APPENDIX A

Standard probability distributions

A.1 Introduction

Tables A.1 and A.2 present standard notation, probability density func-
tions, parameter descriptions, and moments for standard probability dis-
tributions. The rest of this appendix provides additional information in-
cluding typical areas of application and methods for simulation.

We use the standard notation 8 for the random variable (or random vec-
tor), except in the case of the Wishart and inverse-Wishart, for which we use
W for the random matrix. The parameters are given conventional labels; all
probability distributions are implicitly conditional on the parameters. Most
of the distributions here are simple univariate distributions. The multivari-
ate normal and related Wishart and multivariate ¢, and the multinomial and
related Dirichlet distributions, are the principal exceptions. Realistic dis-
tributions for complicated multivariate models, including hierarchical and
mixture models, can usually be constructed from these building blocks.

For simulating random variables from these distributions, we assume that
a computer subroutine or command is available that generates pseudoran-
dom samples from the uniform distribution on the urdit interval. Some care
must be taken to ensure that the pseudorandom samples from the uniform
distribution are appropriate for the task at hand. For example, a sequence
may appear uniform in one dimension while m-tuples are not randomly
scattered in m dimensions. Many statistical software packages are avail-
able for simulating random deviates from the distributions presented here.

A.2 Continuous. distributions
Uniform

The uniform distribution is used to represent a variable that is known to
lie in an interval and equally likely to be found anywhere in the interval. A
noninformative distribution is obtained in the limit as a — —o0, b — o0.
If u is drawn from a standard uniform distribution U(0, 1), then 6 = a +
(b~ a)u is a draw from Ul(a, b).
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Table A.1 Continuous distributions
Distribution | Notation Parameters Density function Mean, variance, and mode
. 8 ~ U(a,b) boundaries a, b 3 , E(6)=2tt, var(d) = (b—a)?
Uniform p(6) = U(6a, b) With b> a ! p(6) = 55, 0 €a,f] o an% 12
6 ~ N(u,o?) location u o 1 2 E(8) = p, var(d) = o2
Normal p(6) = N(8], 52) scale o > 0 PO) = i exp (=52 (8 — 1)?) mode(d) = 1
Multivariate MAMV HMCHMAW_VE %) symmetric, pos. Qmm;. p(0) = (2m)~9/?|g|1/2 E@®) = p, var(§) = X
normal (implicit &E,mume d) d x d cov. matrix ¥ X exp Ale ~ )T - ) mode(d) = p
W E(§) = ¢
f ~ Gamma(a, ) shape a > 0 M _ B* pa—1.-p6 Im o
Gamma p(#) = Gamma(f|a, 8) inverse scale 8 > 0 p(6) = T e, 9>0 var(6) = B
mode(f) = &&=, fora>1
I o1 (. 5) N -0 E@) = £, fora>1
verse- ~ Inv-gammala, shape « = 8% _g—(a+1),—B/0 = IIJTN
gamma p(f) = Inv-gamma(fja, §) scale 8> 0 p(6) = 2&.@ e , 0>0 var(6) = Etwv fa=z) &> 2
BOQGAQV = a1
. 0~ x2 p(6) = 2 gv/2-1~0/2 g5 E(6) = v, var(d) = 2v
Chi- v deg. of freedom v > 0 I(v/2) ’ ’
square p(68) = x2(6) & same as Gamma(a = %, = 1) mode(#) = v~2, forv>2
— E() = =L, forv > 2
. ~ Inv-y2 = 272 g—(v/24+1) ,—1/(26) v—2>
Hb,.\mwmm 0 P HM<HM? 29 deg. of freedom v > 0 p(f) o7’ ¢ > 0 VH 0 var () = ?INVM?LV v>4
OWTMQCNHO .NUA v - <IX~\A v Same as H5<IWQBSWAQ = W:Q = Mv BOQQA%V = Llw
, E(9) = s
Scaled 8 ~ Inv-x*(v, s?) deg. of freedom v > 0 p(8) = ﬁ\m%?iﬁcném\g 6>0 ) = vz 2?4
mverse- ﬁA%v — Hb<|XwA%_~\ .wmv scale s >0 r .\HM v . v, 2 <@HA®V = Atlmvu?lim
chi-square ) same as Inv-gamma(a = ¥, 8 = £s?) mode(6) = 2557
i 6 ~ Expon(8) . p(0) = Be~P%, 6>0 E(6) = 3, var(d) = 3
Exponential p(8) = Expon(6|3) inverse scale § > 0 same as Gamma(a =1,5) mode(6) = 0
W ~ Wishart, (S) deg. of freedom v p(W) = Aw;\miﬂ?l:k anH r Aﬁ_,wllvv -t
Wishart p(W) = Wishart, (W|S) symmetric, pos. def. x| S|=¥12|W|(w—k-1)/2 E(W)=vS
(implicit dimension k x k) k x k scale matrix S x exp (—3tr(S™IW)), W pos. def.
~ Inv-Wi -1 _ ~ . R
Iverse. W ~ Inv-Wishart, (S™) deg. of freedom v p(W) = (24/27H,-D/ATTE T (=) .
Wishart p(W) = Inv-Wishart, (W|S~!) symmetric, pos. def. < |S|P /AW~ 1) 2 E(W) = (v — k—1)-18
(implicit dimension k& X k) k x k scale Bmﬁ..uh S ¢ x exp (= 1tr(SW~1)), W pos. def.
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Table A.1 Continuous distributions continued
Distribution {Notation Parameters
6~ t,(u,o?) deg. of freedom v > 0
Student-t p(6) = t,(8|p, 0?) location )
t, is short for ¢,(0, 1) scale o > 0
o 8 ~t,(1,5) deg. m.m freedom v > 0
Multivariate - location g = (p1,. ., q)
p(6) = t.(8|u, ) .
Student-¢ smolicit di ion d symmetric, pos. def.
(implicit dimension d) d x d scale matrix ©
Beta 0 ~ Beta(a, 8) ‘prior sample sizes’
p(6) = Beta(f|«, B) a>0,8>0
.. 6 ~ Dirichlet(a;,. ., ax) ‘prior sample sizes’
Dirichlet p(6) = Dirichlet(6la, .., ax) a; > 0; ap = Muwnu Q;
Table A.2 Discrete distributions
Distribution  |Notation Parameters
. g ~ Poisson(\) o
Poisson (6) = Poisson(8]) rate’ A >0
. ‘sample size’
Binomial i ) WIE_NMWMN_: ) n (pos. integer)
Pl = P ‘probability’ p € [0, 1]
‘sample size’
s 9 ~ Multin(n;p;, .., pi) n (pos. integer)
Multinomial 1 0) — Multin(@ln; pr, .., py) ‘probabilities’ p; €[0, 1];
k
MU.».HH pj=1
Negative 9 ~ Neg-bin(a, 3) shape a > 0
binomial b(6) = Neg-bin(d|e, B) inverse scale § > 0
‘sample size’
Beta- ) ~ Beta-bin(n, a, 8) n (pos. integer)
binomial b(f) = Beta-bin(f|n, a, §) ‘prior sample sizes’

a>0,8>0
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Density function

477

Mean, variance, and mode

p(6) = FUFDIL (1.4 1 (Szk)2)-C+0/2

L(v/2)\/vmo

E(6) = p, forv>1
var(d) = ;%502, forv>2
mode(f) = p

E(6) =y, moH v>1

—-1/2
p(6) = 7 _mH_ prays Va(0) = 353, forv>2
X(1+ L0 -wTs~H0 - p)~ mode(8) = u
E(6) = -
_ T(a+8 -1 -1 a+f
p(d) = rwr@ o (- 0)? var(f) = il —
0 ¢ 0] (¥ B) (o FF+T)
] ‘mode(f) = ;%55
_ E@9;) = 22
(e o ay—1 Qg — N — o5 (co—ay)
NUA%V — HJAQ_.WT H,'_mnx”v% ..%Fr 1 <@HA%&V - Qouﬁ%o..TWvQ
61,00 20,316, =1 cov(f;, ;) = J|?.g“£
Bommg ) ==

Density function

Mean, variance, and mode

p(8) = HA%exp (-)

E(#) = A, var() = A

6=0,1,2,. mode(8) = | A]
p(O) = (3)°(1~ )~ AT
#=0,1,2,...,n var(6) = np( v
e mode(f) = [(n + 1)p]
PO) = (5, 476 )P0 - P m@% =" .
0. —0.19 kg var(6;) = np;(1 - p;)
i=0L2, .m0 6 =n cov(8:,8;) = —npip;

p(6) = Amwm%v.?ﬂvn AWWVQ
9=0,1,2,.

E(6) =
var(f) = (6 + 1)

wR

I'(n+1 I'(a+8)T(n+4-b—6
@A%v H,AQ+HVAH;A3WQ+HV ¢ H.,APV+M+.:V :

x%rmw 6=0,1,2,.

E(6) = ns$s
var(d) =

QEQ+Q+§
(a+8)2(a+B+1)

2 R
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Univariate normad] .

The normal distribution is ubiquitous in statistical work. Sample averages
are approximately normally distributed by the central limit theorem. A
noninformative or{flat distribution is obtained in the limit as the variance
02 — o0o. The variiance is usually restricted to be positive; 02 = 0 corre-
sponds to a point|mass at f. There are no restrictions on §. The density
function is alwaysifinite, the integral is finite as long as ¢? is finite. A sub-
routine for generatiing random draws from the standard normal distribution

(k= 0,0 =1) is ayailable in many computer packages. If not, a subroutine
to generate standard normal deviates from a stream of uniform deviates
can be obtained frpm a variety of simulation texts; see Section A.4 for some

references. If z is 3
then 6 = u+ oz is

random deviate from the standard normal distribution,
a draw from N(y, o?).

Two properties pf the normal distribution that play a large role in model

building and Bay:

sian computation are the addition and mixture prop-

erties. The sum of two independent normal random variables is normally

distributed. If 6,

d 0 are independent with N(u1,0?) and N(uz, 03) dis-

tributions, then 61+ 602 ~ N(u1 + p2, 0?2 + 02). The mixture property states

that if (61]02) ~
This is useful in t

Lognormal

(62,0%) and 6, ~ N(uz,02), then 6; ~ N(ug,02 + 02).
e analysis of hierarchical normal models.

If 6 is a random jvariable that is restricted to be positive, and logf ~
N(u, 02), then 6 is paid to have a lognormal distribution. Using the Jacobian
of the log transfoymation, one can directly determine that the density is

p(8) = (V2mo6)~}

variance is exp(2u

exp(—5,7(log 8 — p)?), the mean is exp(u + 10?), the
exp(o?)(exp(a?) — 1), and the mode is exp(u — o'2).

Multivariate normlal

The multivariate hormal density is always finite; the integral is finite as

long as det(Z1!)
limit as det(X1)

0. A noninformative distribution is obtained in the
0; this limit is not uniquely defined. A random draw

from a multivariat¢ normal distribution can be obtained using the Cholesky

decomposition of

and a vector of univariate normal draws. The Cholesky

decomposition of ¥ produces a lower-triangular matrix A (the ‘Cholesky
factor’) for which AAT = 2. If z = (z1,- .-, 2q) are d independent standard
normal random variables, then # = u + Az is a random draw from the
multivariate normal distribution with covariance matrix X.

The marginal distribution of any subset of components (for example, 8;
or (6;,6;)) is also yormal. Any linear transformation of §, such as the pro-

jection of @ onto a
to the rank of the

linear subspace, is also normal, with dimension equal
transformation. The conditional distribution of 8, con-

strained to lie on apy linear subspace, is also normal. The addition property
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holds: if 6, and 6, are independent with N(yu;, %) and N{pa,%s) distribu-
tions, then 8; + 60y ~ N(u1 +u2, Z1 + Z2) as long as 6, and 6, have the same
dimension. We discuss the generalization of the mixture property shortly.

The conditional distribution of any subvector of 8 given the remaining
elements is once again multivariate normal. If we partition ¢ into subvectors
6 = (U,V), then p(U|V) is (multivariate) normal:

E(UIV) = E@U)+ cov(V,U)var(V)"H(V L E(V)),
var(U|V) var(U) — cov(V, U)var(V) tcov(U, V), (A.1)
where cov(V,U) is a rectangular matrix (submatrix of %) of the appropriate

dimensions, and cov(U,V) = cov(V,U)7T. In particular, if we define the
matrix of conditional coefficients,

C =1~ [diag(z™1)]tn?,
then aﬁ.ﬁ!
(6:16;, allj #i) ~ N(ui + Y _ cijpg, (57 Vas). (A.2)
J#i
Conversely, if we parametrize the distribution of U and V hierarchically:
Q_H\ZZANA\*MUQ:\V, A\ZZC{:\“M:\V“

then the joint distribution of § is the multivariate normal,

- U N Xy NM«\NH._.MQ:\ XZy
- 14 §72% ’ MI\NH M< ’
This generalizes the mixture property of univariate normals.
The ‘weighted sum of squares,” SS = (§ —u)TE1(8 — 1), has a x2 distri-

bution. For any matrix A for which AAT = ¥, the conditional distribution
of A71(6 — p), given SS, is uniform on the (d—1)-dimensional unit sphere.

Gamma

- The gamma distribution is the conjugate prior distribution for the inverse of
. the normal variance and for the mean parameter of the Poisson distribution.

The gamma integral is finite if o > 0; the density function is finite if @ > 1.
A noninformative distribution is obtained in the limit as a — 0, 8 =
0. Many computer packages generate gamma random variables directly;
otherwise, it is possible to obtain draws from a gamma random variable
using draws from a uniform as input. The most effective method depends
on the parameter ¢; see the references for details.

There is an addition property for independent gamma random vari-
ables with the same inverse scale parameter. If §; and 8, are indepen-
dent with Gamma(oy, 8) and Gamma(az, §) distributions, then ; + 8y ~
Gamma(a; +az, B). The logarithm of a gamma random variable is approx-
imately onBmk.Hmmem a gamma random variable to the one-third power
provides an even better normal approximation.
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Inverse-gamma

IfH1!hasag

inverse-gamma d
if @ > 0. The i
normal variance.

Chi-square

The x? distribu
a=v/2and §

parameter is fixe
tions, then 6; + 4

Inverse chi-squay

The inverse-x? is
v/2 and § = 1.
which is useful i
simulation draw
the x2 distributi

Ezponential -

The exponential
next event in a |
bution with & =
straightforward.
—log(U)/B is a ¢

Weibull

If 8 is a random v
Expon(1) distrib
shape parameter
used to model fai
log transformatic
F0°"exp(—(8
(T(1 + 1))?], and

Wishart

The Wishart is t
matrix in a mult
ization of the gai
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ma distribution with parameters o, 3, then 6 has the
stribution. The density is finite always; its integral is finite
verse-gamma is the conjugate prior distribution for the
A noninformative distribution is obtained as a, 3 — 0.

bt o

on is a special case of the gamma distribution, with
= 5. The addition property holds since the inverse scale
1: if mw and 0, are independent with x2 and x2, distribu-
2™ Xyt

(M

€

a special case of the inverse-gamma distribution, with a =
We also define the scaled inverse chi-square distribution,
or variance parameters in normal models. To obtain a
6 from the Inv-x2(v,s?) distribution, first draw X from
bn and then let § = vs?/X.

distribution is the distribution of waiting times for the
oisson process and is a special case of the gamma distri-
|. Simulation of draws from the exponential distribution is
f U is a draw from the uniform distribution on [0, 1], then
raw from the exponential distribution with parameter 5.

ariable that is restricted to be positive, and (8/8)* has an
ition, then @ is said to have a Weibull distribution with
a > 0 and scale parameter § > 0. The Weibull is often
ure times in reliability analysis. Using the Jacobian of the
n, one can directly determine that the density is p(4) =
B)*), the mean is BT'(1+ 1), the variance is 8%['(1+ 2y~
the mode is B(1 — L)1/«

he conjugate prior distribution for the inverse covariance
variate normal distribution. It is a multivariate general-
mma distribution. The integral is finite if the degrees of

freedom parameter, v, is greater than or equal to the dimension, k. The

density is finite

f v > k + 1. A noninformative distribution is obtained
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as v — 0. The sample covariance matrix for iid multivariate normal data
has a Wishart distribution. In fact, multivariate normal simulations can be
used to simulate a draw from the Wishart distribution, as follows. Simu-
late ai,...,a,, v independent samples from a k-dimensional multivariate
N(0, S) distribution, then let # = 3., a;af. This only works when the
distribution is proper; that is, v > k. .

Inverse- Wishart

If W—! ~ Wishart, (S) then W has the inverse-Wishart distribution. The
inverse-Wishart is the conjugate prior distribution for the multivariate nor-
mal covariance matrix. The inverse-Wishart density is always finite, and
the integral is always finite. A degenerate form occurs when v < k.

Student-t

‘The t is the marginal posterior distribution for the normal mean with

unknown variance and conjugate prior distribution and can be interpreted
as a mixture of normals with common mean and variances that follow an
inverse-gamma distribution. The ¢ is also the ratio of a normal random
variable and the square root of an independent gamma random variable.
To simulate ¢, simulate z from a standard normal and z from a x?2, then let
6 = p+o2+/v/\/z. The t density is always finite; the integral is finite if v > 0
and o is finite. In the limit ¥ — oo, the ¢t distribution approaches N(u, c?).
The case of v = 1 is called the Cauchy distribution. The t distribution can
be used in place of a normal distribution in a robust analysis.

Beta -

The beta is the conjugate prior distribution for the binomial probability.
The density is finite if o, 8 > 1, and the integral is finite if @, 8 > 0. The
choice &« = 8 = 1 gives the standard uniform distribution; @ = § = 0.5
and a = B = 0 are also sometimes used as noninformative densities. To
simulate 6 from the beta distribution, first simulate z, and zg from x3,
and me distributions, respectively, then let § = %ﬁ.

It is sometimes useful to estimate quickly the parameters of the beta
distribution using the method of moments:

wip = EOO-E@) |

var(8)
a = (a+ HE(®), B = (a+ B)(1 - E©)). (A.3)

The beta distribution is also of interest because the kth order statistic from
a sample of n iid U(0,1) variates has the Beta(k,n — k4 1) distribution.
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Dirichlet

The Dirichlet is
multinomial dist
the beta distrib
a’s are positive,
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the conjugate prior distribution for the parameters of the
ribution. The Dirichlet is a multivariate generalization of
ition. As with the beta, the integral is finite if all of the
and the density is finite if all are greater than or equal to

one. A noninformative prior is obtained as a; — 0 for all j.

The marginal
distribution of a
Dirichlet(a;, ¢,

listribution of a single §; is Beta(a;, &p~a;). The marginal
subvector of § is Dirichlet; for example (8;,6;,1—6; - 0;) ~
o — o; — o). The conditional distribution of a subvector

given the remaining elements is Dirichlet under the condition MU 6, =1.

There are two

standard approaches to sampling from a UEoEmﬂ distri-

bution. The fastest method generalizes the method used to sample from the

beta distributioy:

with common sq

b; =z;/ MwnH z
and conditional
6, from a Beta(d

der, as follows. Fi
distribution, and

A.3 Discrete ¢

Poisson

draw z3,...,7; from independent gamma distributions
ale and shape parameters a;,...,a, and for each j, let
- A less efficient algorithm relies on the univariate marginal
distributions being beta and proceeds as follows. Simulate
1, Muwum ;) distribution. Then simulate 8,,...,65_; in or-
, k—1, simulate ¢; from a Beta(a;, MUN.ﬂ , ;)

br j = 2,. . imjr1 O
let 6; = (1 — Y127 6;)¢;. Finally, set 8 = 1 — S5 1 g,

listributions

The Poisson distribution is commonly used to represent count data, such

as the number of

has an addition
and Poisson(Az)
for the Poisson d
bersome. Table |
function. Simula;

Binomial

The binomial di
‘successes’ in a se

arrivals in a fixed time period. The Poisson distribution
property: if §1 and 6, are independent with Poisson();)
distributions, then 6; + 6, ~ Poisson(); + Az). Simulation
istribution (and most discrete distributions) can be cum-
ookup can be used to invert the cumulative distribution
rion texts describe other approaches.

tribution is commonly used to represent the number of
quence of n iid Bernoulli trials, with probability of success

p in each trial. A binomial random variable with large n is approximately
normal. If §; and 6, are independent with Bin(n;,p) and Bin(ns,p) distri-

butions, then &,
variable can be

+ 62 ~ Bin(n; + n2,p). For small n, a binomial random

§imulated by obtaining n independent standard uniforms

and setting 6§ eqpal to the number of uniforni deviates less than or equal
to p. For larger ), more efficient algorithms are often available in computer

packages. When

n = 1, the binomial is called the Bernoulli distribution.
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Multinomial

The multinomial distribution is a multivariate generalization of the bi-
nomial distribution. The marginal distribution of a single #; is binomial.
The conditional distribution of a subvector of 8 is multinomial with ‘sam-
ple size’ parameter reduced by the fixed components of § and ‘probabil-
ity’ parameters rescaled to have sum equal to one. We can simulate a
multivariate draw using a sequence of binomial draws. Draw 6, from a
Bin(n,p;) distribution. Then draw 6s,...,0;_; in order, as follows. For
j=2,...,k=1, draw 6; from a Bin(n - 371 8;,p;/ Mwuu. p;) distribution.
Finally, set 6 = n — Mwnlw ;. If at any time in the simulation the bino-
mial sample size parameter equals zero, use the convention that a Bin(0, p)
variable is identically zero.

Negative binomial

The negative binomial distribution is the marginal distribution for a Pois-
son random variable when the rate parameter has a Gamma(a, 3) prior
distribution. The negative binomial can also be used as a robust alterna-
tive to the Poisson distribution, because it has the same sample space,
but has an additional parameter. To simulate a negative binomial random
variable, draw A ~ Gamma(c,8) and then draw 6 ~ Poisson()). In the
limit & = oo, and a/f —constant, the distribution approaches a wowmmoup
with parameter o/f. Under the alternative parametrization, p = m 10 0
can be interpreted as the number of Bernoulli failures obtained before the
a successes, where the probability of success is p.

Beta-binomial

The beta-binomial arises as the marginal distribution of a binomial random
variable when the probability of success has a Beta(a, 8) prior distribution.
It can also be used as a robust alternative to the binomial distribution. The
mixture definition gives an algorithm for simulating from the beta-binomial:
draw ¢ ~ Beta(a, 8) and then draw @ ~ Bin(n, ¢).

A.4 Bibliographic note

Many software packages contain subroutines to simulate draws from these
distributions. Texts on simulation typically include information about many
of these distributions; for example, Ripley (1987) discusses simulation of
all of these in detail, except for the Dirichlet and multinomial. Johnson
and Kotz (1972) give more detail, such as the characteristic functions, for
the distributions. Fortran and C programs for uniform, normal, gamma,
Poisson, and binomial distributions are available in Press et al. (1986).



