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In the field of quality of health care measurement, one approach to as-
sessing patient sickness at admission involves a logistic regression of mortal-
ity within 30 days of admission on a fairly large number of sickness indica-
tors (on the order of 100) to construct a sickness scale, employing classical
variable selection methods to find an “optimal” subset of 10–20 indicators.
Such “benefit-only” methods ignore the considerable differences among the
sickness indicators in cost of data collection, an issue that is crucial when
admission sickness is used to drive programs (now implemented or under
consideration in several countries, including the U.S. and U.K.) that attempt
to identify substandard hospitals by comparing observed and expected mor-
tality rates (given admission sickness). When both data-collection cost and
accuracy of prediction of 30-day mortality are considered, a large variable-
selection problem arises in which costly variables that do not predict well
enough should be omitted from the final scale.

In this paper (a) we develop a method for solving this problem based on
posterior model odds, arising from a prior distribution that (1) accounts for
the cost of each variable and (2) results in a set of posterior model probabil-
ities that corresponds to a generalized cost-adjusted version of the Bayesian
information criterion (BIC), and (b) we compare this method with a decision-
theoretic cost-benefit approach based on maximizing expected utility. We use
reversible-jump Markov chain Monte Carlo (RJMCMC) methods to search
the model space, and we check the stability of our findings with two vari-
ants of the MCMC model composition (MC3) algorithm. We find substantial
agreement between the decision-theoretic and cost-adjusted-BIC methods;
the latter provides a principled approach to performing a cost-benefit trade-
off that avoids ambiguities in identification of an appropriate utility structure.
Our cost-benefit approach results in a set of models with a noticeable re-
duction in cost and dimensionality, and only a minor decrease in predictive
performance, when compared with models arising from benefit-only analy-
ses.
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1. Introduction. An important topic in health policy is the assessment of the
quality of health care offered to hospitalized patients. Quality of care is usually
thought to depend mainly on three ingredients [e.g., Donabedian and Bashshur,
(2002)]: (i) process, which is what health care providers do on behalf of patients,
(ii) outcomes, which are what happens to patients as a result of the care they re-
ceive, and (iii) patient sickness at admission, because the appropriateness of out-
comes cannot be judged without taking account of the burden of illness brought to
the hospital by its patients.

A direct audit of the processes of care is usually regarded as the single most
informative component in an evaluation of quality, but process is much more ex-
pensive to measure than outcomes or admission sickness [e.g., Kahn et al. (1990a);
Schuster et al. (2005)]. Interest has therefore focused in recent years, in coun-
tries such as the United States and the United Kingdom, on an indirect method
of assessment—which might be termed the input-output approach1 [e.g., Draper
(1995); Olhssen et al. (2007)]—in which hospital outcomes (for instance, death
within 30 days of admission) are compared after adjusting for differences in inputs
(sickness at admission). The idea is to treat what goes on inside the hospital—
process—as a black box, with the contents of the box inferred by examining its
outputs after taking account of its inputs.

1.1. Indirect measurement of quality of health care. In practice, to indirectly
measure quality of care at any given moment in time, this strategy proceeds by
(a) taking a sample of hospitals and a sample of patients in the chosen hospi-
tals, (b) obtaining mortality outcomes for the sampled patients (e.g., from central
government data bases), (c) extracting information on admission sickness from
the medical records of these patients, (d) forming an expected mortality rate for
each hospital based on (c), and (e) comparing observed and expected mortality
rates to identify unusual hospitals (on both the “good” and “bad” ends of the spec-
trum). Since this would involve abstracting data from the charts of many thousands
of patients if it were attempted on a large scale, the cost-effective measurement
of admission sickness is crucial to this approach. Progress is being made in the
U.S. [see, e.g., CMS (2008), for details on Medicare’s plans to compile a Uniform
Clinical Data Set] and elsewhere on real-time electronic data collection of clini-
cally richer sets of process and sickness variables for hospital patients than those
previously available from administrative data bases, but it is likely to remain true
for at least the next decade that cost-effective collection of data from nonelectronic
medical records will be relevant to the design of quality of care studies in health
policy [see, e.g., NDNQI (2008), and CalNOC (2008), for current examples, in the
field of nursing quality assessment, where extensive nonautomated primary data

1In the U.K. this approach is also referred to as league-table quality assessment [e.g., Goldstein
and Spiegelhalter (1996)], by analogy with the process of ranking football (soccer) teams; in the
U.S. and elsewhere it is also called provider profiling [e.g., Zhang et al. (2006)].
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collection is both ongoing and planned]. This is particularly true in countries with
an interest in quality of care measurement but insufficient resources to be at the
cutting edge in medical informatics.

Quality of care assessment is a highly disease-specific activity: for instance,
the best admission sickness variables to examine for pneumonia would be quite
different from those for heart attack.2 With any given disease there will be on
the order of 100 separate variables potentially available in the medical record that
are directly or indirectly related to admission sickness. In the case of pneumonia,
for example, on which we focus in this paper, a list of the important variables
from a clinical perspective would include such things as systolic blood pressure on
day 1 of admission, the presence or absence of shortness of breath, and the blood
urea nitrogen level (a measure of kidney functioning).

1.2. Standard benefit-only variable-selection approach. One standard method
for creating an expected mortality rate from these admission sickness inputs is
logistic regression, with 30-day death as the outcome, and using a nationally-
representative sample of patients to normalize the expectation to average care
across the nation. Typically a frequentist variable-selection method—such as back-
ward selection from the model with all predictors—is employed to find a parsi-
monious and clinically reasonable subset of the available sickness variables. In a
major U.S. study conducted by the RAND Corporation, of quality of hospital care
for 16,758 elderly patients in the late 1980s [Kahn et al. (1990b)], this approach
was used to reduce the initial list of p = 83 available sickness indicators gathered
on the n = 2,532 pneumonia patients in the study down to a core of 14 predictors
[Keeler et al. (1990)].

As good as the resulting scale may be on grounds of simplicity and ease of
clinical communication, we take the view in this paper that—when the goal is the
creation of a sickness scale that may be used prospectively to measure quality of
care on a new set of patients not yet examined—the original RAND approach is
sub-optimal, because it takes no account of differences in the cost of data collec-
tion among the available predictors (which varied for pneumonia from 30 seconds
to 10 minutes of abstraction time per variable). The RAND approach represents
a kind of benefit-only analysis; we propose a cost-benefit analysis, in which vari-
ables are chosen for the final scale only when they predict mortality well enough
given how much they cost to collect. The relevance of this cost-benefit perspective
is seen by noting that, in practice, the amount of money devoted to quality assess-
ment will almost invariably be constrained, so that money wasted on excess data

2Note that this approach to quality assessment is effective only with diseases, such as pneumonia
and heart attack, for which there is a strong process-outcome link (i.e., such that good care leads
to good outcomes and bad care to bad outcomes); with an incurable illness given present medical
understanding (such as end-stage renal disease), mortality is irrelevant, since all patients die relatively
quickly no matter what processes of care they receive.
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TABLE 1
The RAND admission sickness scale for pneumonia (p = 14 variables), with the marginal data
collection costs per patient for each variable (in minutes of abstraction time); columns 4–6 are

explained in Section 4.2

Method

Variable Utility RJMCMC

Cost Posterior
Index Name (minutes) Good? Good? probability

1 Systolic blood pressure 0.5 ∗∗ ∗∗ 0.99
score (2-point scale)

2 Age 0.5 ∗ ∗∗ 0.99
3 Blood urea nitrogen 1.5 ∗∗ ∗∗ 1.00
4 APACHE II coma 2.5 ∗∗ ∗∗ 1.00

score (3-point scale)
5 Shortness of breath day 1 (yes, no) 1.0 ∗∗ ∗∗ 0.99
6 Serum albumin score (3-point scale) 1.5 ∗ ∗∗ 0.55
7 Respiratory distress (yes, no) 1.0 ∗ ∗∗ 0.92
8 Septic complications (yes, no) 3.0 0.00
9 Prior respiratory failure (yes, no) 2.0 0.00

10 Recently hospitalized (yes, no) 2.0 0.00
12 Initial temperature 0.5 ∗ ∗∗ 0.95
17 Chest X-ray congestive 2.5 0.00

heart failure score (3-point scale)
18 Ambulatory score (3-point scale) 2.5 0.00
48 Total APACHE II 10.0 0.00

score (36-point scale)

collection costs could be better spent on obtaining (e.g.) a larger sample size at the
patient and/or hospital levels.

Table 1 lists the 14 variables chosen by the benefit-only RAND approach, to-
gether with their marginal data collection costs per patient (expressed in minutes of
data abstraction time; this could be transformed to a monetary scale with a map of
the form c �→ α c with α > 0, using the prevailing wage rate for qualified data ab-
straction personnel, but there is nothing to be gained from such a transformation).
The full list of all 83 sickness indicators for pneumonia is examined in Section 4.2,
where columns 4–6 of Table 1 are explained.

1.3. Cost-benefit and cost-restriction-benefit analyses. Weighing data-collec-
tion costs against the accuracy of prediction creates a large variable-selection prob-
lem; for example, with p = 83 it is necessary to compare 283 .= 9.7 · 1024 subsets
of sickness variables in order to find the optimal subset. Solving this problem by
brute-force examination of all 1025 models is sharply infeasible given contempo-
rary computing resources.
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Following Fouskakis (2001), suppose (a) the 30-day mortality outcome Yi and
data on p sickness indicators (Xi1, . . . ,Xip) have been collected on n individuals
chosen exchangeably from a population P of patients with a given disease, and (b)
the goal is to predict the death outcome for n∗ new patients who will in the future
be sampled randomly from P , (c) on the basis of some or all of the predictors Xj ,
when (d) the marginal costs of data collection per patient c1, . . . , cp for the Xj

vary considerably. What is the best subset of the Xj to choose based on both the
quality and the cost of obtaining the predictions?

In problems such as this, in which there are two desirable criteria—in this case,
low cost and high predictive accuracy—that compete, and over which a joint opti-
mization must be achieved, there are two main ways to proceed:

(a) (cost-benefit) both criteria can be placed on a common scale, trading one off
against the other, and optimization can occur on that scale, or

(b) (cost-restriction-benefit) one criterion can be optimized, subject to a bound on
the other.

Here we present results from one possible implementation of approach (a), in
which we identify a prior distribution that (1) accounts for the cost of each vari-
able in a natural way and (2) results in a set of posterior model probabilities that
correspond to a generalized cost-adjusted version of the Bayesian information cri-
terion (BIC). To incorporate preferences based on costs of the variables, we use a
Laplace approximation to obtain a cost-based penalty for each variable. After set-
ting up the prior model and variable probabilities, we use reversible-jump Markov
chain Monte Carlo to search the model space. The data on which we demonstrate
our method in this paper consist of the representative sample of n = 2,532 elderly
American patients hospitalized in the period 1980–86 with pneumonia taken from
the RAND study described above.

The plan of the paper is as follows. In Section 2 we describe the approach we
investigated in this study, and Section 3 provides details concerning the computa-
tion. Section 4 illustrates the experimental results on the pneumonia data set using
the method described in Sections 2 and 3, and includes a comparison of the re-
sults from our method and those from another possible implementation [Fouskakis
and Draper (2008)] of approach (a) based on maximizing expected utility. [Brown
et al. (1998) presented an application of decision theory to variable selection in
multivariate regression that is motivated by somewhat similar cost-benefit con-
siderations in a quite different setting; Lindley (1968) used squared-error loss to
measure predictive accuracy while recommending a cost-benefit tradeoff in vari-
able selection in a less problem-specific framework than the one presented here.]
In Section 5 we conclude the paper with a brief discussion of some statistical and
quality assessment implications of our work.

2. A Bayesian approach to cost-effective variable selection. Bayesian
parametric model comparison and variable selection are based on specifying a
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model m, its likelihood f (y|θm,m), the prior distribution of model parame-
ters f (θm|m) and the corresponding prior model weight (or probability) f (m),
where θm is a parameter vector under model m and y is the data vector. Para-
metric inference is based on the posterior distribution f (θm|y,m), and quanti-
fying model uncertainty by estimating the posterior model probabilities f (m|y)

is also an important issue. Hence, when we consider a set of competing models
M = {m1,m2, . . . ,m|M|}, we focus on the posterior probability of model m ∈ M,
defined as

f (m|y) = f (y|m)f (m)∑
m�∈M f (y|m�)f (m�)

=
( ∑

m�∈M

POm�,m

)−1

(1)

=
[ ∑
m�∈M

Bm�,m

f (m�)

f (m)

]−1

,

where POmk,m�
= f (mk |y)

f (m�|y)
is the posterior model odds, and Bmk,m�

is the Bayes

factor, for comparing models mk and m�. When we limit ourselves in the com-
parison of only two models we typically focus on POmk,m�

and Bmk,m�
, which

have the desirable property of insensitivity to the selection of the model space M.
By definition, the Bayes factor is the ratio of the posterior model odds over the
prior model odds; thus, large values of Bmk,m�

(usually greater than 12, say) in-
dicate strong posterior support of model mk against model m� [for details see,
e.g., Raftery (1996)]. The posterior model probabilities and integrated likelihoods
f (y|m�) in (1) are rarely analytically tractable; we use a combination of Laplace
approximations [e.g., Bernardo and Smith (1994)] and Markov Chain Monte Carlo
(MCMC) methodology [e.g., Green (1995); Han and Carlin (2001); Chipman et al.
(2001); Dellaportas et al. (2002); Lopes (2002)] to approximate posterior odds and
Bayes factors.

In the problem described in Section 1, we use a simple logistic regression model
with response Yi = 1 if patient i dies within 30 days of admission and 0 otherwise.
We further denote by Xij the sickness predictor variable j for patient i and by γj

an indicator, often used in Bayesian variable selection problems [e.g., George and
McCulloch (1993); Kuo and Mallick (1998); Brown et al. (1998); Dellaportas et
al. (2002)], taking the value 1 if variable j is included in the model and 0 other-
wise. Thus, in this case M = {0,1}p , where p is the total number of variables. In
order to map the set of binary model indicators γ onto a model m, we can use a
representation of the form m(γ ) = ∑p

j=1 2j−1γj . Hence, the model formulation
can be summarized as

(Yi |γ )
indep∼ Bernoulli[pi(γ )],

ηi(γ ) = log
[

pi(γ )

1 − pi(γ )

]
=

p∑
j=0

βjγjXij ,(2)

η(γ ) = X diag(γ )β = Xγ βγ ,
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defining Xi0 = 1 for all i = 1, . . . , n and γ0 = 1 with prior probability one since
here the intercept is always included in all models. Here pi(γ ) is the death prob-
ability (which may be thought of as the sickness score) for patient i under model
γ , η(γ ) = [η1(γ ), . . . , ηn(γ )]T , γ = (γ0, γ1, . . . , γp)T , β = (β0, β1, . . . , βp)T ,
and X = (Xij , i = 1, . . . , n; j = 0,1, . . . , p). The vector βγ stands for the sub-
vector of β included in the model specified by γ , that is, βγ = (βj :γj = 1,

j = 0,1, . . . , p), and is equivalent to the θm vector defined at the beginning of
this section; similarly, Xγ is the submatrix of X with columns corresponding to
variables included in the model specified by γ .

In the remainder of this section we illustrate how to build a prior distribution to
accommodate in the posterior distribution a penalty function for the increased cost
of expensive predictor variables. To this end, we first build a minimally informative
prior for the model parameters based on the ideas of Ntzoufras et al. (2003). Then
we employ a Laplace approximation [e.g., Tierney and Kadane (1986)] to examine
the penalty (indirectly) imposed upon the model likelihood using the Bayesian
approach. Finally, we specify prior model weights (probabilities) in such a way
that the posterior model probabilities in effect result from a likelihood penalized
according to the cost of each variable in the model.

2.1. Prior on model parameters. One important problem in Bayesian model
evaluation using posterior model probabilities is their sensitivity to the prior vari-
ance of the model parameters: large variance of the βγ (used to represent prior
ignorance) will increase the posterior probabilities of the simpler models consid-
ered in the model space M [Bartlett (1957); Lindley (1957); Shafer (1982); Robert
(1993); Kass and Raftery (1995); Sinharay and Stern (2002)]. Therefore, specify-
ing the prior distribution is pivotal for the a posteriori support of the models exam-
ined. We address this issue with ideas proposed by Ntzoufras et al. (2003): we use
a prior distribution of the form

f (βγ |γ ) = N(μγ ,�γ ),(3)

with prior covariance matrix given by �γ = n[I(βγ )]−1, where n is the total sam-
ple size and I(βγ ) is the information matrix

I(βγ ) = XT
γ Wγ Xγ ;(4)

here Wγ is a diagonal matrix, which in the Bernoulli case [e.g., McCullagh and
Nelder (1983)] takes the form

Wγ = diag{pi(γ )[1 − pi(γ )]}.(5)

This is the unit information prior introduced by Kass and Wasserman (1996),
which corresponds to adding one data point to the data. Here we use this prior
as a base, but we specify pi(γ ) in the information matrix according to our prior
information. In this manner we avoid (even minimal) reuse of the data in the prior.
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When little prior information is available, a reasonable prior mean for βγ is
μγ = 0. This corresponds to a prior mean on the log-odds scale of zero, from
which a sensible prior estimate for all model probabilities is pi(γ ) = 1/2; with
this choice (3) becomes

f (βγ |γ ) = N [0,4n(XT
γ Xγ )−1].(6)

This prior distribution can also be motivated by combining the idea of imaginary
data with the power-prior approach of Chen et al. (2000); for details, see Fouskakis,
Ntzoufras and Draper (2009a).

2.2. A cost-penalized prior on model space. The aim of this subsection is to
specify a set of prior model probabilities (or odds) that accounts for prior pref-
erences based on the variable costs. To make this more explicit, we first describe
preliminary results concerning the posterior model probabilities f (γ |y) and the
corresponding model odds using the prior distribution (6), when no assumption is
made for the prior model probability f (γ ). We then specify a prior on the model
space that takes into account prior preferences based on the cost of the variables. In
order to achieve this, we use a penalty-based interpretation of the prior f (γ ) im-
posed on the log-likelihood that directly results from the first subsection. Finally,
we use this cost-penalized model prior to calculate the posterior model probabili-
ties and odds.

2.2.1. Preliminary results: posterior probabilities and model odds in the gen-
eral setup. Let us denote by POk� and Bk� the posterior odds and Bayes factor
respectively of model γ (k) versus model γ (�). Then we have

−2 log POk� = −2
[
logf

(
γ (k)|y) − logf

(
γ (�)

∣∣y)]
= −2 log

(
f (y|γ (k))

f (y|γ (�))

)
− 2 log

f (γ (k))

f (γ (�))
(7)

= −2 logBk� + ξ
(
γ (k),γ (�)),

where ξ(γ (k),γ (�)) is the extra penalty imposed on minus twice the logarithm of
the Bayes factor through the prior model probabilities.

Following the approach of Raftery (1996), we can approximate the posterior
distribution of a model γ using the following Laplace approximation:

−2 logf (γ |y) = −2 logf (y|β̃γ ,γ ) − 2 logf (β̃γ |γ ) − dγ log(2π)
(8)

− log |�γ | − 2 logf (γ ) + O(n−1),

where β̃γ is the posterior mode of f (βγ |y,γ ), dγ = ∑p
j=0 γj is the dimen-

sion of the model γ , and �γ is minus the inverse of the Hessian matrix of
h(βγ ) = logf (y|βγ ,γ )+ logf (βγ |γ ) evaluated at the posterior mode β̃γ . Under
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the model formulation given by equation (2) and the prior distribution (6), we have
that

�γ =
[
−∂2 logf (y|βγ ,γ )

∂β2
γ

∣∣∣∣
βγ =β̃γ

− ∂2 logf (βγ |γ )

∂β2
γ

∣∣∣∣
βγ =β̃γ

]−1

(9)

=
(

XT
γ diag

{ exp(Xγ ,i β̃γ )

[1 + exp(Xγ ,i β̃γ )]2
+ 1

4n

}
Xγ

)−1

,

where Xγ ,i is row i of the matrix Xγ for i = 1, . . . , n.
By substituting the prior (6) in expression (8), we obtain

−2 logf (γ |y) = −2 logf (y|β̃γ ,γ ) + [φ(γ ) − 2 logf (γ )] + O(n−1),(10)

where

φ(γ ) = 1

4n
β̃

T

γ XT
γ Xγ β̃γ + dγ log(4n) + log

|�−1
γ |

|XT
γ Xγ | .(11)

From the above expression it is clear that the logarithm of a posterior model prob-
ability can be regarded as a penalized log-likelihood evaluated at the posterior
mode of the model, in which the term [φ(γ ) − 2 logf (γ )] can be interpreted as
the penalty imposed upon the log-likelihood. In pairwise model comparisons, we
can directly use the posterior model odds (7), which can now be written as

−2 log POk� = −2 log
{
f (y|β̃γ (k) ,γ (k))

f (y|β̃γ (�) ,γ (�))

}
(12)

+
[
φ

(
γ (k)) − φ

(
γ (�)) − 2 log

f (γ (k))

f (γ (�))

]
+ O(n−1).

Therefore, the comparison of the two models is based on a penalized log-likelihood
ratio, where the penalty is now given by

ψ
(
γ (k),γ (�)) = φ

(
γ (k)) − φ

(
γ (�)) − 2 log

f (γ (k))

f (γ (�))
;(13)

for more details see Ntzoufras (1999), Chapter 6.
Each penalty term is divided into two parts: φ(γ ) and −2 logf (γ ). The first

term, φ(γ ), has its source in the marginal likelihood f (y|γ ) of model γ and can
be thought of as a measure of discrepancy between the data and the prior informa-
tion for the model parameters. The second part comes from the prior model prob-
abilities f (γ ). Indifference on the space of all models, usually expressed by the
uniform distribution [i.e., f (γ ) ∝ 1], eliminates the second term from the model
comparison procedure, since the penalty term in (12) will then be based only on the
difference of the first penalty terms φ(γ (k)) − φ(γ (�)). For this reason the penalty
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term φ(γ ) is the imposed penalty that appears in the penalized log-likelihood ex-
pression of the Bayes factor Bk� with a uniform prior on model space.

A simpler but less accurate approximation of log POk� can be obtained follow-
ing the arguments of Schwarz (1978):

−2 log POk� = −2 log
[
f (y|β̂γ (k) ,γ (k))

f (y|β̂γ (�) ,γ (�))

]
(dγ (k) − dγ (�)) logn

− 2 log
f (γ (k))

f (γ (�))
+ O(1)(14)

= BICk� − 2 log
f (γ (k))

f (γ (�))
+ O(1),

where BICk� is the Bayesian Information Criterion [e.g., Kass and Wasserman
(1996); Raftery (1995, 1996); Hoeting et al. (1999)] for choosing between models
γ (k) and γ (�) and β̂γ is the vector of maximum likelihood estimates of βγ . Since
BICk� is an O(1) approximation, it might diverge from the exact value of the loga-
rithm of the Bayes factor even for large samples. Even so, it has often been shown
to provide a reasonable measure of evidence (for finite n) and its straightforward
calculation has encouraged its widespread use in practice [see Kass and Raftery
(1995) for details].

2.2.2. Accounting for the cost of variables via prior model weights. Following
the previous section and equations (7), (10) and (12), it is clear that an additional
penalty ξ can be directly imposed on terms of the form −2 logBkl via the prior
model probabilities f (γ ). Here we propose to specify our prior model probabilities
via cost-dependent penalties for each variable. We do this by identifying a baseline
cost c0 and then specifying the other costs in relation to the baseline in a way that
appropriately generalizes BIC. We specify our prior distribution on γ to satisfy the
following five criteria:

(a) The marginal costs (c1, . . . , cp) should enter into the prior in a manner that
is invariant under maps of the form c �→ αc with α > 0, so that conversion
between time and money (see Section 1.2) or between measurements of money
on different scales (e.g., dollars and euros) leaves the prior unchanged;

(b) the extra penalty ξ1 for adding a variable Xj with baseline cost c0, above and
beyond that in a benefit-only analysis, is zero;

(c) the extra penalty ξ2 for adding a variable Xj with cost cj = κc0 for some
κ > 1, above and beyond that in a benefit-only analysis, equals the BIC penalty
of (κ − 1) variables with cost c0;

(d) the extra penalty ξ3 for adding any variable Xj , above and beyond that in a
benefit-only analysis, is greater or equal to zero; and

(e) if all the variables have the same cost, then the prior must reduce to the uniform
prior on γ .
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The first requirement ensures that the prior is invariant with respect to the man-
ner in which cost is measured. The second criterion ensures that the penalty for
adding a variable Xj with baseline cost c0 is the same as in the benefit-only analy-
sis. Concerning the third requirement, the proportionality of the extra penalty to the
BIC penalty (logn) ensures that the posterior model odds will still have a BIC-like
behavior. Moreover, the extra penalty induced by this type of prior will equal the
relative difference between the cost of the variable Xj and a variable with cost
equal to c0. The fourth requirement ensures that the cost-benefit analysis will sup-
port more parsimonious models, in terms of both dimensionality and cost, than the
corresponding models supported by the benefit-only analysis under the uniform
prior on the model space. Finally, the fifth criterion requires that our prior should
reproduce the benefit-only analysis if all costs are equal.

The following theorem, whose proof is given in Appendix A, provides the only
prior that meets the above five requirements, and defines the choice of c0.

THEOREM 1. If a prior distribution f (γ ) satisfies requirements (a)–(e) above,
then it must be of the form

f (γj ) ∝ exp
[
−γj

2

(
cj

c0
− 1

)
logn

]
for j = 1, . . . , p,(15)

where cj is the marginal cost per observation for variable Xj and c0 =
min{cj , j = 1, . . . , p}.

To the above definition of our prior we add the further assumption that the con-
stant term is included in all models by specifying f (γ0 = 1) = 1, resulting in

−2 logf (γ ) =
p∑

j=1

γj

cj

c0
logn − dγ logn + 2

p∑
j=1

log
[
1 + n−(1−cj /c0)/2]

.(16)

When comparing two models γ (k) and γ (�), the additional penalty imposed on
the log-likelihood ratio due to the cost-adjusted prior model probabilities is given
by

−2 log
[
f (γ (k))

f (γ (�))

]
=

p∑
j=1

(
γ

(k)
j − γ

(�)
j

)cj

c0
logn − (dγ (k) − dγ (�)) logn

(17)

=
[
Cγ (k) − Cγ (�)

c0
− (dγ (k) − dγ (�))

]
logn,

where Cγ = ∑p
j=1 γjcj is the total cost of model γ ; thus, two models of the same

dimension and cost will have the same prior weight.
Using the prior model odds (17) in the approximate posterior model odds (12),

we obtain

−2 log POk� = −2 log
[
f (y|β̃γ (k) ,γ (k))

f (y|β̃γ (�) ,γ (�))

]
+ ψ

(
γ (k),γ (�)) + O(n−1),(18)
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where the penalty term is given by

ψ
(
γ (k),γ (�)) = 1

4n
(β̃T

γ (k)X
T
γ (k)Xγ (k) β̃γ (k) − β̃T

γ (�)X
T
γ (�)Xγ (�) β̃γ (�))

+ (dγ (k) − dγ (�)) log(4)(19)

+ log
|�−1

γ (k) |
|XT

γ (k)Xγ (k) | − log
|�−1

γ (�) |
|XT

γ (�)Xγ (�) | + Cγ (k) − Cγ (�)

c0
logn.

Finally, we consider the BIC-based approximation (14) to the logarithm of the
posterior model odds with the prior model odds (17), yielding

− 2 log POk� = −2 log
[
f (y|β̂γ (k) ,γ (k))

f (y|β̂γ (�) ,γ (�))

]
+ Cγ (k) − Cγ (�)

c0
logn + O(1).(20)

The penalty term dγ logn of model γ used in (14) has been replaced in the above
expression by the cost-dependent penalty c−1

0 Cγ logn; ignoring costs is equivalent
to taking cj = c0 for all j , yielding c−1

0 Cγ = dγ , the original BIC expression.
Therefore, we may interpret the quantity logn as the imposed penalty for each
variable included in the model γ when no costs are considered (or when costs are
equal). Moreover, this baseline penalty term is inflated proportionally to the cost
ratio cj

c0
for each variable Xj ; for example, if the cost of a variable Xj is twice the

minimum cost (cj = 2c0), then the imposed penalty is equivalent to adding two
variables with the minimum cost. For all these reasons, (20) can be considered as
a cost-adjusted generalization of BIC when prior model probabilities of type (15)
are adopted.

To summarize the effect of our prior on the posterior model odds, consider any
two models γ (k) and γ (�). From (14) the penalty imposed on the log-likelihood
ratio is given by

ω
(
γ (k),γ (�)) = (dγ (k) − dγ (�)) logn − 2 log

f (γ (k))

f (γ (�))
(21)

= (dγ (k) − dγ (�)) logn − ξ(γ (k),γ (�)).

Then (15), with c0 = min{cj , j = 1, . . . , p}, is the only form for a prior distribution
that leads in a natural way to our approach being equivalent to a cost-adjusted
version of BIC with the following properties: (a) if the cost of a variable Xj is
κ times the minimum cost, then the imposed penalty ω is equivalent to adding κ

variables with the minimum cost; (b) our approach always results in models more
parsimonious than BIC when costs are unequal, and (c) our prior reduces to BIC
when all costs are equal (this result is summarized as Corollary 1 in Appendix A,
where a proof is also provided).
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3. MCMC implementation. With a realistically large number of predictors,
the model space in our problem is too large for full-enumeration or naive Monte
Carlo strategies to estimate posterior model probabilities with high accuracy in a
reasonable amount of CPU time. For this reason, we adopted a different approach
and implemented the following two-step method:

(1) First we used a model search tool to identify variables with high marginal pos-
terior inclusion probabilities f (γj |y), and we created a reduced model space
consisting only of those variables whose marginal probabilities were above
a threshold value. According to Barbieri and Berger (2004), this method of
selecting variables based on their marginal probabilities may lead to the iden-
tification of models with better predictive abilities than approaches based on
maximizing posterior model probabilities. Although Barbieri and Berger pro-
posed 0.5 as a threshold value for f (γj = 1|y), we used the lower value of 0.3,
since our aim was only to identify and eliminate variables not contributing to
models with high posterior probabilities.

(2) Then we used the same trans-dimensional MCMC algorithm as in step (1)
in the reduced space to estimate posterior model probabilities (and the corre-
sponding odds).

To ensure stability of our findings, we explored the use of two model search tools
in step (1):

• a reversible-jump MCMC algorithm [RJMCMC; Green (1995)], as imple-
mented for variable selection in generalized linear models by Dellaportas et
al. (2002) and Ntzoufras et al. (2003); and

• the MCMC model composition (MC3) algorithm [Madigan and York (1995)].

More specifically, we implemented reversible-jump moves within Gibbs for the
model indicators γj , by proposing the new model to differ from the current one in
each step by a single term j with probability one [Dellaportas et al. (2002)]. Details
on our RJMCMC and MC3 implementations are given in Fouskakis, Ntzoutras and
Draper (2009a).

The MC3 approach relies on posterior model odds POγ ,γ ′ , which are not ana-
lytically available in this setting; because of this we also explored two methods for
calculating them—approximating the acceptance probabilities with cost-adjusted
Laplace [equation (18)] and cost-adjusted BIC [equation (20)]—and, in addition,
we further explored one additional form of sensitivity analysis: initializing the
MCMC runs at the null model (with no predictors) and the full model (with all pre-
dictors). All of this was done both for the benefit-only analysis using our method
(setting all costs equal) and the cost-benefit approach.

In moving from the full to the reduced model space to implement step (1) of
our two-step method, for both the benefit-only and cost-benefit analyses we found
a striking level of agreement, in the subset of variables defining the reduced model
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space, as we varied (a) the two model search tools, (b) the two methods to ap-
proximate the acceptance probabilities in MC3, and (c) the two choices for ini-
tializing the MCMC runs; this made it unnecessary to perform similar sensitivity
analyses in step (2). Results in the next section are therefore presented only for
RJMCMC (starting from the full model). Convergence of the RJMCMC algorithm
was checked using ergodic mean plots of the marginal inclusion probabilities for
the full model space and the posterior model probabilities for the reduced space.
Additional computing details are available in Appendix A.

In what follows we refer to the cost-benefit results as “RJMCMC cost-benefit,”
but we could equally well have used the term “MC3 with cost-adjusted BIC” (or
just “cost-adjusted BIC” for short), because the results from the two MCMC meth-
ods were in such close agreement.

4. Experimental results.

4.1. Cost-benefit analysis with cost-adjusted BIC. Table 2 presents the mar-
ginal posterior probabilities of the variables that exceeded the threshold value
of 0.30, in each of the RJMCMC benefit-only and cost-benefit analyses in the
reduced model space, together with their data collection costs. In both the benefit-
only and cost-benefit settings our methods reduced the initial list of p = 83 avail-
able candidates down to 13 predictors. Note from Table 2 that the most expensive
variables with high marginal posterior probabilities in the benefit-only analysis
were absent from the set of promising variables in the cost-benefit analysis (e.g.,
the Morbid + comorbid score, variable 73). Similarly, some inexpensive variables
with low marginal posterior probabilities in the benefit-only analysis were included
in most of the models visited in the cost-benefit analysis (e.g., Confusion day 1?,
variable 51). Note also that there is not a strong degree of overlap between the 14
variables chosen in the original RAND benefit-only analysis summarized in Ta-
ble 1 and the 13 variables with high marginal posterior probabilities in the RJM-
CMC benefit-only part of Table 2; we return to this point below.

Table 3 presents models with posterior model probabilities above 0.03 (in de-
scending order), as well as posterior odds of the model with the highest posterior
probability compared to the remaining ones. In both types of analysis, the variables
Systolic blood pressure score (X1), Age (X2), Blood urea nitrogen (X3), Shortness
of breath (X5), Temperature (X12) and APACHE pH score (X70) were included in
all the highest probability models, with costs (in minutes) 0.5, 0.5, 1.5, 1.0, 0.5 and
1.0 respectively.

For the cost-benefit analysis, 9 models had posterior probabilities above 0.03. In
all of these models Admission systolic blood pressure (SBP; X46) and Confusion
day 1 (X51) were present (both having the lowest cost of 0.5 minutes). Predictors
Respiratory rate day 1 (X49) and Musculoskeletal score (X78) were also frequently
included in the top nine models (in 7 and 5 of the 9 cases, respectively). Both of
these variables were present in the four highest probability models, with similar
posterior probabilities; in fact, there were no substantial differences between those
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TABLE 2
Preliminary RJMCMC results: variables with marginal posterior probabilities f (γj = 1|y)

above 0.30; costs are expressed in minutes of abstraction time

Marginal posterior probabilities

Variable RJMCMC analysis

Index Name Cost Benefit-only Cost-benefit

1 SBP score 0.50 0.99 0.99
2 Age 0.50 0.99 0.99
3 Blood urea nitrogen 1.50 1.00 0.99
4 APACHE II coma score 2.50 1.00
5 Shortness of breath day 1? 1.00 0.97 0.79
8 Septic complications? 3.00 0.88

12 Initial temperature 0.50 0.98 0.96
13 Heart rate day 1 0.50 0.34
14 Chest pain day 1? 0.50 0.39
15 Cardiomegaly score 1.50 0.71
27 Hematologic history score 1.50 0.45
37 APACHE respiratory rate score 1.00 0.95 0.32
46 Admission SBP 0.50 0.68 0.90
49 Respiratory rate day 1 0.50 0.81
51 Confusion day 1? 0.50 0.95
70 APACHE pH score 1.00 0.98 0.98
73 Morbid + comorbid score 7.50 0.96
78 Musculoskeletal score 1.00 0.54

Notes: (1) Abbreviation used in this table: SBP = systolic blood pressure. (2) Variables with a ques-
tion mark in their names were dichotomous answers to yes/no questions, scored 1 = yes and 0 = no;
all other variables (except variable 1, which was also dichotomous) were measured on quantitative
scales with three or more possible values.

models (note that the posterior odds of models 2–4 in the cost-benefit part of Ta-
ble 3 differed from those of model 1 by factors of no more than three, indicating
evidence “not worth more than a bare mention” [cf. Raftery (1996)] in favor of
model 1). All variables included in the highest probability models had costs of at
most one minute with the exception of Blood urea nitrogen (X3), which had a cost
of 1.5.

In the RJMCMC benefit-only analysis, 5 models had posterior probabilities
above 0.03. In all of these models APACHE II coma score (X4), Cardiomegaly
score (X15), APACHE respiratory rate score (X37) and Morbid + comorbid score
(X73) were present, having costs of 2.5, 1.5, 1.0 and 7.5 minutes (respectively).
Note that the costs of the best models in the benefit-only analysis are 2.2 to 3.5
times higher than the costs of the best models from the cost-benefit analysis.

Since in the RJMCMC cost-benefit analysis we increase the penalty of relatively
expensive variables in the prior, we end up selecting more parsimonious models
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TABLE 3
Reduced model space: posterior model probabilities above 0.03, posterior odds (PO1k ) of the best

model within each analysis versus the current model k, and model costs

Common variables Additional Model Posterior
k within each analysis variables cost probabilities PO1k

Benefit-only analysis

1 X4 + X15 + X37 + X73 +X8 +X27 +X46 22.5 0.3066 1.00
2 +X8 +X27 22.0 0.1969 1.56
3 +X8 20.5 0.1833 1.67
4 +X27 +X46 19.5 0.0763 4.02
5 17.5 0.0383 8.00

Cost-benefit analysis

1 X46 + X51 +X49 +X78 7.5 0.1460 1.00
2 +X14 +X49 +X78 7.5 0.1168 1.27
3 +X13 +X49 +X78 7.5 0.0866 1.69
4 +X13 +X14 +X49 +X78 8.0 0.0665 2.20
5 +X14 +X49 7.0 0.0461 3.17
6 +X49 6.5 0.0409 3.57
7 +X37 +X78 7.5 0.0382 3.82
8 +X13 +X14 +X49 7.5 0.0369 3.96
9 +X13 6.5 0.0344 4.25

Common variables in both analyses: X1 + X2 + X3 + X5 + X12 + X70.

in terms of both dimensionality and cost. It is therefore interesting to examine the
loss in terms of prediction and goodness of fit. We use the posterior distribution of
the deviance statistic

D(βγ ,γ ) = −2
n∑

i=1

logf (yi |βγ ,γ )(22)

[Dempster (1974); Spiegelhalter et al. (2002)] as a measure of model fit. Usually
attention focuses on the minimum value of this posterior distribution (which some-
times is poorly estimated by MCMC runs), but other posterior descriptive measures
such as the median or mean provide adequate measures of fit [Spiegelhalter et al.
(1996)].

In Table 4 we present the minimum and median values of the posterior distri-
bution of the deviance statistic, together with the cost and dimension of the best
models found with both types of analysis. Two main points are worth noting:

• Two approaches to the creation of a benefit-only analysis may now be compared:
the frequentist approach employed in the original RAND study and our RJ-
MCMC benefit-only analysis obtained by setting all the costs equal. The de-
viance statistic for the benefit-only RAND model summarized in Table 1 turned
out to be 1587.3 (achieved with 14 predictors), substantially worse than the me-



BAYESIAN VARIABLE SELECTION USING COST-ADJUSTED BIC 679

TABLE 4
Comparison of measures of fit, cost and dimensionality between the best models in the reduced
model space of the RJMCMC benefit-only and cost-benefit analyses; percentage difference is in

relation to benefit-only

RJMCMC analysis Percentage
differenceBenefit-only Cost-benefit

Minimum deviance 1553.2 1635.8 +5.3
Median deviance 1564.5 1644.8 +5.1
Cost 22.5 7.5 −66.7
Dimension 13 10 −23.1

dian deviance (1564.5, achieved with 13 predictors) of the best model visited by
the benefit-only approach examined in this paper; in other words, in this case
study, frequentist backward selection from the model with all predictors (the
RAND approach) was substantially out-performed by Bayesian RJMCMC.

• The minimum and median values of the posterior distribution of the deviance
statistic for the RJMCMC benefit-only analysis were lower by a relatively mod-
est 5.3% and 5.1% compared to the corresponding values of the cost-benefit
analysis, but the cost of the best model in the cost-benefit analysis was almost
67% lower than that for the benefit-only analysis; similarly, the dimensionality
of the best model in the cost-benefit analysis was about 23% lower than that for
the benefit-only analysis. These values indicate that the loss of predictive ac-
curacy with the cost-benefit analysis is small compared to the substantial gains
achieved in cost and reduced model complexity.

An alternative predictive measure of fit is the cross-validation log score LSCV ,
following ideas of Geisser and Eddy (1979) and Gelfand et al. (1992) [also see,
e.g., Draper and Krnjajić (2009)]. It is based on leave-one-out predictive distribu-
tions f (yi |y\i ) and is given by

LSCV (γ |y) = 1

n

n∑
i=1

logf (yi |y\i ,γ ),(23)

where y\i is the vector of data y without observation i (larger values of LSCV

indicate greater predictive accuracy). This measure can be estimated directly from
a single MCMC run using the formula

L̂SCV (γ |y) = −1

n

n∑
i=1

logf −1(yi |βγ ,γ ),(24)

where f −1(yi |βγ ,γ ) is the posterior mean of the inverse of the predictive density
for observation i [for details see, e.g., Gelfand (1996), pages 154–155]. We cal-
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culated L̂SCV for the models with the highest posterior probability for each RJM-
CMC analysis and obtained a value of −0.312 for the best model of the benefit-
only analysis and −0.327 for that of the cost-benefit analysis; the latter is 4.8%
smaller than the former, in line with the last column of Table 4, and, as before, this
small loss in predictive accuracy is accompanied by the 66% drop in cost and 15%
decrease in model complexity achieved by the cost-benefit approach.

4.2. Comparison of cost-benefit analyses: utility versus cost-adjusted BIC.
The RJMCMC cost-benefit results so far have been based on our cost-adjusted BIC
approach; other cost-benefit methods are possible, including a decision-theoretic
approach involving (a) explicit quantification of costs and benefits via a utility
function followed by (b) maximization of expected utility. Columns 4–6 in Table 1
present a comparison of the maximum-expected-utility method of Fouskakis and
Draper (2008)3 and the RJMCMC method of this paper—which (as noted above)
is functionally equivalent to our cost-adjusted BIC method—when the space of
predictor variables is defined by the p = 14 variables in the original RAND scale
described in Section 1, and Table 5 offers a comparison of the two methods when
all p = 83 variables collected in the RAND study served as the basis of the variable
selection search. In columns 4 and 5 of Table 1, two stars signify that a variable ap-
peared in the best model found by each method [for RJMCMC this model is given
in Table 6(B)], and one star in column 4 means that the variable often appeared in
the 20 best models identified by the utility approach.

It is evident that the two methods arrived at similar conclusions with p = 14: six
variables were chosen by neither method (note from column 6 in Table 1 that all
of these variables had marginal posterior probability 0 in the RJMCMC method);
four more variables had identical star patterns; and the other four variables were
chosen by both methods as important, differing only in how many stars they re-
ceived. Table 5 uses a similar star system: two stars in columns 4 and 5 in this
table signify membership in the globally best model found by the utility and RJM-
CMC methods, respectively; one star in column 4 means that the variable appeared
frequently in the 100 best utility models [see Fouskakis and Draper (2008) for
details], with one star in column 5 signifying that a variable often occurred in
the highest-posterior-probability RJMCMC models of Table 3. With p = 83, the
agreement between the two methods is also strong (although not as strong as with
p = 14): 60 variables were ignored by both methods, eight variables had identi-
cal star patterns, three variables were chosen as important by both methods but

3Fouskakis and Draper (2008) used stochastic optimization methods—including simulated anneal-
ing, genetic algorithms and tabu search [see Draper and Fouskakis (2000), and Fouskakis and Draper
(2002)]—to find (near-) optimal subsets of predictor variables that maximize an expected utility
function that trades off data collection cost against predictive accuracy in a way that is sensitive to
the policy implications of searching for “good” and “bad” hospitals; utility elicitation details are
available in Fouskakis, Ntzoufras and Draper (2009a).
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TABLE 5
The full set of 83 variables, together with their data collection costs per patient and their status

according to the utility and RJMCMC methods; columns 4 and 5 are explained in the text

Variable Method

Index Name Cost cj (minutes) Utility RJMCMC

1 Systolic BP score 0.5 ∗∗ ∗∗
2 Age 0.5 ∗∗
3 Blood urea nitrogen 1.5 ∗∗ ∗∗
4 APACHE II coma score 2.5 ∗∗
5 Shortness of breath day 1? 1.0 ∗ ∗∗
6 Serum albumin score 1.5
7 Respiratory distress? 1.0
8 Septic complications? 3.0
9 Prior respiratory failure? 2.0

10 Recently hospitalized? 2.0
11 Racbilateral process score 1.5
12 Initial temperature 0.5 ∗∗ ∗∗
13 Heart rate day 1 0.5 ∗ ∗
14 Chest pain day 1? 0.5 ∗ ∗
15 Cardiomegaly score 1.5
16 Plural effusion score 1.5
17 CXR CHF score 2.5
18 Ambulatory score 2.5
19 Endocarditis at admission? 1.5
20 CPK score 2.0
21 Prior antibiotics? 0.5
22 Prior interstitial lung disease? 0.5
23 Home oxygen use? 1.0
24 Prior pneumonectomy? 0.5
25 Prior tracheostomy? 0.5
26 Prior aminophylline score 0.5
27 Hematologic history score 1.5
28 Cancer score 1.5
29 APACHE heart rate score 1.5
30 Corodaker score 1.0
31 Disease of thorax? 1.0
32 Multiple myeloma? 0.5 ∗
33 Immunocompromised? 0.5
34 Residence score 1.0
35 Hepatobiliary history? 0.5
36 Renal history score 1.0
37 APACHE respiratory rate score 1.0 ∗ ∗
38 New lung score 1.0
39 Co-morbid aspiration score 0.5 ∗
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TABLE 5
(Continued.)

Variable Method

Index Name Cost cj (minutes) Utility RJMCMC

40 APACHE sodium score 2.0
41 APACHE hematocrit score 1.5
42 APACHE WBC score 1.5
43 APACHE oxygenation score 1.5
44 CVA score 1.0
45 APACHE potassium score 1.0
46 Admission SBP 0.5 ∗∗ ∗∗
47 CHF Chest X-ray score 2.5
48 Total APACHE II score 10.0
49 Respiratory rate day 1 0.5 ∗∗ ∗∗
50 DBP day 1 0.5
51 Confusion day 1? 0.5 ∗ ∗∗
52 PVC score 0.5
53 APACHE VB score 1.5
54 Pulmonary edema score 0.5
55 Sum of CHF components 5.5
56 Influenza score 0.5 ∗
57 Arrest in ER score 0.5 ∗
58 Biliribin score 1.5
59 Positive blood culture? 0.5
60 Positive urine culture? 0.5
61 Wheezing at admission? 0.5
62 Body system count 2.5
63 Morbid prior COPD score 0.5
64 Morbid PHS 0.5
65 Co-morbid cirrhosis score 0.5 ∗
66 Co-morbid CHF score 0.5 ∗
67 Co-morbid arrhythmias score 0.5
68 Co-morbid smoking score 0.5
69 Co-morbid alcoholism score 0.5 ∗
70 APACHE pH score 1.0 ∗∗
71 Co-morbid NGTs score 0.5
72 Co-morbid steroids score 0.5 ∗
73 Morbid + comorbid score 7.5
74 Cardiac history score 0.5
75 Neurologic history score 0.5 ∗
76 Oncologic history score 0.5
77 Immunologic history score 0.5
78 Musculoskeletal score 0.5 ∗ ∗∗
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TABLE 5
(Continued.)

Variable Method

Index Name Cost cj (minutes) Utility RJMCMC

79 APACHE temperature score 1.0
80 APACHE mean BP score 1.0
81 APACHE creatinine score 1.0
82 DX score 1.0
83 Sex of patient 0.5

Notes: (1) Abbreviations used in this table: BP = blood pressure, CHF = congestive heart failure,
COPD = chronic obstructive pulmonary disease, CVA = cardiovascular accident, CXR = chest X-
ray, DBP = diastolic blood pressure, DX = diagnoses, NGT = naso-gastric tube, PHS = pulmonary
hospitalization score, PVC = pulmonary vascular congestion, SBP = systolic blood pressure, VB =
venous bicarbonate. (2) Variables with a question mark in their names were dichotomous answers to
yes/no questions, scored 1 = yes and 0 = no; all other variables (except variable 1, which was also
dichotomous) were measured on quantitative scales with three or more possible values.

with different star patterns, 10 variables were marked as important by the utility
approach and not by RJMCMC, and two variables were singled out by RJMCMC
and not by utility (this represents substantial agreement on the importance of 85%
of the variables).

Table 6 gives a summary of the RJMCMC search results with p = 14 and exam-
ines the cost-benefit tradeoffs of the utility and RJMCMC methods in more detail.
It is clear that, to the extent that the two approaches differ, the utility method fa-
vors models that cost somewhat less but also predict somewhat less well. The fact
that the two methods yield somewhat different results does not mean that either
is wrong; they are both valid solutions to similar but not identical problems. Both
methods lead to noticeably better models (in a cost-benefit sense) than frequentist
or Bayesian benefit-only approaches, when—as is often the case—cost is an is-
sue that must be included in the problem formulation to arrive at a policy-relevant
solution.

5. Discussion. In this paper we have examined a relatively new perspective
on Bayesian variable selection, when data collection costs need to be traded off
against predictive accuracy in choosing an optimal subset of predictors. We pro-
pose a prior setup that accounts for the cost of each variable and we utilize tra-
ditional posterior model odds for the evaluation of models. This leads to a set of
posterior model probabilities that correspond approximately to a generalized cost-
adjusted version of BIC. Computation is performed using reversible-jump MCMC
in two stages: first, to reduce the model space by dropping variables with low
marginal posterior probabilities, and then to estimate posterior model probabili-
ties in the reduced space. We have applied our methodology to the problem of
cost-effective input-output quality measurement in a health policy setting, with a
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TABLE 6
(A) Summary of the RJMCMC cost-benefit search results in the p = 14 case. (B) Comparison of the

utility and RJMCMC methods in how their best models trade off cost and predictive accuracy

A

Model Cost Posterior probability PO1k

X1 + X2 + X3 + X4 + X5 + X6 + X7 + X12 9.0 0.453 1.00
X1 + X2 + X3 + X4 + X5 + X7 + X12 7.5 0.415 1.09
X1 + X2 + X3 + X4 + X5 + X6 + X12 8.0 0.054 8.40
X1 + X2 + X3 + X4 + X5 + X6 + X7 8.5 0.031 14.72

B

p Method Model Cost Median deviance LSCV

14
RJMCMC

X1 + X2 + X3 + X4 + X5 + X6 + X7 + X12 9.0 1654 −0.329
X1 + X2 + X3 + X4 + X5 + X7 + X12 7.5 1676 −0.333

Utility X1 + X3 + X4 + X5 5.5 1726 −0.342

83

RJMCMC
X1 + X2 + X3 + X5 + X12

+X46 + X49 + X51 + X70 + X78
7.5 1645 −0.327

Utility
X1 + X3 + X4 + X12

+X46 + X49 + X57
6.5* 1693 −0.336

∗This model had a higher cost than the best model with p = 14 because the utility approach was not
optimizing on cost but on a utility-based cost-benefit tradeoff.

binary outcome and a large number (p = 83) of predictors that differ substantially
in data-collection costs. The resulting models achieve dramatic gains in cost and
noticeable improvement in model simplicity at the price of a small loss in pre-
dictive accuracy, when compared to the results of a more traditional benefit-only
analysis.

As noted in Section 1.3, the problem we address here can also be approached
via an alternative version of cost-benefit analysis (based on maximizing expected
utility) and/or a cost-restriction-benefit analysis (maximizing predictive accuracy
subject to a bound on cost); the latter approach [Fouskakis, Ntzoufras and Draper
(2009b)] is not directly comparable to the other two methods. We have com-
pared our cost-adjusted BIC approach with the utility-based method developed by
Fouskakis and Draper (FD) (2008), finding that the two approaches lead to similar
cost-benefit variable subsets. The decision-theoretic approach has the drawback
that it may not be possible to find a single utility structure capturing the prefer-
ences of all relevant stakeholders (including patients, doctors, hospitals, citizen
watchdog groups, and state and federal regulatory agencies) in the quality-of-care-
assessment process (utility was assessed from only a single viewpoint in FD).
The cost-adjusted BIC approach developed here offers an alternative that avoids
ambiguity in utility specification.
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The method we have described in this paper appears to hold significant promise
for cost-effective input-output quality and performance assessment. It can be ap-
plied in any setting where the outcome is binary, such as in education (with out-
comes such as drop-out during university study and employment following grad-
uation) and business (with outcomes such as retention in the workplace and the
default status of a loan), and can be implemented with minor modifications for
any other generalized linear model. We believe that the scope of applications of
regression methodology in which

(a) the purpose of the model-building is to create a predictive scale and
(b) future use of the scale created in (a) will take place in a cost-constrained envi-

ronment with nonzero data collection costs

is sufficiently broad that methods like those examined here are worthy, both of
consideration now, for practical adoption, and of further study to promote, for ex-
ample, additional computational efficiency gains.

APPENDIX A

Here we give a proof of Theorem 1 and the statement and proof of Corollary 1.

PROOF OF THEOREM 1. To begin with condition (a) in Section 2.2.2, it is
straightforward to show that this is satisfied if and only if the costs enter into the
prior through functions of the ratios cj

cj ′ , or equivalently, through functions of ratios
cj

c0
for some c0 > 0.
From condition (b), the extra penalty ξ1 when comparing two models

(γj = 1,γ \j ) and (γj = 0,γ \j ) that differ only by variable Xj with cost c0 is
given by

ξ1[(γj = 1,γ \j ), (γj = 0,γ \j )] = −2 log
f (γj = 1,γ \j )
f (γj = 0,γ \j )

= 0

(25)

⇔ f (γj = 1|γ \j )
1 − f (γj = 1|γ \j )

= 1 ⇔ f (γj = 1|γ \j ) = 1

2
.

Since the above must be true for all γj and γ \j , the result is f (γj = 1) = 1
2 when

the cost of a variable Xj equals the baseline cost c0.
Similarly, for two models (γj = 1,γ \j ) and (γj = 0,γ \j ) that differ only by

variable Xj with cost cj = κc0, from condition (c) we have

ξ2[(γj = 1,γ \j ), (γj = 0,γ \j )] = −2 log
f (γj = 1|γ \j )
f (γj = 0|γ \j )

= (κ − 1) logn

⇔ f (γj = 1|γ \j ) = exp[−(1/2)(κ − 1) logn]
1 + exp[−(1/2)(κ − 1) logn] .
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Since the above equation must hold for any γj ,γ \j and κ = cj

c0
, we end up with a

prior of the form (15).
From condition (d) we have to set c0 ≤ min{cj , j = 1, . . . , p}, since any other

choice will result in negative prior penalties for variables with cost less than c0.
Furthermore, if cj = c′ ≥ c0 for all j , then from (c),

f (γj = 1) = exp[−(1/2)(c′/c0 − 1) logn]
1 + exp[−(1/2)(c′/c0 − 1) logn] ,(26)

resulting in

f (γ ) ∝ {exp[−(1/2)(c′/c0 − 1) logn]}
∑p

j=1 γj

{1 + exp[−(1/2)(c′/c0 − 1) logn]}p .(27)

Under condition (e), for any two models γ (k) and γ (�) the prior model odds must
equal to one. Hence,

f (γ (k))

f (γ (�))
= 1,(28)

resulting in
p∑

j=1

(
γ

(k)
j − γ

(�)
j

)[−1

2

(
c′

c0
− 1

)
logn

]
= 0 for any γ (k),γ (�).(29)

The above is satisfied for any pair of models if and only if c′ = c0. Hence, c0 =
min{cj , j = 1, . . . , p} is the only choice under which (e) is satisfied when (b), (c)
and (d) also hold. �

COROLLARY 1. If a prior distribution f (γ ) is such that:

(a′) the imposed penalty ω on the log-likelihood ratio for adding a variable Xj

with cost κ times the baseline cost c0 (for positive integer κ) equals the im-
posed penalty for adding κ variables with the baseline cost c0,

(b′) the imposed penalty ω for each additional variable is at least equal to logn

(the BIC penalty for the benefit-only analysis), and
(c′) if all costs are equal, the imposed penalty ω when comparing any two models

γ (k) and γ (�) is (dγ (k) − dγ (�)) logn (the BIC penalty),

then it must be of the form (15).

PROOF. If we compare two models that differ only by a variable Xj with cost
cj = κc0, then from (a′),

ω[(γj = 1,γ \j ), (γj = 0,γ \j )] = κ logn for all j = 1, . . . , p,(30)

which results in

ξ [(γj = 1,γ \j ), (γj = 0,γ \j )] = (κ − 1) logn for all j = 1, . . . , p,(31)
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from (21). The above expression corresponds to the third requirement of Theo-
rem 1 used to construct our proposed prior distribution. Moreover, the second re-
quirement of the same theorem arises as a special case for κ = 1.

From (b′) we have that

ω[(γj = 1,γ \j ), (γj = 0,γ \j )] ≥ logn for all j = 1, . . . , p,(32)

resulting in

ξ [(γj = 1,γ \j ), (γj = 0,γ \j )] ≥ 0 for all j = 1, . . . , p,(33)

which corresponds to the fourth requirement of Theorem 1.
Finally, from (c′), if all costs are equal, then

ω
(
γ (k),γ (�)) = (dγ (k) − dγ (�)) logn,(34)

resulting in

ξ
(
γ (k),γ (�)) = 0 for all γ (k) and γ (�),(35)

and thus,

f (γ (k))

f (γ (�))
= 1(36)

for any pair of compared models. Hence, the induced prior when all costs are
equal must be uniform on γ , that is, f (γ ) ∝ 1 for all γ . This corresponds to the
fifth requirement used to construct our prior in Theorem 1.

Since each of the above statements is equivalent to the requirements used to
build our prior in Theorem 1, the only prior with the above three properties
is (15). �

APPENDIX B: COMPUTING DETAILS FOR THE MCMC-BASED
COST-BENEFIT ANALYSIS

With reference to the MCMC methods described in Section 3, both the coding
time and the running time of RJMCMC were higher than with either variant of
MC3 to achieve comparable MCMC accuracy. All MC3 runs in the full model
space were based on 10,000 monitoring iterations after a burn-in (from either the
null model or the full model) of 1,000 iterations; each of these runs took 2–3 days
(on a Pentium 4 machine at 2.8 GHz with 512 MB RAM) for the cost-adjusted
Laplace variant of MC3 and 1–2 days for the cost-adjusted BIC variant (these are
run times for an implementation in R; coding the same algorithms in C would
have yielded substantially faster run times, on the order of 6–8 hours for Laplace
and 2–5 hours for BIC). To achieve reasonable run times for RJMCMC, it was
necessary to implement the algorithm in C. RJMCMC runs were based on 100,000
iterations, after discarding an initial 10,000 iterations as a burn-in; each of these
runs took 2–3 days in the full model space and 9 hours in the reduced space.
The resulting R and C programs are available upon request from the first or second
authors of this paper.
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SUPPLEMENTARY MATERIAL

Cost-based prior distributions for variable selection in generalized linear
models (DOI: 10.1214/08-AOAS207SUPP; .pdf). Imaginary data and power-prior
motivation for the prior distribution in the main paper’s equation (6) and details on
RJMCMC and MC3 implementation and utility elicitation.
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