“with strategies for improving mixing. Techniques for reducing the amount
of computation per iteration are also important in reducing run times.

In this chapter, we review strategies for improving run times of MCMC.
Our aim is to give sufficient detail for these strategies to be implemented:
further information can be found in the original references. For readers who
are new to MCMC methodology, we emphasize that familiarity with the
material in this chapter is not a prerequisite for successful application of
MCMC; Gilks et al. (1995b: this volume) provide enough information to
permit application of MCMC in straightforward situations.

- For simplicity, we will mostly assiume that the Markov chain takes values
in k-dimensional Euclidean space IR*, although most .of the techniques we. .
discuss apply more generally. The target density (for example a posterior



