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Traditional variable-selection strategies in generalized linear models (GLMs) seek to optimize a measure of predictive accuracy without
regard for the cost of data collection. When the purpose of such model building is the creation of predictive scales to be used in future studies
with constrained budgets, the standard approach may not be optimal. We propose a Bayesian decision-theoretic framework for variable
selection in binary-outcome GLMs where the budget for data collection is constrained and potential predictors may vary considerably in
cost. The method is illustrated using data from a large study of quality of hospital care in the U.S. in the 1980s. Especially when the number
of available predictors p is large, it is important to use an appropriate technique for optimization (e.g., in an application presented here where
p = 83, the space over which we search has 283 .= 1025 elements, which is too large to explore using brute force enumeration). Specifically,
we investigate simulated annealing (SA), genetic algorithms (GAs), and the tabu search (TS) method used in operations research, and we
develop a context-specific version of SA, improved simulated annealing (ISA), that performs better than its generic counterpart. When p

was modest in our study, we found that GAs performed relatively poorly for all but the very best user-defined input configurations, generic
SA did not perform well, and TS had excellent median performance and was much less sensitive to suboptimal choice of user-defined
inputs. When p was large in our study, the best versions of GA and ISA outperformed TS and generic SA. Our results are presented in the
context of health policy but can apply to other quality assessment settings with dichotomous outcomes as well.
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1. INTRODUCTION

1.1 Applied Context

Recent years have seen increased interest in measuring the
quality with which institutions such as hospitals carry out their
societal mandates. Quality assessment for hospitals generally is
based on some or all of three main ingredients (e.g., Donabe-
dian and Bashshur 2002): process, what goes on inside the insti-
tutions; outputs, outcome measures by which they may be eval-
uated; and inputs, such as relevant patient characteristics, be-
cause it is unfair to compare hospitals on their outputs without
taking into account relevant differences in the patient cohorts
that they admit. Typically, process is much more expensive to
measure than inputs and outputs (e.g., Kahn et al. 1990a). From
the mid-1980s to the present, this fact has encouraged a strategy
of quality measurement for hospitals in the U.S. and U.K.—the
league table or input–output (IO) approach (e.g., Draper 1995;
Goldstein and Spiegelhalter 1996)—based solely on inputs and
outputs. This approach also is known as provider profiling (see,
e.g., Normand, Glickman, and Gatsonis 1997). With this strat-
egy, each institution is treated as a “black box,” with no attempt
made to explicitly measure the processes going on inside the
box; instead, the contents of the box are inferred indirectly, by
evaluating the institution’s outputs after controlling for its in-
puts.

The most popular way to carry out IO quality assessment in
hospitals (e.g., Kahn et al. 1988; Draper 1995) is to compare the
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observed mortality rates at each of a number of hospitals with
their expected rates, given the sickness of their patients on ad-
mission. The idea is that hospitals with large excess mortality in
this comparison might be good candidates for a more detailed
(and more costly) process evaluation of their quality of care.
Investigation into the potential effectiveness of this method of
screening for substandard hospitals dates back in the U.S. to the
late 1980s (e.g., Dubois, Rogers, Moxley, Draper, and Brook
1987; Daley et al. 1988; Jencks et al. 1988), and the approach
has been studied for some time now in the U.K. as well (e.g.,
Goldstein and Spiegelhalter 1996). Applications of a similar
approach to quality measurement in education also have been
described (see, e.g., Draper and Gittoes 2004), and indeed, the
quality of many complex systems in a wide variety of fields in
principle could be assessed by comparing outputs after adjust-
ment for inputs (see Sec. 4 for examples in fields other than
health and education).

If IO analysis were to be widely used as a screening tech-
nique for initial measurement of hospital quality of care, it
would be far too expensive—given the governmental budget
allocations available for, e.g., Medicare quality of care assess-
ment (U.S. Department of Health and Human Services 2008)—
to evaluate the sickness at admission for every Medicare patient
in every U.S. hospital in any given year. An approach based on
sampling hospitals and then sampling patients within the cho-
sen hospitals would be necessary. Whatever the optimal num-
bers of hospitals and patients per hospital might turn out to
be in such a sampling plan, clearly, in an environment of con-
strained budgets, the cost-effective measurement of patient sick-
ness at admission would be crucial. Progress is being made in
the U.S. (see, e.g., Centers for Medicare & Medicaid Services
2008 for details on Medicare’s plans to compile a uniform clin-
ical data set) and elsewhere on routine (automated) data collec-
tion of clinically richer sets of process and sickness variables
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for hospital patients than those previously available from ad-
ministrative data bases, but for at least the next decade, the cost-
effective collection of primary data will continue to be relevant
to the design of quality of care studies in health policy. (See,
e.g., NDNQI 2008 and California Nursing Outcomes Coalition
2008 for current examples in the field of nursing quality assess-
ment, where extensive nonautomated primary data collection is
both ongoing and planned.)

How should sickness at admission be measured? In a major
study of quality of care in U.S. hospitals in the 1980s conducted
by the RAND Corporation (Kahn et al. 1990b; Draper et al.
1990), a large number of items (on the order of 100 per disease)
that expert physician judgment had indicated were relevant to
admission sickness were collected (Keeler et al. 1990) from
all sampled patient medical records. Some of the items (e.g.,
age and initial blood pressure) were common to all diseases,
but most were disease-specific, such as a measure of shortness
of breath for pneumonia and a variable measuring the severity
of the cerebrovascular accident for stroke. Logistic regression
models were then constructed (one for each disease), taking
death at 30 days from admission as the outcome and the ad-
mission sickness indicators as predictors. This created a large
variable selection problem, because there was a fair amount of
redundancy in the set of predictor variables for each disease.
Standard classical backward-selection methods from the model
with all available predictors (e.g., Hosmer and Lemeshow 2000)
were used in the RAND study to choose a parsimonious subset
of sickness indicators that still had reasonably good predictive
accuracy.

As an example of the results, Table 1 lists the 14 variables
chosen in this manner for inclusion in the RAND sickness-at-
admission scale for pneumonia from among an initial set of 83
variables. The total APACHE II score (Knaus, Draper, Wagner,
and Zimmerman 1985) is a 36-point scale developed before the
RAND study that was designed to measure the sickness of pa-
tients in intensive care units (see, e.g., Open Clinical 2008 for
a recent update to this scale). Five of the variables in the scale
given in Table 1 are dichotomies; four are quantitative measures

of a single sign or symptom (e.g., initial temperature) or bodily
function (e.g., blood urea nitrogen level, an indicator of kidney
function), four are scales built up from other variables (e.g., the
score quantifying the extent of the patient’s congestive heart
failure (if any), as indicated by the admission chest X-ray), and
one (age) is demographic.

There are various ways to measure the predictive accuracy of
this scale. The predicted death probabilities p̂ from the logistic
regression of death within 30 days of admission on the 14 vari-
ables in Table 1, which essentially form the RAND admission
sickness scale, ranged from .004 to .974 in the RAND data for a
disease with overall death rate of 15.8%. The pseudo-R2 of the
scale (e.g., Judge, Hill, Griffiths, Lütkepohl, and Lee 1988)—
the difference between the mean p̂ values for the patients who
died and for those who lived—was .289. The sensitivity and
specificity of the scale as a “screening test” for death, using
a rule of the form {predict death if p̂ > p∗} (with p∗ chosen
to create equal numbers of false positives and negatives), were
54.1% and 91.4%, leading to an overall error rate of 14.5%.
Other scales, using more or fewer of the available sickness indi-
cators for pneumonia, are possible and these would have better
or worse predictive performance than the RAND scale. How-
ever, any such summaries of the value of scales of this type
fail to account for differences in the data collection costs of the
variables on which the scales are based. The second column
in Table 1 gives the estimated monetary costs associated with
each variable in the RAND scale (based on data on record ab-
straction times collected during the RAND study and using an
hourly abstraction fee that was realistic for the late 1980s), and
it can be seen that they vary from smallest to largest by a fac-
tor of 20 to 1. Constructing a cost-effective admission sickness
scale in the presence of such a wide variation in data collection
costs requires weighing predictive accuracy against such costs.
When this is done, a different form of variable selection in gen-
eralized linear models (GLMs) will arise than that on which
the usual methods (either classical or Bayesian) are based, in
which variables are retained in the scale only if they predict suf-
ficiently well given how much they cost to collect. In this article

Table 1. The RAND admission sickness scale for pneumonia (p = 14 variables), with the marginal data collection costs per patient
for each variable and the simple correlations with 30-day death

Correlation with
Variable Cost (U.S.$) 30-day death Cost-effective?

Total APACHE II score (36-point scale) 3.33 .39
Age .50 .17 ∗
Systolic blood pressure score (two-point scale) .17 .29 ∗∗
Chest X-ray congestive heart failure score (three-point scale) .83 .10
Blood urea nitrogen .50 .32 ∗∗
APACHE II coma score (three-point scale) .83 .35 ∗∗
Serum albumin score (three-point scale) .50 .20 ∗
Shortness of breath (yes, no) .33 .13 ∗∗
Respiratory distress (yes, no) .33 .18 ∗
Septic complications (yes, no) 1.00 .06
Prior respiratory failure (yes, no) .67 .08
Recently hospitalized (yes, no) .67 .14
Ambulatory score (three-point scale) .83 .22
Initial temperature .17 −.16 ∗
NOTE: Costs were measured in approximate minutes of record abstraction time and converted to money using an abstraction fee of U.S.$20/hour. The last column, explained in
Section 1.3, identifies variables in models that yield near-optimal expected utility.
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we detail one natural way to perform such cost-effective vari-
able selection. Brown, Fearn, and Vannucci (1999) described an
application of decision theory to variable selection in multivari-
ate regression motivated by somewhat similar cost-benefit con-
siderations in a different setting. Draper and Fouskakis (2000)
offered some pilot study results that served as a prelude to the
larger study on which we report here. Fouskakis, Ntzoufras, and
Draper (2009a,b) presented two other approaches to solving the
problem addressed in this article, based on a cost-adjusted ver-
sion of the Bayes information criterion and a maximization of
predictive accuracy subject to a bound on cost.

1.2 Problem Formulation

Following Fouskakis (2001), suppose that the 30-day mor-
tality outcome yi and data on p sickness indicators (xi1, . . . ,

xip) were collected on n individuals sampled randomly from a
population P of patients with a given disease, and that the goal
is to predict the death outcome for n∗ new patients who in the
future will be sampled randomly from P on the basis of some
or all of the predictors x·j , when the marginal costs of data col-
lection per patient c1, . . . , cp for the x·j vary considerably. Our
problem can be stated as: What is the best subset of the x·j if
a fixed amount of money is available for this task and the re-
ward is based on the quality of the predictions? To solve this
problem, we maximize expected utility (e.g., DeGroot 1970;
Berger 1985), defined in a way that trades off predictive ac-
curacy against data collection costs. The data on which we il-
lustrate this method here consist of a representative sample of
n = 2,532 elderly American patients hospitalized in the period
1980–1986 with pneumonia, taken from the RAND study men-
tioned previously. Because data on future patients are not avail-
able, we use a cross-validation approach (e.g., Gelfand, Dey,
and Chang 1992; Hadorn, Draper, Rogers, Keeler, and Brook
1992) in which a random subset of nM observations is drawn for
creation of the mortality predictions (the modeling subsample)
and the quality of those predictions is assessed on the remaining
nV = (n − nM) observations (the validation subsample, which
serves as a proxy for future patients).

In the approach presented here, utility is quantified in mone-
tary terms, so that the data collection utility is simply the nega-
tive of the total amount of money required to gather data on the
specified predictor subset. Letting Ij = 1 if x·j is included in a
given model and 0 otherwise, the data collection utility associ-
ated with subset I = (I1, . . . , Ip) for patients in the validation
subsample is

UD(I) = −nV

p∑

j=1

cj Ij ; (1)

the second column in Table 1 gives examples of the marginal
costs cj .

To measure the accuracy of a model’s predictions, a metric is
needed that quantifies the discrepancy between the actual and
predicted values, and in this problem the metric must come out
in monetary terms on a scale comparable to that used with the
data collection utility. In the setting of this example, the ac-
tual values yi are binary death indicators, and the predicted
values p̂i , based on statistical modeling, take the form of es-
timated death probabilities. Our approach to the comparison of

actual and predicted values involves dichotomizing the p̂i with
respect to a cutoff, to mimic the decision-making reality that
actions taken on the basis of IO quality assessment will have an
all-or-nothing character at the hospital level; for example, reg-
ulators must decide to either subject or not subject a given hos-
pital to a more detailed, more expensive quality audit based on
process criteria (see, e.g., Kahn et al. 1990a). Other, continuous
approaches to the quantification of predictive utility are possi-
ble; for example, Bernardo and Smith (1994) used a log scoring
method, and Lindley (1968) used squared-error loss to measure
predictive accuracy in a less problem-specific framework than
that presented here. Continuous utility functions in the setting
of this article are the subject of ongoing investigation.

In the first step of our approach, given a particular predictor
subset I , we fit a logistic regression model to the modeling sub-
sample M and apply this model to the validation subsample V

to create predicted death probabilities p̂I
i . In more detail, let-

ting yi = 1 if patient i dies within 30 days of admission and 0
otherwise, and taking xi1, . . . , xik to be the k sickness predic-
tors for this patient under model I , the usual sampling model
underlying logistic regression in this case is

(yi |pI
i )

indep∼ Bernoulli(pI
i ),

(2)

log

(
pI

i

1 − pI
i

)
= β0 + β1xi1 + · · · + βkxik.

We use maximum likelihood to fit this model (as a computation-
ally efficient approximation to Bayesian fitting with relatively
diffuse priors), obtaining a vector β̂ of estimated logistic regres-
sion coefficients, from which the predicted death probabilities
for the patients in subsample V are, as usual, given by

p̂I
i =

[
1 + exp

(
−

k∑

j=0

β̂j xij

)]−1

, (3)

where xi0 = 1. (Here p̂I
i may be considered the sickness score

for patient i under model I .)
In the second step of our approach, we classify patient i in

the validation subsample as predicted dead or alive according
to whether p̂I

i exceeds or falls short of a cutoff p∗, which
is chosen by searching on a discrete grid from .01 to .99 by
steps of .01 to maximize the predictive accuracy of model I .
We then cross-tabulate actual versus predicted death status in a
2 × 2 contingency table, rewarding and penalizing model I ac-
cording to the numbers of patients in the validation sample who
fall into the cells of the right side of Table 2. The left side of the
table records the rewards and penalties in U.S. dollars. The pre-
dictive utility of model I is then

UP (I) =
2∑

l=1

2∑

m=1

Clm nlm. (4)

To elicit the utility values Clm, we reason as follows:

1. Clearly, C11 (the reward for correctly predicting death at
30 days) and C22 (the reward for correctly predicting living at
30 days) should be positive, and C12 (the penalty for a false
prediction of living) and C21 (the penalty for a false prediction
of death) should be negative.
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Table 2. Cross-tabulation of actual versus predicted death status:
Monetary rewards and penalties for correct and incorrect

predictions and frequencies in the 2 × 2 tabulation

Rewards and
penalties Counts

Predicted Predicted

Died Lived Died Lived

Died C11 C12 n11 n12Actual Lived C21 C22 n21 n22

2. Because it is easier to correctly predict that a person lives
than dies with these data (the overall pneumonia 30-day death
rate in our sample was 16%, so a prediction that every patient
lives would be correct about 84% of the time), it is natural to
specify that C11 > C22.

3. Because it is arguably worse to label a “bad” hospital
as “good” than the other way around, one should take |C12| >

|C21|, and furthermore it is natural that the magnitudes of the
penalties should exceed those of the rewards.

4. We completed the utility specification by eliciting infor-
mation from health experts in the U.S. and U.K., first to an-
chor C21 to the cost of subjecting a “good” hospital to an un-
necessary process audit and then to obtain ratios relating the
other Clm to C21. Details on this final step are given in Ap-
pendix A. (This and Apps. B and C are available online at
www.amstat.org/publications/jasa/supplemental_materials/.)

With the Clm in hand, the overall expected utility function to
be maximized over I is then simply

E[U(I)] = E[UD(I) + UP (I)], (5)

where this expectation is over all possible cross-validation splits
of the data. The number of possible cross-validation splits is far
too large to evaluate the expectation in (5) directly; in practice,
we use Monte Carlo methods to evaluate it, averaging over N

random modeling and validation splits.

1.3 The Need for Stochastic Optimization

Even with the use of Monte Carlo sampling to evaluate (5),
when the number p of available predictors is of realistic size
(on the order of 50–100 or larger), the space of all 2p possible
subsets is too large to permit a brute force maximization of ex-
pected utility by an exhaustive examination of all possible sub-
sets. This motivates the need for global optimization methods,
for example, stochastic optimization techniques such as sim-
ulated annealing (e.g., Kirkpatrick, Gelatt, and Vecchi 1983),
genetic algorithms (e.g., Holland 1975), and tabu search (e.g.,
Glover 1989), which are a main focus of the rest of the article.

Because the best way to compare optimization methods on
the quality of the configurations (in this case, subsets of pre-
dictors) that they find is to know the truth in advance, we
created a testbed for this comparison by evaluating (5) using
N = 500 modeling/validation splits for all 214 = 16,384 pos-
sible subsets of the p = 14 variables in the RAND pneumonia
sickness scale in Table 1. This choice of N was large enough
to yield a Monte Carlo standard error for each expected utility
estimate of only about U.S.$0.05, which is small enough to re-
liably identify the good models. Figure 1 presents parallel box-
plots of all 16,384 estimated expected utility values as a func-
tion of the number of variables k, included in the scale. (In this
problem, a configuration is a binary vector of length p.) Each
utility evaluation took .4 seconds at 400 Unix MHz, meaning
that full enumeration of all 16,384 subsets with N = 500 took

Figure 1. Parallel boxplots of estimated expected utility as a function of number of predictors retained, examining all 214 = 16,384 pos-
sible subsets of the p = 14 variables in the RAND pneumonia sickness scale with two-thirds of the data in the modeling subsample (from
Fouskakis 2001).
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38 days of CPU time; in other words, a full enumeration of all
possible subsets in our problem (with a realistically large value
of N ) is already a lengthy undertaking even with only 14 vari-
ables among which to choose. The figure shows, as is intuitively
reasonable, that as k increases from 0, the models get better on
average up to a maximum or near maximum of k = 3–7 and
then get steadily worse on average up to k = 14.

The 20 best models included the same three variables 18 or
more times out of 20, and never included 6 other variables; the
5 best models were minor variations on each other, and included
4–6 variables. The four variables in the model that achieved
the global maximum expected utility are identified with two as-
terisks in the last column of Table 1, and the four additional
variables that appeared most often (along with the ∗∗ vari-
ables) among the best models are highlighted in that column
with one asterisk. The best models save almost $8 per patient
over the full 14-variable model; this would amount to signifi-
cant savings were the league-table assessment method applied
widely. Note that from Table 1, several of the variables with the
strongest marginal predictive power for 30-day mortality (e.g.,
total APACHE II score and ambulatory score) do not appear in
the best models, because their costs are too high in relation to
their predictive usefulness (given the other available variables).
Of course, we have the luxury of knowing the correct answer
here only because the space of possible configurations was rela-
tively small. Searching through this space with all p = 83 avail-
able sickness variables, where the total number of possible sub-
sets is 283 .= 9.7 · 1024, is out of the question. But if stochastic
optimization methods—all of which require the user to make
a series of choices to tune the algorithms—are to be used to
maximize the expected utility (5), it is not clear which method
is best, and it is even less clear what algorithmic inputs should
be used to get superior (or even adequate) performance. (The
literature is remarkably silent on this point.)

The article is organized as follows. In Section 2 we briefly
review each of the three stochastic optimization methods that
we compare. In Section 3 we present our simulation results,
focusing mainly on general purpose implementations of the
optimization techniques that are not specifically tailored to
the decision-theoretic problem of Section 1 (to see how well
generic versions of the algorithms perform). First, we examine
the moderate-dimension case of p = 14, where we also study
the gain in performance obtained by equipping one of the meth-
ods, simulated annealing, with additional “knowledge” of the
decision-theory problem, and then we present findings in the
much larger space corresponding to p = 83. In Section 4 we
conclude with a summary and discussion of the implications
of our findings for variable selection, optimization, and quality
assessment.

2. STOCHASTIC OPTIMIZATION METHODS

Here we present only brief sketches of the three optimization
methods that we examine; Appendix B, available online (URL
provided in Sec. 1.2), provides a more discursive summary and
a comprehensive set of references (App. C, discussed below,
also is available online as part of the same pdf document). See
Fouskakis and Draper (2002) for a recent review paper contrast-
ing the methods examined here and other stochastic optimiza-
tion techniques.

A general issue arising in this problem, common to all ap-
proaches to maximizing expected utility, is as follows. When
different optimization methods are compared to see which is the
best at finding the global maximum of (5), to make the compar-
ison fair they all must be given the same amount of CPU time
with which to perform the search, and then the choice of N [the
number of modeling/validation splits on which the Monte Carlo
approximation of (5) is based] becomes one of the optimization
variables. If N is small, then a given method can visit a large
number of models but will obtain a noisy estimate of how good
those models are. In contrast, if N is large, then the estimate of
a model’s quality will be more precise, but the number of mod-
els that can be visited given the time constraint will be much
smaller. We specify our strategy for choosing N in Section 3.1.

2.1 Simulated Annealing

Simulated annealing (SA; e.g., Kirkpatrick et al. 1983) is a
stochastic local search technique to approximate the maximum
of an objective function f :S → � over a finite set S. It is an it-
erative method that randomly chooses elements y from a neigh-
borhood, N(x), of the present solution x. The candidate y is
either accepted as the new solution or rejected. It may be ac-
cepted with a positive probability even if f (y) < f (x). Thus
the search process can “climb downhill” to escape from local
maxima.

The long-run behavior of the search process depends crit-
ically on a(x,T , y), the probability of accepting a candidate
y given a present solution x; in turn, a(x,T , y) is controlled by
the temperature parameter, T (by analogy to a physical cool-
ing process). To make the iterative search an inhomogeneous
Markov chain, the temperature values typically are chosen in-
dependently of the process as a fixed sequence Tn, the temper-
ature schedule. Usually, the Metropolis acceptance probability
is used; that is, for T > 0,

a(x,T , y) :=
⎧
⎨

⎩

1 if f (y) ≥ f (x)

exp

[
f (y) − f (x)

T

]
if f (y) < f (x).

(6)

The rate at which T decreases as the number of iterations
increases—the cooling schedule—and the choices of initial and
final temperatures are often jointly crucial to the performance
of SA. The geometric cooling schedule Ti = T0(

Tf

T0
)(i−1)/(M−1)

(where i is the iteration number, M is the target number of it-
erations, and T0 and Tf are the initial and final temperatures)
is a frequent default specification; other schedules examined in
the literature include straight-line, reciprocal, and logarithmic
choices (see online App. B for details).

The candidate moves are chosen according to a generating
probability G(x, ·), which often is the uniform distribution on
the neighborhood N(x). The simplest possible neighborhood
structure in the problem that we study herein defines two mod-
els as neighbors if they differ by the inclusion or exclusion of
a single variable; the moves that generate this neighborhood
are known as one-bit flips. The final configuration at the end
of the SA run can be reported as the approximate solution, or
the K best solutions found so far (for some reasonable K ≥ 1)
can be maintained throughout the run and reported. (This re-
quires some CPU and memory resources to implement but is
often worthwhile.)
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2.2 Genetic Algorithms

The genetic algorithm (GA), introduced by Holland (1975),
has become a popular method for solving large optimization
problems with multiple local optima. The phrase “genetic algo-
rithm” is more aptly used in the plural, because of the wealth of
variations on the basic idea that has grown up since the 1970s;
here we use “GA” to represent any of these variations.

GA got its name from the process of drawing an analogy be-
tween components of the configuration vector x and the genetic
structure of a chromosome. As before, the goal is to maximize
a function, f (x), of the vector x = (x1, x2, . . . , xp), where here
each xi is binary. The basic GA starts by randomly generating
an even number n of binary strings of length p to form an initial
population. A positive fitness g then is calculated as a monotone
increasing function of f for each string in the current genera-
tion, and n parents (configurations) for the next generation are
selected, with replacement, with the probability pj of choosing
string j in the current population proportional to its fitness gj .
The new parents are considered in pairs, and for each pair a
crossover operation is performed with a preselected probabil-
ity pc. If crossover occurs, then an integer k is generated uni-
formly at random between 1 and (p − 1) (inclusive), and the
last (p − k) elements of each parent are exchanged to create
two new configurations (offspring). If crossover does not occur,
then the parents are copied unaltered into two new strings.

After the crossover operation, mutation is performed with a
preselected probability pm. If mutation occurs, then the value
at each string position is switched from 0 to 1 or vice versa,
independent at each element of each string. The algorithm is
allowed to continue for a specified number of generations. On
termination, the string in the final population with the highest
value of f can be returned as the solution of the optimization
problem. But because a good solution may be lost during the
algorithm, a more efficient strategy is to note the best (or, even
better, the K best) configurations seen at any stage (for some
reasonable K) and return these as the solution. The population
size n, parameters pc and pm, and fitness function g must be
specified before GA is applied. It is often reasonable to take g

equal to f , but in some problems a more careful choice may be
required (see, e.g., Fouskakis 2001, for a survey of other ideas).
Note that GA proposes moves away from the configurations
currently under examination using a “neighborhood structure”
that is completely different from the approach used in SA or
tabu search (described later).

The foregoing is a description of the basic GA algorithm as
it was initially proposed and used up through the mid-1980s.
More recent variations include elitist strategies (see Sec. 3.1.3
for details) and more elaborate crossover rules, of which the
two most important are as follows. In uniform crossover, at
each position (with probability .5, say), each bit is chosen ran-
domly from either of the two parent strings, repeating if two
offspring are desired. A modified version of uniform crossover
is the method used by the CHC Adaptive Search Algorithm (Es-
helman 1991), which we call highly uniform crossover. This
version crosses over half (or the nearest integer to half) of the
nonmatching bits, where the elements to be exchanged are cho-
sen at random without replacement. This operator always guar-
antees that the offspring are the maximum Hamming distance
(a count of the number of discrepant bits) from their two par-
ents.

2.3 Tabu Search

Tabu search (TS), substantially better known to investiga-
tors in operations research than in statistics, is a neighborhood-
based “higher-level” heuristic procedure for solving optimiza-
tion problems, designed (possibly in combination with other
methods) to escape the trap of local optima. Originally pro-
posed by Glover (1977) as an optimization tool applicable to
nonlinear covering problems, its present form was proposed
9 years later (Glover 1986), and with even more details several
years after that (Glover 1989).

TS’s name comes from a milder version of the dictionary de-
finition of “tabu,” based on the idea of imposing restrictions
to prevent a stochastic search from falling into infinite loops
and other undesirable behavior. TS is divided into three parts:
preliminary search, intensification, and diversification. Prelim-
inary search, the most important part of the algorithm, works as
follows. From a specified initial configuration, TS examines all
neighbors and identifies the one with the highest value of the
objective function. Moving to this configuration might not lead
to a better solution, but TS moves there anyway; this enables the
algorithm to continue the search without becoming blocked by
the absence of improving moves and to escape from local op-
tima. If there are no improving moves (indicating a kind of local
optimum), then TS chooses one that least degrades the objective
function. To avoid returning to the local optimum just visited,
the reverse move must be forbidden. This is done by storing this
move (or, more precisely, a characterization of this move) in a
data structure—the tabu list—often managed like a circular list,
empty at the beginning and with a first-in-first-out mechanism,
so that the latest forbidden move replaces the oldest one. This
list contains a number s of elements defining forbidden (tabu)
moves; the parameter s is called the tabu list size. The tabu list
as described may forbid certain relevant or interesting moves, as
exemplified by those that lead to a better solution than the best
one found so far. In view of this, TS introduces an aspiration
criterion to allow tabu moves to be chosen anyway if they are
judged to be sufficiently interesting. The next stage is intensifi-
cation, which begins at the best solution found so far and clears
the tabu list. The algorithm then proceeds as in the preliminary
search phase. If a better solution is found, then intensification is
restarted. The user can specify a maximum number of restarts
after which the algorithm goes to the next step. If the current
intensification phase does not find a better solution after a spec-
ified number of iterations, then the algorithm also goes to the
next stage. Intensification provides a simple way to focus the
search around the current best solution.

The final stage, diversification, again starts by clearing the
tabu list and sets the s most frequent moves of the run so far to
be tabu, where s is the tabu list size. Then a random state is cho-
sen, and the algorithm proceeds to the preliminary search phase
for a specified number of iterations. Diversification provides a
simple way to explore regions that have been little visited to
date. After the end of the third stage, the best solution (or K

best solutions) found so far may be reported, or the entire al-
gorithm may be repeated (always storing the K best solutions
so far) either a specified number of times or until a preset CPU
limit is reached.
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3. SIMULATION RESULTS

3.1 The p = 14 Case

Our initial strategy for learning about the performance of the
three stochastic optimization methods—exploring the sensitiv-
ity of their performance to user-chosen inputs and finding the
best inputs—was to pit generic versions of them (i.e., imple-
mentations not specially tailored to the details of the Bayesian
decision theory task) against each other in the situation sum-
marized in Figure 1, in which the best subsets of the p = 14
variables in the RAND pneumonia scale of Table 1 were al-
ready known. To give all of the methods a realistically small
amount of CPU time with p = 14 (to simulate the situation with
larger p), we made a number of runs, limiting each method to
only 20 minutes of CPU time at 400 (Unix) MHz. For each op-
timization method, we made 30 runs at each input setting with
different random number seeds and averaged the results.

We needed a method for choosing N , the number of Monte
Carlo replications on which the estimated expected utility is
based. Rather than fixing N at, say, 15 for all runs, we imple-
mented an idea involving adaptive choice of N . In our adap-
tive method, 20 models are chosen at random to initialize the
search and evaluated with, for example, N∗ = 15, creating a
league table of the current 20 best models (our health policy
experts advised that clinicians would find it far more useful to
have a table of the K = 20 best models rather than the single
best model found), and then a new model is chosen and eval-
uated with N = 1. If its apparent utility would place it some-
where in the current league table, then the utility is evaluated
for (N∗ − 1) = 14 more random splits and averaged. If it still
belongs in the league table, then it is added at the appropriate
place; if not, then it is ignored. We found that this adaptive-
N∗ approach was substantially better than the fixed-N approach
for all optimization methods examined (see Fouskakis 2001 for
quantitative comparisons), and we used the adaptive procedure
to obtain all of the results presented herein.

3.1.1 Tabu Search. With TS in our problem, six user inputs
were examined:

• The total number r of repetitions of the algorithm (varied
from 1 to 6)

• The maximum number N∗ of random modeling/validation
splits on which the estimated expected utility is based (ei-
ther 1 or N∗ according to the adaptive method described
earlier; we varied N∗ from 2 to 20)

• The number l of preliminary searches per repetition (var-
ied from 2 to 21)

• The number i of intensification searches per repetition
(varied from 2 to 40)

• The number t of random restarts in each intensification
search (varied from 0 to 8)

• The number d of diversification searches per repetition
(varied from 1 to 15).

A full factorial simulation design across all six of these in-
puts was not possible because many of them led to much longer
CPU times than the target of 1,200 seconds. By trial and error,
we were able to find 49 combinations of input settings, each of
which took approximately 1,200 seconds. The actual CPU time
varied by input settings, from a mean (across the 30 runs) of
1,075 seconds to 1,575 seconds; we calculated both raw sum-
maries and results adjusted (through regression) for differences
in CPU time. In keeping with clinical judgment, as noted ear-
lier, the main outcome variable that we studied was p20, the per-
centage of the actual 20 best models (from the full-enumeration
exercise summarized in Fig. 1) found with each set of inputs.

The performance of TS in our problem, which is summarized
in Table 3, varied dramatically according to input settings, from
an adjusted mean of 39% to 65%. (Tables 11 and 12 in on-
line App. C contain the complete TS results.) Characterizing
the effect of each input on performance is complicated, because
of strong and high-order interactions among the input effects.

Table 3. An edited summary of simulation results in the p = 14 case for tabu search (TS), as a function of user-defined inputs

User-defined inputs p20 (% of 20 best models found)Mean CPU
r N∗ l i t d time, seconds Raw mean Raw SD Adjusted mean

1 10 10 6 3 3 1,158 .631(.020) .109 .649
5 6 2 7 2 2 1,362 .641(.016) .089 .635
2 10 2 4 6 4 1,313 .635(.016) .090 .634
4 9 2 4 1 2 1,386 .636(.017) .091 .627
2 5 14 15 5 1 1,243 .611(.016) .089 .619
1 10 9 12 3 3 1,273 .615(.015) .084 .619
1 14 11 2 0 1 1,253 .611(.019) .106 .618
6 7 2 4 2 2 1,574 .650(.017) .095 .618
...

...
...

...
...

...
...

...
...

...

6 6 4 2 2 3 1,319 .523(.022) .122 .522
1 20 3 5 0 2 1,240 .475(.027) .147 .483
2 10 4 2 1 6 1,300 .441(.027) .148 .442
2 10 4 8 1 2 1,541 .446(.035) .193 .418
3 2 15 35 8 2 1,448 .430(.020) .110 .413
1 15 5 3 1 6 1,191 .398(.047) .257 .412
1 15 6 12 1 5 1,523 .431(.039) .214 .406
5 8 4 1 1 3 1,327 .395(.028) .155 .392

NOTE: Values in parentheses are Monte Carlo standard errors; entries are sorted by adjusted means of p20.
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Only one clear pattern emerged: Good runs of TS tended to
have input values in the middle of the ranges that we explored,
and bad runs tended to have values at the extremes of those
ranges.

3.1.2 Simulated Annealing. With SA, five user inputs were
explored:

• The total number r of iterations (varied from 130 to 2,500)
• N∗, as in TS (varied from 2 to 20)
• The starting value Tf and final value T0 of the temper-

ature (varied across the settings (Tf , T0) = {(10.0,1.0),

(10.0, .1), (2.5, .1), (1.0, .1), (.5, .05)})
• The schedule, sc, used to decrease the temperature

(1, straight line; 2, geometric; 3, reciprocal; 4, logarith-
mic).

By trial and error, we were able to find 108 combinations of
input settings that spanned the full range of possibilities across
these five factors, with the runs from each input setting taking
approximately 1,200 seconds. The actual CPU time varied by
input settings, from a mean (across the 30 runs) of 986 seconds
to 1,471 seconds; thus, as before, we calculated both raw sum-
maries and results adjusted (by regression) for differences in
CPU time.

The performance of simulated annealing in this problem (see
Table 4 for an edited summary, and Tables 13–15 in online
App. C for the complete results) varied even more dramatically
than in the TS case according to input settings, from an adjusted
mean of 0% to 56%. Characterizing the effect of each input on
performance again is complicated, because of strong and high-
order interactions among the input effects. The following con-
clusions emerged:

1. The best SA runs were below the median TS results.
2. Small values of N∗ (up to 10) were best.

3. (Tf , T0) = (1.0, .1) and (.5, .05) gave the best perfor-
mance.

4. The reciprocal and logarithmic cooling schedules were
best in this problem.

5. (Tf , T0) = (10.0,1.0), large N∗, and the straight-line
schedule performed badly.

3.1.3 Genetic Algorithms. With GA, we explored six user
inputs:

• The total number r of repetitions (varied from 2 to 237)
• N∗, as in TS and SA (varied for GA from 2 to 15)
• The population size n (three settings, 30, 50, and 80)
• The crossover strategy (c,pc). We used c = 1 (simple),

2 (uniform), and 3 (highly uniform) crossover. With the
first strategy, we used a crossover probability, pc , of .88
when the population size was 30, .5 when the population
size was 50, and .3 when the population size was 80.

• Elitist or nonelitist strategy (e,pm). In the elitist strategy,
the offspring are compared with the parents, and the best
two among the four are chosen; with the nonelitist strategy,
the offspring are always chosen. With the elitist strategy,
mutation is not performed; with the nonelitist strategy, mu-
tation occurs with probability pm = .01

• At the end of each repetition, we either cleared the popula-
tion and randomly generated a new one (q = 0) or kept the
population as it was and used it as the starting population
for the new runs (q = 100).

Here we were able to perform a complete full factorial ex-
periment of 144 combinations, each of which was targeted to
take approximately 1,200 seconds. As with TS and SA, the ac-
tual CPU time varied by input settings from a mean (across the
30 runs) of 988 to 1,994 seconds; thus, as before, we calcu-
lated both raw summaries and results adjusted (by regression)
for differences in CPU time.

Table 4. An edited summary of simulation results in the p = 14 case for simulated annealing (SA), as a function of user-defined inputs

User-defined inputs p20 (% of 20 best models found)Mean CPU
r N∗ Tf T0 sc time, seconds Raw mean Raw SD Adjusted mean

1,050 4 1 .1 3 1,146 .538(.021) .113 .555
1,000 5 .5 .05 1 1,087 .515(.016) .088 .551

860 5 .5 .05 2 1,134 .523(.023) .125 .544
900 5 2.5 .1 3 1,140 .520(.021) .116 .539

1,120 3 1 .1 3 1,015 .470(.023) .127 .530
240 10 .5 .05 4 1,113 .501(.018) .097 .530
240 10 1 .1 4 1,085 .490(.027) .150 .527
900 5 1 .1 3 1,138 .505(.018) .098 .524

...
...

...
...

...
...

...
...

...

480 15 10 1 2 1,105 .070(.014) .077 .100
580 15 10 .1 1 1,210 .098(.024) .133 .094
360 15 10 1 4 1,147 .068(.014) .074 .085

1,000 10 10 1 1 1,202 .076(.013) .073 .075
360 20 10 1 2 1,128 .050(.011) .061 .073
340 20 10 1 3 1,133 .036(.012) .064 .058
360 20 10 1 1 1,163 .033(.009) .051 .044
800 15 10 1 1 1,426 .055(.010) .057 .000

NOTE: Values in parentheses are Monte Carlo standard errors; entries are sorted by adjusted means of p20. Negative adjusted mean p20 values have been truncated at 0 but appear in
rank order corresponding to their untruncated values.
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Table 5. An edited summary of simulation results in the p = 14 case for the genetic algorithm (GA), as a function of user-defined inputs

p20 (% of 20 best models found)

Mean CPU Raw Raw Adjusted
r N∗ n pc pm c e q time, seconds mean SD mean

22 2 80 0 0 2 1 100 1,231 .646(.013) .070 .665
98 5 50 0 0 3 1 100 1,301 .655(.015) .083 .664
46 2 50 0 0 2 1 100 1,282 .638(.019) .103 .650
20 5 50 0 0 2 1 100 1,307 .630(.018) .100 .638
16 10 30 0 0 2 1 100 1,236 .590(.023) .125 .608
74 10 30 0 0 3 1 100 1,282 .591(.011) .058 .603

166 2 50 0 0 3 1 100 1,267 .585(.014) .074 .599
165 5 30 0 0 3 1 100 1,335 .588(.013) .072 .593

...
...

...
...

...
...

...
...

...
...

...
...

4 10 50 0 .01 3 0 0 1,660 .026(.007) .040 0
2 15 80 0 .01 3 0 100 1,634 .023(.007) .038 0
4 10 50 0 0 2 1 0 1,670 .020(.007) .038 0
3 15 80 .3 .01 1 0 0 1,911 .030(.007) .038 0
2 15 80 0 .01 3 0 0 1,994 .033(.009) .047 0
2 15 80 0 0 2 1 0 1,979 .028(.006) .033 0
2 15 80 0 .01 2 0 0 1,984 .025(.008) .045 0
3 15 80 .3 0 1 1 0 1,889 .011(.005) .025 0

NOTE: Values in parentheses are Monte Carlo standard errors; entries are sorted by adjusted means of p20. Negative adjusted mean p20 values have been truncated at 0 but appear in
rank order corresponding to their untruncated values. For crossover schedules 2 and 3, the pc column is not applicable. With the elitist strategy (e = 1), the pm column is not applicable.
When pc and/or pm are not applicable, the symbol 0 is used; this does not mean that the probability was 0.

Table 5 presents an edited version of the results for GA (Ta-
bles 16–19 in online App. C provide the complete findings).
The performance of GA varied even more dramatically accord-
ing to input settings compared with TS or SA, from an adjusted
mean of 0% to 66%. This maximum value was better than that
achieved by any settings of TS or SA. The conclusions in this
case are clearer than those from the other two algorithms:

• It is far better to use elitist strategies and keep the popula-
tion at the end of every repetition.

• The uniform and highly uniform crossover strategies are
much better than the simple one-bit crossover. The more
recent versions of GA in the literature, with elitist strate-
gies and more complicated crossover operations, vastly
outperform implementations based only on the basic GA
ideas in use up through the mid-1980s.

• Again, small values of N∗ (up to 10) were best.
• Smaller values of the population size n (30 and 50) gave

better results than runs with population size 80.

3.1.4 Improved Simulated Annealing (ISA). The perfor-
mance of generic SA in the p = 14 case was disappointing,
so we explored two kinds of potential improvements to SA.
The first of these was the TS idea of random restarts. A de-
tailed examination of a number of SA output files revealed that
even with temperature schedules that dropped the temperature
slowly and with fairly high final temperatures, SA tended to get
stuck in a local maximum of the criterion function fairly early in
the run. The second was a method for teaching SA about the de-
sirability of the predictor variables (i.e., making it more aware
of the context of the Bayesian decision-theory problem), based
on trading off data collection costs and predictive accuracy in
the following ad hoc way:

• Scale the marginal costs cj by calculating
cj

min cj
; small val-

ues are cost-effective.
• Scale the correlations with the ratio

max rj
|rj | ; again, the cost-

effective variables are small on this.
• Take the product dj , as in column 7 of Table 6.

As it happens, this particular ad hoc desirability measure
correlates well with whether or not a given variable is cost-
effective; the predictors with the eight smallest values of dj in
Table 6 agree with the eight cost-effective variables in Table 1.
Of course, the only way we know this is to go through the ex-
ercise of maximizing expected utility; other ad hoc measures
might look just as plausible, and how can we choose among
them? Also, sorting on column 7 in Table 6 rank-orders the vari-
ables in desirability, but says nothing about how many should be
used to achieve the optimal tradeoff. Nevertheless, one possible
application of the dj , when normalized to probabilities appro-
priately, would be to make a method like SA more “intelligent”
in deciding which variable to bring next into the current model.

To achieve better simulated annealing results, we defined an
improved SA (ISA) algorithm, as follows:

1. ISA begins by choosing K = 20 models completely at
random and evaluating their estimated expected utility
(EEU) values using N∗ replications. This is done to ini-
tialize the league table of the 20 best models found so far.

2. Next, ISA starts the stochastic search at the null model
(with no predictors), which becomes the current model,
and computes its EEU value using the adaptive-N∗
method.

3. ISA then begins proposing moves away from the current
model using one-bit flips (at locations in the binary string
governed by a pointer that scans from 1 to p and then
resets to 1) and the variable desirability criterion dj . From
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Table 6. An ad hoc measure of the desirability of a variable in compromising between predictive accuracy
and data collection costs, in the case where p = 14

Cost cj Correlation Cost- (1) (2) dj =
Variable (U.S.$) rj effective?

cj

min cj

max rj
|rj | (1) · (2) pin

j

APACHE 3.33 .39 20 1.0 20.0 .220
Age .17 .17 ∗ 1 2.3 2.3 .802
SBP .17 .29 ∗∗ 1 1.3 1.3 .876
CHF .83 .10 5 3.9 19.5 .226
BUN .50 .32 ∗∗ 3 1.2 3.7 .711
Coma .83 .35 ∗∗ 5 1.1 5.6 .605
Albumin .50 .20 ∗ 3 2.0 5.9 .590
Shortness of breath .33 .13 ∗∗ 2 3.0 6.0 .585
Respiratory distress .33 .18 ∗ 2 2.2 4.3 .675
Septic 1.00 .06 6 6.5 39.0 .118
Respiratory failure .67 .08 4 4.9 19.5 .226
Recently hospitalized .67 .14 4 2.8 11.1 .391
Ambulatory .83 .22 5 1.8 8.9 .463
Temperature .17 −.06 ∗ 1 6.5 6.5 .562

NOTE: The rightmost column, a function of desirability calculated using (7), characterizes the probability of the given variable entering the model after not being included in the previous
step. Cost-effective: Variables marked ∗ and ∗∗ appeared frequently in the 20 best models; ∗∗ identifies the variables in the globally best model. Variables are in the same order as in
Table 1, where their full names are given.

the dj we created probabilities pin
j and pout

j —for flipping
a 0 to a 1 and vice versa, using the (ad hoc) transformation
from desirability to probability given by

pin
j = pmin + (pmax − pmin)e

−c(dj −1), (7)

where (pmin,pmax, c) are tuning constants to be specified
by the user and pout

j = 1 − pin
j . Here pmin and pmax gov-

ern how dogmatic the inclusion and exclusion processes
should be, and c controls the rate at which desirability
translates into probability of inclusion. Experimentation
led us to the choices (pmin,pmax, c) = (.1, .9, .1), which
yielded the inclusion probabilities in the last column of
Table 6 in the 14-variable case.

A move away from the current model is then governed
by two processes in sequence. First, a move is either pro-
posed or not at random based on the pin

j and pout
j values,

and then if a move is proposed, it either occurs or not ac-
cording to the usual SA acceptance probabilities.

4. Step 3 is repeated until the algorithm gets stuck in the
same place for k consecutive iterations, where, again after
experimentation, we chose k = 50 as a good compromise
for p = 14. If k successive steps without a move occur at
any time during the run, then ISA implements a random
restart. The temperature is again set to T0, a random ini-
tial model is generated, and cooling from this temperature
begins all over again, exactly as at the beginning of the
entire algorithm.

Throughout the run, the league table of 20 best models is con-
stantly updated. Steps 3 and 4 are then iterated until the desired
amount of CPU time has been exhausted.

We performed a simulation experiment with ISA similar to
the study with generic SA, the results of which were given in
Section 3.1.2. The results, summarized in Table 7 and given
completely in Tables 20–22 in online Appendix C were much
better than those for generic SA, the best input settings achieved
an adjusted mean value of p20 of 74.2% (about 34% better than

the top result for generic SA). With the modifications of SA
involving random restarts and the inclusion and exclusion of
variables based on desirability, the new ISA outperformed both
versions of TS and GA studied previously in the case where
p = 14. (Peak ISA performance was about 14% and 12% better
than the top results for TS and GA.)

It is possible that inclusion and exclusion probabilities based
on variable desirability, as in ISA, could be used to improve TS
as well. This is a subject of continuing investigation.

3.1.5 Summary of Results With p = 14. Figure 2 presents
parallel notched boxplots comparing GA, SA, TS, and ISA in
the 14-variable case as a function of their user inputs. Nonover-
lap of the notch intervals for any pairwise comparison in the
plot provides significant evidence of an underlying difference in
median performance (Chambers, Cleveland, Kleiner, and Tukey
1983). The relative success of the four optimization methods
can be evaluated in several ways: (1) which method has the best
top performance (i.e., how the methods compare on their very
best results); (2) which has the best median performance; and
(3) which has the best bottom performance (this gives an idea
of how well a method would perform if little attention were
paid to fine-tuning the user inputs). The following conclusions
with p = 14 (i.e., when optimizing over a space of modest size
with a real-valued objective function and binary inputs) may be
drawn about the role of user-specified inputs in stochastic opti-
mization:

• In our optimization problem, ISA and SA were the overall
winners and losers, respectively, in terms of top perfor-
mance.

• TS was best and GA was worst (by a large margin) on
median performance, and TS had by far the best bottom
performance (corresponding to a user unfortunate enough
to have specified sharply suboptimal algorithmic inputs).

• Tailoring a generic implementation of SA to the specifics
of the optimization problem, as with ISA, can lead to no-
ticeable improvements in the performance of the basic
simulated annealing approach.
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Table 7. An edited summary of simulation results in the p = 14 case for ISA, as a function of user-defined inputs

User-defined inputs Mean CPU p20 (% of 20 best models found)
N∗ T0 Tf sc time, seconds Raw mean Raw SD Adjusted mean

15 .5 .05 4 1,349 .748(.016) .114 .742
20 .5 .05 4 1,494 .753(.017) .143 .734
15 10 .1 4 1,360 .715(.017) .089 .708
20 10 .1 4 1,349 .706(.017) .120 .700
20 2.5 .1 4 1,495 .708(.016) .110 .689
10 .5 .05 4 1,251 .685(.018) .109 .688
15 2.5 .1 4 1,407 .698(.018) .090 .687
10 10 .1 4 1,408 .690(.018) .102 .679
...

...
...

...
...

...
...

...

15 10 1 2 1,454 .403(.016) .101 .388
15 10 .1 2 1,073 .361(.014) .089 .380
2 10 1 1 1,377 .381(.018) .094 .373
2 10 1 2 1,350 .378(.026) .082 .372

20 10 1 1 1,096 .320(.020) .104 .337
20 10 1 2 1,174 .305(.019) .097 .315
20 10 .1 1 1,084 .273(.014) .096 .291
20 10 .1 2 1,073 .233(.013) .096 .252

NOTE: Values in parentheses are Monte Carlo standard errors; entries are sorted by adjusted means of p20.

• GA had the greatest sensitivity, and TS was the least sen-
sitive, to badly chosen user inputs.

It would seem that in problems of modest complexity, TS
is relatively robust to less-than-optimal choices of user inputs.
This suggests that it may deserve more attention in the statistics
community than it has received so far.

3.2 The p = 83 Case

All of the results so far have been for the special case of
p = 14 available predictor variables; in the full RAND pneu-
monia data, p = 83 predictors were available. Table 8 summa-
rizes all of the “interesting” predictors, together with their data

collection costs and their simple correlations with 30-day death.
(Tables 23 and 24 in online App. C give details on the full set of
all 83 variables.) A variable is “interesting” and thus included
in this table if it (a) was in the original RAND scale, (b) was
one of the eight best variables in the case where p = 14 (see
Sec. 1.3 for details), or (c) was one of the 22 best variables in
the case where p = 83 (see Sec. 3.2 for details). Table 8 shows
that some of the variables in the p = 83 case, that were not in
the original 14-variable RAND scale did not have a very high
correlation with death, suggesting that the dimensionality of the
space worth searching was less than that implied by including
all 83 predictors. However, (a) many of the new variables did
in fact have quite high marginal correlations with death (in fact,

Figure 2. Parallel notched boxplots comparing GA, SA, TS, and ISA in the 14-variable case.
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Table 8. The “interesting” subset of the full set of 83 variables, together with their approximate data collection costs per patient, simple
correlations r with 30-day death, and presence or absence in the original RAND 14-variable scale

Cost cj In RAND Good? Good?
Variable (U.S.$) r Scale? (p = 14) (p = 83) %

Systolic blood pressure score .17 .29 ∗ ∗∗ ∗∗ 73
Age .17 .17 ∗ ∗
Blood urea nitrogen .50 .32 ∗ ∗∗ ∗∗ 100
APACHE II coma score .83 .35 ∗ ∗∗ ∗∗ 83
Shortness of breath day 1 .33 .13 ∗ ∗∗ ∗ 31
Serum albumin score .50 .20 ∗ ∗
Respiratory distress score .33 .18 ∗ ∗
Septic complications 1.00 .06 ∗
Prior respiratory failure .67 .08 ∗
Recently hospitalized .67 .14 ∗
Initial temperature .17 −.06 ∗ ∗ ∗∗ 71
Heart rate day 1 .17 .16 ∗ 10
Chest pain day 1 .17 −.15 ∗ 31
Ambulatory score .83 .22 ∗
Prior antibiotics .17 −.02 ∗ 3
Multiple myeloma .17 −.02 ∗ 2
APACHE respiratory rate score .33 .24 ∗ 8
Comorbid aspiration score .17 .09 ∗ 7
Admission systolic blood pressure .17 −.20 ∗∗ 64
Congestive heart failure chest X-ray score .83 .10 ∗
Total APACHE II 3.33 .39 ∗
Respiratory rate day 1 .17 .22 ∗∗ 92
Confusion day 1 .17 .30 ∗ 25
Influenza score .17 −.04 ∗ 2
Arrest in emergency room score .17 .17 ∗ 48
Comorbid cirrhosis score .17 .01 ∗ 2
Comorbid congestive heart failure score .17 .08 ∗ 33
Comorbid alcoholism score .17 −.03 ∗ 15
Comorbid steroids score .17 .01 ∗ 1
Neurologic history score .17 .28 ∗ 1
Musculoskeletal score .17 .17 ∗ 5

NOTE: A variable is “interesting,” and included in this table, if it was in the original RAND scale, it was one of the eight best variables in the case where p = 14 (see Sec. 1.2 for details),
or it was one of the 22 best variables in the case where p = 83 (see Sec. 3.2 for details). The final three columns are explained in Section 3.2.

higher than some of the variables in the final 14-variable RAND
scale), and (b) with p = 83, we wanted to learn about how well
the three main optimization methods studied here (SA, GA, and
TS) performed in a high-dimensional space and without a great
deal of problem-specific tailoring of the algorithms. Results for
ISA-style modifications of SA with p = 83 are summarized at
the end of this section.

Because full enumeration was impossible with p = 83, our
first task was to create a workable proxy for it. We created this
proxy as follows:

• First, we chose one “good” input configuration each from
TS, SA, and GA (from Tables 3–5), where “good” means
a compromise between the best results from p = 14 and
a desire for each method to visit a large number of mod-
els. In practice, we chose an input configuration for each
method that was among the top 15 with p = 14.

• We then ran each algorithm with these “good” configura-
tions for 1 week of CPU time at 400 MHz on the p = 83
case (using random starting models). Each method vis-
ited about 630,000 models in that time; the total across
the three methods was 1,900,377, although this figure in-
cluded many duplicate models.

• We eliminated all of the duplicates, finally arriving at
825,635 unique models visited by the three methods in
1 week each. We then sorted these models on their appar-
ent utility (in each case N∗ was 1, 4, or 5, based on the
adaptive method), and extracted the 3,000 best models on
this basis. Finally, we performed a full-enumeration exer-
cise on these 3,000 models (with N = 500) to find their
actual (as opposed to apparent) expected utility, and then
sorted them one more time on their actual utility values.

In this section the 3,000 models and their utilities obtained in
this way are cousidered “truth” for the purpose of comparing
SA, GA, and TS with p = 83.

Figure 3 summarizes the estimated (actual) expected utility
values from the 3,000 best models found in the 1-week runs, as
a function of the number of variables in the model. This plot is a
rough analog of Figure 1, with the roughness appearing because
it is not a full enumeration of all models with 1–22 variables.
Even so, the approximately concave shape traced out by the me-
dians and maxima of most of the boxplots is clear and demon-
strates that in the 83-variable case, the best models have 5–10
variables. This is only slightly larger than in the p = 14 case,
where the optimal range was 4–7, even though the optimization
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Figure 3. Estimated (actual) expected utility as a function of number of predictors retained, based on the 3,000 best models found from the
1-week runs with p = 83.

methods have 69 more variables to work with; this is because
the RAND scale harvested so many of the variables with good
univariate predictive performance. Table 9 summarizes the di-
mensions of the models found by the three methods. The table
clearly shows that GA achieves its good results by finding its
way faster (from a random starting point) to the smaller models
where the best utilities are concentrated; 81% of the 3,000 best
models were found by GA, with 19% discovered by TS, and
only 1 out of the entire 3,000 (.03%) obtained by SA. When we
restricted attention only to those models with N > 1, for which
the utility determination was more accurate, the results were
even more striking in favor of GA: 95% from GA, 5% from
TS, and .1% from SA. As was the case with p = 14, the best
versions of GA were those that incorporated the more recent in-
novations of highly uniform crossover strategy, elitist selection
(and thus no mutation), and retention of 100% of the current
members of the population at the beginning of each repetition
of the algorithm.

Columns 6 and 7 of Table 8 identify the most promising vari-
ables from the 1-week runs. The second of these columns gives
the percentage of time each variable appeared among the 100
best models if that frequency was at least 1%; 61 of the 83 vari-
ables failed this test. The six most common variables in the 100

Table 9. Distribution of model dimension in the 3,000 best models
from the 1-week runs, by optimization method

All n n > 1

Method Mean SD % Mean SD %

SA 18.0 0 .03 18.0 0 .1
GA 7.5 1.7 81.20 7.3 1.4 94.9
TS 14.9 2.0 18.77 12.5 1.2 5.0

Total 8.9 3.4 100.0 7.6 1.8 100.0

best models, denoted by double asterisks (**) in column 6, were
(in decreasing order of frequency) blood urea nitrogen, respira-
tory rate day 1, APACHE II coma score, systolic blood pressure
score, initial temperature, and admission systolic blood pres-
sure. Four of these variables were identified in the parallel exer-
cise with p = 14, but two are new: there is extra cost-effective
information in the actual values of the admission systolic blood
pressure and respiratory rate on day 1 above and beyond what
was present in the similar scales among the 14 RAND variables.

The overall best model found in the 1-week runs had seven
variables: systolic blood pressure score, blood urea nitrogen,
APACHE II coma score, initial temperature, admission systolic
blood pressure, respiratory rate day 1, and arrest in emergency
room score. The real utility achieved by this model, −7.47,
was only U.S.$0.43 better than the corresponding figure with
p = 14; this again is a consequence of the RAND 14-variable
scale being so heavily packed with variables with good univari-
ate predictive behavior.

GA’s advantage over SA and TS with p = 83 arose because
GA was able to examine many more models than the other
methods in the same amount of CPU time. Table 10 compares
the total number of utility evaluations achieved by the three op-
timization methods in a series of runs with 24 hours of CPU

Table 10. Comparison of the total number of utility evaluations
achieved by the three optimization methods in the 24-hour runs

Number of Number of
models visited with utility

Method N∗ N = 1 N > 1 evaluations

SA 4 62,912 1,004 66,928
GA 2 104,204 10,706 125,616
TS 5 37,235 5,653 65,500



1380 Journal of the American Statistical Association, December 2008

time. With the same CPU budget, GA was able to find the time
to evaluate almost twice as many utilities as the other two meth-
ods. Closer examination of the precise use of CPU time by the
three algorithms revealed that this difference was attributable
to the amount of extra “overhead” required by TS and SA that
is not present in GA. SA spent a noticeable amount of time
making calculations (involving expensive calls to the logarithm
and exponential functions) to support its cooling schedule and
acceptance probabilities, and TS used a substantial amount of
CPU time managing the tabu list.

We also performed a number of runs in which GA, TS, SA
and ISA were given 3 hours of CPU time for each of a number
of choices of user inputs; details are given in Tables 25–28 in
online Appendix C. As was the case with p = 14, modifying
SA to permit random restarts and the inclusion and exclusion
of variables based on desirability sharply improved the perfor-
mance of the simulated annealing algorithm, with the result that
ISA performed about as well as GA with p = 83.

4. CONCLUSIONS AND DISCUSSION

Our work offers a relatively new perspective on variable se-
lection in GLMs: when monetary resources are constrained (as
will almost always be true) and the purpose of a modeling exer-
cise is the creation of a predictive rule for future cases, data col-
lection costs need to be traded off against predictive accuracy
in choosing an optimal subset of predictors. We have found that
Bayesian decision theory, through maximization of expected
utility, is a good way to quantify this trade-off.

We draw the following conclusions from this study regarding
the performance of the stochastic optimization methods that we
examined:

• When optimizing a real-valued criterion function f (x1,

. . . , xp) for binary xj , for moderate p (e.g., choosing
among 214 = 16,384 possible input configurations), ge-
netic algorithms performed relatively poorly in our prob-
lem for all but the very best user-defined input config-
urations, and generic simulated annealing also did not
perform well, whereas tabu search had excellent me-
dian performance and was much less sensitive to subop-
timal choice of user-defined inputs. When optimizing over
spaces of moderate size, tabu search appears to deserve
more attention in the statistics community than it has re-
ceived so far.

• Providing off-the-shelf stochastic optimization methods
with extra “intelligence” based on the statistical context
of the problem (e.g., with something like the desirability
criterion of Sec. 3.1.4) can lead to substantial performance
improvements.

• For large p (e.g., when there are 283 .= 1025 possibilities
to search), the two best optimization methods studied here
were the most recent versions of genetic algorithms (their
good performance with large p, in contrast to the situa-
tion when the optimization problem is of moderate size, is
due to lower algorithmic overheads compared with other
leading methods) and the improved version of simulated
annealing proposed in Section 3.1.4 (which did well be-
cause of the extra problem-specific information on which
its variable selection was based).

The decision-theoretic methodology that we have examined
here holds broad promise for cost-effective IO quality and per-
formance assessment in any setting where the outcome is di-
chotomous and a number of predictors are potentially available
that differ substantially in data collection costs. Examples other
than the health policy setting of this article include education
(with such outcomes as dropout rates and employment rates
after graduation), personnel management (with a focus on re-
tention rates in the workplace), and credit scoring in business
(where defaulting on a loan is the outcome of interest).

[Received June 2006. Revised July 2007.]
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