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Summary. The measurement and improvement of the quality of health care are important
areas of current research and development. A judgement of appropriateness of medical out-
comes in hospital quality-of-care studies must depend on an assessment of patient sickness
at admission to hospital. Indicators of patient sickness often must be abstracted from medi-
cal records, and some variables are more expensive to measure than others. Quality-of-care
studies are frequently undertaken in an environment of cost restriction; thus any scale mea-
suring patient sickness must simultaneously respect two optimality criteria: high predictive
accuracy and low cost. Here we examine a variable selection strategy for construction of a
scale of sickness in which predictive accuracy is optimized subject to a bound on cost. Con-
ventional model search algorithms (such as those based on standard reversible jump Markov
chain Monte Carlo (RJMCMC) sampling) in our setting will often fail, because of the existence
of multiple modes of the criterion function with movement paths that are forbidden because
of the cost restriction. We develop a population-based trans-dimensional RJMCMC (popula-
tion RJMCMC) algorithm, in which ideas from the population-based MCMC and simulated
tempering algorithms are combined. Comparing our method with standard RJMCMC sam-
pling, we find that the population-based RJMCMC algorithm moves successfully and more
efficiently between distant neighbourhoods of ‘good’ models, achieves convergence faster and
has smaller Monte Carlo standard errors for a given amount of central processor unit time. In
a case-study of n D 2532 pneumonia patients on whom p D 83 sickness indicators were mea-
sured, with marginal costs varying from smallest to largest across the predictor variables by
a factor of 20, the final model chosen by population RJMCMC sampling, on the basis of both
highest posterior probability and specifying the median probability model, was clinically sensi-
ble for pneumonia patients and achieved good predictive ability while capping data collection
costs.
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1. Health care evaluation under cost restrictions

Evaluation of health services for hospitalized patients is an important area of current research
and development (e.g. Ohlssen et al. (2007)). One leading indirect method for quality assessment
(e.g. Goldstein and Spiegelhalter (1996) and Zhang et al. (2006)) involves the comparison of
health outcomes, such as death within 30 days of admission, after adjusting for differences in
sickness at admission. This strategy proceeds by

(a) taking a sample of hospitals and a sample of patients in the chosen hospitals,
(b) obtaining mortality outcomes for the patients sampled (e.g. from central government

databases),
(c) extracting information on admission sickness from the medical records of these patients,
(d) forming an expected mortality rate for each hospital on the basis of (c) and
(e) comparing observed and expected rates of mortality to identify unusual hospitals.

Since this would involve abstracting data from the charts of many thousands of patients if it
were attempted on a large scale, the cost-effective measurement of admission sickness is crucial
to this approach. Progress is being made at present in some countries, including the UK and
USA (e.g. the National Institute for Health and Clinical Excellence (www.nice.org.uk) and
the Centers for Medicare and Medicaid Services (www.cms.hhs.gov)) on realtime electronic
data collection of clinically richer sets of sickness variables for hospital patients than those pre-
viously available from administrative databases, but it is likely to remain true for at least the
next decade that the cost-effective collection of data from non-electronic medical records will
be relevant to the design of quality-of-care studies in health policy. This is particularly true in
countries with an interest in quality-of-care measurement but insufficient resources to be at the
cutting edge in medical informatics.

The assessment of quality of care in this way depends strongly on the disease outcome; for
example, the appropriate admission sickness variables for pneumonia would be quite different
from those for heart attack. For any disease under evaluation, of the order of 100 potential
sickness indicators may be available from hospital records. For pneumonia, on which we focus
in this paper, in the data set with which we work there are 83 sickness variables, such as systolic
blood pressure on the first day after admission, presence or absence of shortness of breath and
blood urea nitrogen level (a measure of kidney functioning). Logistic regression of an adverse
outcome, such as dead or alive within 30 days of admission, on the available sickness indicators
is a common method for creating a sickness scale from which expected mortality rates can be
estimated; standard variable selection methods, such as backward selection from the model
with all predictors, are typically used to find a parsimonious and clinically reasonable model
composed of variables that predict mortality well.

In this paper we use data from a major US study, which was conducted by the RAND
Corporation in the late 1980s (Kahn et al., 1990), of quality of hospital care for n=2532 elderly
patients suffering from pneumonia. Backward selection, as described above, was used to reduce
the initial list of p = 83 available pneumonia predictors to a subset of 14 variables (Keeler
et al., 1990). Table 1 lists the full set of 83 sickness variables, together with their marginal data
collection costs per patient (expressed in minutes of data abstraction time; this could be linearly
transformed to a monetary scale by using the prevailing wage rate for qualified data abstraction
personnel, but there is nothing to be gained from such a transformation). The RAND scale
is identified in the fourth column; the fifth column specifies another variable subset which
was chosen by the methods of Section 3 and further described in Section 4. The 14-variable
scale resulting from RAND’s backward selection approach has merit with respect to simplicity
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and ease of clinical communication, but—when the goal is the creation of a scale of sickness
that may be used prospectively to measure quality of care on a new set of patients not yet
examined—the RAND scale may not be optimal, because it pays no attention to differences in
the cost of data collection among the available predictors (which varied for pneumonia from
30 s to 10 min of abstraction time per variable); in fact, there was a general feeling among
health policy experts whom we consulted that, at 31 min of abstraction time per patient,
the 14-variable RAND scale was too expensive to be useful for large-scale quality-of-care
assessment.

When cost and predictive accuracy must both be considered in seeking an optimal subset of
predictors, there are two ways forward: either

(a) both criteria can be placed on a common scale, trading one against the other, and opti-
mization can occur on that scale, or

(b) one criterion can be optimized, subject to a bound on the other.

Elsewhere (Fouskakis and Draper, 2008; Fouskakis et al., 2009) we explore strategy (a); here we
develop a method for implementing strategy (b), through a cost restriction–benefit analysis. The
practical relevance of the selected variable subsets by using the method of this paper is ensured
by enforcing an overall limit on the total data collection cost of each subset: the search is con-
ducted only among models whose cost does not exceed this budgetary restriction. See Lindley
(1968) and Brown et al. (1998, 2002) for other approaches to incorporating data collection costs
in regression settings.

The structure of the paper is as follows. In the next section, the problem of cost-restricted
variable selection in health evaluation is formulated in the Bayesian paradigm. In Section 3,
we describe the proposed population-based Markov chain Monte Carlo (MCMC) algorithm,
whereas implementation details and experimental results on the pneumonia data set are pre-
sented in Section 4. Section 5 concludes the paper with a brief discussion.

2. Bayesian model comparison for health care evaluation

As an abbreviation we denote a model in this context by γ = .γ1, . . . , γp/, where γj is a binary
indicator taking the value 1 if variable j is included in the model and 0 otherwise, and p is
the total number of predictors. We further denote the likelihood of this model by f.y|βγ , γ/,
the prior distribution of model parameters by f.βγ |γ/ and the corresponding prior model
weight (probability) by f.γ/, where y is the vector of outcomes and βγ is a parameter vector
under model γ, i.e. βγ = .βi : γi = 1, i = 0, 1, . . . , p/. The posterior model probabilities f.γ|y/

are the main tool in Bayesian inference for comparing models (in this case, variable subsets).
These posterior model probabilities are rarely analytically tractable; Markov chain Monte Carlo
methods are usually adopted, such as the reversible jump MCMC (RJMCMC) (Green, 1995)
algorithm. In this approach f.γ|y/ is estimated by sampling from the joint posterior distri-
bution

f.βγ , γ|y/∝f.y|βγ , γ/f.βγ |γ/f.γ/: .1/

In the problem that was described in Section 1, we use a logistic regression model with
response yi equal to 1 if patient i suffering from pneumonia dies within 30 days of admission
and 0 otherwise. We further denote by Xij the sickness predictor variable j for patient i. The
model formulation can be summarized as
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Table 1. Full set of 83 variables, together with their data collection costs per patient
and their status according to the RAND and population RJMCMC approaches†

Index Variable Method

Name‡ Cost RAND Population
cj (min) RJMCMC

1 Systolic blood pressure score 0.5 § §
2 Age 0.5 § §
3 Blood urea nitrogen 1.5 § §
4 APACHE II coma score 2.5 § §
5 Shortness of breath day 1? 1.0 § §
6 Serum albumin score 1.5 §
7 Respiratory distress? 1.0 §
8 Septic complications? 3.0 §
9 Prior respiratory failure? 2.0 §

10 Recently hospitalized? 2.0 §
11 Racbilateral process score 1.5
12 Initial temperature 0.5 § §
13 Heart rate day 1 0.5
14 Chest pain day 1? 0.5
15 Cardiomegaly score 1.5
16 Plural effusion score 1.5
17 Chest X-ray congestive 2.5 §

heart failure score
18 Ambulatory score 2.5 §
19 Endocarditis at admission? 1.5
20 Creatine phosphokinase score 2.0
21 Prior antibiotics? 0.5
22 Prior interstitial lung disease? 0.5
23 Home oxygen use? 1.0
24 Prior pneumonectomy? 0.5
25 Prior tracheostomy? 0.5
26 Prior aminophylline score 0.5
27 Haematologic history score 1.5
28 Cancer score 1.5
29 APACHE heart rate score 1.5
30 Corodaker score 1.0
31 Disease of thorax? 1.0
32 Multiple myeloma? 0.5
33 Immunocompromised? 0.5
34 Residence score 1.0
35 Hepatobiliary history? 0.5
36 Renal history score 1.0
37 APACHE respiratory rate score 1.0 §
38 New lung score 1.0
39 Comorbid aspiration score 0.5
40 APACHE sodium score 2.0
41 APACHE haematocrit score 1.5
42 APACHE white blood cell score 1.5
43 APACHE oxygenation score 1.5
44 Cardiovascular accident score 1.0
45 APACHE potassium score 1.0
46 Admission systolic blood pressure 0.5
47 Congestive heart failure 2.5

chest X-ray score
48 Total APACHE II score 10.0 §
49 Respiratory rate day 1 0.5

(continued)
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Table 1 (continued )

Index Variable Method

Name‡ Cost RAND Population
cj (min) RJMCMC

50 Diastolic blood pressure day 1 0.5
51 Confusion day 1? 0.5
52 Pulmonary vascular congestion score 0.5
53 APACHE venous bicarbonate score 1.5
54 Pulmonary of oedema score 0.5
55 Sum of congestive heart 5.5

failure components
56 Influenza score 0.5
57 Arrest in emergency room score 0.5
58 Biliribin score 1.5
59 Positive blood culture? 0.5
60 Positive urine culture? 0.5
61 Wheezing at admission? 0.5
62 Body system count 2.5 §
63 Morbid prior chronic obstructive 0.5

pulmonary disease score
64 Morbid pulmonary hospitalization score 0.5
65 Comorbid cirrhosis score 0.5
66 Comorbid congestive heart failure score 0.5
67 Comorbid arrhythmias score 0.5
68 Comorbid smoking score 0.5
69 Comorbid alcoholism score 0.5
70 APACHE acidity score 1.0
71 Comorbid nasogastric tubes score 0.5
72 Comorbid steroids score 0.5
73 Morbid + comorbid score 7.5
74 Cardiac history score 0.5
75 Neurologic history score 0.5
76 Oncologic history score 0.5
77 Immunologic history score 0.5
78 Musculoskeletal score 0.5
79 APACHE temperature score 1.0
80 APACHE mean blood pressure score 1.0
81 APACHE creatinine score 1.0
82 Diagnoses score 1.0
83 Sex of patient 0.5

†The fourth and fifth columns are explained in the text. Variables with a question mark
in their names were dichotomous answers to yes–no questions, scored 1, yes, and 0, no;
all other variables (except variable 1, which was also dichotomous) were measured on
quantitative scales with three or more possible values.
‡APACHE: acute physiology and chronic health evaluation.
§Variable chosen.

.yi|γ/
indep∼ Bernoulli{pi.γ/},

ηi.γ/= log

{
pi.γ/

1−pi.γ/

}
=

p∑
j=0

βjγjXij,

η.γ/=X diag.γ/β=Xγβγ ,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.2/

defining Xi0 =1 for all i=1, . . . , n and γ0 =1 with prior probability 1 since the intercept is always
included in all models. Here
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(a) pi.γ/ is the probability of death (which may be thought of as the sickness score) for
patient i under model γ ∈M={0, 1}p,

(b) η.γ/= .η1.γ/, . . . , ηn.γ//T,
(c) γ = .γ0, γ1, . . . , γp/T,
(d) β= .β0, β1, . . . , βp/T,
(e) X = .Xij, i=1, . . . , n; j =0, 1, . . . , p/ and
(f) Xγ is the submatrix of X with columns corresponding to variables included in the model

that are specified by γ.

In Fouskakis et al. (2009) we specified this model structure by using a strategy (a) approach
(trading off cost and predictive accuracy on a common scale), by incorporating the cost of each
variable in the modelling procedure via a cost-penalized prior model probability. The problem
was handled in two stages: first we identified variables with high predictive ability relative to
their cost and then we identified cost-effective models by restricting the model search to only
the ‘good’ variables from stage 1, by using the MC3 (Madigan and York, 1995) and RJMCMC
algorithms as our model search tools. In this paper we ensure the practical relevance of the
final variable subsets that we discover in a different way, by enforcing an overall limit on the
amount of money that it would cost to collect the data with each subset: the search is conducted
only among models whose cost does not exceed this budgetary restriction. Trying to implement
model search algorithms such as MC3 and RJMCMC with this approach will frequently fail if
the best model (with no overall monetary limit) exceeds the cost restriction and we also have
collinear predictors with high predictive ability; the reason for this failure is the multiple modes
that do not communicate since their movement paths are forbidden because of the cost restric-
tions. Therefore in this paper we develop population-based trans-dimensional algorithms that
are based on the approach of Jasra et al. (2007a,b).

To complete the Bayesian model formulation, we use the prior on model parameters

f.βγ |γ/=N{0, 4n.XT
γXγ/−1} .3/

that was motivated by Fouskakis et al. (2009) on the basis of unit information prior consider-
ations (Kass and Wasserman, 1996), and a uniform prior on cost-restricted model space, i.e.

f.γ/∝ I

{
γ ∈M : c.γ/=

p∑
j=1

cjγj �C

}
, .4/

where cj is the marginal cost per observation for variable Xj and C is the overall budgetary
restriction.

3. Population-based trans-dimensional Markov chain Monte Carlo schemes

By the nature of our approach, models γ with total cost larger than C should be a priori excluded,
resulting in the significantly reduced model space MC = {γ ∈ {0, 1}p : Σp

j=1cjγj � C}. In vari-
able selection model search the usual, and simplest, proposed moves are 1-bit flips involving the
addition or removal of a single variable, but under a global cost constraint a more elaborate
strategy is needed to avoid becoming trapped in local optima. To see why this is so, imagine
beginning at the null model; the search algorithm adds some low cost variables until the bud-
getary restriction C is reached. Then, using 1-bit flips, the algorithm can never include a good
variable of high expense, since this will cause the total cost to exceed C. One way to overcome
this is to facilitate proposed moves to models with identical properties to those of the current
model (i.e. the same cost or quality of fit) from remote neighbourhoods. This can be achieved
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with the assistance of population-based MCMC algorithms (Jasra et al., 2007a, b), in which the
difficulty that was identified above can be overcome by running multiple chains and performing
swaps between them.

The main idea of population-based MCMC algorithms is to generate k = 1, . . . , N parallel
auxiliary chains, each of them raised to a different power tk >0, which is called the temperature,
to explore the model space more efficiently. Low values (below 1) of the temperature will result in
flatter target distributions, and therefore the algorithm will explore the model space extensively
by moving to regions that have not been visited much; large values (above 1) of the temperature
will result in steeper target distributions and will yield chains that focus the search around local
modes.

To link the different chains we use the following augmented posterior distribution:

f.β, γ, β.1/, γ.1/, . . . , β.N/, γ.N/|y/∝f.y|β, γ/f.β|γ/f.γ/

×
N∏

k=1
{f.y|β.k/, γ.k//f.β.k/|γ.k//f.γ.k//}tk , .5/

where γ.k/ and β.k/ are the model indicator and its parameter vector respectively in chain k.
In the above posterior, the marginal target distribution f.γ|y/ remains the same but we can
now exchange information between different chains. An important implementation issue is the
specification of the number of chains N and the different temperatures tk in each chain. A large
number of parallel chains is usually considered (see, for example, Jasra et al. (2007a,b)), to use
a sufficient range of temperatures, leading to a computationally expensive algorithm. An exten-
sive number of chains can be avoided if we combine ideas from the population-based MCMC
and simulated tempering algorithms; for details of the latter see Geyer and Thompson (1995).
We propose only N =2 additional auxiliary chains (as in population-based MCMC sampling)
but with temperatures that will vary stochastically (as in simulated tempering). This will enable
the two chains to use a variety of temperatures, allowing them to move in different model space
regions. To achieve an effective exploration of the space, we use large values of the temperature
for the first chain (t1 >1)—therefore, as mentioned above, tending to search in neighbourhoods
that are closer to the highest probability models—and low temperature values for the second
chain (0 <t2 < 1), to visit low probability regions.

The incorporation of stochastic temperatures can be achieved by using pseudopriors gk.tk/.
With this approach the posterior distribution becomes

f.β, γ, β.1/, γ.1/, β.2/, γ.2/, t1, t2|y/∝f.y|β, γ/f.β|γ/f.γ/

×
2∏

k=1
{f.y|β.k/, γ.k//f.β.k/|γ.k//f.γ.k//}tkgk.tk/: .6/

In this manner we can use standard trans-dimensional MCMC algorithms for variable selec-
tion (see, for example, Dellaportas et al. (2002)) to generate values of .β, γ, β.1/, γ.1/, β.2/, γ.2/,
t1, t2/ from the above joint posterior distribution, in a three-step process. Specifically,

(a) the model indicators .γ, γ.1/, γ.2// and their corresponding model parameters .β, β.1/,
β.2// are updated by using RJMCMC steps.

(b) After specifying the model structure in each chain, to ensure the mixing of the algo-
rithm, the model parameters are updated from the corresponding conditional posterior
distributions.

(c) Finally, the temperature tk is generated, in Gibbs sampling, from the conditional posterior
distribution
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f.tk|β, γ, β.1/, γ.1/, β.2/, γ.2/, t\k, y/∝{f.y|β.k/, γ.k//f.β.k/|γ.k//f.γ.k//}tk gk.tk/: .7/

The pseudopriors gk.tk/ in this proposed scheme must be carefully specified so that the temper-
atures generated will help the mixing of the MCMC algorithm that is described below. When a
flat prior for the temperatures tk is used, the conditional distribution (7) is simply an increasing
function of those temperatures. Therefore, we propose to use directly the marginal posterior
distribution of the temperatures tk, f.tk|y/, in the sampling scheme. We use ideas of Geyer and
Thompson (1995) to achieve the desired posterior marginal distribution for the temperatures
tk, given by

f.tk|y/= ∑
γ.k/∈MC

∫
f.β.k/, γ.k/, tk|y/dβ.k/

∝ ∑
γ.k/∈MC

∫
{f.y|tk, β.k/, γ.k//f.β.k/|γ.k//f.γ.k//}tk gk.tk/dβ.k/ .8/

∝Zk.y, tk/gk.tk/,

where Zk.y, tk/ is the marginal likelihood over all possible models for chain k given by

Zk.y, tk/= ∑
γ.k/∈MC

∫
{f.y|tk, β.k/, γ.k//f.β.k/|γ.k//f.γ.k//}tk dβ.k/: .9/

Since the gk.tk/ are pseudopriors, we can set

gk.tk/∝hk.tk/
/

Zk.y, tk/, .10/

where hk.tk/ can be chosen to be convenient density functions that are easy to simulate from,
yielding

f.tk|y/=hk.tk/: .11/

In the Gibbs sampler that is included in the algorithm described below, we generate the tem-
peratures directly from the distributions hk.tk/. With the pseudoprior distributions proposed
we do not need to calculate the normalizing constants Zk.y, tk/; these constants just provide a
justification for simulating the stochastic temperatures from easily specified distributions.

For the selection of hk.tk/ we use

h1.t1/=gamma.t1 −1; a1, b1/,

h2.t2/=beta.t2; a2, b2/,
.12/

where beta.t; a, b/ and gamma.t; a, b/ are the density functions of the beta and gamma distri-
butions respectively, with parameters a and b, evaluated at point t. The specification of the
pseudoparameters .a1, b1, a2, b2/ can be based on pilot tuning until we achieve appropriate
acceptance rates (e.g. 20%).

Our algorithm can be summarized as follows.

Step 1: select initial values for .β, β.1/, β.2// and .γ, γ.1/, γ.2//.
Step 2: for l=1, . . . , L (where L is the number of iterations), repeat the following cycle.

(a) Generate t1 and t2 from f.t1|y/=h1.t1/ and f.t2|y/=h2.t2/ respectively.
(b) For k =0, 1, 2,

(i) sample β.k/ by using Gibbs steps and
(ii) sample γ.k/ by using RJMCMC steps by proposing to change each component

sequentially; thus, for every j ∈{1, . . . , p} (in a random scan),
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(A) with probability 1 propose γ′
.k/ : γ′

j,.k/ = 1 −γj,.k/ and γ′
l,.k/ =γl,.k/ for all

l �= j,
(B) if γj,.k/ = 0 then propose β′

j,.k/ from qj,k.β′
j,.k// and set β′

l,.k/ = βl,.k/ for
l �= j,

(C) accept the proposed move with probability α=min{1, A}, where

A=
{

f.y|β′
.k/, γ

′
.k//f.β′

.k/|γ′
.k//f.γ′

.k//

f.y|β.k/, γ.k//f.β.k/|γ.k//f.γ.k//

}tk
qj,k.βj,.k//

γj,.k/

qj,k.β′
j,.k//

1−γj,.k/
: .13/

In these steps, β.0/ and γ.0/ correspond to the parameters β and γ of the
original chain, and t0 =1 is the temperature of the original chain.

(c) For k =1, 2,
(i) propose with probability 1 to swap .β, γ/↔ .β.k/, γ.k// and
(ii) accept the proposed move with probability α=min{1, A}, where

A=
{

f.y|β.k/, γ.k//f.β.k/|γ′
.k//f.γ′

.k//

f.y|β, γ/f.β|γ/f.γ/

}1−tk

: .14/

This sampling scheme can be enriched with additional moves used in population MCMC sam-
pling (such as mutation and crossover), but in our problem the exchange moves that were
described above were sufficient to achieve good mixing.

In this algorithm, it remains to specify the proposal distributions qj,k.βj,.k//. We use Gaussian
proposals of the form

qj,k.βj,.k//∼N.β̄j,.k/, σ̄
2
j,.k//: .15/

The proposal parameters for the original chain β̄j,.0/ and σ̄2
j,.0/ can be specified by a pilot study

of the full model, by the maximum likelihood estimates of the full model (this is MCMC efficient
only when the prior on the coefficients is diffuse), by a conditional maximization approach (see,
for example, Dellaportas et al. (2002), for details on all these methods), or by more sophisticated
techniques (Brooks et al., 2003). Whatever approach is used for the specification of the original
chain’s proposal parameters, for the remaining parameters we can set

β̄j,.k/ = β̄j,.0/ and σ̄2
j,.k/ = σ̄2

j,.0/=tk for k =1, 2: .16/

The proposal specifications in expression (16) can be derived by considering the following
approximation to the posterior distribution:

f.β.k/|y, γ.k//
∼=N[β̃.k/, {−Hk.β̃.k//}−1], .17/

where β̃.k/ is the value maximizing the heated or cooled log-posterior-density with temperature
tk, which is given by

Λk.β.k//= tk log{f.β.k/, γ.k/|y/} .18/

= c+ tk log{f.y|β.k/, γ.k//}+ tk log{f.β.k/|γ.k//}+ tk log{f.γ.k//};

here c is a constant and Hk.β̃.k// is the Hessian of Λk.β.k// evaluated at its maximum. The
heated or cooled posterior mode β̃.k/ is equal to the mode β̃ of the actual posterior density
(with temperature 1), yielding the first part of expression (16). Moreover, Hk.β̃.k// equals the
second derivative of the posterior with temperature 1 multiplied by the temperature tk, i.e.
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Table 2. Preliminary results: variables with marginal posterior probabilities
f .γj D1jy/ above 0.30 in at least one 100000 population RJMCMC run†

Index Variable name Cost Marginal posterior
probabilities

First Second
run run

1 Systolic blood 0.50 0.98 0.99
pressure score

2 Age 0.50 0.97 0.95
3 Blood urea nitrogen 1.50 0.99 0.91
4 APACHE II coma score 2.50 0.55 1.00
5 Shortness of breath day 1 1.00 0.92 0.80
6 Serum albumin score 1.50 0.40 0.55

12 Initial temperature 0.50 0.91 0.93
37 APACHE respiratory 1.00 0.72 0.79

rate score
46 Admission systolic 0.50 0.45 0.25

blood pressure
49 Respiratory rate day 1 0.50 0.35 0.25
51 Confusion day 1 0.50 0.44 0.01
62 Body system count 2.50 0.55 0.33
70 APACHE acidity score 1.00 0.81 0.73

†Costs are expressed in minutes of abstraction time.

Hk.β̃.k//= tk H.β̃/; .19/

thus the proposal variance of the chain with temperature tk can be defined as the variance of
the chain with temperature 1 divided by tk, as in the second part of expression (16).

4. Implementation and results

We used a total cost limit of 10 min of abstraction time, for two reasons:

(a) medical and health policy experts told us that this would lead to feasible implementation
costs for widespread hospital screening based on comparisons of observed and expected
mortality (with the latter value dependent on a sickness-at-admission scale chosen, for
example, with the methods of this paper) and

(b) we had previously found (Fouskakis et al., 2009) using a different method based on a
cost–benefit trade-off (rather than the cost restriction–benefit analysis that is pursued
here) that costs of 7–8 min of abstraction time were the right order of magnitude for
optimizing cost and predictive accuracy in this problem with this data set.

Initially, the algorithm proposed was used to remove variables with posterior inclusion prob-
abilities f.γj|y/ that were below a threshold value; Barbieri and Berger (2004) have shown
that this approach may lead to the identification of models with better predictive abilities than
approaches that are based on maximizing posterior model probabilities. A threshold value of
0.3 was used for f.γj = 1|y/ to identify and eliminate variables that were not contributing to
models with high posterior probabilities. The pseudoparameters of equation (12) were tuned,
to achieve appropriate acceptance rates (around 20%) for swapping values between chains of
different temperatures, resulting in .a1, b1, a2, b2/= .2, 4, 7, 3/ for the RAND pneumonia data.
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Table 3. Marginal posterior probabilities f .γj D1jy/ in the reduced model space

Variable Results for the population Results for the simple
index RJMCMC algorithm RJMCMC algorithm

100000 iterations 200000 iterations 500000 iterations 500000 iterations 1.5 million iterations

First Second First Second First Second First Second First Second
run run run run run run run run run run

1 0.97 0.98 0.97 0.97 0.97 0.96 0.95 0.96 0.95 0.97
2 0.95 0.96 0.95 0.95 0.95 0.95 0.96 0.95 0.96 0.96
3 0.87 0.87 0.87 0.85 0.85 0.87 0.91 0.87 0.89 0.88
4 1.00 0.85 0.90 1.00 0.96 0.99 1.00 1.00 1.00 1.00
5 0.89 0.89 0.92 0.89 0.89 0.88 0.89 0.87 0.87 0.83
6 0.07 0.06 0.06 0.05 0.05 0.08 0.00 0.00 0.01 0.00

12 0.94 0.95 0.94 0.94 0.93 0.93 0.92 0.94 0.93 0.95
37 0.83 0.89 0.85 0.84 0.84 0.83 0.82 0.90 0.86 0.89
46 0.22 0.31 0.28 0.22 0.26 0.24 0.19 0.19 0.19 0.18
49 0.18 0.16 0.18 0.16 0.17 0.18 0.18 0.11 0.14 0.11
51 0.02 0.17 0.10 0.02 0.06 0.03 0.01 0.01 0.00 0.01
62 0.93 0.94 0.94 0.95 0.95 0.92 1.00 1.00 0.99 1.00
70 0.38 0.48 0.42 0.38 0.41 0.42 0.30 0.33 0.33 0.35

We ran our algorithm for 100000 iterations twice, starting each time from a randomly selected
different initial stage which satisfied the cost constraint; variables with posterior inclusion prob-
abilities below 0.3 in both runs were eliminated. In this manner, the number of explanatory
variables was reduced from 83 to 13. Table 2 presents the reduced set of variables together with
their costs and marginal posterior probabilities in both runs. It is evident that, with only 100000
monitoring runs, for some variables there are differences between the marginal inclusion prob-
abilities that were evaluated in the two runs. However, the purpose of this step in the algorithm
(Section 2) is to eliminate variables with very low marginal inclusion probabilities, to reduce the
size of the model space substantially without undue computation, and for this the algorithm’s
first step was successful.

In the reduced model space, various runs of our population RJMCMC algorithm were per-
formed using two replications each of 100000, 200000 and 500000 monitoring iterations. For
comparison, we also ran the simple RJMCMC algorithm twice for 500000 and 1.5 million itera-
tions; in central processor unit (CPU) clock time the population RJMCMC approach is almost
exactly a third of the speed of the simple RJMCMC algorithm, so a fair comparison in clock
time can be achieved by comparing the 500000 population and 1.5 million simple RJMCMC
results (Appendix A gives further computing details). To ensure convergence, we started each
chain from randomly selected models, all satisfying the cost constraint, and we removed the first
10000 iterations as a burn-in. The effect of the cost constraint on the model space was evident
by monitoring the total cost of the models visited. For instance, in both 500000 population
RJMCMC runs, about 90% of the models visited had costs equal to the cost limit of 10 min,
and fewer than 1.5% models visited had cost less than 9.5 min.

Table 3 presents the marginal posterior probabilities for all runs (Rao–Blackwellization made
almost no difference in this case; we report non-Rao–Blackwellized estimates for simplicity).
Differences in the marginal posterior inclusion probabilities between the two runs at each num-
ber of monitoring iterations indicate lack of convergence for population RJMCMC sampling
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Table 4. Reduced model space: MCSEs (in percentage points) of marginal inclusion posterior probabilities†

Type Run Iterations X1 X2 X3 X4 X5 X6 X12 X37 X46 X49 X51 X62 X70

P 1 500000 0.5 0.2 0.6 1.8 1.0 1.1 0.6 1.1 1.2 1.1 1.7 1.1 1.2
P 2 500000 0.4 0.1 0.5 0.7 1.1 1.2 0.5 0.9 0.9 1.0 0.8 1.2 1.5
P 1 200000 0.5 0.2 0.9 2.0 1.3 1.7 0.6 1.3 1.6 1.3 2.0 1.7 1.9
P 2 200000 0.5 0.3 1.1 0.0 1.3 1.2 0.7 1.4 1.1 1.4 0.2 1.2 1.5
P 1 100000 0.9 0.3 1.3 0.0 1.9 2.1 1.0 2.0 1.5 1.9 0.3 2.1 2.5
P 2 100000 0.5 0.2 1.0 2.3 1.8 1.5 0.6 1.3 2.0 1.5 2.3 1.5 2.8
S 1 500000 2.3 0.9 1.9 0.0 3.7 0.0 2.7 3.5 2.8 3.4 0.3 0.0 4.1
S 2 500000 2.0 0.4 1.5 0.0 3.7 0.0 2.7 4.0 2.2 4.0 0.3 0.0 4.0
S 1 1.5 million 1.2 0.2 1.2 0.0 2.6 1.4 1.6 2.4 1.4 2.4 0.1 1.4 2.8
S 2 1.5 million 1.3 0.4 1.0 0.0 3.3 0.0 1.7 2.3 1.5 2.3 0.2 0.0 3.1

†S refers to the simple and P to the population RJMCMC runs.

Table 5. Reduced model space: relative comparisons (ratios of the 1.5 million simple (S) RJMCMC MCSEs
over the MCSEs of each population (P ) RJMCMC run)

P iterations X1 X2 X3 X4 X5 X6 X12 X37 X46 X49 X51 X62 X70

First 1.5 million 500000 2.4 1.0 2.0 0.0 2.6 1.3 2.7 2.2 1.2 2.2 0.1 1.3 2.3
S run versus P 200000 2.4 1.0 1.3 0.0 2.0 0.8 2.7 1.9 0.9 1.9 0.1 0.8 1.5

100000 1.3 0.7 0.9 — 1.4 0.7 1.6 1.2 0.9 1.3 0.3 0.7 1.1
Second 1.5 million 500000 3.2 4.0 2.0 0.0 3.0 0.0 3.4 2.6 1.7 2.3 0.3 0.0 2.1

S run versus P 200000 2.6 1.3 0.9 — 2.5 0.0 2.4 1.6 1.4 1.6 1.0 0.0 2.1
100000 2.6 2.0 1.0 0.0 1.8 0.0 2.8 1.8 0.8 1.5 0.1 0.0 1.1

based on the 100000 and 200000 runs, but minimal differences are observed after running the
algorithm for 500000 iterations. By contrast, for the 500000 simple RJMCMC runs, variables
X37 and X49 have marginal posterior inclusion probability differences above 6 percentage points,
whereas variable X6 was never included in any model visited and variable X4 was always included
in all models visited. With 1.5 million iterations the simple RJMCMC algorithm is more stable
according to this measure of convergence.

We estimated the Monte Carlo standard errors (MCSEs) for the inclusion probabilities, on
the basis of the batch mean method (Geyer, 1992) with 50 batches, to examine the variability
due to simulation. Table 4 presents these MCSEs for all the runs; the ratios of the simple (S)
1.5 million RJMCMC MCSEs over the corresponding values produced in each population (P)
RJMCMC run are also given in Table 5. (Zero values in the relative comparisons indicate no
variability between the batches in the simple RJMCMC runs, whereas the dashes (—) indicate
no variability between the batches in the population RJMCMC runs. Absence of variability
between batches may be considered as a sign of a possibly poor exploration of the model space.)
The median MCSE ratio S=P with 1.5 million and 500000 iterations for simple and population
RJMCMC sampling respectively—a comparison that (as noted above) holds CPU clock time
constant for the two algorithms—was 2.03; in other words, it would require simple RJMCMC
sampling approximately 2:032 =4:1 times more clock time than population RJMCMC sampling
to achieve the same Monte Carlo accuracy in estimating posterior marginal inclusion probabil-
ities for the variables. The corresponding median ratio values for 1.5 million (S) versus 200000
and 100000 (P) were 1.36 and 1.11 respectively, so even the 100000 population RJMCMC runs
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Table 6. Reduced model space: posterior model probabilities above 3% and posterior odds (PO1k) of the
best model within each analysis versus the current model k†

k m Common Additional Model PO1k
variables variables probability

Population RJMCMC: first run (500000 iterations)
1 m1 X1 +X12 +X37 +X3 +X5 +X62 0.4872 1.00
2 m2 +X5 +X46 +X62 +X70 0.1202 4.05
3 m3 +X3 +X70 0.0894 5.45
4 m4 +X3 +X5 +X6 +X70 0.0344 14.16

Population RJMCMC: second run (500000 iterations)
1 m1 X1 +X12 +X37 +X3 +X5 +X62 0.4879 1.00
2 m2 +X5 +X46 +X62 +X70 0.1052 4.63
3 m3 +X3 +X62 +X70 0.0982 4.97
4 m4 +X3 +X5 +X6 +X70 0.0498 9.80

Simple RJMCMC: first run (1.5 million iterations)
1 m1 X62 +X1 +X3 +X5 +X12 +X37 0.6159 1.00
2 m3 +X1 +X3 +X12 +X37 +X70 0.1061 5.80
3 m2 +X1 +X5 +X12 +X37 +X46 +X70 0.0926 6.65
4 m5 +X3 +X5 +X46 +X49 +X70 0.0403 15.28

Simple RJMCMC: second run (1.5 million iterations)
1 m1 X1 +X12 +X37 +X62 +X3 +X5 0.5912 1.00
2 m3 +X3 +X70 0.1525 3.88
3 m2 +X5 +X46 +X70 0.1041 5.68

†The second column refers to the model indicator of the five different models appearing in the table. Variables X2
and X4 were common to all models. All models appearing in the table had a total cost of 10 min (the cost limit).

had higher median Monte Carlo accuracy than the 1.5 million simple RJMCMC runs (and the
clock time for the former was a fifth that of the latter).

Table 6 presents the models with posterior model probabilities above 3% (in descending
order) for all 500000 and 1.5 million population and simple RJMCMC runs. Posterior odds of
the highest posterior probability model compared with the other models are also provided. For
the two 500000 population RJMCMC runs, the same highest probability models were obtained,
with exactly the same order and with minor differences between their posterior probabilities.
In contrast, there is rather less agreement between the 1.5 million simple RJMCMC runs.
Specifically, three highest probability models are common in both runs, but with rather differ-
ent estimated probabilities, whereas one additional model was indicated by the first run. Other
differences between population and simple RJMCMC runs are also evident: for example, the
fourth highest probability model of population RJMCMC sampling was never visited by simple
RJMCMC sampling, and there are large differences between the posterior probabilities of the
common best models obtained by the two algorithms, resulting in some cases in different rank
ordering.

Results from Table 6 can be used for the implementation of Bayesian model averaging (see,
for example, Draper (1995)), or for the selection of a single model, based on the highest
posterior probability. Using the 500000 population RJMCMC runs, the latter approach spec-
ifies the inclusion of variables {1, 2, 3, 4, 5, 12, 37, 62} (identified in the fifth column in Table 1).
Alternatively, the median probability model (Barbieri and Berger, 2004), which incorporates
all variables with marginal posterior inclusion probabilities that are greater than 0.5, can be
selected. According to Table 3, for the 500000 population RJMCMC runs, this method leads
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Table 7. Reduced model space: MCSEs of the posterior
model probabilities for models .m1,. . . ,m4/ from Table 6 in all
runs†

Type Run Iterations MCSEs (percentage points)

m1 m2 m3 m4

P 1 500000 1.2 0.5 0.9 0.7
P 2 500000 1.5 0.4 1.0 0.7
P 1 200000 1.9 0.8 1.1 1.2
P 2 200000 1.6 1.0 1.1 0.9
P 1 100000 2.5 1.2 1.7 1.5
P 2 100000 2.7 0.9 1.6 1.2
S 1 500000 4.2 1.3 3.2 0.0
S 2 500000 4.2 1.7 3.6 0.0
S 1 1.5 million 2.9 1.1 2.1 1.0
S 2 1.5 million 3.1 0.9 3.1 0.0

†S refers to the simple and P to the population RJMCMC runs.

Table 8. Reduced model space: relative comparisons (ratios
of the 1.5 million simple (S) RJMCMC MCSEs over the MCSEs
of each population (P ) RJMCMC run)

P iterations Relative comparisons

m1 m2 m3 m4

First 1.5 million 500000 2.4 2.2 2.3 1.4
S run versus P 200000 1.5 1.4 1.9 0.8

100000 1.2 0.9 1.2 0.7
Second 1.5 million 500000 2.1 2.3 3.1 0.0

S run versus P 200000 1.9 0.9 2.8 0.0
100000 1.2 1.0 1.9 0.0

to the same single model as before. Physician experts have told us that this model is clinically
sensible for pneumonia: it examines the cardiovascular system of the patient (through a sys-
tolic blood pressure score), the kidney function (through a blood urea nitrogen measurement),
the patient’s responsiveness and neurological function (through a coma score), the severity of
the patient’s pneumonia (through a measurement of shortness of breath, a respiratory rate
score and a temperature reading: low body temperature is a bad sign for pneumonia patients
that the infection is not being fought) and two overall measures of function (the patient’s age
and a count of how many body systems are compromised by the primary illness and comor-
bidities).

Tables 7 and 8 present the Monte Carlo standard errors (again by using the batch mean
method) of the posterior model probabilities for the best models that were obtained by the
500000 population RJMCMC method in all runs, together with the ratios of the simple (S)
1.5 million RJMCMC MCSEs over the corresponding values produced in each population (P)
RJMCMC run. The median MCSE ratio S=P with 1.5 million and 500000 iterations for simple
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and population RJMCMC sampling was 2.23, so (similarly to the previous conclusion about
marginal inclusion probabilities) it would require simple RJMCMC sampling approximately
2:232 = 4:9 times more clock time than population RJMCMC sampling to achieve the same
Monte Carlo accuracy in estimating posterior model probabilities. The corresponding median
ratio values for 1.5 million (S) versus 200000 and 100000 (P) were 1.45 and 1.07 respectively,
so (once again) even the 100000 population RJMCMC runs had higher median Monte Carlo
accuracy than the 1.5 million simple RJMCMC runs (and required less clock time by a factor
of 5).

Table 9 explores the cost–model dimension–accuracy trade-offs between the five models that
were identified in Table 6 and the RAND 14-variable scale, by summarizing the deviance (calcu-
lated on the entire data set), total cost (in minutes of abstraction time) and number of variables.
Two observations are noteworthy:

(a) model m5, with posterior probability in excess of 4% according to one of the 1.5 million
simple RJMCMC runs, has the same cost and dimension as m1 and m3 (two of the four
best models that were identified in a stable manner by both of the 500000 population
RJMCMC runs) but a substantially worse deviance value, and

(b) the RAND scale achieves a deviance that is about 1% lower than the corresponding val-
ues for models m1–m4 (the high posterior probability models from population RJMCMC
sampling), but with a data collection cost that is 210% higher and a model dimension
that is 56–75% higher.

It may be thought, from an examination of the population RJMCMC algorithm that was
summarized in Section 3—in particular, step 2(b)(ii) of that algorithm, which is based on 1-bit
flips—that the algorithm might be improved by enriching the neighbourhood structure with
more complicated moves (such as 2-bit swaps, in which a variable is added and another is simul-
taneously removed). However, because at every iteration our algorithm does not simply propose
a single 1-bit flip but instead proposes p such moves (one for each variable, as in step 2(b)(ii)(A),
which is embedded in a loop across all the variables), in fact our neighbourhood structure is
already much richer than that induced by single 1-bit flips; if the dimension of the model at stage
t is k the dimension of the model at stage t +1 can easily be much bigger or smaller. Fig. 1 gives
density and time series plots of the model dimension for one of the 1.5 million simple RJMCMC
and one of the 500000 population RJMCMC runs (with the former thinned by a factor of 3 to
produce visual comparability; the conclusions are the same with the entire 1.5 million series).
The mean and standard deviation of dimension for the simple and population RJMCMC runs
were .8:12, 0:38/ and .8:27, 0:54/ respectively; the population RJMCMC standard deviation is

Table 9. Comparison of the models identified
in Table 6 and the RAND 14-variable model, on
deviance, total cost and model dimension

Model Deviance Total cost Dimension

m1 1610.0 10 8
m2 1606.7 10 9
m3 1612.8 10 8
m4 1608.6 10 9
m5 1616.5 10 8
RAND 1587.3 31 14
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44% larger, indicating substantially greater movement for this algorithm with respect to model
dimension than for simple RJMCMC sampling (this is confirmed visually from the time series
plots in Fig. 1). Fig. 2 gives density and time series plots for the sequential change score for both
algorithms; this counts the number of variables in the model at iteration t +1 that are different
from those in the model at iteration t. For simple RJMCMC sampling the mean of this score
is 0.09, and 98% of the time there is no change in variables from one iteration to the next; for
population RJMCMC sampling the mean is 1.99 and a sequential change score of 0 occurs
only 42% of the time. Fig. 3 gives density and time series plots for the model cost for the two
algorithms. It is evident that population RJMCMC sampling is considerably more adventurous
than simple RJMCMC sampling in its willingness to move away from models with cost equal
to the imposed limit (10), in pursuit of other models with cost 10 that have even better predic-
tive performance: the standard deviation of cost for population RJMCMC sampling (0.15) is
44% larger than that for simple RJMCMC sampling (0.11), and simple RJMCMC sampling
spends only 4% of its time with models of cost less than 10, whereas the corresponding value
for population RJMCMC sampling is 8%.

To summarize the findings of this section, population RJMCMC sampling moved success-
fully between distant neighbourhoods of good models, achieving convergence in a reasonable
number of iterations, whereas simple RJMCMC sampling explored the model space poorly, as
indicated by the estimated posterior model probabilities, the Monte Carlo standard errors and
the sequential change scores. The final model that was chosen by population RJMCMC sam-
pling, both on the basis of highest posterior probability and specifying the median probability
model, is clinically sensible for pneumonia patients and achieves good predictive ability while
capping data collection costs.

5. Discussion

In this paper, we have addressed a Bayesian variable selection problem arising in a health evalua-
tion study, accounting for the data collection cost of each predictor while imposing a budgetary
constraint on the total cost. In such problems, the implementation of standard model search
algorithms, such as simple RJMCMC sampling, will fail, since multiple modes may exist on
the cost boundary restriction. Therefore, we developed a population-based trans-dimensional
RJMCMC algorithm (population RJMCMC sampling), combining ideas from the population-
based MCMC and simulated tempering algorithms. Computation is performed using popula-
tion RJMCMC sampling in two stages: firstly to reduce the model space by dropping variables
with low marginal posterior probabilities and secondly to estimate posterior model probabili-
ties in the reduced space. Comparing the proposed technique with simple RJMCMC sampling,
we find that the population RJMCMC algorithm explores the model space efficiently and con-
verges much faster, with lower Monte Carlo standard errors (for a given amount of CPU time)
than simple RJMCMC sampling. The final model identified by population RJMCMC sam-
pling achieves clinical plausibility and an effective cost restriction–benefit trade-off between
data collection cost and predictive accuracy.

Future health policy work that is motivated by this study would include formulating the entire
problem of quality-of-care monitoring on the basis of comparisons of observed and expected
mortality in Bayesian decision theoretic terms: given a fixed budget for monitoring all the hos-
pitals in an administrative region (e.g. a county, state or nation), what are the optimal numbers
of hospitals and patients per hospital to sample, and what is the optimal subset of predictors of
sickness to use when the problem is viewed in this broader context?

In terms of population-based MCMC algorithms, two useful extensions are as follows.
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(a) It would be a further step forward to identify a Monte Carlo estimator that makes use of
the generated data from all the parallel chains and not only from the original chain; see
Coluzza and Frenkel (2005) and Gramacy et al. (2007) for suggestions on how this might
be accomplished in contexts that are similar to ours. This would increase the efficiency of
the MCMC sampler, reducing the Monte Carlo error and resulting in a computationally
faster algorithm.

(b) Our algorithm can be extended in a straightforward manner to improve the mixing of the
MC3 algorithm (Madigan and York, 1995), which is used in graphical and normal linear
models and models for qualitative data.
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Appendix A

Using efficient and optimized C code running under LINUX on a Pentium Celeron machine with 3.66
GHz of CPU speed and 1 Gbyte of random-access memory, we estimate that the clock times for both
500000 monitoring iterations with the population RJMCMC method and 1.5 million iterations with
simple RJMCMC sampling would be approximately 4725 min (about 3.3 days).

References

Barbieri, M. D. and Berger, J. O. (2004) Optimal predictive model selection. Ann. Statist., 32, 870–897.
Brooks, S. P., Giudici, P. and Roberts, G. O. (2003) Efficient construction of reversible jump Markov chain Monte

Carlo proposal distributions (with discussion). J. R. Statist. Soc. B, 65, 3–55.
Brown, P. J., Vannucci, M. and Fearn, T. (1998) Multivariate Bayesian variable selection and prediction. J. R.

Statist. Soc. B, 60, 627–641.
Brown, P. J., Vannucci, M. and Fearn, T. (2002) Bayes model averaging with selection of regressors. J. R. Statist.

Soc. B, 64, 519–536.
Coluzza, I. and Frenkel D. (2005) Virtual-move parallel tempering. ChemPhysChem, 6, 1779–1783.
Dellaportas, P., Forster, J. J. and Ntzoufras, I. (2002) On Bayesian model and variable selection using MCMC.

Statist. Comput., 12, 27–36.
Draper, D. (1995) Assessment and propagation of model uncertainty (with discussion). J. R. Statist. Soc. B, 57,

45–97.
Fouskakis, D. and Draper, D. (2008) Comparing stochastic optimization methods for variable selection in binary

outcome prediction, with application to health policy. J. Am. Statist. Ass., to be published.
Fouskakis, D., Ntzoufras, I. and Draper, D. (2009) Bayesian variable selection using cost-adjusted BIC, with

application to cost-effective measurement of quality of health care. Ann. Appl. Statist., to be published.
Geyer, C. J. (1992) Practical Markov Chain Monte Carlo (with discussion). Statist. Sci., 7, 473–511.
Geyer, C. J. and Thompson, E. A. (1995) Annealing Markov Chain Monte Carlo with applications to ancestral

inference. J. Am. Statist. Ass., 90, 909–920.
Goldstein H. and Spiegelhalter, D. J. (1996) League tables and their limitations: statistical issues in comparisons

of institutional performance (with discussion). J. R. Statist. Soc. A, 159, 385–443.
Gramacy, R. B., Samworth, R. J. and King, R. (2007) Importance tempering. Technical Report. Statistical Lab-

oratory, University of Cambridge, Cambridge.
Green, P. (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian model determination.

Biometrika, 82, 711–732.
Jasra, A., Stephens, D. A. and Holmes, C. C. (2007a) Population-based reversible jump MCMC. Biometrika, 94,

787–807.
Jasra, A., Stephens, D. A. and Holmes, C. C. (2007b) On population-based simulation for static inference. Statist.

Comput., 17, 263–279.



Bayesian Variable Selection and Evaluation 403

Kahn, K., Rubenstein, L., Draper, D., Kosecoff, J., Rogers, W., Keeler, E. and Brook, R. (1990) The effects of the
DRG-based Prospective Payment System on quality of care for hospitalized Medicare patients: an introduction
to the series (with editorial comments). J. Am. Med. Ass., 264, 1953–1997.

Kass, R. E. and Wasserman, L. (1996) The selection of prior distributions by formal rules. J. Am. Statist. Ass.,
91, 1343–1370.

Keeler, E., Kahn, K., Draper, D., Sherwood, M., Rubenstein, L., Reinisch, E., Kosecoff, J. and Brook, R. (1990)
Changes in sickness at admission following the introduction of the Prospective Payment System. J. Am. Med.
Ass., 264, 1962–1968.

Lindley, D. V. (1968) The choice of variables in multiple regression (with discussion). J. R. Statist. Soc. B, 30,
31–66.

Madigan, D. and York, J. (1995) Bayesian graphical models for discrete data. Int. Statist. Rev., 63, 215–232.
Ohlssen, D. I., Sharples, L. D. and Spiegelhalter, D. J. (2007) A hierarchical modelling framework for identifying

unusual performance in health care providers. J. R. Statist. Soc. A, 170, 865–890.
Zhang, M., Strawderman, R. L., Cowen, M. E. and Wells, M. T. (2006) Bayesian inference for a two-part hierar-

chical model: an application to profiling providers in managed health care. J. Am. Statist. Ass., 101, 934–945.


