Bayesian Hierarchical
Modeling

David Draper

Department of
Applied Mathematics and Statistics
University of California, Santa Cruz

draper@ams.ucsc.edu

http://www.ams.ucsc.edu/~draper/

Draft 7 (January 2005): revised Contents
and Preface, Chapter 1, Chapter 2, and
revised References. Comments welcome.

(© 2005 David Draper

All rights reserved. No part of this book may be reprinted, repro-
duced, or utilized in any form or by any electronic, mechanical or
other means, now known or hereafter invented, including photo-
copying and recording, or by an information storage or retrieval
system, without permission in writing from the author.

This book was typeset by the author using a PostScript (Adobe Systems,
Inc.) based phototypesetter. The figures were generated in PostScript us-
ing the S+ data analysis language (Becker et al., 1988), and were directly
incorporated into the typeset document. The text was formatted using
the BTEX language (Lamport, 1994), a version of TgX (Knuth, 1984).






TO ANDRFEA

iii






Contents

Preface

1 Introduction to Bayesian modeling

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9

Quantification of uncertainty about observables
Discrete outcomes: Exchangeability

Prior, posterior, and predictive distributions
Inference and prediction

Coherence and calibration

Conjugate analysis

Comparison with frequentist modeling
Continuous outcomes

Additional reading

1.10 Problems
1.11 Notes

2 Simulation-based computation

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

The need for Markov Chain Monte Carlo methods
Hastings and Metropolis sampling

Practical implementation issues

MCMC monitoring and convergence diagnostics
Gibbs sampling

Case study: Measurement of physical constants
Additional reading

Problems

Notes

3 Hierarchical models for combining information

3.1
3.2

Meta-analysis
Case study: Can aspirin prevent heart attack
mortality?

ix

Nl B

12
13
15
18
20
33
34
38

47
47
53
55
73
83
93
109
110
111

123
123

123



vi

CONTENTS

3.3 Approximate fitting of Gaussian HMs: Maximum

likelihood and empirical Bayes 123
3.4 Incorporating study-level covariates 123
3.5 Case study: Effects of teacher expectancy on pupil

1Q 123
3.6 Additional reading 123
3.7 Problems 123
3.8 Notes 123
Hierarchical model diagnostics 125
4.1 Frequentist-inspired diagnostics 125
4.2 Predictive validation 125
4.3 Case study: Dose-response relationships in carcino-

genicity assessment of exposure to diesel fumes 125
4.4 Additional reading 125
4.5 Problems 125
4.6 Notes 125
Random-effects and mixed models 127
5.1 Model-based analysis of cluster samples 127
5.2 Predictor variables at all levels of the hierarchy 127
5.3 Comparison between Bayesian and frequentist

methods for random-effects and mixed models 127
5.4 Case study: Quality of care measurement for elderly

hospitalized Americans 127
5.5 Additional reading 127
5.6 Problems 127
5.7 Notes 127
Longitudinal data analysis 129
6.1 Repeated-measures designs 129
6.2 Growth-curve analysis 129
6.3 Case study: Effects of maternal speech patterns on

infant speech development 129
6.4 Additional reading 129
6.5 Problems 129
6.6 Notes 129
Mixture modeling 131

7.1 Density estimation 131



CONTENTS vii

7.2 Nonparametric modeling with mixtures of Dirichlet

process priors 131
7.3 Additional reading 131
7.4 Problems 131
7.5 Notes 131

8 Hierarchical modeling as an approach to model

selection 133
8.1 Model expansion 133
8.2 Bayes factors and Laplace approximations 133
8.3 The effects of model uncertainty 133
8.4 Case study: Effects of an intervention to reduce
hospitalization rates for elderly people 133
8.5 Case study: Risk assessment in the Challenger
space shuttle disaster 133
8.6 Additional reading 133
8.7 Problems 133
8.8 Notes 133
9 Discussion and further topics 135
9.1 Warnings on the unwary use of HMs. Bayes # free
lunch 135
9.2 Directions for future research 135
9.3 Additional reading 135
9.4 Notes 135

Appendix 1: Some common prior and likelihood fam-

ilies 137
Appendix 2: Software details 139
1 A Hastings sampler in S+ for Section 2.2 139
2 An S+ function to prepare MCMC output for CODA 142
3 A Hastings sampler in C for Section 2.2 143
4 A Metropolis sampler in S+ for Section 2.2 150
5 A Gibbs sampler in S+ for Section 2.5 152
6 Computing covariance matrices in Maple 155
7 A generic Metropolis sampler in S+ 156
8 BUGS files for the ¢ example of Section 2.6 159
9 Metropolis and Gibbs sampling via MLwiN 160

References 161



viii CONTENTS
Index 169



Preface

This book provides an introduction to the formulation, fitting,
and checking of or multi-level models, from the
Bayesian point of view. Hierarchical models (HMs) arise frequently
in five main kinds of applications:

e HMs are common in fields such as health and education, in
which data—both outcomes and predictors—are often gathered
in a nested or hierarchical fashion: for example, patients within
hospitals, or students within classrooms within schools. HMs
are thus also ideally suited to the wide range of applications in
government and business in which single- or multi-stage cluster
samples are routinely drawn, and offer a unified approach to
the analysis of random-effects (variance-components) and
mixed models.

e A different kind of nested data arises in meta-analysis in, e.g.,
medicine and the social sciences. In this setting the goal is com-
bining information from a number of studies of essentially the
same phenomenon, to produce more accurate inferences and pre-
dictions than those available from any single study. Here the
data structure is subjects within studies, and as in the clustered
case above there will generally be predictors available at both
the subject and study levels.

e When individuals—in medicine, for instance—are sampled cross-
sectionally but then studied longitudinally, with outcomes ob-
served at multiple time points for each person, a hierarchical
data structure of the type studied in repeated-measures or
growth curve analyses arises, with the readings at different
time points nested within person.

e For simplicity people often try to model data as (conditionally)
IID at a fairly high level of aggregation—for instance, by pre-
tending that all the subjects in a sampling experiment are drawn
homogeneously from a single population. In fact, heterogene-
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ity is often the rule rather than the exception, and frequently
the available predictor variables do not “explain” this hetero-
geneity sufficiently. With recent computational advances it is
becoming increasingly straightforward to at least describe such
heterogeneity with mixture models that employ latent vari-
ables (unobserved predictors) in a hierarchical structure. Exam-
ples include density estimation with an unknown number of
sub-populations mixed together and Bayesian nonparamet-
ric modeling, in which people work with distributions whose
sample spaces are themselves sets of distributions instead of
(say) real numbers.

o Hierarchical modeling also provides a natural way to treat issues
of model selection and model uncertainty with all types of
data, not just cluster samples or repeated measures outcomes.
For example, in regression, if the data appear to exhibit residual
variation that changes with the predictors, you can expand the
model that assumes constant variation, by embedding it hierar-
chically in a family of models that span a variety of assumptions
about residual variation. In this way, instead of having to choose
one of these models and risk making the wrong choice, you can
work with several models at once, weighting them in proportion
to their plausibility given the data.

In studying HMs there are two kinds of technical issues that
also arise: fully Bayesian computation in HMs requires the use
of simulation methods such as those based on Markov Chain
Monte Carlo (MCMC) ideas, and—as usual with any class of
statistical models—there are questions of model diagnostics.

Plan of the book. | In the chapters below I describe the prin-
ciples of Bayesian hierarchical modeling, with emphasis on practi-
cal rather than theoretical issues, and I illustrate these principles
with analyses of real data drawn from case studies. The material is
intended for applied statisticians with an interest in learning more
about hierarchical models in general, and the Bayesian analysis
of such models in particular. The field of study examined here is
surprisingly wide, touching on topics in numerical analysis, high-
dimensional integration, and measures on function space (on the
mathematical side), the meaning of uncertainty and probability (in
philosophy and statistics), and practical issues in Markov chains,
time series, and modern nonparametric analysis.
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The nine chapters cover the five application areas mentioned
above, together with an introductory chapter on Bayesian mod-
eling, one chapter each on MCMC and model diagnostics, and
a concluding chapter with discussion and suggestions for future
research. An appendix reviews standard probability distributions
useful in Bayesian work, and another provides computing details
in the environments I used to write the book: the statistical com-
puting and graphics package S+, the Gibbs sampling package BUGS,
the multi-level modeling package MLwiN, the symbolic computing
package Maple, and the high-level programming language C.

An understanding of probability at the level typically required
for a master’s degree in statistics provides ample mathematical
background. I have taught subsets of this material successfully to
groups including British final-year undergraduates, American PhD
students, and PhD-level researchers enrolled in short courses, and
the book has also proven useful for self-study by researchers and
graduate students in a variety of disciplines (including statistics).

No previous experience with Bayesian methods is needed—all
relevant ideas are covered in a self-contained fashion. If you already
know a fair bit about Bayes you can move through Chapter 1
briskly, although there are philosophical and practical issues of
potential interest even to seasoned Bayesians there. If you are new
to Bayes, a good way to read this book is in conjunction with one
or both of the following excellent publications: the Bayesian text
by Gelman et al. (1995), and the monograph on MCMC by Gilks
et al. (1996) (although the latter is at a more advanced level than
the former). A supplementary and complementary perspective on
many of the issues covered here can also be obtained by doing
some reading in parallel in the excellent book by Carlin and Louis
(1996).

Some style and layout conventions to be aware of in the chapters
that follow:

e I like to teach and talk about research ideas informally, and the
book reflects this. I have tried to write as if you and I were hav-
ing an extended conversation on the topics covered here. This
is natural in a book on applications of the Bayesian approach
to probability, and has various advantages, but one possible dis-
advantage is that the scope of agreement in the statistics com-
munity with statements I make may not be immediately clear.
So here is a dictionary: sentences including phrases like “You
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can show that” and “Evidently” are meant to be expressions
of mathematical fact; phrases like “Most people believe that”
signal general unanimity (in my view) among (Bayesian) statis-
ticians on the point I'm covering; and phrases like “It seems to
me that” precede a personal opinion of mine, which may or may
not be shared by other statisticians.

I am writing in ’TEX, and I don’t like *TEX’s subsection layout,
so | one-line text boxes| act as subsection headings. Multi-line
text boxes, in contrast, bring emphasis to definitions, theorems,
and summaries of important points.

The book is dotted with blocks of text that begin NB—these
highlight things like general notational conventions and pitfalls
to be avoided in implementing the ideas I'm discussing at that
point.

Bold font is generally reserved for the first appearance of im-
portant technical terms, and italics signal items of particular
emphasis.

I have tried to write for a fairly diverse audience in terms of
mathematical and statistical background. One of the main de-
vices for (I hope) achieving this fairly smoothly is footnotes®,
which are often too long to be at the bottom of the page where
they belong, so I have collected them at the end of each chapter.
The naming convention is that, for instance, note® in Chapter
3 will be found as item 3.6 in the Notes section of that chapter.
In general, the footnotes supplement the main text by adding
historical details, additional mathematical formalism, notices of
nonstandard terminology, and the like. The intent is that if you
are new to much of this material, you can skip (many or all of)
the notes on first reading if you want; whereas if you are fairly
experienced in the topics covered here, or you want to dig a
bit deeper, you may find that the notes enrich the material and
suggest directions for further reading.

T also offer a somewhat eclectic variety of problems in each chap-
ter: some are data-analytic, others somewhat more theoretical,
and they vary widely in difficulty. Problems that use material
in the notes begin with the symbol (AM'n), where n refers to the
chapter in which the relevant notes may be found. To get the
most out of the material, I recommend not only working many
or all of the problems but also programming up most or all of
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the examples and case studies to see if you get results similar to
mine.

I am grateful to Bill Browne, Ryan Cheal, Dimitris Fouskakis,
David Freedman, Andrew Gelman, Sander Greenland, Merilee Hurn,
Dennis Lindley, Nick Longford, David Madigan, Colin Mallows,
Michael Seltzer, and David Williams for comments on earlier ver-
sions of this material, and to the UK Engineering and Physical
Sciences Research Council, the European Commission, the Univer-
sity of Bath (UK), and the University of California, Santa Cruz for
support. Membership on this list does not imply agreement with
the ideas expressed here, nor are any of these people or institutions
responsible for any errors that may be present.

Santa Cruz, California David Draper
January 2005






CHAPTER 1

Introduction to Bayesian
modeling

1.1 Quantification of uncertainty about observables

‘Case study 1.1: ‘ Hospital-specific prediction of mortality rates.

Let’s say you are interested in measuring the quality of care (e.g.,
Kahn et al., 1990) offered by one particular hospital. I am thinking
of the Royal United Hospital (RUH) in Bath, England, where I
work; you will probably have a different hospital in mind.

As part of this you decide to examine the medical records of
all patients treated at the RUH in one particular time window, say
January 1996-December 1999, for one particular medical condition
for which there is a strong process-outcome link!, say acute my-
ocardial infarction (AMI; heart attack). In the time window you’re
interested in there will be about n = 400 AMI patients at the RUH.

To keep things simple let’s ignore process for the moment and
focus here on one particular outcome: death status (mortality) as
of 30 days from hospital admission, coded 1 for dead and 0 for
alive. (In addition to process this will also depend on the sickness
at admission of the AMI patients, but let’s ignore that initially
t00.) From the vantage point of December 1995, say, what may be
said about the roughly 400 1’s and 0’s you will observe in 1996-99?

|The meaning of probability. ‘ You are definitely uncertain
about the 0-1 death outcomes Yi,...,Y,, before you observe any
of them. Probability is supposed to be the part of mathematics
concerned with quantifying uncertainty?; how can probability be
used here?

Consider a description A of some aspect of something about
which you are uncertain. (Here, for example, A could be (Y; =1) =
{patient ¢ will die} for some i.) Three main approaches to endowing
probabilities with real-world meaning have so far been developed
(e.g., Oakes, 19862, Hacking, 1975): classical, frequentist and
Bayesian.
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e Classical: Enumerate elemental outcomes (EOs) in a way that
makes them equipossible on the basis of symmetry considera-
tions, and compute

na  number of EOs favorable to 4
=4 _ . 1.1
Po(4) n total number of EOs (1.1)

e Frequentist: Restrict attention to attributes A of events (phe-
nomena that are inherently repeatable under “identical” condi-
tions) and define

# of repetitions in which A occurs

n—00 n

(1.2)

e Bayesian: Imagine betting with someone about the truth of a
proposition A (propositions can be anything—not just repeat-
able phenomena—whose truth value is not (yet) known), and
ask yourself what odds (Oa|Byou) you would need to give or
receive in order that you judge the bet fair, where Byoy repre-
sents your knowledge and beliefs relevant to the assessment of
the odds; then (for you)

(OA |By0u)

Ppiyou(4) = Pe(AlByon) = =515 *5-
y 108

(1.3)

NB Some notational conventions: (1) In what follows I
will usually just write B instead of Byou; (2) When it
is clear from context that I am talking about a Bayesian
probability, I will generally drop the B in Pg; and (3) For
brevity I will sometimes omit the explicit conditioning
on your beliefs B in the notation. This should always be
regarded as present, even when not actually printed in
the conditional probability expressions.

Each of these probability definitions has general advantages and
disadvantages:

e Classical

— Plus: When relevant, this definition is simple—most people
are first taught classical probability, with toy examples like
idealized coin-tossing and drawing balls from urns.

— Minus: The only way to define “equipossible” without a cir-
cular appeal to probability is through the principle of insuf-
ficient reason—you judge EOs equipossible if you have no
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grounds (empirical, logical, or symmetrical) for favoring one
over another—but this leads to paradoxes (for instance, the
assertion of equal uncertainty is not invariant to the choice
of scale on which it is asserted?).

e Frequentist

— Plus: Mathematical analysis with this approach is relatively
tractable, which helps to explain the widespread use of fre-
quentist probability in mathematical statistics over the last
100 years.

— Minus: But the frequentist definition only applies to inher-
ently repeatable events: for example, Pr(Al Gore will be
elected president of the United States in 2000) is (strictly
speaking) undefined.

¢ Bayesian

— Plus: All forms of uncertainty are inherently quantifiable with
this approach.

— Minus: There is no guarantee that the answer you get by
querying yourself about betting odds will retrospectively be
seen by you or others as “good” (but how should the quality
of an uncertainty assessment itself be assessed?).

Application to mortality prediction. | Suppose for the mo-

ment that you did in fact have a variety of process and admission
sickness variables available for a large collection P of AMI patients,
and you were trying to assess the probability that a particular
patient—Ilet’s call her S—with a given process and admission sick-
ness profile will die within 30 days of admission. How would the
three definitions above be applied to this assessment?

If you think about how you would try to quantify this patient’s
risk of dying, you will see that all three approaches require you
to make judgments about the similarity of this patient to other
patients. The English statistician and geneticist Fisher defined the
recognizable subpopulation Pgs to which this patient belongs
as his way of coming to grips with similarity judgments:

Definition (Fisher, 1956): The recognizable subpopula-
tion Pgs for patient S is the smallest subset to which she
belongs for which the AMI mortality rate differs from
that in the rest of P by an amount you judge as signifi-
cant in a practical sense.
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Within Ps you regard the risk of dying as close enough to constant
that the differences aren’t worth bothering over, but the differences
between mortality rates in Ps and its complement matter to you.
I will address below how you would go about identifying Ps in
practice.

Taking it as given that Ps has been established, as a classicist
you would then (a) use Fisher’s definition to establish equipossibil-
ity within Ps, (b) count n4 = (number of deaths in Ps) and n =
(total number of people in Ps), and (c) compute Pc(A4) = 24.

As a frequentist, to bring in the idea of repeating something un-
der “identical” conditions, you would have to (a) equate P(A) to
P(a person chosen at random (IID) from Pg dies), (b) imagine
repeating this random sampling indefinitely, and (c) conclude that
the limiting value of the relative frequency of mortality in these
repetitions would be Pr(A) = “A. Notice that strictly speaking
you can’t talk about Pp(this patient will die)—you have to imag-
ine embedding this patient in a repeatable sequence and settle for
saying something about the sequence.

As a Bayesian, with the information given here you would re-
gard this patient as exchangeable with all other patients in Ps—
meaning informally that you judge yourself equally uncertain about
mortality for all the patients in this set—and this judgment, to-
gether with the axioms of coherence (a kind of internal consis-
tency requirement; see Note 1.16), would also yield Pp.you(A4) =
%4 (although I have not yet said why this is so). I will look at
exchangeability and coherence in more detail below.

Note that with the same information base the three approaches
in this case have led to the same answer, although the meaning
of that answer depends on the approach. For example, frequentist
probability describes the process of observing a repeatable event
whereas Bayesian probability is an attempt to quantify your un-
certainty about something, repeatable or not.

Subjectivity and “objectivity.” ‘The classical and frequen-

tist approaches have sometimes been called “objective,” whereas
the Bayesian approach is clearly subjective or judgmental. I
would argue, however, that in interesting applied problems of re-
alistic complexity, the judgment of similarity (equipossibility, IID,
exchangeability) that is evidently central to all three theories makes
them all subjective in practice.

Imagine, for instance, that you were given data on death status
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in a large group of AMI patients, along with many variables that
might or might not be relevant to predicting their mortality, and
asked to identify Ps. You might build a generalized linear model
to estimate P(death within 30 days) from the available predictors.
But in building this model you would make many judgment calls,
for example the choice of link function (logit versus complementary
log-log, say) and the “best” subset of predictors to include. The
result could easily be considerable variation in the estimates of
P(death) obtained by you and other reasonable analysts working
independently®, and the differences between the answers obtained
in this way come entirely from the exercise of modeling judgment.

Thus the assessment of complicated probabilities is inherently
subjective. With this in mind attention in all three approaches
should perhaps shift away from trying to achieve “objectivity” to-
ward the explicit statement of the assumptions and judgments
made in forming probability assessments, so that consumers of
these assessments may judge their plausibility®.

Frequentist modeling.| I will focus on the approaches with

the most widespread usage—frequentist and Bayesian—in the rest
of the book. How, for instance, can the frequentist definition of
probability be applied to the hospital mortality problem?

As a frequentist, to use probability to quantify your uncertainty
about the 1’s and 0’s, you have to think of them as either literally
a random sample or like a random sample from some population,
either hypothetical or actual.

e An example of a hypothetical population would be all AMI pa-
tients who might have come to the RUH in 1996-99 if the world
had turned out differently in some (unspecified) ways.

e Some actual populations: (1) Assuming sufficient time-homogen-
eity in all relevant factors, you could try to argue that the col-
lection of all 400 AMI patients at the RUH from 199699 is like
a random sample of size 400 from the population of all AMI pa-
tients at the RUH from (say) 1993-2002, even though in fact it is
a kind of time-cluster sample in which you got everybody from
199699 and nobody from 1993-95 or 2000-02; or (2) Assum-
ing the RUH to be representative of some broader collection of
hospitals in England and ignoring intracluster correlation, you
could try to argue that a cluster sample of all 400 AMI patients
from the RUH was like a simple random sample of 400 AMI
patients from this larger collection of hospitals.
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None of these options is, shall we say, entirely compelling”.

If you are willing to pretend the data are like a sample from
some population, you could then regard the 400 1’s and 0’s at the
RUH as realizations of random variables and begin to think about
a model, for example

Y, "¥P B, i=1,...,n, (1.4)

where B(-) denotes the Bernoulli distribution. (Appendix 1 con-
tains a summary of the distributions used in this book.) In the ab-
sence of any sickness or process information, however, you would
probably have to treat the 1’s and 0’s as homogeneous and work
with the simpler model

.0 BO), i=1,...,n (1.5)

Interest would then focus on inference about the parameter 6,

the “underlying death rate”: if § were unusually high, that would

be prima facie evidence of a possible quality of care problem at
the RUH®.

|Bayesian modeling.| As a Bayesian in this situation, your

job is to quantify your uncertainty about the 400 binary observ-
ables you will begin to see starting in 1996—in other words, your
initial modeling task is predictive rather than inferential. There
is no samples-and-populations story in this approach, but proba-
bility and random variables arise in a different way: quantifying
your uncertainty (for the purpose of betting with someone about
some aspect of the 1’s and 0’s, say) requires eliciting from your-
self a joint probability distribution that accurately captures your
judgments about what you will see®:

PB:yOu(Yl =Yly--es Yo = Yn). (1.6)

Notice as before that in the frequentist approach the random vari-
ables describe the process of observing a repeatable event (the
“random sampling” appealed to here), whereas in the Bayesian
approach you use random variables to quantify your uncertainty
about observables you haven’t seen yet'®.

I will argue later (Section 1.5) that the concept of probabilistic
accuracy has two components: you want your uncertainty assess-
ments to be both internally and externally consistent, which cor-
responds to the ideas of coherence and calibration, respectively.
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1.2 Discrete outcomes: Exchangeability

Eliciting a 400-dimensional distribution doesn’t sound easy—major
simplification is evidently needed. In this case, and many others,
this is provided by exchangeability considerations. If (as in the
frequentist approach) you have no relevant information that distin-
guishes one AMI patient from another, your uncertainty about the
400 1’s and 0’s is symmetric, in the sense that a random permuta-
tion of the order in which the 1’s and 0’s were labeled from 1 to 400
would leave your uncertainty about them unchanged. The Italian
statistician de Finetti (1930, 1937/1980) called random variables
with this property exchangeable:

Definition (de Finetti, 1930): {Y;,i = 1,...,n} are
exchangeable if the distributions of (Yi,...,Y,) and
(Yr@)s---»> Yr(n)) are the same for all permutations (7 (1),
..., m(n)).

NB Exchangeability and IID are not the same: exchangeable Y;
do have identical marginal distributions but are not independent.
For example, if you were expecting a priori about 15% 1’s, say
(that’s the 30-day death rate for AMI in England with average-
quality care), the knowledge that in the first 50 outcomes 20 of
them were deaths would certainly change your prediction of the
51st. In other words, for you Pp (Y51 | Zfil Y; = 20) # Pp(Ys1) (we
will see a bit later that the Y; only become independent conditional
on the same 6 that arose in the frequentist approach; Problem 1.1).

de Finetti also defined partial or conditional exchangeability
(e.g., Draper et al., 1993): if, for instance, the gender X of the
AMI patients is available, and there is evidence from the medical
literature that 1’s tended to be noticeably more likely for men than
women, then you would probably want to assume conditional ex-
changeability of the Y; given X;, meaning that the male and female
1’s and 0’s, viewed as separate collections of random variables, are
each unconditionally exchangeable.

de Finetti’s representation theorem for 1’s and 0’s.|

The judgment of exchangeability still seems to leave the joint dis-
tribution of the Y; quite imprecisely specified. After defining the
concept of exchangeability, however, de Finetti went on to prove a
remarkable result: if you are willing to regard the {Y;,i =1,...,n}
as part of an infinite!! exchangeable sequence of 1’s and 0’s (mean-
ing that every finite subsequence is exchangeable), then you can
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express your joint distribution in a particularly simple way (e.g.,
de Finetti, 1975; Bernardo and Smith, 1994):

Theorem (de Finetti, 1930): If Y7,Y5, ... is an infinitely
exchangeable sequence of 0-1 random quantities with
probability measure P, there exists a distribution func-
tion @Q(0) such that the joint distribution p(yi,--..,yn)
for Y1,...,Y,, is of the form

1 n
) = 6% (1 — 6)'~% dQ(8),
(W1, -+ yn) /121 (1—6)'~% dQ(6)
where Q(9) = lim p(%zmge) (1.7)
=1

n

p .. 1
and 6 = nlggoﬁ EIY;.
=

Leaving aside for a moment the interpretation of 8, the distribution
function @ will generally be well-behaved enough to have a density:
dQ(0) = p(0) db. In this case de Finetti’s Theorem says

(Y1, Yn) = i [16v -6 p()de. (1.8)

Now by the law of total probability and the definition of conditional
probability,

1
PY1y-- Yn) = /p(y1,---,ym0)d0
0

- / - unl0) p(O)d8, (19

and (1.8) and (1.9) together imply that
P, -, ynlf) = JL 6% (1 —6)' . (1.10)
i=1

But the right side of (1.10) is just the sampling distribution of n
Bernoulli random variables with common success probability 6.
Thus, according to de Finetti’s Theorem, under exchangeability
it is as if (a) there were a random quantity called 6, interpretable as
the limiting relative frequency of 1’s, (b) conditional on this 8 the
Y; are IID B(6), and (c) 6 itself has a distribution with density p(f).
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In other words, a Bayesian whose uncertainty about dichotomous
Y; is exchangeable may as well use'? the simple model

6 ~ po)
o) X B@), i=1,...,n. (1.11)

This is an example of the simplest kind of hierarchical model
(HM)!3: a model at the top level for the underlying death rate 6,
and then a model below that for the 0—1 mortality indicators Y;
conditional on 6.

1.3 Prior, posterior, and predictive distributions

Notice that to make sense of de Finetti’s Theorem you have to
treat 8 as a random variable, even though logically it is a fixed un-
known constant. This is the main conceptual difference between the
Bayesian and frequentist approaches: as a frequentist the random
variables are supposed to capture relevant features of the process of
sampling from a population, whereas in the Bayesian approach you
use the machinery of random variables to express your uncertainty
about unknown quantities.

Q:: What is the real-world meaning of p(6) in (1.11)?

E: p(0) does not involve Y = (Y1,...,Y,,), and probability is all
about uncertainty quantification for Bayesians, so p(6) must repre-
sent your uncertainty about 8 before the data set Y arrives, which
is why everybody calls it your prior distribution'* for 6. I will
address how you might go about specifying this distribution below.
NB You don’t need to literally think of § as having been sampled
from p(#); the assumption 6 ~ p(f) is just a way of quantifying
what (if anything) was known about € before Y is observed.

Q:: If p(0) represents your uncertainty about 6 before the data
arrive, what represents this uncertainty after Y has been observed?

As: Tt has to be p(d|Y"), the conditional distribution for 8 given
how Y came out. It is natural to call this the posterior distri-
bution for § given Y.

Q3: How do you get from p(8) to p(8|Y)—in other words, how
do you update your uncertainty about the unknown 6 in light of
the data?

Aj: Use the definition of conditional probability on p(0Y’),

p(6,Y)

po) =21,

(1.12)
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and then use the definition again to force p(6) to appear on the
right-hand side:
p(6,Y) _ p(9)p(Y]6)
p(Y) p(Y)

(1.13)

The result is

Theorem (Bayes, 1763), for continuous quantities 6 (the
unknown) and Y (the data):

p(6) p(Y16)

poy) = 2200

(1.14)

It may seem, from how easy it is to arrive at this result, that
the Rev. Bayes'® didn’t have to work very hard to achieve his
immortality, but he actually did quite a bit more: he helped to put
conditional probability on a sound footing for the first time, and
he encouraged application of the theorem to social and medical
problems, by viewing what I have here called § and Y as examples
of causes and effects, respectively—in other words, he suggested
how to pass from the easier problem of predicting the likely effects
of known causes to the more difficult task of inferring the causes
of observed effects.

To put (1.14) into practice, some interpreting is required. As a
Bayesian I want to condition on things I know and believe, in using
probability to express my uncertainty: remember the B in equation
(1.3), which I have somewhat lazily been notationally suppressing.
After the data vector Y is observed, I know it—it becomes part of
my B—and so I should condition on the data in applying (1.14).
Thus I am thinking of the left side of (1.14) as a function of 6
for fixed Y, so that must also be true of the right side. In other
words, (a) p(Y) is just a constant—in fact, you can think of it as
the normalizing constant, put into the equation to make the
right side of (1.14) integrate to 1; and (b) p(Y'|#) may look like the
usual frequentist sampling distribution for Y given 6 (Bernoulli, in
this case), but to use (1.14) I have to think of p(Y'|0) as a function
of 6 for fixed Y. When thought of this way—you could denote it
1(0]Y) = p(Y'|6)—Fisher (1922) called it the likelihood function.

NB The roles of 8 and Y are completely reversed in the Bayesian
approach to inference when compared with the frequentist ap-
proach: with my frequentist hat on I regard 8 as a fixed (unknown)
constant and Y as a random variable, and everything focuses on
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imagining what would happen as Y changes randomly from sample
to sample; but with my Bayesian hat on I am thinking of Y as a
fixed (known) constant and 6 as a random variable, and everything
comes down to assessing my uncertainty about 6 after conditioning
on the one and only one Y I'm ever going to see.

From (1.14), Bayes’ Theorem can evidently be interpreted as
follows:

p(0lY) = c - p(6)- UO)Y)  (1.15)
posterior = (nizrgstl;ﬁ:g ) - prior - likelihood.

You can also readily construct predictive distributions for
the Y; before they are observed, or for future Y; once some of them
are known. For example, the posterior predictive distribution for
(Yimt1,---,Yn) given (Y1, ..., Yy )—that is, p(Ym+t1,-- -5 YnlY1,-- -,
Ym)—Iis, by a trick similar to that in equation (1.9), just

1
/ p(ym+17 e ’yn|05y17 e aym)p(9|y17 e ,ym) do
0
1
- / D@ty oy ynl0) POl - y) 0 (1.16)
0

1 n
:/ I 6@ -0 % p@lyr,-...um)db .
0 .

i=m+1

Notice an important simplification here in going from p(ym,41,-- -,
Ynl0, Y1, -, Ym) t0 P(Ym+1,---,Yn|0): conditional on 6 the Y; are
independent—in other words, if you know 6 the individual values
of Y1,...,Y,, will not help you to predict Y, 41, .., Ys. Two nice
things follow from this: (a) p(Ym+1,---» Ynl60, Y1, - - - ; Ym ) reduces to
P(Ym+t1,---,Yn|0), and then (b) since the Y; are conditionally inde-
pendent given 6, p(Ym+1, - - -,yn|f) reduces to [T:L, ., p(vi|6).-The
result—for example, the middle line of (1.16)—is intuitively rea-
sonable: you are trying to construct your predictive distribution
for a bunch of new Y's, and it would sure help to know 6 in doing
so, but ’s value is not certain. So take a weighted average, or mix-
ture, of conditional predictive distributions given 6, weighted by
your best current information about 8, namely the posterior for 6
given the Y's you have already seen.

This also brings up a key difference between a parameter like 6
on the one hand and the Y;, before you have observed any data,
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on the other: parameters are inherently unobservable. This makes
it harder to evaluate the quality of your uncertainty assessments
about 6 than to do so about the observable Y;. Once you have the
posterior for 8 given Y, p(0|Y’), there is no direct way to check its
quality as an uncertainty assessment, because 6 is (and presumably
always will remain) unknown, whereas once you have a predictive
distribution p(ym+1|y1,---,Ym) for an observable like Y, 1, you
can directly check its quality by comparing the actual Y,,,1 with
your predictive distribution for it.

1.4 Inference and prediction

The de Finetti approach to modeling emphasizes the prediction of
observables as a valuable adjunct to inference about unobservable
parameters, for at least two reasons:

e Key scientific questions are often predictive in nature: for in-
stance, rather than asking “Is drug A better than B (on av-
erage) for lowering blood pressure?” (inference), the ultimate
question is “How much more will drug A lower this patient’s
blood pressure than drug B?” (prediction); and

e Good diagnostic checking is predictive: As noted above, an in-
ference about an unobservable parameter can never be directly
verified, but often you can reasonably conclude that inferences
about the parameters of a model which produces poor predic-
tions of observables are also suspect. This will serve as the basis
of the model diagnostics in Chapter 3.

With the predictive approach parameters diminish in impor-
tance, especially those that have no physical meaning—from the
Bayesian viewpoint (e.g., Lindley, 1972) such parameters (unlike 6
above) can be regarded as just place-holders for a particular kind of
uncertainty on your way to making good predictions. It is arguable
(e.g., Draper, 1995a) that the discipline of statistics, and partic-
ularly its applications in the social sciences, would be improved
by a greater emphasis on predictive feedback. When was the last
time you saw a statistical application, outside of (say) weather-
forecasting, in which the investigators made testable predictions
based on their inferential conclusions and verified them with new
data?

This is not to say that parametric thinking should be abolished.
As the calculation in equation (1.16) emphasized, parameters play
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an important simplifying role in forming modeling judgments: the
single strongest simplifier of a joint distribution is independence
of its components, and whereas (for instance) in the mortality
example the Y; are not themselves independent, they become so
conditional on 6.

1.5 Coherence and calibration

de Finetti’s Theorem for 0—1 outcomes says informally that if you
are trying to make coherent!® (internally consistent) probability
assessments about a series of 1’s and 0’s that you judge exchange-
able, you may as well behave like a frequentist—IID B(6)—with a
prior distribution p(6). But where does this prior come from? (NB
Coherence doesn’t help in answering this question—it turns out
that any prior p(f) could be part of somebody’s coherent probabil-
ity judgments.)

Some people regard the need to answer this question in the
Bayesian approach as a drawback, but it seems to me to be a pos-
itive aspect'”, as follows. From Bayes’ Theorem the prior is sup-
posed to be a summary of what you know (and don’t know) about
0 before the Y; start to arrive: from previous datasets of which
you are aware, from the relevant literature, from expert opinion,
and so on—from all “good” sources, if any exist. Such information
is almost always present, and should presumably be used when
available. The issue is how to do so “well.”

The goal is evidently to choose a prior that you will ret-
rospectively be proud of, in the sense that your predic-
tive distributions for the observables (a) are well-centered
near the actual values and (b) have uncertainty bands
that correspond well to the realized discrepancies be-
tween actual and predicted values. This is a form of cal-
ibration of your probability judgments.

There is no guaranteed way to do this, just as there is no guar-
anteed way to arrive at a “good” frequentist model (see “Where
does the likelihood come from?” in Section 1.8).

Choosing a “good” prior. | Some general comments on ar-

riving at a “good” prior:

o There is a growing literature on methodology for elicitation of
prior information (e.g., Kadane et al., 1980; Craig et al., 1997;
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Kadane and Wolfson, 1997; O’Hagan, 1997), which brings to-
gether ideas from statistics and perceptual psychology. To take
just one example from this literature, people turn out to be
better at estimating percentiles of a distribution than they are
at estimating standard deviations, a fact that has direct conse-
quences for how you should ask experts about variability.

Bayes’ Theorem on the log scale says (apart from the normaliz-
ing constant) that

log(posterior) = log(prior) + log(likelihood); (1.17)

in other words, (posterior information) = (prior information)
+ (data information). This means that close attention should
be paid to the information content of the prior, for instance by
density-normalizing the likelihood and plotting it on the same
scale as the prior. It is possible for small n for the prior to
swamp the data, and in general you should not let this happen
without a good reason for doing so. Comfort can also be taken
from the other side of this coin: with large n (in most situations,
at least) (1.17) implies that the data swamp the prior, and prior
specification errors become less important.

When you notice you are quite uncertain about how to specify
the prior, you can try sensitivity or (pre-posterior) analysis:
exploring the mapping from prior to posterior, before the data
are gathered, by (a) generating some possible values for the
observables, (b) writing down several plausible forms for the
prior, and (c¢) carrying these forward to posterior distributions.
If the resulting distributions are similar (“all reasonable roads
lead to Rome”), you have uncovered a useful form of stability in
your results; if not you can try to capture the prior uncertainty
hierarchically, by, for instance, adding another layer to models
like (1.11) above (Problem 7.1).

Calibration can be estimated by a form of cross-validation: with
a given prior you can (a) repeatedly divide the data at random
into modeling and validation subsets, (b) update to posterior
predictive distributions based on the modeling data, and (c)
compare these distributions with the actual values in the vali-
dation data. Chapter 3 illustrates some examples of this idea,
which I will call predictive validation in what follows.

Note that calibration is inherently frequentist in spirit—it is
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based on questions like “What percentage of the time do your 90%
central predictive intervals include the actual value?”). This leads
to a useful synthesis of Bayesian and frequentist thinking:

Coherence keeps you internally honest; calibration keeps
you in good contact with the world.

|Bayes + frequentist, not Bayes vs. frequentist.| People

often talk about the so-called Bayesian-frequentist controversy as
if it is necessary to choose sides, in a confrontation in which one
approach must be right and the other wrong. There is a kind of
empirical theorem that shows this attitude must be wrong: intel-
ligent people have been arguing about this topic for almost 250
years, at least since the publication of Bayes (1763), and if the two
sides were metaphorical boxers it is clear from current statistical
theory and practice that both boxers are still standing in the ring
after all of the punching. The implication I draw from this is that
everyone should seek a personal synthesis of the best features of
both the Bayesian and frequentist ways of looking at the world.

I find in my own applied work, for instance, that it is useful to
reason in a Bayesian way when formulating my inferences and pre-
dictions, and to reason in a frequentist way when evaluating their
quality, through calibration-style comparisons between predictive
distributions for observables and the actual observables themselves.
Others (e.g., Box 1980, Rubin 1984) have offered similar views; for
a more skeptical position see Freedman (1995). After you have
gained experience with the methods in this book, you may reach
different conclusions—if so I would be interested to hear them.

1.6 Conjugate analysis

‘Example: Prior specification in the mortality data. | Let’s

say (a) you know that the 30-day AMI mortality rate given av-
erage care and average sickness at admission in England is about
15% (which is in fact about right), (b) you know little about care
or patient sickness at the RUH, but (c) you would be somewhat
surprised (on Central Limit Theorem grounds) if the “underlying
rate” at the RUH were much less than 5% or more than 30% (note
the asymmetry). To quantify these judgments you seek a flexible
family of densities on (0,1), one of whose members has mean 0.15
and (say) 95% central interval (0.05,0.30).
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A convenient family for this purpose is the beta distributions,
Be(f|a, B) = c8*1(1 — 9)P~1, for two reasons:

e This family exhibits a wide variety of distributional shapes (e.g.,
Johnson and Kotz, 1970); and

e The likelihood in this problem comes from the Bernoulli/bino-
mial sampling distribution for the Y;, p(y1,...,ynl8) =1(0ly) =
c65(1 — 0)"=5, where S = Y"1 | y;. Thus with this choice of
prior, the likelihood and prior (and thus the posterior) have the
same distributional form, 87(1 — 6)", which makes life computa-
tionally much easier. For this reason the collection of beta prior
distributions is said to be conjugate to the Bernoulli/binomial
likelihood!®.

Conjugate analysis—finding conjugate priors for standard like-
lihoods and restricting attention to them on tractability grounds—
is one of only two fairly general methods for getting closed-form
answers in the Bayesian approach; the other is asymptotic anal-
ysis (e.g., Bernardo and Smith, 1994), about which I won’t have
much to say here. The idea in the next few sections is to see how
far conjugate analysis can take us and then to switch over to a
more general approach to computation, Markov Chain Monte
Carlo (MCMUC), in Chapter 2.

In the mortality example, trial and error shows a = 4.5 and
B = 25.5 produce approximately the desired mean and central
interval—this distribution has mode 0.125 and standard deviation
(SD) 0.064. o and 3 are called hyperparameters since they are
parameters of the prior distribution for the parameter 6 of cen-
tral interest. With (o, So) = (4.5,25.5), written hierarchically the
model is

(o,8) = (ap0,B0) (hyperparameters)
(0la, ) ~ Be(a,B) (prior) (1.18)
(Yi,...,Y.10) ™ B() (likelihood)

The conjugacy of the prior leads to a simple closed form for the
posterior here: with y as the vector of observed Y;,i = 1,...,n,
and S as the sum of the y;,

p(ly,a,8) = cp(yld)p(6la, B)

= c05(1 -9 %9 1-0F" (1.19)
¢ 9(S+a)—1(1 _ 9)(n—S+B)—1;
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in other words, the posterior for 8 is Be(a + S,8 +n — S). NB
This brings up the Bayesian version of sufficiency: A quantity
F(Y) is sufficient for the parameter 6—informally, f(Y) is the only
function of Y you need (given the model you are working with) in
drawing inferences about §—if the likelihood /(6]Y") depends on Y
only through f(Y). Here S is evidently the sufficient statistic for
6 with the Bernoulli/binomial likelihood.

|Prior effective sample size.| This gives the hyperparame-

ters a direct interpretation in terms of effective information content
of the prior: it is as if the data—represented by the Be(S +1,n —
S+1) likelihood—were worth (S+1)+(n—.S+1) = n observations
and the prior (Be(a, 3)) were worth (a+ 3) observations. This can
be used to judge whether the prior is “too informative”—here it is
equivalent to (4.5 + 25.5) = 30 binary observables with a mean of
0.15.

20

posterior

™~

15

likelihood

-

Density
10

0.0 0.1 0.2 0.3 0.4
theta

Figure 1.1. Prior, likelihood, and posterior distributions
for the RUH mortality data.

It turns out, with conjugate models such as (1.18), that this idea
can be used to make a precise connection between Bayesian and
frequentist analyses of the same data set, as follows. To produce the
Bayesian analysis here, it is as if you (a) create a prior data set
with sample size n* = 30, consisting of 4.5 1’s and 25.5 0’s (so to
speak) and mean 0.15, (b) merge this prior data set with the actual
data set, and (c) perform a frequentist analysis on the resulting set



18 INTRODUCTION TO BAYESIAN MODELING

of (n* + n) values. This gives a kind of literal interpretation to the
idea of prior information.

Suppose the n = 400 observed mortality indicators consist of
S =72 1s and (n —S) = 328 0’s. Then the prior is Be(4.5,25.5),
the likelihood is Be(73,329), the posterior for 6 is Be(76.5,353.5),
and the three densities plotted on the same graph come out as in
Figure 1.1. In this case the posterior and the likelihood nearly coin-
cide, because the data information outweighs the prior information
by 400/30, which is more than 13 to 1.

The mean of a Be(a, ) distribution is a/(a + 8); with this in
mind the posterior mean has a clear interpretation as a weighted
average of the prior mean and data mean, with weights determined
by the effective sample size of the prior, (o + ), and the data
sample size n:

o+tS = o+ . - + —n s
a+B+n a+B+n a+pB a+B+n n
posterior prior prior data data

= X . + . .
mean weight mean weight mean
0.178 = 0.070 . 0.15 + 0.93 . 0.18.

Another way to put this is that the combining of prior and data
information shrinks the data mean, § = S/n = 72/400 = 0.18,
toward the prior mean 0.15 by (in this case) a modest amount: the
posterior mean is about 0.178, and the shrinkage factor is 30/(30+
400) = 0.07. This idea of shrinkage estimation will come up
again in Chapter 3.

1.7 Comparison with frequentist modeling

To analyze these data as a frequentist you would probably appeal
to the Central Limit Theorem: n = 400 is big enough so that

the sampling distribution of Y is approximately N (0, 0(1;9)), o)
an approximate 95% confidence interval for 6 would be centered

at 6 = g = 0.18, with an estimated standard error of fa6) _

n
0.0192, and would run roughly from 0.142 to 0.218. By contrast the
posterior for  is also approximately Gaussian'®, with a mean of

0.178 and an SD of \/(a*+ﬁ*“*ﬂ* +1y = 0.0184, where o* and

)2(a*+6*
B* are the parameters of the beta posterior distribution; a 95%
central posterior interval for 8 would thus run from about 0.143 to
0.215. The two approaches give almost the same answers in this
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case, a result that is typical of situations with fairly large n and
relatively diffuse prior information (meaning that the prior SD is
large relative to the normalized likelihood SD, or equivalently that
the prior effective sample size is small relative to the data sample
size), as in Figure 1.1.

Note, however, that the interpretation of the two analyses differs
somewhat:

e In the frequentist approach 6 is fixed but unknown and Y is ran-
dom, with the analysis based on imagining what would happen if
the hypothetical random sampling were repeated, and appealing
to the fact that across these repetitions (Y —8) ~ N (0,0.01922);
whereas

e In the Bayesian approach Y is fixed at its observed value and 6
is treated as random, as a means of quantifying your posterior
uncertainty about it: ( — Y|Y) ~ N(0,0.01842).

This means among other things that, while it is not legitimate
with the frequentist approach to say that Pr(0.14 < 6 < 0.22) =
0.95, which is what many users of confidence intervals would like
them to mean, the corresponding statement Pg(0.14 < 6 < 0.22Y,
little or no prior info) = 0.95 is a natural consequence of the
Bayesian approach. In the case of diffuse prior information this
justifies the fairly common practice of computing inferential sum-
maries in a frequentist way and then interpreting them Bayesianly.

When nondiffuse prior information is available and you use it,
your answer will differ from a frequentist analysis based on the
same likelihood. Assuming that after the fact the likelihood is
judged to have been based on an accurate reflection of the sam-
pling realities, if your prior is retrospectively seen to have been
well-calibrated you will get a better answer than with the frequen-
tist approach; if poorly calibrated, a worse answer (Samaniego and
Reneau, 1994). This may be restated schematically as

Bayesian Bayesian
with frequentist with
“bad” prior < with “good” < “good” prior (1.20)
and “good” likelihood and “good”
likelihood likelihood

What you make of this depends on your risk-aversion: Is it better
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to try to land on the right in this box, running some risk of landing
on the left, or to steer a middle course? (For myself, I try to use
predictive calibration (as in Section 1.5) to end up on the right. NB
(1) I will give several examples later in which a Bayesian analysis
is better even with diffuse prior information. (2) Expression (1.20)
says nothing about analysts, Bayesian or frequentist, with “bad”
likelihoods.)

1.8 Continuous outcomes

For continuous outcomes there is an analogue of de Finetti’s Theo-
rem that is equally central to Bayesian model-building (e.g., Bernar-
do and Smith, 1994):

Theorem (de Finetti, 1937): If Y, Y2, ... is an infinitely
exchangeable sequence of real-valued random quantities
with probability measure P, there exists a probability
measure ) over D, the space of all distribution functions
on the real line R, such that the joint distribution func-
tion of Y3,...,Y,, has the form

Plon-n) = [ [[Pw)d@®), )

where Q(F) = lim,,_, P(ﬁ’n) and F, is the empirical
distribution function based on Y7,...,Y,.

In other words, exchangeability of real-valued observables may be
taken as equivalent to the HM

F o~ p(F) (prior)
(Yi,...,Yo|F) 2 F (likelihood)  (1.22)

for some prior distribution p on the set D of all possible distribution
functions on .

This prior makes the continuous form of de Finetti’s Theorem
considerably harder to apply: to take the elicitation task seriously
is to try to specify a measure on function space (F' is in effect an
infinite-dimensional parameter). (NB This task is not unique to
Bayesians—you may just as well ask “Where does the likelihood
come from?” in frequentist analyses of observational data as to ask
“Where does the prior on the parameters come from?” in Bayesian
modeling.)
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The field of Bayesian nonparametrics, which began with work
by Freedman (1963), Ferguson (1973, 1974), and others, has devel-
oped in an effort to put truly rich priors on D. This approach,
however, has been stalled at an insufficiently practical stage until
quite recently because of computational difficulties, but MCMC
(Chapter 2) is changing that (Walker et al., 1997) at present. I will
revisit this topic in Section 7.6.

|Mode1 uncertainty. | Given that Bayesian nonparametrics is
still basically at the pure research stage, what most Bayesians say
they do in practice is to appeal to considerations that narrow down
the field, such as an a priori judgment that the Y; ought to be sym-
metrically distributed about a location parameter y, and then try
to use a plausible parametric family (the most popular is of course
the Gaussian) satisfying (for instance) the symmetry restriction
as a substitute for all of D. What most analysts (Bayesian and
frequentist) actually do in practice is to look at the data when
specifying their models: for example, with data on hospital length
of stay for AMI patients, you might (a) make a histogram or kernel
density trace of your sample yy,...,y,, (b) observe that the sam-
ple looks a lot like it follows a lognormal (LN) distribution, and (c)
replace the infinite-dimensional elicitation problem in the first line
of (1.22) by a two-dimensional elicitation problem on the param-
eters of the lognormal family. In other words, you would replace
(1.22) with the vastly simpler HM

(n,0%) ~ pu,0?) (prior)
(Y1,...,Yulu,02) = LN(u,0?). (likelihood) (1.23)

Now the something-for-nothing bell should be going off in your
head at this point: aren’t we using the data twice with this ap-
proach (once to specify the prior on D, and once to draw inferences
and make predictions given this choice of prior) and shouldn’t we
have to pay some price for doing so? This is the general problem
of model uncertainty (e.g., Madigan and Raftery 1994, Draper
1995b), and it is not unique to Bayesians.

There is a real dilemma here: if you employ strategy S* = {use
the data to specify the model and then pretend you knew the
resulting model all along}, your conclusions are likely to be mis-
calibrated, in the direction of underpropagation of uncertainty (in
other words, your nominal 90% predictive intervals may in fact
only cover the actual observables (say) 65% of the time); but not
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using S* can permit the data to surprise you in ways that would
make you want to go back and revise your prior.

NB This last point is an example of what Lindley (19xx) calls
Cromwell’s Rule?’, which reminds us that it is dangerous to
place prior probability 0 (or 1, for that matter; Problem 1.2) on
anything, because it is then impossible to learn from any future
data. For example, with any proposition A, setting P(A) = 0 forces

P(A|data) = P(A) % = 0, even if the data are highly likely

under A and highly unlikely under (not A). The application of this
to model uncertainty is unfortunate: in practice people generally
put nonzero probability on extremely small subsets of {all possible
models for a given data set}, and yet doing so without looking at
the data in effect forces many things that could easily be possible
(a priori) in the data to be impossible in your posterior analysis.

I will suggest a (partial) way out of this dilemma in Chapter 3,
based on predictive validation. For the rest of the book, faute de
mieux, I will generally either identify and work with conventional
modeling choices, just to show where they lead, or use the S*-plus-
predictive-validation strategy.

Table 1.1. NB10 frequency distribution.
Value 375 392 393 397 398 399 400 401

Frequency 1 1 1 1 2 7 4 12

Value 402 403 404 405 406 407 408 409

Frequency 8 6 9 5 12 8 5 5

Value 410 411 412 413 415 418 423 437

Frequency 4 1 3 1 1 1 1 1

|Case study 1.2:| Measurement of physical constants. What
is now called the National Institute for Standards and Technol-
ogy (NIST) in Washington, DC conducts extremely high precision
measurement of physical constants, such as the actual weight of so-
called check-weights that are supposed to serve as reference stan-
dards (like the official kg). In 1962—63, for example, back when
their name was the National Bureau of Standards (NBS), n = 100
weighings (Table 1.1) of a block of metal called NB10, which was
supposed to weigh exactly 10g, were made under conditions as
close to IID as possible (Freedman et al., 1998). Figure 1.2 is a
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normal qqplot of the 100 measurements yi,...,y,, which have a
mean of § = 404.6 (the units are micrograms below 10g) and an
SD of s = 6.5.

Some natural questions that arise from the data in Table 1.1
include (a) How much does NB10 really weigh? (b) How certain
are you given the data that the true weight of NB10 is less than
(say) 405.257 (c) What is the underlying accuracy of the NB10
measuring process? And (d) How accurately can you predict the
101st measurement?

400 410 420 430

NB10 measurements

390

380

-2 -1 0 1 2
Quantiles of Standard Normal

Figure 1.2. Normal qgplot of the NB10 data.

|A simple Gaussian model.| Evidently from Figure 1.2 it is
plausible in answering these questions to assume symmetry of the
“underlying distribution” F' in de Finetti’s Theorem. One conven-
tional choice, for instance, is the Gaussian:

(k,0%) ~  plu,07)
(Yilmo?) = Nu,o?). (1.24)

NB People call the reciprocal of the variance o2 the precision
of a distribution. In Bayesian work the precision is often the most
intuitive scale on which to think about uncertainty or variability,
as the results below will demonstrate.

(1.24) is our first example with more than one parameter, and
we are still in the world of conjugate analysis because that’s the
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only computational tool I've discussed so far. Before I start in on
how to specify the conjugate prior for ;1 and o2 in this model, it is
helpful to look at what happens in the simpler case in which you
pretend that o2 is known. The conjugate prior for i (see Note 1.18)
turns out (not too surprisingly, I guess) to be Gaussian; with this
choice the model becomes

g~ N(po,02)
IID
Yilp) '~ N(p,0%) (1.25)

From the conjugacy of the prior, the posterior for y is also Gaus-
sian, and it turns out that the posterior mean and variance have
particularly simple expressions. Intuitively what is going on is this:

e The prior, considered as a data source, is Gaussian with mean
. 2 . . 1
o, variance o, and precision oz

e Notice from (1.19) that, in the mortality example of Section 1.6,
the likelihood and posterior distributions depend on the data
only through the sufficient statistic for the Bernoulli/binomial
sampling distribution. In the same way you can (as people say)
reduce by sufficiency here as well: the sufficient statistic for u
in the Gaussian model with known variance is the sample mean
Y. So to work out the form of the likelihood you just consider
the sampling distribution of Y—which is Gaussian with mean
W, variance %, and precision _z—as a function of y for fixed Y.

This distribution can be written c; exp [—c2 (Y — p)?], and from
this you can see that Y and p play a symmetric role in it. So
if T interchange the role of y and Y, I just get a Gaussian with
the same variance and precision—%2 and =, respectively—but
now it’s a distribution for y with mean Y.

e In the mortality example the posterior mean was a weighted
average of the prior mean and the data mean, with weights given
by the prior effective sample size n* and the data sample size n.
This turns out to be a general result with conjugate analysis, so
the same trick applies here, but what is n* in this case? You can
show that the right weights in the weighted average are given
by the precisions of the prior and likelihood data sources:

(Z)mo+ (25 (%) m+ny

EECENEEE

E(ulg) =

(1.26)



CONTINUOUS OUTCOMES 25

This also demonstrates along the way that n* = 5—2

-

2

e Finally, what about the posterior variance V(u|y)? Based on
what happened with the prior mean, you can guess that the
posterior variance would be driven by the prior and likelihood
precisions, and in fact it turns out that on the precision scale
the accuracy of the information sources is additive (which is why
Bayesians like the idea of precision so much):

( posterior > _ ( prior ) L < 11ke11.hgod ) 2
precision precision precision
from which

1 o?
vV = = . 1.28
(uly) (1 ) () mn (1.28)

s
&

Some unpleasant algebra, with which I will not burden you, ver-
ifies all of the above intuition. A few points to note:

e The idea, from Section 1.6, of the prior being equivalent to a
data set works again in this case: it is as if a data set with n*
observations and mean py were merged with the observed data
set y and a frequentist analysis were conducted on the merged
data. This is also a general feature of conjugate analysis.

e The concept of little or no prior information here corresponds to
the prior SD o, being large, or equivalently the prior precision
é being small. In the limit as 0, — oo the prior sample size
would go to 0, and you can see from (1.26) and (1.28) that
the Bayesian results would coincide with the usual frequentist
answers.

NB I have been using the term diffuse to convey the idea of a
prior distribution embodying little or no information about the
parameter in question. Many other Bayesians talk about non-
informative priors in this situation, but I don’t like this termi-
nology, because every choice of prior (diffuse or not) conveys infor-
mation, namely your choice—which needs to be defended in each
case—for the appropriate effective prior sample size. I will stick
with diffuse in what follows.

|Bayesian inference with multivariate 6. ‘Returning now to

(1.24) with 02 unknown, this model has a (p = 2)-dimensional pa-
rameter, § = (u,0?). When p > 1 you can still use Bayes’ Theorem
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directly to obtain the joint posterior distribution,
p(@ly) = cp(®)iO0]y) =p(k,o”|y)
= CP(,u'a 02) l(/"a o’ |y)a (129)

where y = (y1,...,Yn), although making this calculation directly
requires a p-dimensional integration to evaluate c—for example, in

this case
¢ = )= ( [[ P dudaz)_l
( [ ptms*)0,% 1) daz) T s

Usually, however, you will be more interested in the marginal
posterior distributions, in this case p(u|y) and p(c?|y). Ob-
taining these requires p integrations, each of dimension (p — 1), a
process that people refer to as marginalization or integrating out
the nuisance parameters. For example,

p(u|y) = / p(,0% | ) do® . (1.31)

Predictive distributions also involve a p-dimensional integration:
for example, with y = (y1,.--,yn),

/ / P(Ynt1,4,0° | y) du do’ (1.32)

= //p(yn+1 | uy0?) p(p, 0% | y) dudo?.

And, finally, if you are interested in a function of the parameters,
you have some more hard integrations ahead of you. For instance,
suppose you wanted the posterior distribution for the coefficient
of variation X\ = g1 (u,0?) = 5 in model (1.24). Then one fairly

P(Ynt1 |y)

direct way to get this posterior (e.g., Bernardo and Smith, 1994)
is to (a) introduce a second function of the parameters, say n =
92(u, o), such that the mapping f = (g1, ) from (1, 0?) to (,7)
is invertible; (b) compute the joint posterior for (\,n) through the
usual change-of-variables formula

PO 11Y) = puoz[f A )ly] [T (A )]

where p,, ,2(:,-|y) is the joint posterior for y and o? and |Jf_1|
is the determinant of the Jacobian of the inverse transformation;

(1.33)
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and (c¢) marginalize in A by integrating out 7 in p(\,nly), in a
manner analogous to (1.31). (Here, for instance, n = go(u,0?) =
Vo2 would create an invertible f, with inverse defined by (u =
An,o? = n?); the Jacobian determinant comes out 2\n and (1.33)
becomes p(A, n|y) = 2M1p, .2 (An,n?|y).) This process involves two
integrations, one to get the normalizing constant that defines (1.33)
and one to get rid of 7.

You can see that when p is a lot bigger than 2 all these integrals
may create severe computational problems—this has been the big
stumbling block for applied Bayesian work for a long time.

More than 200 years ago Laplace (1774)—perhaps the second ap-
plied Bayesian in history (after Bayes himself)—developed, as one
avenue of solution to this problem, what people now call Laplace
approximations to high-dimensional integrals of the type aris-
ing in Bayesian calculations (see, e.g., Tierney and Kadane, 1986).
I will cover Laplace approximations only briefly in this book, in
Chapter 8; Chapter 2 details how MCMC may be used as an al-
ternative solution to the integration problem.

| The full Gaussian case. | The conjugate prior for (y,02) in
the model (1.24) (e.g., Gelman et al., 1995) turns out to be most
simply described hierarchically:

o2 ~ SI—Xz(VO,ag)

(ulo?) ~ N(uo,Z—z) (1.34)

Here saying that o2 ~ SI-x?(vg,03), where SI stands for scaled
inverse, amounts to saying that 72 = % follows a scaled x2 dis-
tribution with parameters vy and o2 (see Appendix 1 for details).
The scaling is chosen so that o2 can be interpreted as a prior esti-
mate of o2, with vy the prior effective sample size of this estimate
(in other words, as in the beta-Bernoulli/binomial model of Sec-
tion 1.6, think of a prior data set with vy observations and sample
variance o7). The parameters o and kg in the second level of the
prior model (1.34) have simple parallel interpretations to those of
o2 and vg: po is the prior estimate of u, and kg is the prior effective
sample size of this estimate.

In the Gaussian model (1.24, 1.34), which I will abbreviate G, the
integrations may be done analytically (e.g., Gelman et al., 1995),
yielding
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(0 y,G) ~ SI-x*(Vn,02)

o2
ey, G) ~ tu, (un,ﬂ—n), where

n

Upn = VYyg+n, Kn=~Ko+n, (1.35)
RoN , _
o, = wop+(n—1)s"+ o (§ — o),
n
_ Ko T
Bn = o Ho o Y.

Herej= 137"  ands® = L= 37"  (y;—%)? are the usual sample
mean and variance of y, and t,(u,0?) is a scaled version of the
usual ¢, distribution (Appendix 1): W ~ t,(u,0?) just means that
M ~ t,. Once again, from the conjugacy, the posterior mean for
U in (1.35) is a weighted average of the prior mean and data mean,
with weights determined by the effective prior sample size and the
data sample size.

|NB10 Gaussian results. | (1.35) may be used to answer the
four questions listed below Table 1.1, as follows.

Question (a): I don’t know anything a priori about what NB10
is supposed to weigh (down to the nearest microgram) or about
the accuracy of the NBS’s measurement process, so I want to use
a diffuse prior for u and o2. Considering the meaning of the hy-
perparameters, to provide little prior information I want to choose
both vy and kg close to 0. Making them exactly 0 would produce
an improper prior distribution (which doesn’t integrate to 1), but
choosing positive values as close to 0 as you like yields a proper
and highly diffuse prior.

You can see from (1.35) that the result for large n is then

Wlwo < (1. 8225) = n(5.5) s

in other words, with diffuse prior information (and as with the
Bernoulli model in Section 1.6) the 95% central Bayesian interval
virtually coincides with the usual frequentist 95% confidence inter-
val § £ ¢;)73 2= = 404.6 & 1.98- 0.647 = (403.3,405.9). Thus both
{frequentists who assume G} and {Bayesians who assume G with
a diffuse prior} conclude that NB10 weighs about 404.6ug below
10g, give or take about 0.65ug.
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Figure 1.3. Posterior distribution for p in the NB10 example,
with the {u < 405.25} region shaded.

Question (b). If interest focuses on whether NB10 weighs less
than some value like 405.25, when reasoning in a Bayesian way you
can answer this question directly: the posterior distribution for p
is shown in Figure 1.3, and Pp(u < 405.25 |y, G, diffuse prior) =
0.85. In other words, with these assumptions there are pretty good
betting odds—about 5.5 to 1—in favor of the proposition that
1 < 405.25.

With your frequentist hat on, Pr(u < 405.25) is undefined;
about the best you can do is to test Ho: p < 405.25, for which the
p-value would (approximately) be p = Pr, ,—405.25(§ > 405.59) =
1 — 0.85 = 0.15. This would constitute “insufficient evidence to
reject Hy at the usual significance levels,” leaving an inferential
impression that contrasts with the reasonably clear Bayesian bet-
ting odds. NB (1) The significance test tries to answer a differ-
ent question: in Bayesian language it looks at P(7|u) instead of
P(u|9). (2) You can see that as with confidence intervals, when
a diffuse prior seems appropriate, there is a direct relationship—
at least with one-sided tests?!—between frequentist and Bayesian
results: for testing Hy: p < ¢, the p-value is just p =1 — Pp(u <
¢ |y, diffuse prior). Thus there is a certain justification in one-sided
testing problems for the conclusion, which people sometimes wish
to draw, that the p value is the probability that the null hypothesis
is false.
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Question (c¢). The conjugacy of (1.34) means that the assump-
tion of a scaled inverse x? prior for 02, with hyperparameters vy
and o3, also produces a SI-x? posterior for o2, with the following
parameters (see, e.g., Gelman et al., 1995):

(a2|y,(_}') ~ SI'Xz(Vn,Ui)a where
Vp = Vptn and (1.37)

02 = |wod +(n -1+ (G o)
n "in

The form of o2, which acts (for large v, at least) like a posterior
estimate of 02, is interesting: the first two terms in o2 are (almost)
a weighted average of the prior and sample estimates o2 and s? of
02, and there is also a contribution arising from the discrepancy,
if any, between the sample mean § and the prior mean .

As in the answer to question (a), a diffuse prior would correspond

to choosing vy and kg close to 0, which would produce the result

n —

. 1

(0?|y, G, diffuse prior, large n) ~ ST-x*(n, s?).  (1.38)

Now you can also show (Problem 1.8) that (1.38) is equivalent to

saying that the posterior distribution for the precision 01—2 is gamma
n n—1 n n—1.2

with parameters 2 and 25%s?, which I will denote I'(%, 251s?).
(n 1

This means that the posterior for (";712)32 is I'(%, 5), which is an-
other way of writing the x? distribution with (n — 1) degrees of
freedom. But this is just a Bayesian interpretation of the usual fre-
quentist inference for 02 in the Gaussian model with both y and o2
unknown (e.g., Snedecor and Cochran, 1980): the sampling distri-

bution of ("_0712)52 in this model, viewing o2 as fixed and s? as ran-
dom, is x2_;. Thus, as in the answer to question (a), {Bayesians
with diffuse prior information} and {frequentists} would get the
same 95% (central) intervals for o2 and o: the NB10 sample SD
of s = 6.5 produces the 95% interval estimates (32.2,56.4) and
(5.68,7.51) of 02 and o, respectively.

|An informative prior in the Gaussian model. | Simply for

illustration, suppose that information from other studies at the
NBS before the NB10 data were collected—taking suitable account
of any differences between the previous studies and the present
measurement method—had suggested that o should be around
oo = 10, with (say) 90% a priori limits of roughly (oj, = 6,0p; =
34), and that u should be around pg = 403 with 90% prior limits of
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approximately (ujo = 396, up; = 410). To fit this information into
the conjugate structure (1.34), I have to find the corresponding
prior effective sample sizes vy and kg.
Considering vy first, the fact noted above that o2 ~ SI-x?(vy, 07)
2
iff 23 ~ x2 makes me want to work with the precision instead

of the SD in setting up an equation to determine vy, since I have
a x? CDF handy in S+:

0.9 = P(op <0 < op)
2 2 2
- P (”"fo < 2% . ""ZO) (1.39)
Ohi o %o

B 100 vg 100 vo
- FX%( 1156)_FX30< 36 )

where FXEO is the X12/0 CDF. Trial and error with this CDF now

shows that vy = 2.5.

In specifying kg it is helpful to appeal to a fact about the dis-
tribution of x in the conjugate prior specification (1.34). You can
show (Problem 1.10) that if 0% is SI-x? and (u|o?) is Gaussian
then the marginal distribution of p is scaled ¢:

2
(1.34) implies that p ~ ty, (/,L(), %) . (1.40)
0

From the CDF of the standard ¢ distribution with vy = 2.5 degrees
of freedom,

P(| 2L <256) = 09, yielding
\/0'0//‘50
2. 2 .2
,m:L"Oz = 13. (1.41)
(#ni — po)

With these values of vy and k¢ and the NB10 data, (1.37) pro-
duces the posterior parameters v,, = 102.5 and
o2 = 250 + 4140.19 + 29.08
n 102.5
This is a bit bigger than the sample variance s = 41.82, both be-
cause the prior estimate of o (100) is a lot bigger than s> and be-

cause of the modest discrepancy between the prior and data means.
The prior-to-posterior analysis here is not far from the simple up-

=43.11. (1.42)




32 INTRODUCTION TO BAYESIAN MODELING

dating rule

p(0?,G) = SI-x*(vo,0?), (prior)
1(o®|y,G) = SI-x*(n,s?) (likelihood) (1.43)
2 2
p(o?ly,G) = SI-x*(vo +n, M) (posterior),

Vo +n

which would have been exact in the Gaussian model if i had been
known (Problem 1.11). The three distributions in (1.43) are plotted
in Figure 1.4; you can see that the prior information has tugged
the posterior to the right of the data information, but not very
much because the prior effective sample sizes were small.

©O
S 4 likelihood
o \
posterior
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o
>0
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o
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Figure 1.4. Prior, likelihood, and posterior distributions for o* with the
Gaussian model (1.24,1.34) and an informative prior
applied to the NB10 data.

Question (d). Analytic integration in the Gaussian model (e.g.,
Bernardo and Smith, 1994) yields

kn +1
(yn+1 |y, g) ~ tun (,Un; p 0—72;,) y (144)

n

and for n large and vg and kg close to 0 this is (yn11|y) ~ N(7,s?)
(the basis of the usual frequentist answer), yielding a 95% posterior
predictive interval for y,41 of (392,418).
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Figure 1.5. Standardized posterior predictive distribution for yni1
in the NB10 example, with a dotplot of the 100 standardized data
values superimposed (symbol height is proportional to number of (tied)
observations at each point).

|Mode1 expansion. | A standardized version of the predictive
distribution (1.44) for the NB10 data is plotted in Figure 1.5, with
the standardized data values superimposed. It is evident from this
plot (and also from Figure 1.2) that the Gaussian model provides
a poor fit for these data—the two most extreme points in the data
set in standard units are —4.6 and 5.0. With the symmetric heavy
tails indicated in these plots, in fact, the empirical CDF looks quite
a bit like that of a t distribution with a rather small number of
degrees of freedom v. This suggests revising the previous model by
expanding it: embedding the Gaussian in the ¢ family and adding
the parameter v for tail-weight.

Unfortunately there is no standard closed-form conjugate choice
for the prior on v. A more flexible approach to computing is evi-
dently needed: this is the subject of Chapter 2.

1.9 Additional reading

[xx finish this]
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1.10 Problems

[xx this section is still quite rough]

1.1

1.2

1.3

Consider the model 8 ~ p(9), (Y;|6) e B(9) for some prior
p(0) for which the prior mean F(6) and variance V (0) are both
nonzero. Show in this model that P(Y> = 1) < P(Yo =1|Y; =
1), thereby concretely demonstrating that without conditioning
on # the Y; are dependent. Thus IID — exchangeability but not
conversely.

I said in Section 1.3 that “... with my frequentist hat on I regard
0 as a fixed (unknown) constant and Y as a random variable,
and everything focuses on imagining what would happen as Y
changes randomly from sample to sample.” This is actually the
logical position for frequentists before the data arrive. What
about after the data arrive—once Y is observed, in the frequen-
tist approach is it still random, or is it now fixed? If it’s still
random, then is it fair to say that frequentists don’t condition
on the data? If it’s now fixed, then both 8 and Y are fixed, and
where does probability come in? Discuss.

The Enzyme-Linked ImmunoSorbent Assay (ELISA) test was
approved by many countries around the world in the mid-1980s
to screen donated blood for the presence of the AIDS virus
HIV. The test works by detecting antibodies—substances that
the body produces when the virus is present—but, as with any
screening test, in practice it makes some mistakes. FLISA was
designed so that when a given blood sample does in fact con-
tain a clinically meaningful concentration of HIV, the test gives
a positive result (that is, FLISA reports that in its opinion this
blood sample has HIV in it) a = 98% of the time: this is re-
ferred to as ELISA’s sensitivity. Moreover, when the blood being
tested is not contaminated with the virus £LISA will announce
a negative result 8 = 93% of the time: this is FLISA’s speci-
ficity. The prevalence of HIV-positivity in the population of
people who donate blood to blood banks is thought to be about
T =1%.

(a) Letting A = {person is HIV-positive} and + = {ELISA pos-
itive}, express the three numerical facts above in uncondi-
tional and conditional probability terms, and use Bayes’ The-
orem to show that if someone donates blood and the EFLISA
test comes out negative, the probability the person is not in
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fact HIV-positive given this negative result is virtually 100%,
but if FLISA comes out positive the probability the person
actually is HIV-positive is only p = 2% = 12%. Explain these
results by (i) exploring symbolically and numerically how p
depends on ¢, 3, and 7, and noting what it is about the given
values of these three quantities that has made p so low; and
(ii) identifying the two kinds of mistakes ELISA could make
and discussing their implications from the blood bank’s point
of view.

(b) In practice it is possible to “tune” screening tests like ELISA
by changing the threshold of antibodies required to announce
a positive result, which will act on the 98% sensitivity and
93% specificity values mentioned above in a tug-of-war fash-
ion: you can increase the sensitivity, for instance, but only
by allowing the specificity to decrease (and vice versa). If
ELISA were to be made available as a screening test to the
general population (for instance, suppose that people were
able to send a blood sample to a private lab confidentially
and get back the FLISA diagnosis for a fee), which would it
be better to increase: ELISA’s sensitivity or specificity? What
would happen if ELISA, with its present a and 3, were used
as a public health tool in a mass screening program of all
Americans, as some members of the US Congress suggested
back in the 1980s? Explain.

1.4 Prove the other part of Cromwell’s Rule (Section 1.8): With

1.5

any proposition A, setting P(A) = 1 forces P(A|data) = 1 no
matter how likely the data are under A and (not A).

I used to work at the University of California in Los Angeles,
and I like to drink tea while I'm working. For the first few weeks
after starting work I didn’t have access to any facilities for mak-
ing tea, so I would go down twice a day to a vending machine
and pay 25 cents for a cup of brown liquid that the machine
claimed was “tea.” On the front of the machine there was a
bright yellow label that said something like, “Maybe you’ll be
lucky!! Every now and then, at random, this machine will give
you your quarter back, and your beverage will be free!!”

At the end of almost two months, having spent n = 78 quarters
without getting “lucky,” it occurred to me that the company
that owned the machine may have just decided it was cheaper
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to put the yellow label on the front than to install any ran-
domization device inside that would actually make refunds. Let
Y; = 1if I got a free cup of “tea” on occasion ¢ and assume the
Bernoulli model (1.11) with a prior that appropriately reflects
the company’s desire to make money (for example, do you re-
ally believe that & = 0.8 is as likely a priori as 6 = 0.0087).
Use this model to discriminate between the two possible ex-
planations {6 = 0} and {6 > 0} by calculating their posterior
probabilities given the data, and explain why the frequentist p
value for testing Hy: § = 0 would be completely useless in this

situation22.

1.6 Consider a univariate parameter 6 and a data set Y = (Y4,...,

Y,,) that is IID from some sampling distribution given 6. Learn-
ing about # from Y in the Bayesian approach involves updating
from p(@) to p(A|Y), and it is interesting, from an experimental
design point of view, to examine what may be said in general
about the relationship between these two distributions before Y
is observed.

(a) The first part of the double expectation theorem from intro-
ductory probability says that the prior mean F(#) and the
posterior mean F(0|Y') are related by

E(6) = By[E(O]Y)], (1.45)

where the right side of (1.45) involves averaging over possible
data sets Y. Explain what this implies—if you were planning
on quoting the mean as a point estimate of é—about the effect
you expect the data to have on your prior point estimate. Is
this intuitively reasonable? Explain.

(b) The second part of the double expectation theorem?? says
that the prior and posterior variances V() and V (0|Y), re-
spectively, are related by

V(0) = WE@Y)] + Ev[VOIY).  (146)

Show that this means that, averaging over possible Y, you
expect to learn about @, in the sense that you expect the
posterior variance to be no larger than the prior variance.
However, by creating an explicit example (prior and data
set) in the beta/Bernoulli model (1.18) or the Gaussian model
(1.24,1.34), also show that it is possible for you to “know less”
after you see Y than before, in that the posterior variance can



PROBLEMS 37

1.7

1.8

1.9
1.10

1.11

1.12

1.13

be larger than the prior variance. Explain in concrete terms
what feature of the relationship between the prior and data
information causes this to happen.

Continuing Problem 1.6, show in the simple Gaussian model
(1.25) with known o2 that, no matter how discrepant the prior
mean and the data mean are, the posterior variance will always
be smaller than either the prior variance or the “data variance”
(the variance of the density-normalized likelihood). What is it
about (1.25) that produces this undesirable result, and what is
it about the full Gaussian model (1.24,1.34) that remedies the
defect? Explain.

Relationships between gamma, inverse gamma, x?, inverse x?2,
scaled inverse x? [xx to be finished].

(MV1) Poisson-gamma; negative binomial [xx to be finished).

Show that if o2 is ST-x? and (u|o?) is Gaussian then the marginal
distribution of 4 is scaled ¢ [xx to be finished].

Prove (1.43) in the normal model with known mean [xx to be
finished].

Consider the simple Gaussian model (1.25) and make it even
simpler by taking n = 1: § ~ N(uglo3), (Y|0) ~ N(u,0?)
for known o2. Before you have seen Y this is like a bivariate
sampling model for (6,Y): 6 is drawn from a Gaussian, and then
conditional on 4, Y is drawn from another Gaussian. This makes
me think of a elliptical (why?) scatter plot for (0,Y) and brings
up the idea of regression as an alternative way to understand
how Bayes’ Theorem works in this model.

It follows from the assumptions so far that both the marginal
distribution of Y and the conditional distribution of § given Y
are also Gaussian (this was Galton’s original way of thinking
about regression more than 100 years ago, in fact; see Stigler,
1986). Use the double expectation theorem and anything you
know about regression to derive the posterior mean and variance
of 0 given Y.

Sequential updating: show that you get the same thing when
you sequentially absorb yi,...,y, as when you simultaneously
absorb them.

[I will supply more problems later, and the new problems will

be more interesting and data-oriented than, e.g., 1.10 and 1.11 ...
xx to be continued].
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1.11 Notes

1.1 Process is what health care providers do on behalf of patients;
outcomes are what happens as a result of that care. Saying that
a disease has a strong process-outcome link just means that
research has demonstrated for that disease that good process
leads to good outcomes and bad process to bad outcomes.

1.2 In the history of ideas this branch of mathematics is relatively
new—the ancient Greeks, for example, had no notion of proba-
bility. The subject seems to have come into focus fairly suddenly
in about 1660, in the independent work of a variety of people
including Leibniz (Germany), Pascal (France), Huygens (Hol-
land), and Graunt (England); see Hacking (1975) and Stigler
(1986).

1.3 I strongly recommend this excellent book to anyone interested
in the foundations of probability and statistics. Oakes presents
a devastating critique of significance testing, an interesting ac-
count of the various ways people have tried to connect probabil-
ity with the real world, a comparative evaluation of the leading
schools of statistical inference, and a discussion of the role of
statistics in the social sciences.

1.4 For example, suppose you are trying to quantify your uncer-
tainty about the probability 8 of something happening, and you
want to express the judgment that any value for 6 from 0 to
1 (inclusive) is equally plausible (the principle of insufficient
reason). OK, but what if you had asked yourself the same ques-
tion about f(#) for some monotone f, like #2? You cannot claim
that any value for € from 0 to 1 (inclusive) is equally plausible
at the same time as you are claiming that any value for 2 from
0 to 1 (inclusive) is equally plausible. This was what bothered
Fisher (1922) about the Bayesian need to specify a prior. How-
ever, as Lindley (19xx) points out [Dennis, please help me with
a relevant reference], in the language of Note 1.17 below this is
actually a feature, not a bug: even if you are pretty unsure of
the value of §, you are pretty darn sure that 8°% is close to 0.

1.5 This is especially likely in sparse cells in the equivalence grid
formed conceptually by crossing categorical versions of the pre-
dictor variables with each other.

1.6 To a Bayesian saying that Pg(A) is “objective” just means that
lots of people more or less agree on its value.
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1.7

1.8

1.9

1.10

1.11

1.12

It has bothered me for a long time that almost nobody talks
about modeling issues like this in the frequentist approach—
instead, people rush directly to “Let y1,. .., y, be IID,” without
saying anything about why random variables are appropriate
with samples of convenience and data from observational stud-
ies. A few exceptions: the lovely introductory statistics book by
Freedman et al. (1998), and Mallows (1998).

Of course, in practice nobody would treat this argument se-
riously until you compared the observed mortality at the RUH
with its exzpected mortality given how sick its AMI patients were
on admission; see, e.g., Keeler et al. (1990).

When necessary I will use the standard convention of writing
random variables in upper case and the values they take on in
lower-case.

I have repeated this observation several times to emphasize, for
people who have so far only thought about probability from
the frequentist viewpoint, that something fundamentally differ-
ent is going on here with the random variables in the Bayesian
approach.

Finite versions of de Finetti’s Theorem are available (Diaconis
and Freedman, 1980; Bernardo and Smith, 1994): call an ex-
changeable sequence {y;,7 < n} N-extendable if it is the first
n elements of a longer exchangeable sequence {y;,7 < N}. (In-
finite exchangeability, as in Theorem 1.7, amounts to assuming
N-extendability for all N > n.) Then (1.7) is a good approx-
imation to (1.6) when N >> n. In practice this means that
you regard the process of observing 1’s and 0’s to be time-
homogeneous across a horizon that is considerably broader than
the first n observations—in other words, we are back in effect to
the frequentist difficulty of having to define a population. There
is no free lunch with de Finetti’s Theorem.

I used to think that de Finetti’s Theorem says that if your un-
certainty about the Y; is exchangeable then you must express
your predictive distribution (1.6) for the Y; in the form (1.7),
but (as Sander Greenland pointed out to me) in fact all the
theorem says is that you can express it in this form. In prac-
tice, however, de Finetti’s representation is so straightforward
to work with that most people just move directly from the ex-
changeability judgment to (1.7).
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1.14

1.15

1.16

INTRODUCTION TO BAYESIAN MODELING

This is a slightly nonstandard use of the term hierarchical model;
many people think of HMs as models for situations with data
at all levels of the hierarchy, although in such fields as meta-
analysis (Chapter 3) even this convention is more honored in
the breach than in the observance.

Since we may as well model 6 as a continuous quantity between
0 and 1, p(f) is an ordinary continuous probability density, just
like any frequentist-style sampling distribution on (0,1).
Thomas Bayes (1701?7-1761) was an English cleric, philosopher,
and mathematician, interested in the foundations of probability
and (what we would now think of as) statistics, who managed
to make a place for himself in history without a single math-
ematical publication in his lifetime. Stigler (1986) has a lot of
interesting material on what Bayes actually did and did not do.
For instance, in the famous essay that he did not allow to be
published until after his death, Bayes (1763) posed and solved
the following problem, in present-day notation: if § ~ U(0,1)
and (Y|0) ~ bin(n,8) then compute P(a < 6 < b|Y) for any
a and b. The main controversy concerned the universal appro-
priateness of his choice of a uniform prior distribution for 6 in
real-world problems.

The formalism of coherence is best understood within the con-
text of Bayesian decision theory. Axiomatic approaches to ratio-
nal decision-making date back to Ramsay (1931/1980), with von
Neumann and Morgenstern (1944) and Savage (1954) also mak-
ing major contributions. The ingredients of a general decision
problem (e.g., Bernardo and Smith, 1994) include

o A set {a;,7 € I} of available actions, one of which you will
choose;

e For each action a;, a set {Ej,j € J} of uncertain outcomes
describing what will happen if you choose action a;;

o A set {¢j,j € J} of consequences corresponding to the
outcomes {£j,j € J}; and

e A preference relation <, expressing your preferences be-
tween pairs of available actions (a; < as means “a; is not
preferred by you to a2”). Define a; ~ as (“a1 and a2 are
equivalent” to you) iff a; < ay and as < a;.

This preference relation induces a qualitative ordering of the
uncertain outcomes (E < F means “F is not more likely than
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F”), because if you compare two dichotomized possible actions,
involving the same consequences and differing only in their un-
certain outcomes, the fact that you prefer one action to another
means that you must judge it more likely that if you take that
action the preferred consequence will result.

Within this framework you have to make further assumptions—
the coherence axioms—to ensure that your actions are inter-
nally consistent. Informally these are:

e An axiom insisting that you be willing to express preferences
between simple dichotomized possible actions ({a,not a});

e A transitivity axiom in which (for all actions a,aq,as,as)
a < a, and if a; < as and as < a3 then a; < a3; and

e An axiom based on the sure-thing principle (Savage, 1954):
if, in two situations, no matter how the first comes out the
corresponding outcome in the second is preferable, then you
should prefer the second situation overall.

This puts < on a sound footing for qualitative uncertainty as-
sessment, but does not yet imply how to quantify—it’s like being
able to say that one thing weighs less than another but not to
say by how much. To go further requires a fourth assumption,
analogous to the existence of a set of reference standards (for
example, an official kg weight, half-kg, and so on) and the ability
to make arbitrarily precise comparisons with these standards:

e An axiom guaranteeing that for each outcome E there exists
a standard outcome S (for instance, “idealized coin lands
heads”) such that E ~ S.

This framework implies the existence and uniqueness of a (per-
sonal) probability Pp.you (abbreviated P), mapping from out-
comes E to [0,1] and corresponding to the judgments in your
definition of <, and a utility function Uy, (abbreviated U;
large values preferred, say), mapping from consequences c to the
real line and quantifying your preferences.

This has all been rather abstract. Four concrete results arising
from this framework may make its implications clearer:

e Bayes’ original definition of personal probability is helpful in
thinking about how to quantify uncertainty. Pretending that
consequences are monetary (for instance, in US$), to say that
Pg.you (E) = p for some uncertain outcome E whose truth
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value will be known in the future is to say that you are indif-
ferent between (a) receiving $p - m for sure (for some hypo-
thetical amount of money $m) and (b) betting with someone
in such a way that you will get $m if E turns out to be true
and $0 if not.

Any coherent set of probability judgments must satisfy the
standard axioms and theorems of a finitely additive proba-
bility measure:

— 0< P(E)<1and P(E°) =1— P(E);

— P(Evor ... or Ey) = > ,; P(E;) for any finite collec-
tion {E;, j € J} of disjoint outcomes;

— P(E and F) = P(E) - P(F) for any two independent out-
comes (informally, E and F' are independent if your uncer-
tainty judgments involving one of them are unaffected by
information about the other); and

— Conditional probability has a natural definition in this setup,
corresponding to the updating of your uncertainty about £

in light of F, and with this definition P(E|F) = 2204 F).

Otherwise (de Finetti, 1937/1980) someone betting with you
on the basis of your probability judgments can make Dutch
book against you, which is to say this person can get you
to agree to a series of bets that are guaranteed to lose you
money. Thus coherent Bayesian probability obeys the same
laws as with the classical and frequentist approaches.

Nothing so far has said clearly what choice to make in a deci-
sion problem if you wish to avoid incoherence. If the outcomes
were certain you would evidently choose the action that max-
imizes your utility function, but since they are not the best
action must involve a weighing both of your probabilities for
the uncertain outcomes and the utilities you place on their
consequences. It is a direct implication of the framework here
that the form this weighing should take is simple and clear:

|Maximization of expected utility (MEU): |Given your

utility and probability judgments, your decision-making is co-
herent iff for each action a;, with associated uncertain out-
comes {E;,j € J} and consequences {cj,j € J}, you com-
pute the expected utility EU; = 3. ; U(c;)P(E;) and choose
the action that maximizes {EU;,: € I}.

This is the basis of rational choice theory in economics (e.g.,
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von Neumann and Morgenstern, 1944). It has been shown
(ref, 19xx) [if anybody can supply one of these references for
me, I would be grateful] that in practice people sometimes
act roughly like expected utility maximizers and sometimes
they do not. Economists have a simple way out of this: util-
ity is very hard to measure accurately, maybe there is noth-
ing wrong with the theory, we just got their utility functions
wrong. Or maybe the theory is incomplete: I recall an in-
teresting talk given at Rand in 1989 by Howard Raiffa, one
of the leaders of his generation in Bayesian decision theory,
in which he was asked if he followed MEU in his own per-
sonal decision-making. He said, “Heck, no, the choices my
wife and I were making [about which jobs to take, where to
live, and so on] were far too important to leave to MEU.” (!)
He also said, though (and this accords with my own experi-
ences), that he found laying out the ingredients of an MEU
calculation—the possible actions, the values you would give
to possible consequences, some rough idea of the relative like-
lihood of the uncertain outcomes—to be invaluable in making
personal choices.

1.17 Computer scientists have terminology for an aspect of a com-
puter program that some people regard as undesirable and oth-
ers think is good: the former call it a bug, the latter a feature. For
non-Bayesians having to specify a prior is a bug; for Bayesians
it’s a feature.

1.18 The idea of conjugacy is at its most general in the exponential
family of parametric probability distributions:

Definition (e.g., Bernardo and Smith, 1994): Given data
y = (Y1,---,Yn) and a parameter vector § = (64,...,
1), the sampling distribution p(y|f) belongs to the k-
dimensional exponential family if it can be expressed in
the form

k
p(y|6) = c f(y) 9(6) exp lz ¢i(6) hi(y)] - (147)

In this case {d 1 | h1(yi),---» 25y Pk(yi)} is the set of
sufficient statistics for § under p(y|6).

noted less formally in Section 1.6, {h,..., ht} is sufficient
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for 6 under p(y|f) if the likelihood [(f]y) depends on y only
through the values of {hy,..., hi}.

I bring up the exponential family because, if the likelihood I(8|y)
is of the form (1.47), then in searching for a conjugate prior
p(8)—that is, a prior of the same functional form as the likeli-
hood—you can see directly what will work:

k
p(0) = cg(6)™ exp lz @:(0) T;| , (1.48)

i=1
for some 7 = (19,...,7%). With this choice the posterior for

will be

k
p(Bly) = cg(6)'*™ exp {Z ¢i(6) [hi(y) + Ti]} o (1.49)

i=1
which is indeed of the same form (in 6) as (1.48).

As a first example, with S = Y7 | y;, the Bernoulli/binomial
likelihood in (1.18) can be written

I0ly) = 651-0)°
(1-6) (1%)5 (1.50)
= (1—0)"exp [S log (&)] . (L51)

which shows (a) that this sampling distribution is a member of
the exponential family with & = 1, g(8) = (1 — 0)", ¢:1(0) =
6

log (ﬂ) (INB the basis of logistic regression), and h1 (y;) = v,

and (b) that hi(y) = Y1, hi(yi) = S is sufficient for §. Then
(1.48) says that the conjugate prior for the Bernoulli/binomial

is
c(l—6)"" exp |71 log b
1-6

= c6*'(1-6)°"! = Be(a, B) (1.52)

for some a and 3, as it should be.

p(0)

For an example with p > 1, take § = (u,0?) with the Gaussian
likelihood:
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1.19

1.20

1.21

10) = J]—Lexp |- 53201 = ]

oV 2w 202

=1
1 “L
~552 E Y; (1.53)

i=1

n
21> yi+ n/f)] :

i=1

o ™(21)” % exp

This is of the form (1.47) with k = 2, ¢ = (2m)~%, f(y) =
2

9(6) = o mexp (- 25) ,61(6) = — 5k, 82(6) = L, hu(vs)
y?, and ha(y;) = yi, which shows that [hy(y) = Y1, yZ, ha(y) =
>, yi] or equivalently (g, s?) is sufficient for 6. Looking ahead
a bit in the text, some very unpleasant algebra then demon-
strates that (1.34) is conjugate for the Gaussian likelihood when
both p and ¢? are unknown.

—

The Be(a, 3) distribution converges to the Gaussian as a+ 3 —
00.

Named in honor of a letter sent by Oliver Cromwell to the el-
ders of the Church of Scotland in 1xxx, at a moment in history
when the Church leaders had already firmly made up their minds
about [Dennis: please help me with details here, and a refer-
ence (Lindley, 19xx) where Cromwell’s Rule is stated]; Cromwell
wrote, “I beseech you, in the bowels of Christ, think it possible
that you may be wrong.”

The situation with a sharp null like Hy: y = 405.25 is less pleas-
ant: for Bayesians to make sense of such a hypothesis, there
must be a blob of probability exactly at 405.25 in the prior,
making both the prior and posterior a funny mixture of dis-
crete and continuous distributions. For example, somebody who
bought into this framework might construct a prior by putting
probability 0.4 precisely on y = 405.25 and spreading the other
0.6 out with a normal distribution scaled to integrate to 0.6. In
practice your uncertainty about parameters like p is typically
considerably smoother than that, which would seem to call into
question the whole enterprise of testing sharp nulls (but see
Problem 1.5 for a counterexample). In general I find it better
to pass right by the entire enterprise of hypothesis testing in fa-
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vor of more informative posterior summaries such as (say) 90%
central intervals.

1.22 It spoils a good story, but in fairness I have to report that on
my 79th trip to the machine I got a free cup of “tea.”

1.23 Carl Morris regards the two parts of the double expectation
theorem as so important for applied statisticians that he refers
to them as “Adam and Eve.”



CHAPTER 2

Simulation-based computation

2.1 The need for Markov Chain Monte Carlo methods

‘ Case study 2.1: ‘ Estimation of species life-span from the strati-

graphic fossil record. One class of questions of particular interest to
people like geologists and paleobotanists concerns the points in the
remote past (a) when a given species first appeared on Earth and
(b) when it became extinct. The standard way to estimate these
points is to dig below the surface—for instance by taking a vertical,
cylindrical core sample—and look for the first and last occurrences
of the species in the fossil record, measured in (say) meters be-
low ground level. By means of carbon dating and cross-referencing
against “known” times of major past events, an approximate one-
to-one correspondence can be established between distance below
ground and the time scale of interest.

Table 2.1. Observed locations, in meters
below ground, of finds of 6 taxa of ammonites,
from Macellari (1986) by way of Strauss and Sadler (1989).

Name n Locations y;
D. lambi 14 484, 517, 533, 550, 690, 780, 850,
(0) 995, 1055, 1083, 1100, 1115, 1130, 1157
M. seymour. 13 617, 634, 645, 667, 692, 707,
(1) 730, 748, 755, 772, 779, 793, 822
K. darwini 13 608, 622, 650, 685, 693, 704,
(2) 725, 742, 757, 771, 780, 800, 820
G. gemmatus 25 650, 700, 757, 785, 793, 800, 892, 911, 934,
3) 961, 994, 1005, 1025, 1032, 1048, 1067, 1077,
1091, 1100, 1115, 1124, 1140, 1157, 1166, 1171
M. weddel. (4) 3 668, 700, 767
M. dens. o 16 815, 900, 950, 967, 982, 1000, 1015, 1033,
(5) 1050, 1070, 1098, 1115, 1140, 1150, 1158, 1175

As an example of this sort of work, Tables 2.1 and 2.2 give data
on the observed range of late Cretaceous ammonites—a kind of
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mollusk that left behind flat, spiral fossil shells—from samples
gathered by Macellari (1986) on Seymour Island in the Antarc-
tic Peninsula (the data were digitized from Figure 1 in Strauss
and Sadler, 1989'). Range information on 13 taxa of ammonite are
given, and the data are in meters below the surface (I can’t trans-
form to time because Macellari and Strauss-Sadler don’t say how
to, but the late Cretaceous period ended about 70 million years
ago). Most of the taxa have rather grand names—Anagaudryceras
seymouriense, for instance—that are too big to fit into the tables
except as abbreviations, and for “ease of subsequent reference”
Strauss and Sadler number them, slightly curiously, from 0 to 12.
Let’s concentrate at first on one of the taxa, say M. dens. a, and
denote the observed locations of fossil finds by y1,...,y,. What
sort of model would be appropriate for the y;?

Table 2.2. Observed locations, in meters below ground,
of finds of 7 more taza of ammonites (see Table 2.1).

Name n Locations y;

K. laurae (6) 8 900, 928, 950, 973, 992, 1008, 1024, 1160

A. seymour. 10 908, 985, 1000, 1025, 1035,
(7) 1042, 1060, 1082, 1115, 1137
M. dens. v 11 935, 947, 1000, 1015, 1024,
(8) 1040, 1050, 1084, 1100, 1110, 1120
P. riccardi 9 960, 990, 1000, 1016,
9) 1033, 1050, 1074, 1115, 1132
M. dens. 8 (10) 8 967, 977, 990, 1000, 1030, 1048, 1066, 1080
P. lorvi (11) 3 988, 1032, 1115
P. ultimus (12) 4 1100, 1110, 1127, 1150

|A model for species life-span data. | The observations are

conceptually continuous, so if my predictive uncertainty is ex-

changeable I must be in the realm of model (1.22): F' ~ p(F), (y;|F)

D F for continuous F. Strauss (a statistician) and Sadler (a geolo-

gist) say that there is lots of evidence to support the assumption of
randomness of fossil distribution, locally in space and time, for am-
monites and many other species, and further they say this evidence
indicates that a Poisson process? is a reasonable approximation.
This makes the number n of finds of a given taxon at a particular
location in a fixed interval in time follow a Poisson distribution,
and it is a basic fact about the Poisson process (e.g., Ross, 1970)
that conditional on n the finds are uniformly distributed through-
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out the interval. So it would seem from the physical situation that,
if this story holds, we don’t have any model uncertainty about F":
denoting the left and right endpoints of the true underlying range
for the taxon in question by A and B, the model is evidently

(A’ B) ~ p(AaB)
(v:il4,B) ® U(4,B). (2.1)

Of course, this model needs to be checked before it is applied: for
instance, under the Poisson process the gap lengths I; = (y;+1 —v;)
between successive finds should be IID exponential, and the [
should exhibit no serial correlation. Strauss and Sadler, who exam-
ined these data, report little serial correlation and say that “gap
lengths for ammonite data roughly follow an exponential distribu-
tion truncated below 8.5m, [which is] approximately the limit of
resolution of Macellari’s published [core sample] illustration.”

800 1000

¥ (M. seymour)
650 700 750 800
o

¥ (D. lambi)

600

650 700 750 800
Uniform Quantiles.

¥ (K. darwini)

600 650 700 750 800
¥ (G. gemmatus)
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650 700 750 800 700 800 200 1000 1100
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900 1000 1100
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Figure 2.1. Uniform qgplots for the ammonite data,
showing the 6 taxa with the largest sample sizes.

An even more direct way to check the distributional assumptions
in model (2.1) is with uniform probability plots. Figure 2.1 presents
such plots for the 6 taxa in Tables 2.1 and 2.2 with the largest
sample sizes (it is hard to make much of a qqplot based on 3 or
4 points). Apart from a bit of wobble in the upper-left panel and
a few left-tail outliers in several of the taxa (see Problem 2.1 for
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a sensitivity analysis, exploring the effects of these points on the

subsequent inferences), these plots are not desperately far from

uniformity. I will go with model (2.1) in what follows, but I will

differ a bit from Strauss and Sadler in that I am also interested in

two other parameters: u = B%A, the center of the true range, and
B—A

o = =5%, a measure of the scale of this range. Reparameterized

in this way the model is

(Ma 0') ~ p(lu'a 0)
Wilwso) " Uu—o,p+0). (2.2)

| Computational strategies. ‘ Now it turns out that conjugate
analysis of this model is possible if one of the two parameters is
known but not if both are unknown (Problem 2.2). So, as with the
NB10 ¢ model mentioned in Section 1.8, conjugate analysis can
only take us partway to the goal of {a fully Bayesian treatment
of the broadest possible class of practically useful models}: a more
flexible computing strategy is needed. In describing such a strategy
I will digress for quite awhile, and then I’ll return to the ammonite
data in Section 2.5.

In this century people have known about the need for a bet-
ter approach to computing for decades, of course, and (as I men-
tioned in Chapter 1) it was clear to Laplace way back in the 1770s
that the integrals (1.30-1.32) in problems with multiple parame-
ters could be immensely troublesome in general. With IID data
y = (y1,.-.,Yn|0) from a sampling distribution driven by a pa-
rameter = (0y,...,0;) that is in most cases multivariate, three®
main strategies, all of them with the goal of accurate approximate
(rather than exact) results, have so far been developed to cope with
this problem:

e Asymptotic analysis (e.g., Bernardo and Smith, 1994) relies
on Central-Limit-Theorem-style results to approximate poste-
rior distributions such as p(6|y), p(6;|y), and p(yn+1|y) by suit-
able univariate and multivariate normal distributions*. With a
few notable exceptions®, for most Bayesians this was the leading
supplement to conjugate analysis until the early 1980s.

Asymptotic approximations work just about the way you might
think they would, given what you know about the normal dis-
tribution: even with fairly small n this approach can produce
reasonably accurate posterior summaries for parameters with
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symmetric distributions on the whole real line, like p in the
Gaussian NB10 model (1.24). However, for parameters with
skewed distributions and restricted ranges—such as 6 in the
Bernoulli/binomial model (1.11), which lives on (0,1), and o2
in (1.24), which lives on (0, 0co)—it is generally necessary to (a)
transform the parameters to have support on all of R (for
instance, by working with logit(8) = log (%) and log(o?), re-
spectively), (b) do the normal approximation on the new scale,
and (c) back-transform. Unfortunately, even after all of this fid-
dling about, in practice you may not get highly accurate results
with small n.

¢ Closed-form approximations try to use higher-order asymp-
totic expansions than those on which standard asymptotic anal-
ysis are based to produce extremely accurate small-sample asymp-
totics (as some people put it). The leading example of this ap-
proach is the class of Laplace approximations (e.g., Tierney and
Kadane. 1986), which I mentioned briefly in Chapter 1 and to
which I will return in Chapter 8. Although invented by Laplace
more than 200 years ago, the method seems to have languished
with few practical applications until the 1980s. This approach
works well with small &, particularly in conjunction with the
kind of parameter transformation, or reparameterization, dis-
cussed above, but can lead to substantial numerical difficulties
when £k is large or the posterior distribution is multimodal.

e Sampling-based approximations try to take advantage of
modern computing power, either (i) to approximate the inte-
grals that arise in computing p(6|y), p(6;]y), and p(yn41|y) by
Monte Carlo sampling experiments or (ii) to directly draw ran-
dom samples from these distributions.

— Importance sampling (e.g., Geweke, 1989) is an example of
approach (i): for instance, if you want to calculate a posterior
mean

E(0ly) = / 0p(0ly) do (2.3)

and the integral in (2.3) is intractable, you could choose a
density g(9) that is everywhere positive, re-express (2.3) as

opmyae = [ [P2O9] 54) g
/ /[ g(0)
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take a large ITD sample (6;,7 = 1,...,N) of points from

g(0), calculate W; = %, and approximate E(f|y) by

+ Zf]:l W;. This method, which was extensively used in econ-
ometrics in the 1980s, requires considerable skill in the choice
of the importance sampling density g, and (like many other
approaches) runs into implementational and accuracy diffi-
culties with large k.

Markov Chain Monte Carlo (MCMC) methods (e.g., Gilks
et al., 1996a) are the leading current example of approach (ii),
and have been used extensively in statistics since the early
1990s with increasing success. Forerunners to this approach
appeared in the statistics literature in the 1980s in the form of
data augmentation (Tanner and Wong, 1987) and sampling-
importance-resampling (Rubin, 1987), and MCMC methods
were first widely popularized by Gelfand and Smith (1990),
all of which makes it seem as though MCMC methods were
not developed until the 1990s, but in fact the leading spe-
cial cases of MCMC were introduced (a) in the 1950s (!) by
physicists (Metropolis et al., 1953) whose work was unknown
to the statistics community; (b) in the 1970s by a statistician
(Hastings, 1970), whose efforts in generalizing Metropolis et
al. went almost completely unnoticed; and (c) in the early
1980s by applied mathematicians (Geman and Geman, 1984)
working in cognitive neuroscience, the generality of whose
methods was not at first appreciated. (So much for cross-
disciplinary collaboration and smooth historical sailing of im-
portant ideas.)

I am going to focus in this chapter—and in the rest of the book—

on MCMC methods, because they appear to me (and to many oth-
ers) to be the most promising general approach to Bayesian com-
putation available at present. They can be highly computationally
intensive (in other words, it can take minutes or even hours on
your computer to get accurate answers), but I think it is fair to
say that they have opened up the floodgates on applied Bayesian
work since the early 1990s like no approach before them.

|MCMC methods. | The idea behind MCMC methods is sim-

ple and intuitive: I start out wanting to compute a probability den-
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sity, for example p(f|y), but then I notice after thinking about it
for awhile that for many purposes I would be just as happy to have
a large random sample from p(6ly) as to know its precise form,
because if I had the sample and it was big enough I could approx-
imate its form, to a high degree of accuracy, with a histogram or
kernel density estimator, and if I wanted to know its mean (say)
I could approximate it by the sample mean. So the question be-
comes: can I figure out how to efficiently simulate a large number
of random draws from p(0|y)?

This stage—the implementation of MCMC—is not so straight-
forward. In fact, it required a substantial bit of lateral thinking on
the part of Metropolis et al. (the 1950s physicists). They said, in
effect: suppose you could construct a Markov chain®—a stochas-
tic process {0;,t > 0} of values unfolding in time t—with three
properties:

e It should have the same state space (set of possible values) as
0;

e It should be easy to simulate from; and

e Its equilibrium (or stationary) distribution—the distribu-
tion from which samples from the chain eventually will be drawn,
after it has been run for a long time—is p(fy).

If you could do this, you could run the Markov chain for a very large
number of iterations, generating a huge sample (6;,t = 0,1,...)
from the posterior, and then use simple descriptive summaries
(means, SDs, correlations, histograms or density estimates) to ex-
tract any features of the posterior you want.

How to construct such a Markov chain—and make sure it does
what you want it to—is the subject of the next several sections.

2.2 Hastings and Metropolis sampling

The most general MCMC method in wide use today is due to Hast-
ings (1970), and I will look at it first (the methods due to Metropo-
lis et al. and Geman-Geman are special cases, to be covered later).
In effect Hastings said, OK, I am trying to build a Markov chain
on 0 starting at some initial value 8y. Given that the chain has
found its way to state 6; at time ¢, all you need to know to charac-
terize the chain (since it is Markov) is the probability distribution
for where it will go at time (¢ + 1). Hastings, following Metropolis
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et al. but adding a new wrinkle (to be explained below), suggested

the following way to generate 0y 1:

e Choose something called a proposal distribution (PD) f(6|6;)
for where to consider going next, given that you are at 8; now,

and sample a candidate point * from this distribution.
e Accept the move to 6* at time (¢ + 1) with probability

p(6*]y) £(6:(6") ] .

ag(0;,0*) = min |1, ;
1(0:,0%) p(6ely) 1(6°16r)

(2.5)

otherwise stay where you are. In other words, toss a Bernoulli
coin with probability agy of coming up heads—if you get heads,

set ;1 = 0%, otherwise set 0;11 = 6;.

He then proved the remarkable fact that with just about any PD
f, the equilibrium distribution” for the Markov chain is p(f|y), as

desired.

Gilks et al. (1996b) note that the resulting algorithm is extremely

easy to code:

Algorithm (Hastings, 1970, generalizing Metropolis
et al., 1953). To construct a Markov chain whose equi-
librium distribution is p(f|y), choose a proposal dis-
tribution (PD) f(6|60:), define ay(0:,0*) as in (2.5),
and
Initialize 6g; t+ 0
Repeat {
Sample 6* ~ f(60|6:)
Sample u ~ U(0,1)
If u< aH(Ot,G*) then 0t+1 +— 6*
else 6411 < 6;
t— (t+1)

}

(2.6)

|Example: Gaussian with unknown ¢? and known .

To see the Hastings algorithm in action, consider the simple model
whose likelihood is specified by Gaussian draws with known mean
but unknown variance, for instance applied to the NB10 data of

Chapter 1 by pretending that we know u:
o~  SI-x*(vp,02)

p
IID .
wilo) "™ N(uo?), i=1,...,n.

(2.7)
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You can use the standard conjugate machinery to work out the
right answer for p(o?|y) in this model,

(2.8)

Vpo2 + ns?
(02|y) ~ SI-x? (Vp +n, 22

Vp+n

where s2 = L 3" | (y;—p)?, so ’'m not doing Hastings here because
it’s the only way to compute the posterior, but it’s convenient to
know the right answer so that I can compare the Hastings results
with it. In this example § = 02, and I will take u = 404.59 (the
NB10 sample mean) for illustration.

2.3 Practical implementation issues

If you look at the Hastings® algorithm (2.6) for awhile, you will see
that three practical issues still need to be addressed in implement-
ing it: picking the initial value 6y; deciding how long to run the
Markov chain and how to use the output to approximate p(8|y);
and choosing a PD f(6]6;). I will take a first crack at addressing
all three of these issues in this section, in each case first by making
some general comments and then coming back each time to the
simple Gaussian model (2.7) above.

Choosing initial value(s) 6. ‘ The Hastings algorithm only

mentions the need to choose a single initial value 6y, and indeed in
many problems one judicious choice of 8 is enough. If you are only
going to pick one 6, the idea is to choose a value that is close to
the center of the posterior distribution you are trying to simulate
from—this will increase the chance that the Markov chain settles
down into its equilibrium distribution quickly. A good 6y of this
kind can come from anything simple that you may know about the
posterior, for instance a decent frequentist estimate of & like the
maximum likelihood estimate (MLE).

There is a potential danger in only choosing one 6, however.
When the Markov chain is run it will wander around in f#—space
over time ¢, and you would like to be sure that it has fully explored
all regions of high posterior probability by the time you decide that
the number of iterations you have looked at is enough. If the chain
moves around freely, happily jumping all over the place, people
say that it is mixing well (I will give some examples later in this
section of poor mixing and good mixing). If (1) the posterior is
multi-modal; (2) the particular MCMC implementation you are
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currently using is mixing poorly; (3) you start the chain off near
only one of the modes; and (4) you don’t run it for very long, then
you can see there is a real possibility you will never find the other
mode(s).

There are two leading strategies for dealing with this problem:
simulated annealing (SA; e.g., Geman and Geman, 1984) and
multiple highly dispersed initial values (Gelman and Ru-
bin, 1992). SA works by (a) thinking of mode-finding as like hill-
climbing, with the hill(s) defined by p(f|y), and (b) using a clever
“non-greedy” strategy for iterative hill-climbing that sometimes is
willing to go downhill to increase the chance of not getting stuck
at a local maximum. The Gelman-Rubin plan is (a) to start up the
chain at a number of wildly different 6, values and then (b) to see
if it always converges to the same mode.

I like SA better than Gelman-Rubin because it turns out® that
you can think of the Metropolis algorithm (see (2.21) below) as a
special case of SA—so that you really only have to write one com-
puter program to solve both the mode-finding and the posterior-
sampling problems—but the Gelman-Rubin approach also has many
fans (and I will give an example of it in Section x.x). Fortunately
the problem of multiple modes generally only arises with HMs when
you have used a highly informative prior that conflicts sharply with
the likelihood, a situation you generally want to avoid in any case,
so in what follows I will mostly deal with the question of initial
values by choosing a single good 6,.

Application to (2.7). The MLE for o2 in the simple Gaussian
model (2.6) is s2, the sample variance centered at the known y =
404.59, which in the NB10 data comes out 41.402, so that’s what
I'll use for 03 when I want to illustrate a good initial value below.

| Choosing a convergence-monitoring strategy. | This task
in turn divides into two sub-tasks: how to decide when you’ve
reached equilibrium, and how to monitor the output of the chain
from that point onward to get posterior summaries of whatever
accuracy you want.

e Reaching equilibrium. Think of the output of the chain as a time
series indexed by the iteration counter ¢ in (2.6). Equilibrium
in this context is like stationarity of the time series, for which
there are a variety of standard tests. I will cover this topic much
more fully in Section 2.4 below; for now, pretend we have al-
ready solved the PD problem and consider Figure 2.2, which
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was obtained using a particular PD I'll motivate below and an

initial value that is far from the correct posterior mean in model
(2.7) with the NB10 data.

60

50

40

sigma2
30

20

10

.
0 100 200 300 400 500
Iteration Number

Figure 2.2. Hastings output in model (2.7)
with the NB10 data, using a PD of the form (2.15)
and an initial value far from equilibrium.

The output in this figure exhibits two undesirable features in
MCMC sampling: it is not mixing very well—notice that there
are fairly substantial periods (for instance, from about itera-
tions 120 to 160) during which it does not move at all—and the
beginning of the series was spent looking for equilibrium, which
the sampler seems to have found at about iteration 50.

The first of these undesirable behaviors can be diagnosed by
computing the first-order autocorrelation!® (or serial cor-
relation) of the series, which is about p = +0.94 in this case:
a better-mixing chain would have a value of § much closer to
0. I will talk below about how to reduce serial correlation in
Hastings samplers.

The simplest way to get around the second problem in Figure 2.2
is to throw away the first 50 iterations and then start monitoring
the chain from that point on. People refer to an initial period
which is discarded in this way as the burn-in period np for
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the MCMC sampler. If the iterations are quick to compute and
a good initial value is available, people often use a fairly stan-
dard value of np like 1,000 (or 5,000, just to be safe), and then
increase np if the time series plot of the output shows that a
larger burn-in period is needed.

Monitoring the chain to summarize the posterior accurately.
Suppose you are convinced that the sampler is in equilibrium
after np burn-in iterations, which you have discarded. Then the
basic idea for what to do next is (a) to run the chain for a further
npr monitoring iterations, creating what I will call the MCMC
data set, and (b) to approzimate interesting features of the pos-
terior distribution just by using simple descriptive summaries of
this data set.

Table 2.3. Hypothetical MCMC data set in a model
with parameter vector 0 = (v, 3, A), using ns = 5,000 and
ny = 20,000. Here 1 is the derived quantity % and the y;

are draws from the predictive distribution for a new y.

Iteration MCMC Sampled Values

Number () Phase Ve Bt Ay =2 an‘ Y
0 Initial 04 go762  —328 —2.40 54.2

Value
1 B‘il;n' 117 0.0556 —359 —1.71 60.0

np = Burn-
5000 o 9.26 0.0610 —274 ~1.80 63.7
5001 Monitor  10.6  0.0804 —355 —2.69 49.9
”23;5'0’})1(‘)‘ Monitor  10.9 0.0793 —338 —2.45 58.1

Table 2.3 presents a hypothetical MCMC data set in a prob-
lem with data vector y and parameter vector § = (v,53,A).
(I will talk about the last two columns of this table in a few
paragraphs.) Here let’s suppose that 5,000 burn-in and 20,000
monitoring iterations are adequate to attain equilibrium and
produce posterior summaries of sufficient accuracy for whatever
you’re doing. Then (a) if you’d like an estimate of the poste-
rior mean of A, you can just calculate the sample mean of the
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20,000 values (—355,...,—338) in rows 5,001 to 25,000 in the
A column of the MCMC data set; (b) if you want a plot of the
marginal posterior for v, all you have to do is pass the 20,000
values (10.6,...,10.9) in those same rows in the 7 column of
the MCMC data set to the histogram or kernel density trace
function in S+ (or whatever your favorite data analysis package
is); (c) if you’d like an estimate of the posterior correlation be-
tween 8 and A, you just calculate the sample correlation of the
B and A columns in the monitoring part of Table 2.3; and so
on. Estimates of (just about) anything you’d like to know about
the posterior for 6—univariate, multivariate, whatever—are ob-
tainable from the MCMC data set.

Notice that two of the difficult integration problems in Bayesian
calculations with multivariate § I mentioned in Chapter 1—
normalizing constants (1.30) and marginal posteriors (1.31)—
have disappeared with the MCMC approach: the normalizing
constants cancel in the acceptance probabilities (look at the
form of (2.5)), and sampling from the posterior instead of ap-
proximating the actual density makes marginalization trivial (if
you want to know something that pertains only to [, say, then
you simply ignore all the other columns in the MCMC data set).

It also turns out that the other two difficult integration problems
from Chapter 1—computing predictive distributions (1.32) and
posteriors for functions of parameters (1.33)—evaporate as well
with MCMC. Concerning functions of parameters, you can con-
vince yourself (Problem 2.3) that if (6;,t = ng+1,...,ng+nun)
is a valid sample from the posterior for 8, then [f(6;),t = np +
1,...,np +np] is a valid sample from the posterior for f(8) for
all reasonable f. This means that all you need to do is calculate
£(0) in each row of the MCMC data set and summarize as usual.
The sixth column (counting from the left) of Table 2.3 illustrates
this with the derived quantity n = % in the hypothetical model
examined in that table.

As for prediction, recall from (1.32) that the predictive distri-
bution for a new y—call it y*, say—has the form

p(y*ly) = / p(y°16) p(6y) do. (2.9)

The argument suggesting how to sample from this distribution
with MCMC is in two parts.
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If you temporarily pretend the integral in (2.9) is a sum,
I can probably convince you that summing the right-hand-
side quantity p(y*|6) with index of summation § and with
respect to the density p(f|ly)—in other words, computing
> o P(y*|0) p(0ly)—is like taking a weighted average of the
p(y*|0) values with weights (adding up to 1) given by p(0|y),
and if you let me pass from discrete to continuous ¢ in the
right way and wave my hands a bit I can then probably con-
vince you that in words (2.9) says that the predictive distri-
bution for y* given y is a weighted average (or mixture) of
the sampling distributions p(y*|0) for y* given 0, weighted by
the posterior distribution p(Q|y) for 6 given y.

I am getting considerably ahead of myself to bring it up here,
since mixtures are the topic of Chapter 8, but it turns out (as
we will see in that chapter) that miztures correspond directly
to hierarchical models. The HM suggested by the right-hand
side of (2.9), in fact, has the simple form

0 ~ p(Oly)
(W"10) ~ p(y"[6). (2.10)
What (2.10) means in sampling terms is that

To use MCMC to sample a y* from p(y*|y), draw a 6
from p(f|y), say 6, and then sample y* from p(y*|0).

Thus to draw from the predictive distribution of a new y
in Table 2.3, for instance, you fill in each row from left to
right, sampling 4;, B, and A; (say), and then y; is just a
draw from the sampling distribution p(y|4, Be, Ay) specified
by the model featured in that table.

This all may sound too good to be true—all four major integra-
tion problems vanishing in one stroke—and in fact you may have
developed a variety of something-for-nothing-style questions in
reading the last few pages. The main question that occurs to me

is

Q:

A:

Doesn’t it say earlier this section that columns of the MCMC
data set, when thought of as time series in ¢, often exhibit
strong positive serial correlation, and doesn’t that invalidate
the MCMC data set as a summary of the posterior?

It’s an interesting fact from time series (e.g., Anderson, 1971)
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that if (6;,t = np+1,...) is a stationary (correlated) process,
then § = ;L Y72 ™ 0, is a consistent (as nas — 0o) esti-
mate of FE(6), and similar results apply for SDs, correlations,
and so on. So it’s OK to simulate correlated draws from a
distribution in summarizing features of that distribution, as
long as you get enough of them, and that’s where the amount
of serial correlation comes in. You can show, for instance, that
if 6, is a (stationary) autoregressive process'! of order 1
with mean p, SD o, and first-order serial correlation p (peo-
ple abbreviate this 8; ~ AR;(p)), then 8, as an estimate of
1, has standard error

o 1+p
vV M 1-— p'
If p = 0, which corresponds to an IID or white noise series,
the SE has the usual \/fm form familiar to you from working
with sample means of IID draws, but you can see that if p
is close to +1 then the SE can become prohibitively large.
For example, if p = 0.9, you would have to run the chain

(1)%1’ = 4.4 times longer than if it had been white noise to

get the same accuracy in estimating u, and with p = 0.995
(which can happen) this multiplier is almost 20!

SE®#) = (2.11)

It turns out that, when considered as time series, MCMC
samples for many quantities that you would want to moni-
tor do behave a lot like AR; processes, so (2.11) is a useful
formula in figuring out how long the chain should be run to
achieve your accuracy goals. I will have more to say on this
matter in Section 2.4.

Thinning the output. ‘One more practical point: consider

a situation in which you’d like your estimate & to have a high
probability (95%, say) of being no more than (say) 0.1 from
the correct posterior mean p = E(f|y)—in other words, you
want

Pll—p|<d)=1-¢ (2.12)

for d = 0.1 and ¢ = 0.05. This is a sample size calculation,
of the type that arises frequently when people design sur-
veys, and the usual thing to do is to appeal to the Central
Limit Theorem (CLT)—®# is, after all, just a sample mean.
Now it is another interesting fact from time series (e.g., An-
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derson, 1971) that AR, (p) processes do obey the CLT (even
though they are not IID unless p = 0), so—provided that
your series looks like an AR; (I'll cover how to check this in
Section 2.4)—the standard result from the sampling litera-
ture (e.g., Cochran, 1977), using the SE calculation in (2.11),
yields the requirement that

2 (1+p) [@1(1-%)]
e #1-p

where ¢ is the SD of the 8; and ® is the usual standard normal
CDF.

As is often the case with sample size calculations, the right
side of (2.13) involves things you don’t know, in this case
p and o. The natural thing to do here is to make a trial
run of the sampler to estimate these quantities. Suppose you
get p = 0.89 (in other words, your chain is not mixing very
well) and & = 3.3. Then (2.13) produces the rather sobering
estimate nips = 79,500, which we may as well round up to
80,000. Add a burn-in of (say) 5,000 iterations and we are up
to 85K.

With the speed of today’s machines (and the fact that next
year’s CPUs will probably be about twice as fast as today’s),
actually doing the 85,000 iterations may not be so bad, as
far as clock time is concerned: if the trial run has shown
that your computer can do about 50 iterations a second, for
instance, 85K iterations works out to about 28 minutes, which
might motivate a pleasant coffee break. But suppose 6 has
k = 10 components, and your worst-case 7ips across all 10
parameters is 80,000. Then disk space starts to become an
issue, as follows.

The MCMC data set will have 80,000 rows and k£ + 1 = 11
columns (including one for the iteration number). If you write
it out to a character file for future data analysis, to obtain the
posterior summaries of interest to you, in each row you’ll need
to allow 5 characters for the iteration counter and 7 characters
for each parameter (given, say, 5 significant digits, a decimal
point, and a space between each value). With £ = 10 this
comes out to 80,000 (5 + 7 -10) = 6 megabytes of storage,
and five or 10 runs like that can clog up your hard disk in no
time.

2

(2.13)
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So what most people would do in this situation is to make a

long run of 80,000 but to only store every nr-th row of the

MCMC data set—this is called thinning the output of the

chain. Here to hold the stored data set down to (say) 5,000

rows (which would only take up about 375K on disk), you
_ 80000 _

would take nr = 5000 — 16.

In situations with extremely high serial correlation, I have
sometimes needed to make monitoring runs of 1,000,000 or
so iterations, storing every 200th, and I bet some readers
of this book have made substantially longer runs than that,
so thinning can be quite handy. It also acts to (greatly) re-
duce the serial correlation exhibited by the rows of the stored
MCMC data set, although of course you still have to compute
all nys rows even if you store far less than nj; of them.

| Choosing a PD f(6/6;). ‘ This is the hardest of the three prac-

tical tasks to pin down with any generality. Since the Hastings al-
gorithm works for (just about) any PD, in fact there isn’t just one
Hastings solution to a given problem, there’s an infinity of such
solutions. The main goal in choosing f(6|6;) is getting a chain that
mixes well, and nobody has (yet) come up with a sure-fire strategy
for always succeeding at this task.

Having said that, here are two basic ideas that often tend to

promote good mixing:

(1) Pick a PD that looks like a somewhat overdispersed version of

~—

the posterior you are trying to sample from (e.g., Tierney, 1994).
Some work is naturally required to overcome the circularity in-
herent in this choice (if I knew p(f|y), why would I be using this
algorithm in the first place?).

Set the PD up so that the expected value of where you are going
to move to (6*), given that you accept a move away from where
you are now (6;), is to stay'? where you are now: E¢(6*|6;) = 6.
That way, when you do make a move, there will be an approx-
imate left-right balance, so to speak, in the direction you move
away from 6;, which will encourage rapid exploration of the
whole space.

The first chapter in Gilks et al. (1996a) has lots of good general

ideas for choosing PDs. I will deal with this issue in the main body
of this book principally by example, although in Section 2.6 and
Appendix 2 Section 6 I will describe a fairly general strategy for
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Metropolis sampling that employs one particular kind of generic
PD.
Application to (2.7).| Even if I didn’t know the right an-

swer (2.8) in this problem, a good place to begin in choosing the
PD using idea (1) above—based on the form of the prior, and
therefore the possible form of the posterior (given at least ap-
proximate conjugacy)—would be a scaled inverse x? distribution:
f(o?|o?) = SI-x*(v*,0?) for some v* and o2. This distribution
(Appendix 1) has density

. vt gy (ur v*o}
po®lv,o?) = e(@) T @) (F D ep (<55 ) (214

and mean ufiz o2 for v* > 2. To use idea (2) above, then, I can

choose any v* greater than 2 that I want, and as long as I take

0? = Y2257 T will have centered the PD at o} as desired. So I will
use

L V=2
f(o?|o?) = SI-x? (1/ S af) . (2.15)

This leaves v* as a kind of potential tuning constant—the hope is
that I can vary v* to improve the mixing of the chain.

Section 1 of Appendix 2 contains some S+ functions to do Hast-
ings sampling in this model with PD (2.15). Various details need
filling in, as follows.

e PD simulation. S+ doesn’t have a built-in function to sample
from the scaled inverse x? distribution, but it does generate
random x2 draws nicely. As in Section 1.8, a bit of distributional
manipulation bridges the gap: it turns out (Appendix 1) that

1
0?2 ~ SI-x%(v,8%) <= — ~ F(g, gsz

o2
Now x? distributions are just special gamma distributions—
x2 =T(%, +)—so0 if I could get the second parameter in (2.16)
to be % I’d be home. But the second parameter in gamma dis-
tributions is an inverse scale parameter, by which I mean that
multiplying a I'(a, 8) random draw by c turns it into a I'(«, %’)
draw. So evidently

). (2.16)

v L
2°2

meaning that to generate a random draw o2 from SI-x%(v, s?)

=y ) = x5 (2.17)
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you just generate a draw d from x2 and compute 02 = ’%z. This
explains the function PD.sim.

o Log prior and log likelihood. In the function alpha I compute the
acceptance probability ag in (2.5) by calculating exp(log(aq)),
so I need to compute the log posterior and log PD densities
at various points. The log posterior is in turn just the sum
log(prior) + log(likelihood). The SI-x? prior density was given
in (2.14), except that here I am using v, and o2 in place of v*
and o2; its logarithm is

2
vpo

1Z
log [p(o*|vp, 03)] = ¢ — (3” + 1) log(0®) = 2. (2.18)

Note from the form of ag that the constant ¢ in (2.18) doesn’t
need to be computed—e® cancels in the acceptance ratio—so I
have used ¢ = 0 in the function log.prior.

The likelihood function in model (2.7) is a simple Gaussian:

LU | 1
I(c? = ex [—— i 2], S0
(o*]y) U s P| =552 Wi =)
n 1 «
108;[1(02|y)] = c—§10g(02)—?2(yi—u)2, (2.19)
i=1

and again for the same reason I have taken ¢ = 0 in the function
log.1lik.

e Log PD calculation. I am using the PD (2.15), and in view of
(2.14) the log of this density with 02 = “ 207 can, after a bit
of simplification, be written

tog (o101 = o+ 5 tog(a?) — 5 +1) ogt?)
(v* —2)o?
- (2.20)

and once again I used c = 0 in the function log.PD'3.

This may all seem like a lot of work, but in fact much of the
process of creating a Hastings sampler is generic: for instance, the
driver, acceptance probability, and log posterior functions require
little change from problem to problem. You will probably find that
once you have written one Hastings sampler from scratch, it doesn’t
take much effort to do another one. The same is true for the other
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kinds of MCMC samplers as well (although there are various tricks
to learn to get decent mixing in high dimensions).
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Figure 2.3. OQutput of a Hastings sampler in the Gaussian model (2.7):
Time series trace (left panel) and density trace (right panel) for o®.
The solid curve on the right is based on a kernel density estimate from
the 5,000 stored iterations; the dotted curve is the theoretical density.

Hastings results for model (2.7). Figures 2.3 and 2.4 present re-
sults from applying the sampling strategy outlined above to the
Gaussian model (2.7) with known mean and unknown variance,
using the NB10 data for illustration. I chose v* = 20 in specifying
my PD (in Section 2.4 I'll justify this choice), and I used a burn-in
of 1,000 starting from 02 = s2 = 41.402, followed by a monitoring
run of 40,000, storing every 8th iteration. For illustration, I set u
to § = 404.59, and took (vp,07) = (0.001,41.402) (I will describe
a more scientifically relevant prior in Section 2.6). This run took
about 5.5 minutes using S+ on a 333Mhz machine'*, and yielded an
acceptance rate of about 44%, which (as we will see in Section 2.4)
leads to pretty good mixing (not far from best possible with a
SI-x? PD in this problem, in fact). Figure 2.3 plots the monitored
iterations for o2 in two ways, and Figure 2.4 shows draws from the
predictive distribution for a future y*; in both cases the left panel
is a time series trace of the 5,000 stored iterations, and the right
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panel compares a kernel density trace based on the 5,000 draws
with the theoretical density.

In both figures the time series traces look a lot more like white
noise than Figure 2.2, which was produced by choosing v* = 5
(leading to an acceptance rate of only about 20%); here the serial
correlations for o2 and y* were 0.03 and 0.00, respectively, com-
pared with p = 0.94 back in Figure 2.2. And you can see that
(apart from the vagaries of slightly undersmoothed kernel density
traces) the MCMC distributions match their theoretical'® coun-
terparts well. The posterior means, SDs, and 95% central intervals
for 02 and y* from the MCMC output are (42.2;6.09; (32.0, 55.3))
and (404, 6.43, (392,417)), respectively, which pretty closely match
their theoretical values (42.2;6.10; (32.0, 55.6)) and (405, 6.50, (392,
417)).
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Density
0.03

y.star
400
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380

0 1000 2000 3000 4000 5000 380 390 400 410 420 430
Interation Number y.star
Figure 2.4. Similar to Figure 2.3, but the quantity
being monitored here is a future value y* in model (2.7).

By virtue of its relatively friendly syntax, graph-

ics capabilities, and interactive nature, S+ is an excellent environ-
ment in which to develop statistical software. Some of these fea-
tures, however, act to hobble it sufficiently for MCMC-style calcu-
lations that it may not be the best environment in which to run
such software. The reasons are as follows:

e The S+ people have implemented a design philosophy that in-



68 SIMULATION-BASED COMPUTATION

cludes a desire for their program to recover gracefully if inter-
rupted in the middle of (essentially) any calculation. This is
good in many ways but comes at a price: relatively poor dynamic
memory management, particularly with explicit looping (of the
kind that is unavoidable in MCMC: how can you avoid writ-
ing something like for (i in 1:(n.burnin + n.monitor))?).
Naive versions of the S+ programs in Appendix 2 routinely crash
with the message Unable to allocate dynamic memory, even
with only 2 or 3 parameters and (say) 20,000 monitoring itera-
tions. In Appendix 2 I have implemented a trick I learned from
Brian Ripley to overcome this problem; using this idea, the code
can be run with far larger values of n.monitor without crashing.

e However, even with this memory-allocation trick S+ MCMC
code tends to run fairly slowly, because S+ is an interpreted—
rather than a compiled—language.

What is needed is to be able to throw a switch: to program in in-
terpretive (interactive) mode while developing the code, and then
switch over to compiled (more like old-fashioned batch) mode to
get results. Some readers of this book are probably using other
software environments, such as GAUSS and MATLAB, in which (I
think; manuscript readers: is this correct?) such a switch may
be thrown; I have stuck here with S+—which has no such switch—
because it is the most widely used academic statistical software
environment worldwide and because I’'m familiar with it. But I
evidently need a way to toggle between S+ and a faster run-time
environment.

One reasonably simple option is to convert your S+ code into C
once you have debugged it. Section 2 of Appendix 2, for instance,
contains a C version of the S+ Hastings sampler used above in model
(2.7). When I began writing this book I was a complete C novice,
but with the help of a few able graduate students it only took about
an hour to translate the S+ code for this example into a working
C program (and experience—plus the generic nature of MCMC
sampler coding—have cut this time substantially on subsequent
problems. The C code takes a lot more lines, mainly because you
have to supply your own random number generators, but these
only need to be written once and stored in a library).

The point of spending this hour is run-time efficiency: the same
code that took 5.5 minutes in S+ on a 333Mhz machine only took
6.5 seconds in C. I'm not claiming that the programs in Appendix 2
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are best possible; I'm just noting that in this problem, a reasonably
straightforward C implementation was 51 times faster than a rea-
sonably straightforward S+ implementation (and I have seen other
MCMC applications where the advantage for C is more like 350 to
1). If T am only going to run my sampler a few times and I can get
decent results with 40,000 iterations, then I'd rather wait 5 extra
minutes for the S+ code to finish than translate it into C, but what
if (a) I want to write a simulation program in which random data
sets are analyzed with MCMC, or (b) it takes more like 800,000
iterations to get accurate findings?

The MCMC moral seems to be: either find a statistical program-
ming environment you're happy with—in which you can toggle
back and forth between interpretive and compiled mode—or get
somebody (and it may be turn out to be you) to convert your slow
code into fast code!®.

| Metropolis sampling. | All of this section so far has been

about implementing the Hastings (1970) sampler, which often re-
quires a bit of ingenuity in the choice of proposal distribution (PD).
There is, however, a simpler MCMC approach, due to Metropolis
et al. (1953), as follows.

If you look at the form of the acceptance probability (2.5) in
Hastings sampling, you will see that one particular assumption
about the proposal distribution would make things easier: if the
PD were symmetric in its two arguments, 6; (which you will re-
call is where the chain is now) and 6* (where the chain is thinking
of going)—in other words, if f(6*|0;) = f(6;|6*)—then the ratio
;Ez:‘lgjg in (2.5) would cancel. This was the original idea Metropolis
and his co-authors had almost 20 years before Hastings generalized
it: Metropolis et al. suggested the use of symmetric PDs, and Hast-
ings pointed out that PDs didn’t have to be symmetric. Thus

Algorithm (Metropolis et al., 1953). Same as Hast-
ings (2.5, 2.6), except that the proposal distribution
(PD) f(6|6:) must be symmetric: in other words, it
must satisfy f(6*|6;) = f(6:]6*). In this case the ac-

ceptance probability simplifies to (2.21)
. : P(9*|y)]
oap(6¢,0*) = min |1, )
w0 ?) [ p(0:]y)

Notice that this automatically satisfies heuristic idea (2) in the
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section earlier on choosing a good PD: symmetric proposals make
unbiased moves (in a left-right sense along the number line).

Now why is (2.21) easier? Well, it often makes choosing the PD
more straightforward: people just tend to implement Metropolis
with their favorite symmetric distribution. One possibility, for in-
stance, is to propose a U (—c, ¢) move from where you are now (this
was in fact what Metropolis et al. suggested); another possibility is
to make a N(0,0% ) move, where ¢ and 0%, play the same tuning
constant role that v* did in the Hastings example above. Notice
that ¢ and 0%, are both scale factors in their respective PDs: pre-
sumably you can tune them to get an acceptance rate that leads
to good mixing.

If T propose U(—c,c) moves from where I are now and you use
N(0,0%p,) moves, our PDs would both have the feature that the
probability of generating a move to 6* from 6; depends only on
the distance |0* — 0;| between the target and current locations—in
other words, in both cases there is a univariate density h such that
£(6*16:) = h(|6* — 6:]). People call an MCMC sampler based on
such a proposal a random-walk Metropolis (or Hastings) algo-
rithm (because the output of the sampler, examined only at the
times when you actually do make a move, forms a random walk
(e.g., Feller, 1968) in R*). These samplers are an important spe-
cial case of the general Metropolis idea, since it turns out both
that they are easy to program and they tend to have good MCMC
convergence properties (e.g., Roberts 1996).

None of this sounds particularly applicable to the normal vari-
ance problem (2.7) I tackled above with Hastings, however: after
all, it would look funny to propose a symmetric U(—2,2) (say)
move from o = 0.5 (say), with a big chance of going negative,
when everybody knows that o2 has to be positive. A moment’s
reflection indicates the way out of this problem, though: since
U(—c,c) and N(0,0% ) moves would cause you to travel (in prin-
ciple) all over the entire real line, the parameter you're sampling
had better live on the whole line, too. That’s easily enough ac-
complished with a parameter like 02: just work instead with \ =
log(c?), and monitor the function 02 = e* in your MCMC draws.

Parameter transformation. On this line of reasoning I want to
work with model (2.7) except re-expressed in terms of \. If you
look at the log likelihood (2.19) for this model, you will see that
the only change needed there is to stick in A every time you see
log(c?), and e* everywhere o2 appears, so the new log likelihood
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n 1 « )
log [[(Aly)] = ¢ = 5A = 5x D _(yi —m)". (2.22)
i=1

The log prior, which will be based on (2.18), requires a bit more
work, though: I have to put in the Jacobian for going from one
parameterization to the other. With A = g(0?) = log(c?), the
usual result from probability, written on the log scale, is

log [p(Alvp,03)] = log{po2[g™" (N)|vp, 05}
+ log ( 69_71()\) ) . (2.23)

oA
Here g~ 1()\) = ¢, ‘ag;_l)\(x)‘ = e*, and from (2.18) log {p,2[g 1 (V)|

2
vp,02]} =c— (2 +1) A — 22, so when all the dust settles

2ot
2 Vp vpoy

log [P(Al’/map)] =c- 5)\ T e (2.24)

By way of proposal distribution I will use a Gaussian!” centered

at where I am now and with SD opp, but what should this SD be?
Heuristic idea (1) in the earlier section on choosing a PD suggested
making the PD look like a somewhat overdispersed version of the
posterior distribution, so maybe that would work here. You may
recall from earlier study of maximum likelihood estimates (e.g.,
Lehmann, 1983) that when n is fairly large the MLE A for A should
have approximate sampling distribution

X~ N\ 02), (2.25)

where 02 = ! is the reciprocal of the observed Fisher information
evaluated at the MLE,

I, =- (% log [l(x|y)]>H. (2.26)

As long as the amount of prior information is small in relation to
the data information, (2.25) implies that the posterior for A will
be approximately

(Aly) ~ N(},03), (2.27)
so heuristic idea (1) suggests in this case a PD of the form
FO) = N(As, 503) (2.28)

for some scaling factor x > 1.
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To implement this I still have to compute o2. Differentiating the
log likelihood (2.22) yields
7 S s — )’
——~ _log[l(\ = &= P
which simplifies considerably when evaluated at the MLE: in this
model 631 =€ = L 3" | (y; — p)?, so o3 just reduces to 2. Ev-
2K
n
Kk to get a decent acceptance rate.
I will talk more about how to choose the optimal x in the next
section; for now it is worth noting that intuitively there ought to
be a best k somewhere in the middle of its possible range, because

(2.29)

idently I should use as my proposal distribution SD, varying

o If the proposal distribution SD is too big, when you do move you
will make big moves, which is good, but you won’t accept such a
move very often (look at the form of the acceptance probability
ayy in (2.21)), which is bad, and in the limit as the SD gets huge
you will hardly ever move, leading to high autocorrelation and
terrible mixing; and

e If the proposal distribution SD is too small, you’ll accept the
resulting moves frequently (which is good), but when you move
you won’t move very far (which is bad), and if you mentally let
the SD go to 0 you’ll see that again you have high autocorrela-
tion and terrible mixing, because it will take the chain a very
long time to flesh out the whole posterior.

Two qualitative conclusions emerge from this: proposal distribu-
tion SDs—and acceptance probabilities—somewhere in the middle
of their possible ranges are best; and

To increase the Metropolis or Hastings acceptance prob-
ability, you should decrease the proposal distribution SD.

This is why v* = 20 worked better than v* = 5 with the Hastings
PD in the last section: the variance of a SI-x2(v*, 0?) distribution

(Appendix 1) for v* > 4 is ﬁ;ﬁ, which goes down as v*
increases, so when v* = 5 produced an acceptance rate that was
too low (in other words, the proposal distribution SD was too big)
the right thing to do was to increase v*.

Metropolis results for model (2.7). Section 3 of Appendix 2 con-
tains a set of S+ functions to do Metropolis sampling in model (2.7)
using the PD developed above. You can see how little needs to be

changed from the Hastings code earlier in that appendix. To test
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the code I used all of the same settings as with the Hastings results
(among other things, this yielded a prior on A that was equivalent
to the previous highly diffuse prior on ¢?) and took x = 6 (Tl
explain this value in Section 2.4). The ensuing run took 8.8 min-
utes at 333Mhz (the extra time was almost entirely due to writing
out three monitored quantities—\, 02, and y*—instead of two) and
produced results for 02 and y* that were identical to those from the
Hastings approach, apart from MCMC sampling noise. Figure 2.5
is a plot of the results for A\, with the normal approximation (2.27)
superimposed on top of the kernel density trace from the Metropo-
lis output—you can see that n = 100 is sufficient to have reached
asymptotic nirvana (to decent accuracy, at least) with this data
set.
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Figure 2.5. Qutput of a Metropolis sampler in the Gaussian model
(2.7): Time series trace (left panel) and density trace (right panel) for
X = log(c?). The solid curve on the right is based on a kernel density

estimate from the 5,000 iterations; the dotted curve is the normal

approzimation (2.27), based on the MLE, to the posterior density.

2.4 MCMC monitoring and convergence diagnostics

I have been promising for some time now to discuss methods for
figuring out whether the chain is in equilibrium yet, and how long
to run it after it has reached equilibrium. This has been an active
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research area in the last 10 years (e.g., Brooks and Roberts, 1995;
Cowles and Carlin, 1996) and will certainly continue to develop,
but a number of useful methods have already been documented,
as follows.

The first thing I often do is make a graph like Figure 2.6, which
for want of a better name I will call an MCMC 4-plot. To create
this picture, I reran my Hastings sampler from Section 2.3 on the
parameter o2 with a far-from-optimal value of v*—2.5—and used
a burn-in of 1,000 and a monitoring run of 5,000. This took about
1 second at 333Mhz and produced (on purpose) an abysmally low
acceptance rate of only about 7%.
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Figure 2.6. MCMC 4-plot of results from the Hastings sampler in
Section 2.3 on 0'2, with ng = 1000, npr = 5000, and v* = 2.5.

The upper left panel in Figure 2.6 is a time series trace of the
5,000 monitoring iterations. Here it shows pretty bad mixing: note
that (a) the chain did not move at all for significant periods, and
(b) if you ran a kind of mental “local smoother” through the plot,
trying to estimate the mean of the time series near any given point,
it would show a lot of wavy behavior, whereas white noise would
just look like random fluctuations around a horizontal line. The
upper right panel is a (considerably smoothed) kernel density trace
of the monitored iterations'®, and (in spite of the poor mixing)
already looks a lot like the correct answer (compare with the right
panel in Figure 2.3).
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The lower left and right panels in Figure 2.6 are plots of the
autocorrelation and partial autocorrelation!® functions (ACF
and PACF; e.g., Box and Jenkins, 1976) for the 5,000 correlated
draws from the posterior for 2. If you have studied the time-
domain approach to time series, you will recognize that these plots
are exhibiting the textbook behavior of an AR; series with a first-
order autocorrelation of about 0.9: the PACF has one big spike
at lag 1 of size 0.9, and the rest of the spikes are negligible (the
dotted lines are two standard error traces around O for judging
which spikes are worth taking notice of), and the ACF shows a
slow geometric-style decay from an autocorrelation of 0.9 at lag 1
to values near 0 out around lag 35 (or even later).

Taken together the panels of the 4-plot show a chain that could
well be in equilibrium (I don’t see any vertical drift in the time
series trace) but that likely needs to be run for considerably longer
than 5,000 iterations to get accurate posterior summaries (because
of the high serial correlation). With S+ handy, the easiest way to
figure out how much longer is to invoke the MCMC diagnostic
routines in a package called CODA.

The CODA diagnostics. | CODA (Best et al., 1995) is a set of S+
functions available free on the web or by anonymous ftp from the
Medical Research Council Biostatistics Unit in Cambridge, UK (see
Appendix 2 for details on how to get the code). These functions
offer six different kinds of MCMC convergence diagnostics, some
of which I will now describe.

The simplest things you can get out of CODA are numerical esti-
mates of the autocorrelation functions for each monitored quantity
and the degree of cross-correlation exhibited by all the different
time series you have generated, taken pairwise. I ran CODA on the
Hastings output illustrated in Figure 2.6, obtaining the results in
Tables 2.3-2.6 (I also monitored the predictive distribution for a
future observation y*). Section 1 of Appendix 2 gives an S+ func-
tion called preCODA to prepare the MCMC data set for reading by
CODA.

Autocorrelations. Table 2.4, for example, gives the autocorre-
lations for 0? and y* and the degree of cross-correlation between
them. The ACF for o2 is a numerical match to the upper left panel
in Figure 2.6, and shows the slow decline in the autocorrelations
(vou have to go all the way out to nearly lag 50 with this choice
of v* to get close to IID sampling). You can also see that there
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is little correlation between o2 and y*, and that—even with this
v*—y* looks like white noise.

Table 2.4. Autocorrelations and cross-correlations

for the Hastings output illustrated in Figure 2.6.
LAGS AND AUTOCORRELATIONS WITHIN EACH CHAIN:

Iterations used = 1:5000
Thinning interval = 1
Sample size per chain = 5000

- - e e +=
| Chain | Variable | Lag 1 Lag 5 Lag 10 Lag 50 |
| | | |
| | | |
+ + B +-
| hi | sigma2 | 0.89400 0.55500 0.33000 0.02100 |
| | y.star | 0.00429 0.00159 0.01030 0.00608 |
| | | |
e e e +-

CROSS-CORRELATION MATRIX:

Chain: hastingsi

—_—— ————

| VARIABLE | sigma2 y.star |
| ======== | |
| | |
| sigma2 | 1.00000 |
| y.star | -0.00716  1.00000 |
| | |

—_— ————

Geweke and Heidelberger- Welch. Two other useful MCMC diag-
nostics produced by CODA are due to Geweke (1992) and Heidel-
berger and Welch (1983). Geweke proposed a simple method based
on time series ideas. He reasoned that, if the chain were in equilib-
rium, the means of the first (say) 10% and the last (say) 50% of
the iterates should be nearly equal. So to calculate his diagnostic
he just does a Z-test of the hypothesis of equality of these two
means, and reports the resulting Z scores (on the usual standard
normal scale), one for each monitored quantity. Thus Geweke Z-
scores a lot bigger than (say) 2 in absolute value indicate that the
mean level of the time series is still drifting, even after whatever
burn-in you have already done, and you should rerun your chain
with a longer burn-in before starting your monitoring. Here (Ta-
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ble 2.5) there is perhaps a hint that a longer burn-in would have
been useful for o2.

Table 2.5. Geweke diagnostics
for the Hastings output illustrated in Figure 2.6.

GEWEKE CONVERGENCE DIAGNOSTIC (Z-score):

Fraction in 1st window =
Fraction in 2nd window =

—tm—————————
| VARIABLE
|
|
| sigma2
| y.star

+.
+

hastingsi

|
|
|
-1.760 |
0.626 |

|

P —————— ¢

Heidelberger and Welch (1983) proposed a diagnostic approach
that uses the Cramer-von Mises statistic2? to test for stationarity.
CODA’s implementation of the Heidelberger-Welch approach goes
like this:

o If overall stationarity fails for a given quantity being monitored,
CODA discards the first 10% of the series for that quantity and
recomputes the Cramer-von Mises statistic statistic, continuing
in this manner until only the final 50% of the data remain.

o If stationarity still fails with the last half of the data, then CODA
reports overall failure of the stationarity test.

e CODA also computes a half-width test, which tries to judge whether
the portion of the series that passed the stationarity test is suf-
ficient to estimate the posterior mean with a particular default
accuracy. The idea is to use time-series methods to estimate
the standard error of the mean of the MCMC draws and then
compute half of the width of the resulting frequentist 95% in-
terval estimate for this mean (namely, 1.96 times the standard
error). If this is less than the default tolerance (in CODA, set to
€ times the sample mean, for ¢ = 0.1), the retained portion of
the chain passes the half-width test. NB (1) This is not very
stringent—if you use this test in CODA, you may well wish to
make e smaller. (2) The half-width test is directly related to
equations (2.11-2.13).

Here, as Table 2.6 indicates, even this rather poorly-mixing chain
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gets over the Heidelberger-Welch hurdles with no problem, rein-
forcing the visual impression of no troubles with stationarity in
Figure 2.6.
Table 2.6. Heidelberger- Welch diagnostics
for the Hastings output illustrated in Figure 2.6.
HEIDELBERGER AND WELCH STATIONARITY AND INTERVAL HALFWIDTH TESTS:

Precision of halfwidth test = 0.1

Chain: hastingsi

Stationarity # of iters. # of iters. C-vonM

| | |
| VARIABLE | test to keep to discard stat. |
| | |
| | |
| sigma2 | passed 5000 0 0.321 |
| y.star | passed 5000 0 0.105 |
| | |
+ e Rt +-
+ B et +-

| | Halfwidth |

| VARIABLE | test Mean Halfwidth |

| | ==== ========= |

| | |

| sigma2 | passed 42.9 0.499 |

| y.star | passed 404.0 0.167 |

| | |

Raftery-Lewis. The CODA diagnostic I find the most useful is due
to Raftery and Lewis (1992). Given the output of an MCMC sam-
pler, Raftery and Lewis address the question of how long to monitor
the chain, and in doing so they recognize that this in turn should
be based on the answer to another question: how accurate do you
want the posterior summaries to be? So they ask you, the user, to
specify three things:

e Which quantiles of the marginal posteriors are you most inter-
ested in? Usually the answer is the 2.5% and 97.5% points, since
they are the basis of a 95% interval estimate.

e With what minimum probability do you want to achieve your
accuracy goals? The default is 95%.

e How accurate would you like the estimated quantiles of interest
to be? This, in turn, can be measured in two different ways: tak-
ing the 0.025 percentile as an example, you could either specify
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that the quantile ¢ corresponding to the 0.025 point in the CDF
be accurate to a given tolerance, or that the area to the left of
the reported quantile be within a given margin of 0.025. Raftery
and Lewis have opted for the latter (which does not seem to me
to be the more natural choice), and the CODA default on this
scale is 0.005—in other words, the default tries to set it up so
that if you report a nominal 95% interval by quoting the 0.025
and 0.975 points in the MCMC output, the actual posterior
probability of your interval will be between 0.94 and 0.96.

Here is how their methods works. Given a particular quantity
0 that you have monitored and a particular quantile g of interest
in @’s distribution, Raftery and Lewis dichotomize the output of
the chain, replacing that output by a binary time series that is 1
if 8; < g and 0 otherwise. They then assert that this binary chain
should be approximately Markovian, and use standard results for
two-state Markov chains to estimate how long the chain should be
run to achieve the desired accuracy for the chosen quantile.

Table 2.7. Raftery-Lewis diagnostics
for the Hastings output illustrated in Figure 2.6.

RAFTERY AND LEWIS CONVERGENCE DIAGNOSTIC:

Quantile = 0.025
Accuracy = +/- 0.005
Probability = 0.95

Chain: hastingsi

| | Thin Burn-in Total Lower bound Dependence |
| VARIABLE | (k) (M) (N) (Nmin) factor (I) |
| ======== | ==== |
| | |
| sigma2 | 1 58 68727 3746 18.3 |
| y.star | 1 2 3866 3746 1.03 |
| | |

As you can see from Table 2.7, Raftery and Lewis actually pro-
vide three kinds of estimates, in columns 2—4: what thinning ratio
to use, how much additional burn-in would be useful the next time
you run the chain, and the required length of (burn-in + moni-
toring) period—Ilet’s call it figr,—to achieve your accuracy goals.
Column 5 shows the length of the chain required to meet those
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goals if it had been white noise, and column 6 reports the ratio
of columns 4 and 5, which Raftery and Lewis call the dependence
factor I.

I don’t usually find the Raftery-Lewis thinning-ratio and extra-
burn-in recommendations very useful (I tend to decide on thin-
ning requirements based on storage considerations, and the rec-
ommended extra burn-in is usually trivially small). The column
called Total (N)—frr—is interesting, though: its punchline in
this case, having used a proposal distribution with a deeply subop-
timal value of v*, is that I need to rerun the chain for almost 70K
iterations, to achieve the Raftery-Lewis default accuracy goals for
the endpoints of my 95% interval for o2.

Of course, with the C program in Appendix 2 this is not hard: in-
creasing np to 5,000 and njs to 70,000 and storing every np = 14th
iterate only takes about 11 seconds at 333Mhz. This passes all tests
and reduces the first-order serial correlation of the stored iterates
to 0.288, yielding a new nigr of 6,756, which is more than the ef-
fective sample size of the new run (5,000). This sort of thing often
happens—the first estimate of gy is a bit conservative because it
isn’t based on enough data yet. Now 6756-14 = 95K, so I reran the
chain for 100K iterates, storing every 20th, producing a new fig, of
5391 (!), at which point I decided that the resulting answers would
be close enough for government work (no, actually I kept on, out
of curiosity, and I had to go all the way out to 140K, storing every
28th, before I had 5,000 02 draws that passed the default accuracy
goals. The moral seems to be that gy may well be biased on the
low side when based on a modest number of draws).

Optimizing the proposal distribution. ‘ Now that v* = 2.5
has proven itself to be a rotten tuning constant for the Hastings
proposal distribution, the availability of CODA’s figy facility makes
me wonder what the optimal v* is?!. Table 2.8, which is based on
a series of runs with ng = 5,000, nps = 400,000, and nt = 1,
investigates this question. You can see that as v* increases from
its smallest value in the table, so does the (estimated) acceptance
probability &, but both the autocorrelation g and the default 7igy
reach a minimum in the middle, around v* = 20-30. Thus, as we
saw by reasoning qualitatively in Section 2.3, the best acceptance
probability will be somewhere in the middle (in this case around
0.44-0.51).

As an alternative to Raftery-Lewis, a different but related way
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to figure out what nas should be is based on equation (2.13), which
addresses an accuracy goal for the posterior mean rather than for
percentiles: how many draws should you take so that the estimate
of the posterior mean of 6 you quote is correct to within a tolerance
d with probability (1 — €)? For instance, the posterior mean of o2
in model (2.7) with the NB10 data and a diffuse prior, based on
the 5,000 draws shown in Figure 2.3, is 42.2, with a posterior SD
of 6.1. How much longer than 5,000 should I have run the chain to
confidently quote all three of the significant figures in the estimate
42.27

Table 2.8. Optimal choice of v* in the Hastings
proposal distribution for the normal variance model (2.7).
SSIF = sample size inflation factor (see text).

ARL SSIF
v p & (thousands) (i—i’ﬁ)
2.5 0.903 0.068 94.6 19.6
5.0 0.743 0.202 31.9 6.78
10.0 0.652 0.320 20.7 4.75
20.0 0.625 0.443 18.1 4.33
25.0 0.632 0.482 17.8 4.43
30.0 0.643 0.513 17.0 4.60
40.0 0.667 0.563 19.0 5.01
50.0 0.688 0.598 19.5 5.41
100.0 0.779 0.698 23.8 8.05
500.0 0.928 0.858 50.3 26.8

The answer to this question in turn depends on v*. The part
of equation (2.13) that is sensitive to the proposal distribution is

the ratio (i’:g), which I have termed the sample size inflation

factor (SSIF) and listed in the last column of Table 2.8. This is
the amount that nj; needs to be multiplied by to satisfy accuracy
goal (2.12), compared with its required value under IID sampling.
With the best v*—the value that minimizes , namely v* = 20—
the SSIF for Hastings sampling in this problem with a proposal
distribution of the form (2.15) is 4.33. Now for the final 2 in 42.2
to be right, I need d = 0.05, and if I pick 95% as the desired
level of confidence, equation (2.13) says that njy; would have to be

% - 4.33 = 248K! When you contrast this with what people

often do (burn-ins of 1-5K followed by monitoring runs of 5-10K
are common), it would seem that most of us (myself included,
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until I made this calculation) do not run our samplers for as long
as perhaps we should??.
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Figure 2.7. A graphical version of Table 2.8: p (solid line),
& (small-dashed line), nrr (dotted line),
and the SSIF (large-dashed line) are plotted against v*.

Figure 2.7 endeavors to wrap all of this up in one plot. The hori-
zontal scale, expressed logarithmically, is v*; the left-hand vertical
scale is p; the right-hand vertical scale is a; and columns 2-5 of
Table 2.8 are plotted against column 1 in that table. You can see
that, while the gy and SSIF criteria do not quite agree on the
optimal v*, the region of near-optimality is broad, extending from
about 10 to about 50, and this corresponds in turn to a broad
range of target values for the acceptance probability, in this case
from about 0.3 to about 0.6. Gelman et al. (1996) report something
similar in the case of a Gaussian model with unknown mean rather
than variance: with a Gaussian PD and a criterion that is different
yet again from Raftery-Lewis and SSIF, they find the best a to be
about 0.4, with values from 0.3 to 0.6 not far from optimal.

Optimal Hastings versus optimal Metropolis. | The calcu-
lations in the previous subsection can be repeated with the Metropo-
lis sampler on log(c?) introduced earlier. Table 2.9, which summa-
rizes the results, demonstrates behavior similar to that seen for
Hastings, with the following exceptions:
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e Asnoted above, & is a scale factor, whereas v* is inversely related
to scale, so as k increases the acceptance probability goes down.

e Metropolis appears a bit better-behaved than Hastings in this
example, at least as far as figy, is concerned (in contrast, they
are about equally good—or bad—when measured by serial cor-
relation and the SSIF).

The optimal « is around 6, corresponding to an acceptance rate of
about 0.44, although the region of near-optimality is again quite
flat. This also agrees pretty well with what Gelman et al. (1996)
found—in their problem the optimal multiplier, on the variance
scale, was about 5.8.

Table 2.9. Optimal choice of k in the Metropolis
proposal distribution for the normal variance model (2.7).

(1375 SSIF
N ~ 145
K p & (thousands) (l—fﬁ)
0.3 0.902 0.830 45.1 194
1.0 0.781 0.705 24.4 8.13
2.0 0.700 0.609 17.7 5.67
3.0 0.660 0.547 15.1 4.88
6.0 0.630 0.438 13.2 4.41
8.0 0.634 0.393 13.8 4.46
10.0 0.644 0.360 14.7 4.62
30.0 0.732 0.224 20.4 6.46
100.0 0.837 0.126 36.4 11.3

2.5 Gibbs sampling

Case study 2.1 (continued). | I am finally ready to return to

the geological example with which the chapter began. Recall that
the statistical setup was

(AaB) ~ p(AaB)
wila,B) ™ v@,B), i=1,...,n. (2.30)

for observed locations y;, in meters below ground, of finds of one
taxon of ammonites—a particular kind of fossil mollusk (Tables 2.1
and 2.2). Here A and B are the true lifespan limits of this taxon;
let’s pick M. dens. a as an example.

Bayesian inference in this problem involves the usual two steps,
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beyond figuring out the likelihood: I need to specify a scientifically-
reasonable prior, and I need to figure out how to compute the
marginal posteriors, for instance p(A|y). Actually, there is another
task, as well: I can consider reparameterizing, for instance (as I
did earlier) by defining y = B%A, the center of the true range, and
o = B=4 3 measure of the scale of this range, and re-expressing

2
the model as

(w,0)  ~  pu,o)
Wilw,0) ®° Up—o,pn+0). (2.31)

I find it easier to think about things in this location-scale parame-
terization, so that’s how I’ll approach the problem here, regarding
A =p—oand B = p+ o as derived quantities to be monitored
rather than elicited.

As far as the prior goes, the main thing that was known about
these ammonites prior to Macellari (1986), from which the data in
Tables 2.1 and 2.2 were taken, is that they were from the late Creta-
ceous period. On the meters-below-ground scale on Seymour Island
in the Antarctic Peninsula, the source of the data, this period cor-
responded roughly to the range from L = 400m to H = 1700m. For
any given taxon, this implies a prior in which y can be pretty much
anywhere between L and H, with no particular values favored, and
o is quite free too, subject to the restriction that L < p — ¢ and
u+ o < H. Rearranging these two inequalities and insisting that
o > 0, in keeping with a scale parameter, gives the prior

p ~ U(L H)
Here
. _ oy _ | p—L for L<p<p.
min(y — L, H u)—{ H—p for pe<p<H }, (2.33)

where p, is such that py, — L = H — pu,; in other words, u, =
I+H — 1050, and another restriction that emerges is thus that
o< px—L=H — p, =650.
From (2.31), the likelihood for a single observation in this model
is
Wpoly) = 5o T(u—0 <y <p+o),  (234)

from which after a bit of thought you can see that the complete-
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sample likelihood is

L 01y) = oyl =0 < miny)] Timaxty) < s +]. (239
Now it is not a lot of fun to multiply (2.32) and (2.35), work out the
normalizing constant, and integrate out one of the parameters to
get the marginal posterior for the other one, so I am going to use
MCMC here. Hastings and Metropolis are certainly possibilities
(Problem 2.4), but I thought this would be a good chance to see
the third main MCMC technique, Gibbs sampling, in action, so
let’s see how that goes.

Gibbs sampling. The idea behind Gibbs sampling, which (as I
mentioned earlier) dates to work by Geman and Geman (1984) in
image analysis, is a kind of what-if that is related to the EM al-
gorithm (Baum et al., 1970; Dempster, Laird, and Rubin, 1978),
a method developed to do maximum likelihood and Bayesian in-
ference in models with missing information. Given a parameter
vector 0 = (01,...,0;) with prior p(f), and a sample y with like-
lihood [(f|y), you may well notice that the full posterior p(fly) =
c¢p(0) 1(8]y) is not so easy to work with, but it would become a lot
easier if you only knew the value of some other (missing) infor-
mation z—in other words, suppose that p(f|y, z) is more tractable
than p(f|y), and could be used to estimate 6 (for instance, by taking
the posterior mode 6 of p(f|y, z)). Then given an initial estimate
2 = zp, you could construct p(f|y, Z), which would give rise to an
estimate 6, which should lead via p(z|y,é) to a better estimate of
z, which would lead via p(|y, 2) to an even better estimate of 8,
and so on, around the mulberry bush.

Since marginal posteriors p(6;|y) are of such central interest, a
natural way to apply this sort of idea is to let 8; play the role of
above and let 6 ;)—the 6 vector with component j omitted—play
the role of z. In the context of the ammonite data, for example, this
suggests (1) sampling from p(uly, o), obtaining i (say), (2) then
sampling from p(c|y, i), obtaining &, (3) then sampling another u
from p(ply, d), and so on. That, in a nutshell, is Gibbs sampling.

More precisely, for general k£ the algorithm is summarized by
(2.36) below. Demonstrating that the resulting stochastic process
6 is indeed a Markov chain with the right equilibrium?? distribu-
tion and showing how Gibbs fits in with Hastings and Metropolis
in the overall MCMC picture (Problem 2.5) are more complicated
matters, but if you spot me that it works you can see that the algo-
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rithm itself is pretty straightforward: the distributions p(6;|y, 6;))
are called the full conditionals for the model you're sampling
from, and the rule is simply that you always use the most recent
sampled values of the components of 6;) in defining and generat-
ing from the next full conditional. One iteration of the repeat loop
in (2.36) is called a scan of the Gibbs sampler, and fills in one row
of the MCMC data set (Table 2.3).

Algorithm (Gibbs sampling) (Geman and Geman,
1984). To construct a Markov chain whose equilibrium
distribution is p(f|y),

Initialize 6(®; ¢+ 0

Repeat {
sample 6\ ~ pl6i]y, (67, ...,60()]
sample 65 ~ plfaly, (01", 6,...,60)] (2.36)

Sample 8 ~ pBy 1y, OV, ..., 000 61)]
sample 67 ~ ployly, (01,000 0)]
t— (t+1)

}

|Working out the full conditionals.| To apply this idea to

the ammonite data, I need to figure out the full conditionals p(u|y, o)
and p(oly, u). Considering p(u|y, o) first, notice that
_ p(p,y,0)

p(uly, o) = m = cp(p) p(o|p) lp, oly). (2.37)

The c in (2.37) arises because I don’t have to evaluate things like
p(y, o) that don’t involve u, since T am thinking of the left side of
the equation as a function of y for fixed y and o—indeed, anything
that appears on the right side that is a function only of y or o will
just get absorbed into the proportionality constant. From (2.32)
and (2.35), (2.37) becomes

pluly, o) — -~ 5+ Tlo < min(u — L, H — )]
Ilmax(y) — o0 < p < min(y) + o]. (2.38)

At this point in building your own Gibbs sampler from scratch,
you hope that the right side of an expression like (2.38) is the kernel
of a density you recognize, so that it will be easy to sample from,
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and in fact in many standard situations—for instance, Problems
(2.8) and (2.9)—that is how things go. Here I am not so lucky:
(2.38) is just a messy bunch of special cases, depending on whether
1 is bigger than one thing or smaller than another. I will spare you
the details; suffice it to say that, specifying the full conditional for
u in terms of its CDF F'(uly, o) instead of its density, you get that

e For w < 0 < px — min(y),
0 p<ec
log c";_l’
F(ply, o) = ﬁ a<p<ec ¢, (2.39)
o1—-L
1 co < U

where ¢; = max[L + o, max(y) — o] and ¢z = min(y) + o; and

e For p, — min(y) < o < % =0,

0 w<c
cqlog (£=£ c1 < p < s
F(uly,0) = (”JQL) , (2.40)
C4 IOg [m] Mo < 12 < c3
1 c3 < W

-1
where ¢3 = min(H — 0,¢3) and ¢4 = {log [M] } .
The reason I have focused on the CDF rather than the full con-

ditional density for u is that the next thing I have to do is figure

out how to sample from p(u|y, o), and one of the easiest ways to do
so is to recall (e.g., Ripley, 1987) that 4 = F~!(Uly,0) is a draw
from p(uly, o) when U ~ U(0,1). So the last step in sampling from

w’s full conditional is inverting F'(uly, o), which is straightforward:

after some algebra you see that to make a draw f from p(uly, o),

you can generate U ~ U(0,1) and

U
If 0 < . —min(y) set =L+ (c1—L) (zf%f) ;

else if U<C4log( ”jL)

c1
set =L+ (1 —L)exp(%);
<o o
else set f=H exp[%_log( - )]

a1 —-L

(2.41)

The story for o’s full conditional is considerably simpler:

ploly,p) = cp(p)plo|p)lu,oly)
= J—CH 1es < o < cg], (2.42)
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where ¢ = max[p—min(y), max(y)—u] and ¢g = min(u—L, H—p).
(2.42) can be sampled from in the same way as y was:

0 o < ¢s
1-n_ _1-n
F(oly,p) = % cs<o<cg ¢, (2.43)
1 cg <O

and to draw a ¢ from p(oly, p) you just generate U ~ U(0,1) and

1
Set 6 =[(1—U)eg "+ Ucg ™™ ". (2.44)
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Figure 2.8. Time series and density traces for u and o
in the uniform model (2.31, 2.32) applied to the M. dens. a data.

|Resu1ts for the ammonite data. | Section 4 of Appendix 2
contains S+ code implementing this Gibbs sampler in the model
(2.31, 2.32), and Figures 2.8 and 2.9 summarize the results when
applied to the M. dens. a data from Table 2.1. T used a burn-in of
1,000 and a monitoring run (without thinning) of 10,000 from an
initial value of g = 190 (a bit bigger than the smallest possible
value 1[max(y) — min(y)] = 180). This took about 2.5 minutes at
333Mhz to produce output that passed all tests in Section 2.4, and
resulted (for example) in a Monte Carlo SE for the posterior mean
of u of 0.22. Figure 2.8 shows the time series and density traces
for 4 and o (the ACF and PACF plots are not very interesting);
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Figure 2.9 repeats for A and B. Table 2.10 contains some numerical
summaries for the four parameters.
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Figure 2.9. Like Figure 2.8 but summarizing the parameters A and B.

A number of intriguing things emerge from even a cursory ex-
amination of the figures and table.

e The density trace for o looks more or less like that of a typical
scale parameter, and the marginal posteriors for A and B look
just about like they would have to, given their status as range-
restriction parameters, but the density trace for u is extremely
peaked at its center of symmetry—not at all the Gaussian sort
of shape you might expect for a location parameter.

e All four parameters are mixing well, and the first-order autocor-
relations p; and default figy, values are much smaller than those
we had come to expect with Hastings or Metropolis (actually,
then, what I said a minute ago about the ACF and PACF plots
isn’t true—they are interesting when compared with those from
Hastings or Metropolis precisely because they don’t show much
autocorrelation). This is a general feature of Gibbs—it usually
produces parameter chains with less serial correlation (readers:
what’s a good reference for this?).

e The posterior SDs for y and ¢ are remarkably small, given the
variability of the data values and the small sample size (n = 16
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for M. dens. a): for instance, the posterior SD of 4 is only about

0.2% of the posterior mean. By comparison, the sample mean

has standard error % = 25.3, so on the variance scale—where

frequentists typically compare the performance of estimators—
the posterior mean of u, an alternative estimate of the center

of symmetry, is 100 [(%)2 - 1] = 50% more efficient than the

usual (Gaussian-model-based) sample mean. This is connected
to the “witch’s hat” shape of the marginal posterior for x noted
above.

Table 2.10. Numerical summaries of the four parameters
in the uniform model (2.31, 2.32) applied to the M. dens. o data.

Posterior
95% Central Default MLE
Mean SD Interval p1 ARL (SE)

" 994.4  20.7 (948, 1040) 0.044 8800 995 (14.6)
o 207.9 21.5 (183, 265) 0.54 5000 180 (13.7)
A 786.5 31.0 (700, 814) 0.32 9400 815 (20.0)
B 1202 28.6 (1180, 1280) 0.28 3800 1175 (20.0)

Some insight into what’s going on here can be obtained by work-
ing out the MLEs of the four parameters in Table 2.10 and their
standard errors. It is not hard to show (Problem 2.10) that in
model (2.30, 2.31),

20

A = min(y), E(A):A+n+1sA+bias,
~ 2 N
vi4) (n+i;?n+2) V(B),
B = max(y), E(B)= B — bias, (2.45)
b= PR B = v =
o = B 50 = 1e v6) = IV

where the hats denote the MLEs. (I computed the standard errors
in Table 2.10 in the usual way, by plugging the MLE for ¢ into
the variance expressions in (2.45).) Since the prior (2.32) I have
used for (u, o) is quite diffuse, the MLEs should be approximating
the marginal posterior modes fairly closely (indeed you can verify
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this from Figures 2.8 and 2.9), and the modes and means of these
marginals are not all that different, so the variance formulas in
(2.45) should provide some guidance as to the uncertainty we have
about @ and ¢ in light of the data.

There is something funny about these variances: they are of order
1, instead of the usual O(2) in location and scale problems. This
is due to the extremely light tails of the uniform distribution—in
effect, they fall off so rapidly (like a step function, in fact) that
you can learn about the range-restriction parameters A and B,
and simple functions of them like y and o, at a much faster rate
than with (say) Gaussian or lognormal data.

| Comparing the ammonite taxa. |I will finish this case study
by applying the methodology developed above to all 13 taxa of am-
monites in Tables 2.1 and 2.2. I used the same model and sampling
strategy as those that produced Table 2.10 to generate 5,000 draws
from each of the 13 posterior distributions for u, one for each taxon,
and the results are summarized in Figures 2.10 and 2.11.
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Figure 2.10. Parallel bozplots of the 5,000 draws
from the posteriors for u in the ammonite uniform example,
contrasting the 13 taza in Tables 2.1 and 2.2.

A natural way to examine these 13 posteriors is with parallel box-
plots, as in Figure 2.10—I have used the same numbering scheme
as Strauss and Sadler, who (for some reason) ranked the taxa in
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increasing order of their smallest observations. Most of the distri-
butions in this set of boxplots are close to symmetric, as you would
expect from the model (in fact, sharp lack of symmetry in the pos-
terior for u could be a model diagnostic here). It is also interesting
to note that some of the most unusual posteriors arise from the
tiniest samples (taxa 4 and 11 each had a sample size of only 3, for
instance).
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Figure 2.11. Plots of the posteriors for u and the ranks of the p’s
in the full ammonite data set. The vertical lines plot 95% central
intervals and the superimposed points are medians in all cases.
The left-hand (solid) line for each tazon is the posterior for u;
the right-hand (dotted) line summarizes the posterior for the ranks.

One scientific question arising from the collection of the data
in Tables 2.1 and 2.2 was the order in which the ammonite taxa
secured their evolutionary niches in the Cretaceous, for instance
as measured by the center p of their true ranges. Figure 2.11 was
created to help answer this question, and requires a bit of explain-
ing. There are two vertical lines plotted for each taxon: on the
left in each case (and referring to the left-hand vertical scale) is
the 95% central interval for u (with the median of the posterior
superimposed as a dot); the right (dotted) line (with reference to
the right-hand vertical scale) gives the 95% central interval for the
ranks of the u’s.
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How did I get the intervals for the ranks? As noted by Spiegel-
halter et al. (1995), whose rank analysis of an entirely different
kind of data motivated Figure 2.11, an excellent feature of MCMC
is the ease with which unusual and complicated functions of the
underlying parameters may be monitored and summarized along-
side the quantities appearing in your models. In this case, since I
am treating the pu’s for the various taxa as entirely independent in
this modeling, all I had to do to monitor the ranks was (a) to make
an MCMC data set with 5,000 rows and 13 columns, one for each
of the sets of posterior draws for the different taxon u’s, and (b)
create a new derived data set in which each row is replaced by the
ranks of the observations in that row.

Two interesting things are immediately apparent from this plot:

o Uncertainty about the ranks of the u’s is considerably larger
than that about the u’s themselves—notice in particular the
disparity between the vertical line lengths for taxa 6-10. With
some assurance we can say that the range-centers for taxa 0-4
came earlier in the Cretaceous than those for taxa 5-12, but
that’s about all we’re pretty sure of. This contrasts with the
rather sharper ranking conclusions that appear possible from
looking directly at the posteriors for the u’s; and

e If you examine the dots in Figure 2.11 you will notice a pat-
tern: for both the lowest taxa, 0-5, and the highest ones, 8-12,
the rank median is farther from the center than the y median.
Starting in Chapter 3 we will see examples of what are called
shrinkage estimates, in which extreme values, in comparisons
like those in this figure, are pulled back in toward the middle
by switching over to a different model for the data. But because
something has to get rank 1 even if it is only a little bit smaller
than the second-smallest thing (and analogously for the upper
end of the scale), switching attention from the underlying u’s to
their underlying ranks evidently produces a set of anti-shrinkage
or erpanston estimates.

2.6 Case study: Measurement of physical constants

Back at the end of Chapter 1, when we were looking at the NB10
data (Case Study 1.2), you may remember that the Gaussian model
of Section 1.8 didn’t fit very well, because of a number of outliers in
both tails (see Figures 1.2 and 1.4). At the time I said that it would
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perhaps be good to ezpand the Gaussian model, by embedding it in
the ¢ family and adding a parameter v for tail-weight. We couldn’t
fit that model in Chapter 1 because conjugacy is not available when
v is treated as an unknown, but MCMC makes fitting models like
this pretty close to routine, as I will now try to show.

In the notation of Chapter 1 the expanded model is

(w,oov)  ~  plp,o,v)
wilp,o,v) P2 t(u,0?), i=1,...,n. (2.46)

This model is actually not very hard to fit with Gibbs sampling—
I will conclude the chapter with an illustration of this using an
MCMC package called BUGS—but I thought I would take the op-
portunity first to use (2.46) to lay out a fairly generic strategy for
Bayesian model-fitting based on Metropolis sampling.

This is our first MCMC example in which the parameter vector 6
has dimension k bigger than 1, and the first thing you might think
of in trying to apply Metropolis is to propose N (0, njaf-) moves,
like T did in Section 2.3, separately and independently for each
parameter §;. In other words—in model (2.46), for example—in
filling in each row of the MCMC data set you might first sample a
W, then a o, and then a v (rather like Gibbs sampling, except that
the draws in this case would be independent of all other values in
the MCMC data set). This would be fairly easy to code, but it has
a big potential flaw: if the parameters are highly correlated, then a
lot of the moves you propose by treating them as independent will
be implausible, and your acceptance rate will be far from optimal.

|A generic Metropolis sampling strategy. ‘ To improve on
this, the idea behind the generic strategy I want to look at here
is that, possibly after appropriate reparameterization, the poste-
rior distribution for # should be close to multivariate normal for
moderate to large n, say p(6|y) ~ N(0*,%). This suggests a kind of
generalization of the idea in Section 2.3: a random-walk Metropolis
with multivariate normal proposal distribution, centered at where
you are now, and with covariance matrix a multiple x of X, for
suitably chosen k. This will accurately reflect any posterior corre-
lations, thereby improving the efficiency of the sampling.

The steps of the strategy are thus as follows.

(1) Transform any components of 6 that live only on a subset of
the real line to all of R. Rewrite the log likelihood in this new
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parameterization, and recompute the log prior by including the
appropriate Jacobian.

(2) Use pencil and paper or (more reliably, in complicated problems)
a symbolic computing package to find the posterior mode 6,,.
Symbolically obtain the Hessian H (the second partial deriva-
tive matrix) of the log posterior, evaluate it numerically at the
posterior mode, and compute S=-H *1| o - 1f the prior is
diffuse you can replace “posterior mode” by “MLE” and “log
posterior” by “log likelihood.”

(3) Code up and run a Metropolis sampler that makes N (O,mf])
moves, varying k to minimize the maximum of the SSIF or gL
values across the components of §. Gelman et al. (1996) have
shown that, in a particular class of problems that should give
some guidance here, the optimal x behaves roughly like %8 and
the optimal acceptance rate decreases from about 0.44 for p = 1

to about 0.27 for p = 10, roughly along the curve 0.23 + %2¢ —
0.0246
005,

If step (2) is too difficult, you will need another way to get an ap-
proximate Y. The simplest idea is probably to use the independent-
component sampler I criticized a few paragraphs ago to get your-
self started, and then switch over to step (3). One nice thing about
MCMC is that, even with an inefficient proposal distribution, the
output of the chain—once equilibrium has been reached—is a valid
sample from the posterior. So you can try an iterative strategy like
the following: start with a poorly-tuned proposal; run it a very
long time; use the sample covariance matrix based on the columns
of the resulting MCMC data set as an initial estimate S0 of ¥; run
for a long time with a multivariate normal proposal based on So;
use the sample covariance matrix from the columns of this MCMC
data set to produce a better estimate ¥;; and so on.

This is called adaptive Metropolis(-Hastings) sampling (e.g.,
Gilks et al., 1997), and there is only one thing to watch out for: if
you keep indefinitely refining the proposal distribution adaptively,
based on the previous output of the chain, it has been shown that
the sampler will not (necessarily) converge to the right equilibrium
distribution. So you need to stop the adaptive process at some
point before monitoring to produce the results you will announce,
because if not you may well be monitoring the wrong distribution.

In a bit more detail, the alternative strategy is as follows.

(2")(a) Code up a Metropolis sampler that makes a series of N (0, k;07)
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moves, one for each parameter 8, obtaining estimates for the
UJg by whatever means you can think of (likelihood theory, it-
erative guesswork, ...) and varying the «; so that the product
of the acceptance probabilities is as large as you can make it,
up to a maximum of about 0.5. Set s = 0.

(b) Run this sampler for a long time from a good starting value
and with a bigger-than-usual burn-in (use SSIF and/or gy,
values to define “large”), and use the sample covariances of
the columns of the resulting MCMC data set to construct an
estimate f]s of ¥.If s > 0 and f]s and f]s_l don’t differ too
much, go to (4').

(3') Code up and run a Metropolis sampler that makes N(0, k)
moves, varying k to optimize the acceptance probability as usual.
When you have a k you like, increment s and go back to (2'b).

(4') Now, finally, make your monitoring run for the money using the
most recent Y.

I have implemented strategy (1-3), using S+ and the symbolic
computing package Maple, with model (2.46) using the NB10 data
(Problem 2.11 invites you to try strategy (1,2—4') on this same
example). This requires creating the new parameters n = log(o)
and A = log(v), and rewriting the model in terms of 6 = (u,7n, \).
The log likelihood function, in this parameterization, is (from Ap-
pendix 1)

A
gl W] = e+ nog [P (571 )] <

e [r (5] -2 )

ex; ! zn: log [1 +e A2 (y, u)z] :
=1

where I'(-) is Euler’s gamma (generalized factorial) function (e.g.,
Abramowitz and Stegun, 1972).

|Prior elicitation in the NB10 ¢ model. | By way of a prior
I have tried to bring in a modest amount of information that ac-
cords with the science of the problem. With n = 100 observations
it should be OK to use a prior with independent components, be-
cause any strong posterior correlations that should be present will
be accurately learned from the data, and having transformed to
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the log scale for o and v it should be reasonable to work with
Gaussians, so I took

p(k,m, A) = N(plpo, o) N(n|no,02) N (Ao, 03)- (2.48)

This reduces the elicitation problem to that of specifying the prior
means and SDs for each of u,n, and A.

e 4 represents the true weight of the block of metal NB10, which
is supposed to weight around 10g, and the observations are in
micrograms below this nominal weight. So to give the National
Bureau of Standards (NBS) the benefit of the doubt I should
probably take pg = 0, but o, should be big to reflect the pos-
sibility of substantial bias on the microgram scale. Based on
previous results with similar weighing equipment at the NBS
(Ku, 1969), I have chosen o, = 500 in what follows (see Prob-
lem 2.12 for a sensitivity analysis of the prior specification in
this case study).

e v indexes the tail-weight of the true distribution of measurement
errors. Churchill Eisenhart (1979, personal communication), a
leading statistician at NBS for decades, is on record as say-
ing that “Measurement error processes in the physical sciences,
when investigators report all their apparently valid data, tend
to behave roughly like ¢ on about 7 degrees of freedom.” I have
interpreted this expert judgment, a bit liberally, as an approx-
imate statement that P(2 < v < 20) = 0.95. On the log scale
this creates a 95% prior interval for A of (0.69, 3.0), which in the
Gaussian world implies \g = 1.84 and o) = 0.59.

e o is related to the true SD of the measurement errors made by

the NBS weighing process, through SD(y) = ,/-%5 o (as long as
v > 2). A conservative reading of Ku (1969) suggests that errors

on the order of 1-200 on the microgram scale are possible, which
I will translate into the statement P(1 < ,/-Y50 < 200) =

0.95 for elicitation purposes. Taking v = 7 for simplicity, for
1 = log(c) this statement corresponds to the 95% prior interval
(—0.17,5.13), leading to a Gaussian prior mean of 1y = 2.48 and
SD of o, = 1.35.

Before doing any sampling it is worth looking at the log posterior
a bit to see if any pathologies should be anticipated. I can’t plot
p(u,m, Aly) in all its glory, because we are condemned to three
visual dimensions, but—Ilike the blind men and the elephant in the
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old story—I can try to create a mental image of the whole thing
by looking at various views of it one by one. Figure 2.12 presents
four such views of the log posterior in this problem. I drew the
upper left panel by holding constant p and 7 at plausible values,
not (perhaps) too far from their posterior modes (I took the sample
mean for p and the log of the sample SD for 7), and tracing out
the log posterior as a function of A. If the posterior is multivariate
normal this plot should look locally quadratic around its maximum,
and—while it lacks a bit in the symmetry department—it is at
least bowl-shaped down with only a single maximum. The other
two similar plots (not shown), obtained by fixing (u, A) and (7, \),
are also reasonably well-behaved—in particular, there are no signs
of multimodality.
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Figure 2.12. Four ezploratory views of the log posterior
in the NB10 t model. The upper left panel is a log posterior trace
varying A for fized values of p and n; the other three panels
are contour plots of the log posterior, fizing one parameter
in each case and letting the other two vary.

The other three panels in Figure 2.12 are contour plots of the
log posterior, obtained by fixing one component of 8 at a time and
letting the other two vary. Each of these graphs should look like
a set of concentric ellipses if the posterior is close to multivariate
normal, and as long as you cast a slightly generous eye on the (1, A)
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plot you can see that things are not terribly far from MVN. It’s
also interesting to note that 7 and A are fairly strongly positively
correlated in the posterior, which on reflection makes sense: if I
gave you a moderate-n sample of data with a few points that may
or may not be outliers, it would be hard for you to tell if the
underlying story was (small v, small )—in other words, the data
really are ¢t,—or (large v, large o), which is like saying that the
data are really (close to) Gaussian but just with a big SD. Thus
scale and shape are confounded in the ¢ family.

OK, now I'm ready to try to build my Metropolis sampler. I've
done step (1) already (I didn’t have to compute any Jacobians
because it was easy to elicit on the transformed scale). Appendix
2 Section 5 gives some code in the symbolic computing language
Maple to get the approximate posterior covariance matrix 3. It's
easy to specify the log posterior in Maple since it has a built-in
log[I'(+)] function, and then you just have to ask Maple to differen-
tiate the log posterior symbolically and solve the resulting MAP
(maximum a posteriori) equations numerically to find the mode.

It turns out that Maple could not find the mode 6,, without
some help, in the form of range restrictions on where 6,, might
be, but after I gave it a rather broad hint of this kind it was
able to solve the likelihood equations in this problem with no
trouble, in about 2.5 seconds at 333Mhz. To finish the calcula-
tion off I just have to ask Maple to calculate the Hessian H sym-
bolically and evaluate it numerically at the mode, and then take
S=—H1 | g, » a8 noted in the generic strategy above. The results

are 6,, = (404.3,1.346,1.260) and

A 0.215 0.00299 0.00808
S=1{ 000209 00119 0.0149 |, (2.49)
0.00808 0.0149  0.0749

leading to approximate standard errors (1/0.216 = 0.46,0.11,0.27)

~

for (1,7,)) and approximate correlations (\/% = 0.059,

0.064, 0.50) for [(fi,7), (fi, ), (A, A)]. Thus y is around 404.3 + 0.46;
7 is about 1.346 £+ 0.11, meaning that o is likely to be in the range
(exp(1.346 — 2 0.11) = 3.1,exp(1.346 + 2 - 0.11) = 4.8); and A is
around 1.260 £ 0.27, so that v is probably in the interval (2.1, 6.0).
All of this is useful information in extracting the full posterior.
Appendix 2 Section 6 contains some S+ functions to implement
the generic Metropolis strategy above with the NB10 data (note
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how little would have to be changed to use this sampler on a com-
pletely different problem). With k = 2 = %, a single long run of

45,000, storing every 9th iterate, after a burn-in of 2000 from a
starting value of 6y = (404.6,1.699, 1.946) = [7, log(ﬁs),log(7)]
took about 10 minutes at 333Mhz and produced the output sum-
marized in Table 2.11 and Figure 2.13. All CODA diagnostics were
well-behaved, and the thinning by a factor of 6 resulted in fairly
low serial correlations and default fig;, values. The Metropolis ac-
ceptance rate was 0.31, which is near-optimal for p = 3 based on
Gelman et al. (1996)’s results, so I didn’t try to look for a better
K.

Table 2.11. Numerical summaries of the three original-scale
parameters in the t model (2.46, 2.48) applied to the NB10 data,
using the monitoring strategy described in the text.

Posterior
95% Central Default MLE
Mean SD Interval p1 ARL (SE)

p 4043 048 (403.4,405.3) 0.20 5000  404.3 (0.46)
o 392 044 (3.14,487) 0.7 4100  3.70 (0.42)
v 375 11 (2.15,6.44) 0.16 3900  3.01 (0.86)

The table and figure bring up several interesting points.

e The posterior mean of the scale parameter o is substantially
lower than the sample SD s = 6.5, but this is to be expected

since V(y) = -%507 in this model (as long as v > 2). Indeed,

Vi af

the sample average of the quantity ;=% across the 4,971 rows
of the MCMC data set with v, > 2 is 44.4, not far from the
sample variance 41.8.

e Bayesian and ML inferences with these data (with my prior, at
least) are similar for yu, but the posterior means are about 6%
and 25% larger than the MLEs for o and v, respectively, and the
MLE standard errors are smaller than the posterior SDs. Part
of this difference comes from the prior, part from the difference
between means and modes for skewed distributions, and part
from the way ML inference (sometimes inaccurately) deals with
uncertainty about 6;) when summarizing uncertainty about ;.
Note in particular how much smaller the SE for ;5 is than the
posterior SD for v.
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Figure 2.13. MCMC output summaries in the NB10 t model:
density traces of u, o, and v (reading clockwise from
the upper left), and scatterplot of A versus n (compare with
the lower right contour plot in Figure 2.12).

e Most importantly, recall from Chapter 1 that when we (incor-
rectly) assumed a Gaussian model for these data, the posterior
mean and SD of y (which has the same meaning in both models,
and is thus comparable) were 404.3 and 0.65. With the ¢ model
the posterior mean is the same but the posterior SD, 0.47, is
substantially (28%) smaller.

— This makes sense from a frequentist robustness point of view:
if—in view of the outliers—you were to use a trimmed mean
instead of the sample mean, you would lop off the smallest
and largest (say) 2 observations, calculate the mean g7 (also
about 404.3) and SD st (considerably smaller: 4.25) of the
rest, and (in effect) use \%75 = 0.43 as your standard error.

— However, the conclusion is interesting from a Bayesian ro-
bustness point of view: when I expand the Gaussian model
by embedding it in the ¢, family for unknown v, my model
uncertainty has increased (because the former model is a spe-
cial case of the latter, obtained by pretending you know that
v = 00), but evidently in this case my inferential uncertainty
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about the quantity of principal interest—u—has decreased.
This is partly because the ¢, model with small v fits better
and partly because it turns out that the Gaussian is a very
conservative choice for inference about location parameters
(in fact, it minimizes Fisher information for such parameters
in [essentially] the [whole] class of symmetric distributions;
see Draper, 1997).

One last point to consider before leaving this case study concerns
model diagnostics, a topic I will take up in more detail in Chap-
ter 4. I have been reasonably careful about MCMC' diagnostics in
this chapter, but it is all too easy in the midst of looking at CODA
output to forget that (a) model diagnostics are equally important
and (b) MCMC diagnostics have little or nothing to say directly
about the fit of the model to the data.

.
B 8
© <
0 S
©
8 £
o <
2 >
£ g
S 8«
S < o
O (e} —
=
oo 0 o
o zZ o
o 3 < K
© <
8 .
N .
o 8
o ™
o
@
o [32)
<
o
1 2 3 4 5 -10 -5 0 5 10
nu t Quantiles

Figure 2.14. Simple model diagnostic plots in the NB10 example.
The left panel relates the correlation of the t, quantiles
and the sorted NB10 data values to v, and the right panel
is a t, qgplot of the NB10 data with v = 2.

Figures 1.2 and 1.5 demonstrated that the Gaussian model fit
the NB10 data poorly, but did not directly show that the ¢ model
fits well. Figure 2.14, on the other hand, provides some evidence
that the ¢t family is appropriate for the NB10 data. With access
to the CDF of the ¢, distribution it is easy enough to make a ¢
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qgplot of a data set, but what should you choose for v? The left
panel of Figure 2.14 gives one simple answer: I have plotted the
correlation between the ¢, quantiles and the sorted NB10 data
values?* as a function of v, and you can see that this is maximized
for v = 2. So the right panel of the figure gives a t» qqplot, which
does indeed fit the data pretty much like a glove. It is interesting
to consider (Problem 2.13) why the apparently optimal value of v
in this sense is not particularly well supported by the posterior for
v summarized in Table 2.11.

|A Gibbs shortcut: BUGS.| The generic Metropolis S+ analy-
sis above (or—better—its analogue in C) is a reasonably satisfy-
ing way to implement MCMC in many problems, but it would
be nice if there were a rather more user-friendly environment in
which to get MCMC results. There have been several attempts to
date to supply fairly narrowly-targeted MCMC packages, including
bpois (for Poisson regression; Doss and Narasimhan, 1994) and
MCSim (by Frédéric Bois; see Carlin and Louis, 1996); the most
successful general-purpose attempt so far—by quite a margin—
has been the Gibbs sampling package BUGS, developed by David
Spiegelhalter, Wally Gilks, and colleagues at the MRC Biostatis-
tics Unit in Cambridge (UK). The program is available for free,
in a variety of hardware and operating system configurations, at
http://www.mrc-bsu.cam.ac.ukor by anonymous ftp at ftp.mrc-
bsu.cam.ac.uk, and may be run either in interactive or batch
mode. The authors have provided excellent documentation for their
code, including an extensive set of worked examples.

At first thought, writing a generic Gibbs sampling package sounds
like a daunting task—for instance, how would you automatically
figure out the full conditional distributions for an arbitrarily speci-
fied model? The authors of BUGS (Gilks et al., 1994) have succeeded
in achieving considerable generality by means of two fairly mild
forms of limitation, as follows.

e With a few exceptions, BUGS is restricted to fitting models ex-
pressible as directed acyclic graphs (DAGs) (e.g., Whittaker,
1990; Lauritzen et al., 1990). Figure 2.15 presents a visual repre-
sentation of the DAG implied by the NB10 ¢ model (2.46,2.48).
In pictures such as these, constants (not present here) are de-
noted by rectangles; stochastic nodes are variables given a dis-
tribution by the model, and are denoted by circles; and directed
links between nodes are indicated by arrows: solid arrows denote



104 SIMULATION-BASED COMPUTATION

stochastic dependence, and dashed arrows (not present here)
indicate deterministic relationships. The directed links basically
specify what depends on what in the model: the node into which
an arrow points is dependent on the node from which the arrow

-
i

@ 1=1,...,n

Figure 2.15. DAG representation
of the variables in the NB10 t model (2.46,2.48).

The term directed in the acronym DAG means that all the lines
connecting nodes in the graph have to have arrows (so that you
can figure out the dependence structure); and acyclic means
that there are no subsets of the graph in which you can start
somewhere, follow the arrows along, and end up back where
you started. The DAG in Figure 2.15 is incredibly simple (see
the examples manuals that come with BUGS for illustrations of
how complicated things can get)—about all you can learn from
this DAG is that the y; depend on p,o, and v (in graphical
models jargon, the three latter nodes are parents of the y;, or
equivalently y; is a descendant (or child) of each of the three
parameters), and that u, o, and v are independent of each other
(in the prior specification).

The reason BUGS sticks to DAGs (and this is essentially a null
restriction in this book—I cannot think of any model we will
look at that is not a DAG) is that it is (relatively) easy to spec-
ify the full conditionals with DAGs, at least up to multiplicative
constants (which are irrelevant in Gibbs sampling): the full con-
ditional for a given stochastic node is just (proportional to) the
product of the distribution specified at that node and the dis-
tributions specified at all of its children. Thus the tree structure
implied by the DAG (and the acyclic assumption ensures that
it is indeed a tree, and not something more complicated) allows
the full conditionals to be read off directly.
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e In addition to a general way to figure out the full conditionals,
BUGS needs a strategy for sampling from them. The developers
have adopted a three-part approach to dealing with this, as fol-
lows. First, the code contains a simple expert system that tries to
recognize conjugacy and make use of standard methods of sam-
pling from conjugate distributions, if this avenue is successful.
Next, if this fails, BUGS tries to convince itself that the full con-
ditional distributions of the model are log-concave, which just
means that on the log scale these distributions should be bowl-
shaped down?%. The reason for this restriction is that Gilks and
Wild (1992) and Gilks (1992) have developed a clever adaptive-
rejection sampling method that relies on the log-concavity to
create a progressively more efficient rejection sampler over time
as the sampling proceeds, and BUGS uses this approach when
conjugacy fails. Finally, if neither conjugacy nor log-concavity
is available, BUGS can sample from an arbitrary full conditional
if it is discretized. More support points in the discrete approx-
imation to the real full conditional will obviously increase the
accuracy of the approximation, but too many such points will
produce a very slow sampler indeed.

I will conclude this chapter with an alternative analysis of the
NBI10 data using Gibbs sampling in BUGS. Table 2.12 gives the
principal input file for the BUGS reanalysis, which is given a name
with suffix .bug in the directory where you want to run BUGS.
You can see that the syntax is clear and resembles that of S+ in
some respects (to aid users of the former who are already familiar
with the latter). You name your model; specify the values of any
constants; tell BUGS which of the names you will be using in the
program should be thought of as variables, and with what (vector
or matrix) dimensions; tell it the names of the files from which it
can read in the data (suffix .dat) and the initial values (suffix .in)
for the MCMC sampling; specify the priors; specify the likelihood;
and define any derived quantities for monitoring.

Appendix 2 Section 7 contains the other files used to make BUGS
runs in this problem. After writing the .bug file and making sure
that the .dat and .in files are correctly specified, you run BUGS
either interactively or in batch mode. In the former case you type
bugs and enter commands from the keyboard; in the latter you col-
lect all of these commands into a file with suffix . cmd and type (for
instance) backbugs nb10.3.cmd. The main advantages of batch
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mode are that you don’t have to wait around for a really long
burn-in to finish, to type in commands that govern the monitor-
ing phase, and that you can use it in writing simulations based on
BUGS.

Table 2.12. BUGS file nb10.3.bug for a
Gibbs sampling reanalysis of the NB10 data.

model nb10.3; # Naming the model.

const
n = 100, g = 101;

+

Defining the constants.

var
mu, tau, u, gridlgl, # Specifying the variables.
nu, y[n], sigma;

+H

data y in "nb10-y.dat",
grid in "nb10-grid.dat";
inits in "nb10.3.in";

Reading in the data
and initial values.

H

{
mu ~ dnorm( 0.0, 4.0E-6 ); # Specifying the priors
tau ~ dgamma( 0.25, 0.12 ); # for mu, sigma, and nu
u ~ dcat( grid[] ); # (see text).
nu <- 1.0 +u / 7.0; #

for ( i in 1:n ) { #
y[i] ~ dt( mu, tau, nu ); # Specifying the likelihood.
#

+

sigma <- 1.0 / sqrt( tau ); Defining a derived quantity.

Either way—interactive or batch—your first command will be,
for example, compile "nb10.3.bug", after which BUGS will tell you
about all your syntax errors and quit if it finds any. It often takes
several iterations of editing the .bug file before you have a clean
compile, which is why most people run BUGS interactively until they
have (ahem) gotten all the bugs out before going to batch mode.
After the compilation, your next command is usually something
like update(1000), which will (in this case) perform a burn-in of
1,000 iterations; after that you prepare for the monitoring phase
by issuing a series of commands that tell BUGS what, and how,
to monitor. I have used monitor (mu,14), monitor(sigma,14),
and monitor (nu,14) followed by update(70000) in Appendix 2
Section 7—this has the effect of requiring BUGS to store monitored
values for u,o, and v (without doing so for any other variables
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in Table 2.12) but with a thinning ratio of 14 across the 70,000
iterations, so that only % = 5,000 values are actually written
to disk for each variable. The command q() makes BUGS actually
do the writing out to disk, after which it tidies up a bit and quits.

Model specification in BUGS. Specifying the likelihood in Table
2.12 is pretty straightforward: BUGS is able to work with some-
thing like 21 different built-in distributions that routinely arise in
Bayesian analysis, of which ¢,(u,c?) is one. Variances (and related
scale parameters) in BUGS are always specified by working directly
instead with precisions; the quantity 7 in the BUGS statement y [i]
~ dt( mu, tau, nu ); isjust givenby 7 = ;15 This explains why
I have to define the derived quantity sigma <- 1.0 / sqrt( tau
) ;—I would rather monitor o than 7. The for ( i in 1:n ) loop
is just telling BUGS in its language that, conditional on (u, 7, v), the
n observed NB10 measurements y; are IID ¢, (u, 02).

In making this BUGS run I wanted to more or less duplicate the
earlier Metropolis analysis of this problem, and it turned out that
specifying the prior equivalently in BUGS required a bit more work.
First I tried a literal translation of the independent normal and
lognormal priors for u, o, and v used previously:

mu ~ dnorm( 0.0, 4.0E-6 );

sigma ~ dlnorm( 2.48, 0.549 );

nu ~ dlnorm( 1.84, 2.87 );

tau <- 1.0 / pow( sigma, 2 );

Here dnorm( 0.0, 4.0E-6 ) means a normal distribution with
mean 0 and precision 0.000004, which corresponds directly to the
earlier specification o, = 500, and the parameters of the lognor-
mals are the same as those I used earlier (with the variability again
on the precision scale—for example, o) = 0.59 earlier, which trans-
lates into a prior precision for v = e* of ﬁ = 2.87). However, at
the end of the compile phase with this prior BUGS announced
Error in file: nb10.1.bug
for node: sigma
== error -
Unable to choose update method for node

which is its way of saying it cannot verify that the full conditional
for o is log concave®® with this model, and that therefore it doesn’t
know how to sample.

So I said to myself, OK, given that BUGS likes to work with
variance parameters on the precision scale and the conjugate prior
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for precisions in Gaussian models is the gamma distribution (this
follows from the conjugate prior for the variance being the scaled
inverse x2), it probably doesn’t like the lognormal prior for o,
because the induced prior on 7 is not gamma. So next I tried

mu ~ dnorm( 0.0, 4.0E-6 );
tau ~ dgamma( 0.001, 0.001 );
nu ~ dlnorm( 1.84, 2.87 );

starting (initially) with an extremely diffuse prior for 7 (the I'(¢, €)
prior for precisions, for small € like 0.001, has a big spike near 0 but
is close to flat over the entire rest of the real line; see Spiegelhalter
et al., 1995). However this time BUGS said

Error in file: nb10.2.bug
for node: nu
-- error --
Unable to choose update method for node

meaning that the prior for ¢ (through 7) was OK, but now it was
having the same log-concavity2® trouble with v.

So conjugacy and log-concavity (appear to) fail for v, leaving the
discretization approach as the only way to work with parameters
like this in BUGS. The code will allow you to work with arbitrary
discrete distributions with support points {1,..., K}, for K < 500
(which is plenty to get good accuracy), and you can then transform
the 1-K scale linearly to any other finite range. To approximate the
prior I used in the generic Metropolis approach, I want to create
a discretized version of the lognormal distribution with mean and
SD (on the log scale) A\g = 1.84 and o = 0.59, except truncated to
an interval (I, h) wide enough to include the entire likely posterior
for v. To achieve this I (i) chose [ = 1.1, h = 15.4, and K = 101; (ii)
got S+ to work out the mass at each point based on its lognormal
CDF; and (iii) stored these 101 numbers in the file nb10-grid.dat.
Then the two statements (a) u ~ dcat( grid[] ) and (b) nu <-
1.0 + u / 7.0 in the .bug file act (a) to create a random draw u
from the discretized distribution spread out from 1 to 101 and (b)
to transform this distribution to live on (1.1,15.4), as desired.

The last thing to specify is the hyperparameters of the gamma
prior on 7. I did this by reasoning that if o ~ LN (2.48,1.35%) then
0% ~ LN(4.96,2.70%) and then finding the hyperparameters of an
inverse gamma distribution for 02 (and thus a gamma distribution
for 7) that was a good visual match to LN (4.96,2.70%), obtaining
(a=0.25,8=0.12).
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BUGS results. At this point I was ready for a first try at results.
I chose a burn-in of 1,000 and a short monitoring run of 4,000, ob-
taining MCMC output that passed the CODA Heidelberger-Welch
tests but which had first-order serial correlations of (0.31, 0.58,
0.95) for (u,o,v), leading to default #igr values of (4.2K, 6.0K,
67K), respectively. Evidently (a discretized version of) Gibbs sam-
pling is not mixing very well on the degrees of freedom parameter
with this data set. So I reran BUGS with the .cmd file in Section 7
of Appendix 2, using a burn-in of 1,000 and a monitoring run of
70K (storing every 14th iterate), and obtained results that both
yielded good 7irr, values and agreed up to Monte Carlo noise with
those in Table 2.11 and Figure 2.13. The only problem is that this
second BUGS run took 95 minutes at 333Mhz, versus 7 minutes for
the generic Metropolis approach to achieve the same MCMC accu-
racy: discretization really slows BUGS down. You can show (Prob-
lem 2.14) that a from-scratch Gibbs sampler in this problem is
considerably more competitive with Metropolis; on the other hand,
writing a .bug file is considerably easier than programming up your
own sampler from the beginning.

If you are fairly new to MCMC, I encourage you both (a) to
give BUGS a chance in a number of other problems—as their ex-
amples documentation shows, when you stick with conjugate-style
priors the BUGS success stories include problems in random-effects
logistic and Weibull regression, extra-Poisson variation, latent class
models, predictor-variable measurement error, order constraints,
changepoints, spatial smoothing, and genetic pedigree analysis—
and (b) to write a number of your own samplers from scratch, to
develop your intuition about which MCMC strategy is most likely
to get you to the finish line most quickly in the applications of
principal interest to you.

2.7 Additional reading

[xx this section is incomplete] Gamerman (1997) and lots of ref-
erences therein; various chapters in Gilks et al. (1996); Gelman et
al. chapter 11; Carlin and Louis chapter 8; the MCMC preprint li-
brary; manuscript readers: please let me know of any important
MCMC references I have omitted (bearing in mind the nature of
the material presented here).
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2.8 Problems

[xx this section is still quite rough]

2.1
2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10
2.11
2.12

2.13

2.14

2.15

2.16

[xx sensitivity analysis on effects of outliers in ammonite data]

(M1) [xx conjugate analysis of the uniform model is possible if
one of the two parameters is known but not if both are unknown]

[xx if (6;,t =np+1,...,np + np) is a valid sample from the
posterior for 8, then [f(6;),t =np +1,...,np +ny] is a valid
sample from the posterior for f(6) for all reasonable f)

[xx try Hastings and/or Metropolis out on the ammonite prob-
lem]

[xx Explain how Gibbs fits in with Hastings and Metropolis in
the overall MCMC picture]

[xx figure out induced prior on (A4, B) in the ammonite problem
— reasonable?)

[xx sensitivity analysis on specification of hyperparameters L
and H in the ammonite problem]

[xx Standard situation in which the full conditionals are recog-
nizable and easy to sample from)]

[xx Another standard situation in which the full conditionals
are recognizable and easy to sample from]

[xx show that in model (2.30, 2.31) the MLEs are as advertised]
[xx try strategy (1-2'—4') on the NB10 data]

[xx sensitivity analysis of the prior specification in NB10 case
study]

[xx Explain why the apparently optimal value of v in the sense
of Figure 2.14 is not particularly well supported by the posterior
for v summarized in Table 2.11]

[xx Show that a from-scratch Gibbs sampler in the NB10 prob-
lem is considerably more competitive with Metropolis]

[xx Express the ¢t model hierarchically as a scale mixture of nor-
mals, draw the DAG, and explain the conditional independence
relationships]

[xx Standard situation in which both {Metropolis or Hastings}
from scratch and BUGS are reasonably straightforward. Monitor
yourself in human and computer time to see how long it takes
you to get (what should be) similar answers. Also contrast the
amount of incremental learning arising from both strategies.]
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2.17

(NV2) [xx Try simulated annealing (Note 9) on the NB10 problem
as an alternative way to find the posterior mode.]

2.9 Notes

2.1

2.2

2.3

I am grateful to Rob Weiss for drawing my attention to this
article, and to Dimitris Fouskakis for digitizing Figure 1 from
it.

A Poisson process with intensity A (e.g., Feller, 1968 and/or
Ross, 1970) is a stationary, continuous-time, positive-integer-
valued stochastic process N (¢) which (conceptually) counts the
number of occurrences of something of interest to you in the
time interval [0,¢] (so that N(0) = 0), and which satisfies the
following:

o {N(t),t > 0} has independent increments, meaning that for
all to < t1 < --- < t, the quantities {[N(¢;) — N(t;—1)],7 =
1,...,n} are independent for all n > 1; and

e For all s and ¢, the number [N(t+s)— N(s)] of occurrences in
any interval of length ¢ has a Poisson distribution with mean
At.

Several strong conclusions about N(t) immediately arise from
these strong assumptions—for instance, the interarrival times
are exponential, and given that N(t) = n, the n arrival times
have the same distribution as the order statistics of a sample of
size n from the U (0, t) distribution.

Two other approaches worth mentioning are

e Reference analysis (Bernardo, 1979), which tries to de-
velop highly diffuse priors and straightforward updating stra-
tegies for as wide a variety of standard likelihoods as possible.
However (Bernardo and Smith, 1994), this approach has trou-
ble with multiparameter problems, hierarchical models, and
prediction, rendering it less general than the other methods
on which I focus; and

e Numerical quadrature (Smith et al., 1985), which uses
ideas from the standard numerical analysis literature on quad-
rature (Bayesians are not the only people who have to eval-
uate high-dimensional integrals, after all) modified to the
Bayesian context. People working in this area report con-
siderable success in models with small £ (less than about 7),
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2.4

2.5

2.6
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but the approach seems problematic with a large number of
parameters.

The basic idea (e.g., Bernardo and Smith, 1994) relies on simple
Taylor series calculations. In the continuous case, for instance,
with 8 a k-vector of parameters and y an n-vector of univari-
ate outcomes, write p(f|y) as proportional to exp{log[p(6)] +
log[l(8|y)]}; expand each of the log terms inside the exp{-} about
their respective maxima, keeping only the constant, linear (which
vanish), and quadratic bits; and collect like terms together. Then
under relatively mild regularity conditions guaranteeing that the
remainder terms go to 0 with increasing n (e.g., LeCam and
Yang, 1990), p(f|y) should be close for large n to a multivariate
normal distribution with mean vector

H! [HO 8o + H(6) é] (2.50)
and k by k covariance matrix
. 1—1
H'= [Ho + H(e)] , (2.51)

where Hy is —1 times the Hessian (matrix of second derivatives)

of the log prior evaluated at the prior mode 6y and H(0) is —1
times the Hessian of the log likelihood evaluated at the MLE 6:

_ (9 log[p(6)] s _ (9% log[i(6]y)]
H“‘(_ 96:06; )HO’ H(g)_<_ 90;06; )azé'

(2.52)
Notice how similar these expressions are to the corresponding
formulae (1.26) and (1.28), in the simple model from Chapter 1
with Gaussian prior and likelihood for an unknown u: the pos-
terior mean is a weighted average of a prior measure of center
0o and a data measure of center 0, weighted by the multivariate
analogue of their respective precisions, and the posterior preci-
sion (matrix) H,, is the sum of the prior (H,) and data (H())
precisions.

The main exception I am thinking of is the beautiful Laplace-
style investigation conducted by Mosteller and Wallace (1964,
1984) into the authorship of the Federalist papers.

Intuitively speaking, a (discrete-time) Markov chain (e.g., Fel-
ler, 1968; Roberts, 1996; Gamerman, 1997) is a stochastic pro-
cess unfolding in time in such a way that the past and future
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states of the process are independent given the present state—in
other words, to figure out where the chain is likely to go next
you don’t need to pay attention to where it’s been, you just need
to consider where it is now. More formally, a stochastic process
{6;,t €T}, T ={0,1,...}, with state space S is Markov if, for
any set A € S,

P(0t+1 S A|90, ceey 0,5) = P(9t+1 S A|0t) (253)

The theory of Markov chains is harder mathematically if S
is continuous (e.g., Tierney, 1996), which is what we need for
MCMC with real-valued parameters, but most of the main ideas
emerge with discrete state spaces, and I will assume discrete S
in the intuitive discussion below. Generalizations to continuous
time are also possible (e.g., Feller, 1971) but are not relevant
here.

The idea in MCMC is (a) to set things up so that the Markov
chain converges to an equilibrium or stationary distribution, and
(b) to further contrive that this distribution is p(6|y). To achieve
the first goal, the chain needs to satisfy three properties:

e It must be irreducible, which basically means that no matter
where it starts the chain has to be able to reach any other
state in a finite number of iterations with positive probability;

o It must be aperiodic, meaning that for all states 1 the set of
possible sojourn times, to get back to 7 having just left it, can
have no divisor bigger than 1. This forces the chain to mix
freely among its possible states rather than oscillating back
and forth within a subset of S; and

o It must be positive recurrent, meaning that (a) for all states ¢,
if the process starts at ¢ it will return to ¢ with probability 1,
and (b) the expected length of waiting time til the first return
to 7 is finite. Notice that this is a bit delicate: wherever the
chain is now, we insist that it must certainly come back here,
but we don’t expect to have to wait forever for this to happen.

A positive recurrent and aperiodic chain is called ergodic, and
it turns out that such chains possess a unique stationary (or
equilibrium, or invariant) distribution 7, characterized by the
relation

m(j) =Y m(i)Py(t) (2.54)

%
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for all states j and times ¢t > 0, where P;;(t) = P(6; = j|6o = 1)
is the transition matriz of the chain. Informally, the stationary
distribution characterizes the behavior that the chain will settle
into after it has been run for a long time, regardless of its initial
state.

The MCMC point of having set up all this machinery is the er-
godic theorem: if {6, } is ergodic and f is any real-valued function
for which E|f(9)]| is finite, then with probability 1

Y1060 — Ee [£0)] = 3 1)) (2.55)
t=1 i

in which the right side is just the expectation of f(8) under the
stationary distribution 7. In plain English this means that—
as long as the stationary distribution is p(fly) (see the next
endnote)—you can learn (to arbitrary accuracy) about things
like posterior means, SDs, and so on just by waiting for sta-
tionarity to kick in and monitoring thereafter for a long enough
period. Of course, as Roberts (1996) notes, the theorem is silent
on the two key practical questions it raises: how long you have
to wait for stationarity, and how long to monitor after that (Sec-
tions 2.3 and 2.4).

2.7 We may as well look at the stationary distribution in the case
of a continuous state space S, for instance R¥. As noted (for
example) by Tierney (1996), to pin down the distribution of
a Markov chain ®) when S is continuous, you need to know
two things: its initial distribution across the states in S, and
its transition kernel, the continuous analogue of the transition
matrix in Note 6: for any 8 € S, A C S, and ¢ > 0, this is the
function P(0, A) = P(0:41 € Alf; = 0). The transition kernel
just specifies the distribution of the chain’s location at time
(t + 1) given that it was at 6 at time ¢.

The argument (one version of it, at least; e.g., Gilks et al., 1996b)
for deriving the stationary distribution proceeds in four steps.
(1) By looking at the Hastings algorithm in (2.6) and think-
ing about the possible moves at any given time ¢, you can see
that the transition kernel of the Hastings sampler satisfies the
equation

P(014110:) = f(014110:) am(0s,0:41) + I(O41 = 6;) -
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2.8

2.9

[1— [ 100 antenom],  (@50)

where I(-) is the indicator function (the first right-side term in
(2.56) picks up the possibility that the chain moves, and the
second that it stays put). (2) If you expand out the definitions
of both agy(6;,0:+1) and apg(fi+1,0:) (by which I mean, for
instance, ag (0:,0:+1) = something if such-and-such is true and
something else if not) and form the ratio %,
t+1,0¢

see that (Metropolis et al. and) Hastings picked the acceptance
probabilities so that

om0, 0e11) _ p(Br11]y) S (6]6:11) (2.57)

an(Oe+1,0t)  p(Oe]y) f(Oesa]6) '
(3) This, together with (2.56) and some algebra, shows that the
chain satisfies the detailed balance equation,

p(0t]y) P(01+110:) = p(0141]y) P(04]0:+1), (2.58)

which is the crucial thing that gives what we want: (4) Integrat-
ing (2.56) over the possible values of §; and plugging in detailed
balance yields

p(6eanly) = / p(6uly) P(0r1110:) db, (2.59)

you will

which is the continuous-state-space version of (2.54). This has
demonstrated that, if the Markov chain created by the Hastings
algorithm (2.6) has a stationary distribution, then that distri-
bution must be p(f|y); see Tierney (1996) for details and pre-
cise conditions that ensure convergence. NB Detailed balance
is closely related to reversibility of the chain: in the language
used here, a Markov chain is reversible if it is positive recur-
rent with stationary distribution p(-|y) satisfying the detailed
balance condition (2.58).

This terminology is slightly nonstandard. Most people talk about
Metropolis-Hastings sampling without specifying in the name
whether the proposal distribution is symmetric (Metropolis; see
(2.21)) or not (Hastings), but I will often retain the distinction
in what follows.

Simulated annealing (SA; e.g., Geman and Geman 1984) is
a stochastic optimization method for maximizing a (nearly) ar-
bitrary real-valued function f(6) (6 € R¥), based on a nice idea
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that fits in well with the other MCMC approaches in this chap-
ter. If f is unimodal then any standard method should find the
mode without much trouble, for instance Newton-Raphson from
even a not-very-good starting point, so to make things tougher
suppose f has one or more local maxima in addition to the
global one.

Algorithm (simulated annealing). To maximize a
posterior distribution p(6|y), choose a proposal dis-
tribution (PD) f(6|6;) and a cooling schedule T,
define

asa(:,60") = exp {—

log[p(6:]y)] — log[p(6”[y)] }
T ’

and
Initialize 6y; t+ 0
Repeat { (2.60)
Sample 6* ~ f(6]6;)
If p(0*|y) > p(f:y) then ;41 < 0"
else {
Sample u ~ U(0,1)
If u< aSA(Gt,G*) then 9t+1 «~— 0*
else Oy 1 « 04
}
t—(t+1)

}

A greedy stochastic hill-climbing strategy in this situation might
proceed like this: at time ¢ in the search, (a) generate a new
candidate place to consider moving to, say 6*, and (b) compare
f(6) and f(6*). If the new place is better (higher) then move
there (set 0;.1 = 6*); otherwise discard this 6*, go back to (a),
generate another candidate, and so on. With high likelihood this
will eventually get you to the top of the nearest hill, but once
you are there it won’t allow you to jump away from this hill and
find a higher peak (if any) somewhere else. SA improves on this
by allowing you to sometimes go downhill (early on in the search
process, at least), in the hope that by temporarily making things
worse you will eventually wander to the highest place of all. SA
implements this by using a rule of the form {if * is better, then
by all means move there, but if it’s worse, move there anyway
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with probability asa}. Formally, the algorithm, in the context
of maximization of a posterior p(f|y), is summarized in (2.60).

The idea behind the cooling schedule in SA is the following.
Imagine you were wandering around in the plane (this is like
generating proposed places to move when 6 has k = 2 compo-
nents) looking for the maximum of p(f|y), which is (let’s say)
highly concentrated in a small region, and you were far from
that region—the higher the peak was, the easier it would be for
you to spot it. This suggests trying to maximize an exaggerated
or heightened version of the posterior, for instance [p(d|y)]T for
T < 1, instead of p itself, and the closer T is to 0 the more exag-
gerated [p(6y)]* will be. So while you are letting the iteration
counter ¢ run from 1 to nps (say), making new proposed moves
0* all the while, why not let 7" get smaller and smaller as a func-
tion of ¢ as well? T; is called the temperature parameter in the
SA algorithm, and any method for monotonically decreasing it
from a starting value T (1.0, say) to a final value Ty (0.001, say)
is called a cooling schedule. There are a number of possibilities;
one that often seems to work well (Stander and Silverman, 1994)

is a geometric decline, Ty = Tyt for v = (%) "M To find the
global mode you run the algorithm repeatedly, each time with
a large nps (like 10,000), and using a (widely dispersed) variety
of starting values 6, possibly also varying 7. Early on in these
runs ag4 will be fairly large and you will often jump to locally
inferior places, but as T; approaches 0 so does ag4 and the pro-
cess eventually “freezes” at one particular mode. There is no
guarantee that this is the global max (which is why you should
run it with a number of different 6y), but SA’s willingness to
go downhill as well as up often allows it to out-perform greedier
search methods at “bump-hunting.”

As I mentioned in the main text, I like SA better than the
Gelman-Rubin strategy for finding multiple modes, for the fol-
lowing reason. A bit of algebra should convince you that if, in-
stead of varying the temperature, you hold T' constant at 1, the
acceptance probability asa coincides with apr, the acceptance
rate (2.21) from Metropolis sampling: indeed when T = 1, SA
and Metropolis are identical. Thus you can solve two important
problems with one piece of software by writing an SA routine—
cool the process by sending T | 0 to find the mode(s), or hold
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2.10

2.11

2.12

2.13

the temperature constant at 1 to extract the usual posterior
marginal and predictive summaries with Metropolis.

The (sample) autocorrelation function (ACF) for a time se-
ries 6; (e.g., Box and Jenkins, 1976; Chatfield, 1996) simply
measures the degree to which knowledge of the past of the se-
ries is linearly predictive of its future. Specifically, this function
is given by
n—k n n
ﬁk — t=1 (?Lt - 0)(0t:k - 0) (2.61)
Zt:l (0t - 0)2

as k, measuring the number of lags backwards in the series,
varies from 0,...,n — 1, where n is the number of observed time
points and § = %E?:l 0:. The first-order autocorrelation (or
serial correlation) pq is often the star of the show in MCMC
work, because the columns in the MCMC data set often be-
have a lot like autoregressive processes of order 1 (see the next
endnote).

The autoregressive process of order 1 with lag-1 serial cor-
relation p (e.g., Box and Jenkins, 1976, Chatfield, 1996), abbre-
viated AR; (p), is modeled as follows:

0 — = a1 (0p—1 — p) + 2, (2.62)

where the z; are white noise, assumed IID N (0, 02). Decent ap-
proximate estimates of the mean and regression parameters are
given by the intuitively obvious i = 8 and &; = p;. The autocor-
relation function of an AR; process is py = p¥—in other words,
for positive p; a plot of the sample autocorrelations should show
a steady geometric decay—and the partial autocorrelation func-
tion (PACF; endnote 20) has a spike of height p; at lag 1 and is
zero thereafter—so the sample ACF and PACF should (in the-
ory) make diagnosing an AR; process pretty straightforward.

This makes the sub-chain, observed only at the times at which
a move actually takes place, a martingale (e.g., Breiman, 1968),
a fact that helps to establish some useful properties of MCMC
samplers.

For many purposes in working with the SI-x? distribution, the
factor (02) % in (2.14) can be treated as a throw-away constant,
but not when (2.15) or something like it is used as a PD: to
compute the acceptance probability (2.5) the log PD has to be
evaluated with arguments (02, 0?) half the time and (07, 0%) the
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2.14

2.15

2.16

2.17

2.18

2.19

other half, so that the term (02) * does not cancel in evaluating
(2.5). The first time I programmed up the Hastings sampler for
this model I made the mistake of ignoring this factor and got
results in which the posterior mean depended on v*, which of
course cannot happen if the implementation is correct. I am
indebted to Bill Browne for helping me spot this error.

All timings in this book were made on a dedicated DECalpha
Unix workstation running at 333Mhz, or on one or another of
a variety of Unix SPARCstation and UltraSPARC CPU servers
(with the appropriate conversion in timings made to 333Mhz).

You can show (e.g., Bernardo and Smith, 1994) that the pre-
dictive distribution for y* given y in this model is a scaled ¢,
with degrees of freedom (v, + n), mean p, and scale parameter
upaﬁ—i-nsf

vp+n
Another option is to write the slow bits of your program in
Fortran or C and call them from within S+; see Venables and
Ripley (1997).
There is a direct analogy between the form and scale of a pro-
posal distribution in MCMC and the choice of kernel and win-
dow width in density estimation, and the same results (e.g., Sil-
verman, 1986) apply: it doesn’t matter too much whether you
use (say) a Gaussian or uniform PD (kernel); what matters a
lot is to get the PD scale (window width) right.

I actually computed the density estimate on the log(c?) scale
and back-transformed it, and T used a big window width, namely
0.25[max{log(¢?)} — min{log(c?)}]. The S+ code is

d <- density( log( sigma2 ), width = ( max( log(
sigma2 ) ) - min( log( sigma2 ) ) ) / 4 )

plot( exp( d$x ), d$y, type = ’1’, xlab = ’sigma2’,
ylab = ’Density’, xlim = c( 25, 75 ) )

The partial autocorrelation function (PACF) ¢, at lag k of
a time series measures “the excess correlation not accounted for
by an ARj_; model” (Chatfield, 1996), and may be estimated by
“successively fitting AR, processes for p = 1,2, ... and picking
out the estimates of the last coefficients fitted at each stage”
(Box and Jenkins, 1976). Thus the PACF is a kind of direct
diagnostic for AR, processes: if something is (say) AR; then
there will be no “excess correlation not accounted for by an AR;
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2.20
2.21

2.22

2.23

model,” so that the PACF at lag 2 and thereafter will be zero.
2
Specifically, for AR, models, ¢11 = p1 and ¢ar = %7%1, so that

@22 = 0 for an AR; process (because for such a process ps = pf;
see endnote 11). When least squares or something equivalent is
used to estimate the ¢y, you can show that SE((/;kk) = ﬁ for
k > p+ 1 when the series is AR, (and a similar result applies
for the ACF'), which explains the little horizontal dotted lines
in Figure 2.6: it is natural, in diagnosing the order of an AR,
process from the PACF, to look for the first lag k = p + 1 for
which (fAJkk and all higher partial autocorrelations do not differ
significantly from 0, and conclude tentatively that the series is
AR,,. On this basis both the ACF and PACF in Figure 2.6 are
nearly perfect AR;.

[xx details on Heidelberger-Welch]

Some of the results in this subsection are joint with Bill Browne,
who has more extensive findings of this type in his PhD disser-
tation, Browne (1998).

Of course, as usual in the design of sampling experiments, if I
decide that I can’t afford 248K iterations I can take solace in
less stringent requirements. For instance, if all I want is to make
sure that the Monte Carlo standard error for the posterior mean
of 02 is 0.05, then I get to divide 248K by 1.962, producing the
more pleasant-sounding target of 65K iterations, and if I relax d
further from 0.05 to 0.1 I can divide again by () ? to obtain a
requirement of 16K iterations, which brings me into the Raftery-
Lewis default neighborhood. Also, to be fair, this is Hastings,
not Gibbs (see Section 2.5), where the serial correlations are
usually lower.

This can be shown directly, using reasoning like that laid out
in Note 7, but the similarity between Gibbs and Metropolis-
Hastings (MH) should suggest an easier route—if you could
show that Gibbs is a special case of MH, then you would be done.
But this is not hard, as follows. As I will examine in Section 2.6,
given a parameter vector 6 of dimension &, you could either make
an MH update on all of  at once, or you could divide € into sub-
components or blocks (which may have only one element of 6 in
them) and update the blocks sequentially. The latter approach,
which people call single-component Metropolis-Hastings, was
in fact the one originally proposed by Metropolis et al. Once a
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2.24

2.25

2.26

series of proposal distributions for each block is specified, possi-
bly conditional on the current results in some or all of the other
blocks, it is straightforward (see, e.g., Gilks et al., 1996b) to
show that Gibbs is just a special case of single-component MH
in which the acceptance probability is always 1.

This is the same idea on which the Shapiro-Wilk (1965) test for
normality is based: essentially they compute the squared correla-
tion between the ordered data values and the expected quantiles
of a standard normal, which is just a numerical summary of the
fit to the Gaussian as diagnosed by the usual normal qqgplot.

If the log density of the full conditional is sufficiently smooth to
have a second derivative, log concavity means that this deriva-
tive should be everywhere non-negative. Gilks (1992), who de-
veloped adaptive-rejection sampling with Wild (Gilks and Wild,
1992), actually requires less than this: only that if you pick three
values 6; in the support of the full conditional p(6) (say), with
01 < 02 < 03, and define the points P; = [0;, p(6;)], the gradient
of the chord joining P> and P; can be no larger than that of the
chord joining P; and Ps.

In fact log-concavity holds in this model for both the full con-
ditionals for ¢ and v, but BUGS seems unable to verify this fact.
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Appendix 1: Some common prior
and likelihood families

Continuous: beta, normal, t,(u,0?), SI-x*(v,03) (Gelman et
al., 1995)
Discrete: Bernoulli, binomial






Appendix 2: Software details

1 A Hastings sampler in S+ for the Gaussian example in
Section 2.2

If you want to try this yourself (highly recommended if you are
a newcomer to MCMC), the functions below are available (a) on
the web at http://www.bath.ac.uk/ masdd or (b) by anonymous
ftp, as follows: ftp to ftp.bath.ac.uk, type anonymous when it
asks for your name, type your email address when it asks for your
password, and issue the commands cd pub/masdd/Papers and get
bhm-code. t.

# S+ functions to do Hastings sampling in the model (2.7):

+*

sigma2 - SI-chisq( nu.p, sigma2.p )
(y_i | sigma2 ) “IID N( mu, sigma2 ), i =1, ..., n

(written by DD, with trick to avoid S+ memory-
management problems due to Brian Ripley)

Inputs:

y = data vector, of length n = sample size

mu = known mean in Gaussian likelihood

nu.p = prior effective sample size

sigma2.p = prior estimate of sigma2

sigma2.0 = initial value for sigma2 in Hastings iterationms

nu.star = scaling factor for Hastings proposal distribution
(affects the acceptance rate R; to increase R, increase
nu.star). nu.star must be > 2 in this implementation;
values near 20-25 lead to good mixing

n.burnin = length of burn-in period

n.monitor = length of monitoring period

n.thin = thinning constant (only every n.thin-th iteration
in the monitoring period will be written to disk)

seed = random number seed (for generating repeatable
sequences of Hastings iterations); must be an integer
from 0 to 1000

output.file.prefix = character string naming where you want
the MCMC data set to go; for example, output.file.prefix
= "NB10" would write the MCMC data set to the file
"NB10.d"

HOoH OH H H OH H H HHHHEHHHHHHHHHHHHEHHEHH
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Outputs:

Acceptance rate R returned when iterations are finished

A file called paste( output.file.prefix, ".d", sep = "" ) is
written (in the same directory where S+ has been called)
containing one row for each monitored iteration and three
columns: the monitored iteration number (from 1 to
n.monitor / n.thin), the simulated draw from the posterior
for sigma2 for that iteration, and the corresponding
simulated draw from the predictive distribution for a new
y.star. If the output file exists before the function is
invoked, it will be over-written

HOoH H H H HHHHHEHHEH

hastings.gaussian.variance <- function( y, mu, nu.p, sigma2.p,
sigma2.0, nu.star, n.burnin, n.monitor, n.thin, seed,
output.file.prefix ) {

# Main routine

#

# Includes trick due to Ripley to overcome S+ memory-management
# problems

sigma2.0ld <- sigma2.0
R <-0
write( c( sigma2.0ld, R ), "loop.result", append = F )

set.seed( seed )
for (i in 1:( n.burnin + n.monitor ) ) {

null <- loop( y, mu, nu.p, sigma2.p, nu.star,
output.file.prefix, i )

}

loop.result <- scan( "loop.result" )
R <- loop.result[2]
return( R / n.monitor )

}

loop <- function( y, mu, nu.p, sigma2.p, nu.star,
output.file.prefix, i ) {

# Ripley idea: put everything inside an explicit loop into a

# function that returns nothing, reading from and writing to
# disk as needed to maintain communication. This will keep S+
# from accumulating dynamic memory as it goes around the loop.
loop.result <- scan( "loop.result" )

sigma2.0ld <- loop.result[1]

R <- loop.result[2]
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}

sigma2.star <- PD.sim( nu.star, ( nu.star - 2 ) * sigma2.o0ld /

nu.star )
u <- runif( 1)
b <- ( u <= alpha( sigma2.o0ld, sigma2.star, y, mu, nu.p,
sigma2.p, nu.star ) )
sigma2.new <- sigma2.star * b + sigma2.0ld * (1 - b )
y.new <- rnorm( 1, mu, sqrt( sigma2.new ) )

if (i > n.burnin ) R<- R+ b
if ( (i > n.burnin ) & ( ( i - n.burnin ) %% n.thin == 0 ) )
write( ¢( ( i - n.burnin ) / n.thin, signif( c( sigma2.new,
y.new ), digits = 5 ) ), paste( output.file.prefix, ".d",
sep = "" ), ncol = 3, append = ( i > n.burnin + n.thin ) )

sigma2.0ld <- sigma2.new
write( c( sigma2.0ld, R ), "loop.result", append = F )
return( NULL )

PD.sim <- function( nu, sigma2 ) {

}

alpha <- function( sigma2.0ld, sigma2.new, y, mu, nu.p, sigma2.p,

}

# Proposal distribution simulation

return( nu * sigma2 / rchisq( 1, nu ) )

nu.star ) {
# Acceptance probability calculation

return( min( 1, exp( log.post( sigma2.new, y, mu, nu.p,
sigma2.p ) + log.PD( sigma2.0ld, nu.star, sigma2.new ) -
log.PD( sigma2.new, nu.star, sigma2.o0ld ) - log.post(
sigma2.0ld, y, mu, nu.p, sigma2.p ) ) ) )

log.post <- function( sigma2, y, mu, nu.p, sigma2.p ) {

}

# log( posterior ) calculation

return( log.lik( sigma2, y, mu ) + log.prior( sigma2, nu.p,
sigma2.p ) )

log.lik <- function( sigma2, y, mu ) {

# log( likelihood ) calculation

n <- length( y )

141
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return( ( - n / 2 ) * log( sigma2 ) - sum( (y - mu )"2 ) /
(2 * sigma2 ) )

}
log.prior <- function( sigma2 , nu.p, sigma2.p ) {
# log( prior ) calculation

return( ( -1 - nu.p / 2 ) * log( sigma2 ) - nu.p * sigma2.p /
(2 * sigma2 ) )

}
log.PD <- function( sigma2, nu.star, sigma2.star ) {
# log( proposal distribution ) calculation

return( ( nu.star / 2 ) * log( sigma2.star ) - ( 1 + nu.star /
2 ) * log( sigma2 ) - ( nu.star - 2 ) * sigma2.star / ( 2 *
sigma2 ) )

2 An S+ function to prepare MCMC output for
diagnostic analysis by CODA

The set of S+ functions CODA (highly recommended), for performing
a variety of MCMC diagnostic checks and summaries, is available
on the web at http://www.mrc-bsu.cam. ac.uk or by anonymous
ftp at ftp.mrc-bsu.cam.ac.uk.

# S+ function to prepare the output of all the S+ and C samplers
# supplied here for CODA diagnostic processing

(written by DD)
Inputs:

n.monitor = length of monitoring period used to produce
input file

n.thin = thinning constant used to produce input file

p = number of variables monitored in input file (this is
one less than the number of columns in that file, since
the first column contains the iteration number)

input.file.prefix = character string naming the file with
the MCMC data set in it; for example, input.file.prefix
= "NB10" assumes that the MCMC data set is in a file
called "NB10.d" in the directory where S+ is running

var.names = character vector of length p supplying (in order)
the names of the variables monitored in MCMC data set

output.file.prefix = character string naming where you want

HOoH K H H H H H H O HHHHHEHHR
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are written (in the same directory where S+ has been
called); see under output.file.prefix above for a
description of the two files. If these files exist before
preCODA is invoked, they will be over-written

# the output of preCODA to go; for example,

# output.file.prefix = "NB10" will write the MCMC data set
# out into a file called "NB10.out" in a format suitable for
# reading by CODA, and will also create a file called

# "NB10.ind" that CODA uses to figure out the format of

# "NB10.out"

#

# Outputs:

#

# Files called paste( output.file.prefix, ".out", sep = "" )
# and paste( output.file.prefix, ".ind", sep = "" )

#

#

#

#

preCODA <- function( n.monitor, n.thin, p, input.file.prefix,
var.names, output.file.prefix ) {

# Prepares MCMC output for reading by CODA

MCMC.data <- matrix( scan( paste( input.file.prefix, ".d",
sep = "" ) ), n.monitor / n.thin, p + 1, byrow =T )

for (i in 1:p ) {

write( t( cbind( MCMC.data[, 1], MCMC.datal[, i + 1] ) ),
paste( output.file.prefix, ".out", sep = "" ), ncol = 2,
append = (i >1) )

write( c( var.names[i], as.character( 1 + (i - 1) *
n.monitor / n.thin ), as.character( i * n.monitor /
n.thin ) ), paste( output.file.prefix, ".ind", sep = "" ),
ncol = 3, append = (i > 1) )

}

return( paste( output.file.prefix, ".out", " written", sep =

nn ) )

3 A Hastings sampler in C for the Gaussian example in
Section 2.2

/*
C functions to do Hastings sampling in the model (2.7):

*
*
* sigma2 ~ SI-chisq( nu.p, sigma2.p )

* (y_i | sigma2 ) “IID N( mu, sigma2 ), i =1, ..., n
*

*

*

*

(random number generators written by William Browne; Hastings
code written by DD and Dimitris Fouskakis and edited by WB)
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* Inputs are contained in a file called
"hastings.gaussian.variance.in", in the directory where the
program is to be run, with the contents listed below (one
input per line, in the order listed, from mu to n; then the
data vector y is input, with one element on each line)

*
*

*

*

*

* mu = known mean in Gaussian likelihood

* nu.p = prior effective sample size

* sigma2.p = prior estimate of sigma2

* sigma2.0 = initial value for sigma2 in Hastings iterations
* nu.star = scaling factor for Hastings proposal distribution
* (affects the acceptance rate R; to increase R, increase
* nu.star). nu.star must be > 2 in this implementation;
* values near 20-25 lead to good mixing

* n.burnin = length of burn-in period

* n.monitor = length of monitoring period

*# n.thin = thinning constant (only every n.thin-th iteration
* in the monitoring period will be written to disk)

* seed = random number seed (for generating repeatable

* sequences of Hastings iterations); must be an integer

* n = sample size = length of data vector

* y = data vector

*

*

*

*

*

*

*

*

*

*

*

*

*

Outputs:

Acceptance rate R printed when iterations are finished

A file called "hastings.gaussian.variance.d" is written (in
the same directory where the program has been run)
containing one row for each monitored iteration and three
columns: the monitored iteration number (from 1 to
n.monitor / n.thin), the simulated draw from the posterior
for sigma2 for that iteration, and the corresponding
simulated draw from the predictive distribution for a new
y.star. If "hastings.gaussian.variance.d" exists before
the function is invoked, it will be over-written

*/

#include <stdio.h>
#include <math.h>

/*

* Defined constants
*/

#define SEED1 13
#define SEED2 4
#define SEED3 1972
#define PI 3.1415927
#define E 2.71828182

long int seedl; /* Seeds declared externally to avoid passing */
long int seed2; /* each time wichmann is called */

long int seed3;

double wichmann()
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/*
* Random number generator for U(0,1) distribution.
*/
{
extern long int seedl, seed2, seed3;
double random;
seedl = (171 * seed1)%30269;
seed2 (172 * seed2)%30307;
seed3 = (170 * seed3)%30323;

random = fmod(seed1/30269.0 + seed2/30307.0 + seed3/30323.0,
1.0);
return random;

}

double rexp(double lambda)

/*

* Generates from an exponential distribution
*/

{

double random, uniform;

uniform = wichmann();

random = - (1/lambda) * log(uniform);
return random;

}

double rgammail(double alpha)
/*
* Generates from a gamma distribution with alpha < 1
*/
{
double uniform0O, uniformil;
double random, x;
int done = 0;
uniform0 = wichmann();
uniforml = wichmann();
if (uniform0 > E/(alpha + E))

{
random = -log((alpha + E)*(1-uniform0)/(alpha*E));
if ( uniforml > pow(random,alpha - 1))
return -1;
else
return random;
}
else
{
x = (alpha + E) * uniform0 / E;
random = pow(x,1/alpha);
if ( uniforml > exp(-random))
return -1;
else
return random;
}
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double rgamma2(double alpha)
/*
* Generates from a gamma distribution with alpha > 1
*/
{
double uniforml,uniform2;
double c1,c2,c3,c4,c5,w;
double random;
int done = 1;
cl alpha - 1;
c2 (alpha - 1/(6 * alpha))/cl;
c3 =2/ ci;
c4 c3 + 2;
cb =1 / sqrt(alpha);
do
{

uniforml = wichmann();
uniform2 = wichmann();
if (alpha > 2.5)
{
uniforml = uniform2 + c5 * (1 - 1.86 * uniforml);
¥
¥
while ((uniformi >= 1) || (uniforml <= 0));
w = c2 * uniform2 / uniformi;
if ((c3 * uniforml + w + 1/w) > c4)
{
if ((c3 * log(uniforml) - log(w) + w) >= 1)
{
done = 0;
¥
}
if (done == 0)
return -1;
random = cl * w;
return random;

}

double rgamma(double alpha, double beta)
/*
* Generates from a general gamma(alpha,beta) distribution
*/
{
double random;
if (alpha < 1)
do {
random = rgammal(alpha)/beta;
} while (random < 0 );
if (alpha == 1)
random = rexp(1)/beta;
if (alpha > 1)
do {
random = rgamma2(alpha)/beta;
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} while (random < 0);
return random;

}

double rstd_normal()
/*
* Generates from a standard normal(0,1) distribution

*/

{
double uniforml,uniform2;
double theta,r;
double random;
uniforml = wichmann();
uniform2 = wichmann();
theta = 2 * PI * uniformil;
r = sqrt(2 * ( - log(uniform2)));
random = r * cos(theta);
return random;

}

double rnormal(double mean, double sd)
/*
* Generates from a general normal(mu,sigma2) distribution
*/
{
double random;
random = mean + sd * rstd_normal();
return random;

}
/*

* Hastings code begins here

*/

double PD_sim( nu, sigma2 )
double nu, sigma2;

/*

* Proposal distribution simulation

*/

{
double result = nu * sigma2 / rgamma( nu / 2.0, 0.5 );
return result;

}

double log_lik( sigma2, y, mu, n)
double sigma2, *y, mu;
long int n;
/*
* log( likelihood ) calculation
*/
{
int i;
double result = ( - n / 2.0 ) * log( sigma2 );
for (i =0; i < n; i++ )



148 APPENDIX 2: SOFTWARE DETAILS

{

result = result - pow( y[il - mu, 2.0 ) / ( 2.0 * sigma2 );
}
return result;

}

double log_prior( sigma2 , nu_p, sigma2_p )
double sigma2 , nu_p, sigma2_p;
/*
* log( prior ) calculation
*/
{
double result = ( -1.0 - nu_p / 2.0 ) * log (sigma2 ) -
nu_p * sigma2_p / ( 2.0 * sigma2 );
return result;

}

double log_post( sigma2, y, mu, nu_p, sigma2_p, n )
double sigma2, *y, mu, nu_p, sigma2_p;
long int n;
/*
* log( posterior ) calculation
*/
{
double result = log_lik( sigma2, y, mu, n ) +
log_prior( sigma2, nu_p, sigma2_p );
return result;

}

double log_PD( sigma2, nu_star, sigma2_star )
double sigma2, nu_star, sigma2_star;
/*
* log( proposal distribution ) calculation
*/
{
double result = ( nu_star / 2.0 ) * log( sigma2_star ) -
( 1.0 + nu_star / 2.0 ) * log( sigma2 ) -
(nu_star - 2.0) * sigma2_star / ( 2.0 * sigma2 );
return result;

}

double alpha( sigma2_old, sigma2_new, y, mu, nu_p, sigma2_p,
nu_star, n )
double sigma2_old, sigma2_new, *y, mu, nu_p, sigma2_p, nu_star;
long int n;
/*
* acceptance probability calculation
*/
{
double ratio = exp( log_post( sigma2_new, y, mu, nu_p, sigma2_p,
n ) + log_PD( sigma2_old, nu_star, sigma2_new ) -
log_PD( sigma2_new, nu_star, sigma2_old ) -
log_post( sigma2_old, y, mu, nu_p, sigma2_p, n ) );
if ( ratio > 1.0 ) return 1.0;
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else return ratio;

}

void main( )

/*

* Main routine
*/

{

long int burnin, monitor, thin, n_run, i, n;

double accept = 0.0, *y, sigma2_old, sigma2_star, nu_star, u,
mu, nu_p, sigma2_p, sigma2_new, y_new, arg2, b;

FILE *fp,*fpout;

fp = fopen( "hastings.gaussian.variance.in", "r" );
fscanf (fp,"%1f",&mu) ;
fscanf (fp,"%1f",&nu_p);
fscanf (fp,"%1f" ,&sigma2_p);
fscanf (fp,"%1f",&sigma2_old);
fscanf (fp,"%1f",&nu_star);
fscanf (fp,"%1d",&burnin) ;
fscanf (fp,"%1d",&monitor) ;
fscanf (fp,"%1d",&thin);
fscanf (fp,"%1d",&seedl);
fscanf (fp,"%1d",&n) ;
y = (double #*)calloc(n,sizeof(double));
for(i=0;i<n;i++)
fscanf (fp, "%1£",&y[i]1);
fclose(£fp);

seed2 = 07;
seed3 = 1973;

fpout = fopen( "hastings.gaussian.variance.d", "w" );
n_run = burnin + monitor;

for (i =1; i <= n_run; i++ ) {
arg2 = ( nu_star - 2.0 ) * sigma2_old / nu_star;
sigma2_star = PD_sim( nu_star, arg2 );
u = wichmann( );
if ( u <= alpha( sigma2_old, sigma2_star, y, mu, nu_p,
sigma2_p, nu_star, n ) ) b = 1.0;
else
b =0.0;
sigma2_new = sigma2_star * b + sigma2_old * ( 1.0 - b );
arg2 = sqrt( sigma2_new );
y_new = rnormal( mu, arg2 );
if ( i > burnin ) accept = accept + b;
if ( ( i > burnin ) && ( (i - burnin) % thin == 0 ) )
fprintf( fpout, "%d %10.4f  %10.4f\n", ( i - burnin ) /
thin, sigma2_new, y_new );
sigma2_old = sigma2_new;
}

printf( "%f\n", accept / monitor );
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4 A Metropolis sampler in S+ for the Gaussian example
in Section 2.2

S+ functions to do Metropolis sampling in the model (2.7):

sigma2 ~ SI-chisq( nu.p, sigma2.p )
(y_i | sigma2 ) “IID N( mu, sigma2 ), i =1, ..., n

Inputs:

y = data vector, of length n = sample size

mu = known mean in Gaussian likelihood

nu.p = prior effective sample size

sigma2.p = prior estimate of sigma2

sigma2.0 = initial value for sigma2 in Metropolis iteratioms

kappa = scaling factor for Metropolis proposal distribution
(affects the acceptance rate R; to increase R, decrease
kappa)

n.burnin = length of burn-in period

n.monitor = length of monitoring period

n.thin = thinning constant (only every n.thin-th iteration
in the monitoring period will be written to disk)

seed = random number seed (for generating repeatable
sequences of Hastings iterations); must be an integer
from 0 to 1000

output.file.prefix = character string naming where you want
the MCMC data set to go; for example, output.file.prefix
= "NB10" would write the MCMC data set to the file
"NB10.d"

Outputs:

Acceptance rate R returned when iterations are finished

A file called paste( output.file.prefix, ".d", sep = "" )
is written (in the same directory where S+ has been
called) containing one row for each monitored iteration
and four columns: the monitored iteration number (from 1
to n.monitor / n.thin), the simulated draws from the
posterior for lambda = log(sigma2) and sigma2 for that
iteration, and the corresponding simulated draw from the
predictive distribution for a new y.star. If the output
file exists before the function is invoked, it will be
over-written
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metropolis.gaussian.variance <- function( y, mu, nu.p, sigma2.p,
sigma2.0, kappa, n.burnin, n.monitor, mn.thin, seed,
output.file.prefix ) {

# Main routine
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lambda.old <- log( sigma2.0 )

R<-0

write( c( lambda.old, R ), "loop.result", append = F )
set.seed( seed )

for (i in 1:( n.burnin + n.monitor ) ) {

null <- loop( y, mu, nu.p, sigma2.p, kappa,
output.file.prefix, i )

}

loop.result <- scan( "loop.result" )
R <- loop.result[2]
return( R / n.monitor )

loop <- function( y, mu, nu.p, sigma2.p, kappa,

}

output.file.prefix, i ) {

loop.result <- scan( "loop.result" )
lambda.old <- loop.result[1]

R <- loop.result[2]

n <- length( y )

lambda.star <- PD.sim( lambda.old, kappa, n )

u <= runif( 1)

b <- ( u <= alpha( lambda.old, lambda.star, y, mu, nu.p,
sigma2.p ) )

lambda.new <- lambda.star * b + lambda.old * ( 1 - b )

y.new <- rnorm( 1, mu, sqrt( exp( lambda.new ) ) )

if ( (i > n.burnin ) ) R<-R + b
if ( (1 > n.burnin ) & ( ( i - n.burnin ) %% n.thin == 0 ) )
write( ¢( ( i - n.burnin ) / n.thin, signif( c( lambda.new,
exp( lambda.new ), y.new ), digits = 5 ) ), paste(
output.file.prefix, ".d", sep = "" ), ncol = 4, append =
( i > n.burnin + n.thin ) )

lambda.old <- lambda.new
write( c( lambda.old, R ), "loop.result", append = F )
return( NULL )

PD.sim <- function( lambda, kappa, n ) {

# Proposal distribution simulation

return( rnorm( 1, lambda, sqrt( 2.0 * kappa / n ) ) )

151



152 APPENDIX 2: SOFTWARE DETAILS
}

alpha <- function( lambda.old, lambda.new, y, mu, nu.p,
sigma2.p ) {

# Acceptance probability calculation
return( min( 1, exp( log.post( lambda.new, y, mu, nu.p,
sigma2.p ) - log.post( lambda.old, y, mu, nu.p,
sigma2.p ) ) ) )
}
log.post <- function( lambda, y, mu, nu.p, sigma2.p ) {

# log( posterior ) calculation

return( log.lik( lambda, y, mu ) + log.prior( lambda, nu.p,
sigma2.p ) )

¥
log.lik <- function( lambda, y, mu ) {
# log( likelihood ) calculation
n <- length( y )
sigma2 <- exp( lambda )
return( ( - n / 2 ) * log( sigma2 ) - sum( ( y - mu )"2 ) /
(2 * sigma2 ) )
¥
log.prior <- function( lambda , nu.p, sigma2.p ) {

# log( prior ) calculation (including Jacobian)

return( ( - nu.p / 2 ) * lambda - nu.p * sigma2.p /
( 2 * exp( lambda ) ) )

5 A Gibbs sampler in S+ for the uniform example in
Section 2.5

# S+ functions to do Gibbs sampling in the model (2.31, 2.32):

# mu " U(CL, H)

# ( sigma | mu ) “ UC O, min( mu - L, H - mu ) )

# (y.i | mu, sigma ) “IID U( mu - sigma, mu + sigma ),
# i=1, ..., n

#

# (written by DD)
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Inputs:
y = data vector, of length n = sample size
L = known lower bound for true range
H = known upper bound for true range

sigma.0 = initial value for sigma in Gibbs iterations

n.burnin = length of burn-in period

n.monitor = length of monitoring period

n.thin = thinning constant (only every n.thin-th iteration
in the monitoring period will be written to disk)

seed = random number seed (for generating repeatable
sequences of Gibbs iterations); must be an integer from 0
to 1000

output.file.prefix = character string naming where you want
the MCMC data set to go; for example, output.file.prefix
= "ammonite" would write the MCMC data set to the file
"ammonite.d"

Outputs:

A file called paste( output.file.prefix, ".d", sep = "" ) is
written (in the same directory where S+ has been called)
containing one row for each monitored iteration and five
columns: the monitored iteration number (from 1 to
n.monitor / n.thin), the simulated draws from the marginal
posteriors for mu and sigma for that iteration, and the
corresponding simulated draws from the marginal posteriors
for A = mu - sigma and B = mu + sigma. If the output file
exists before the function is invoked, it will be
over-written

HOoH OH H H HHEHHEHHEHHEHHEHHHHHHHHHEHHEHEHEHEHRH

gibbs.uniform <- function( y, L, H, sigma.0, n.burnin, n.monitor,
n.thin, seed, output.file.prefix ) {

# Main routine
sigma.previous <- sigma.0
for (i in 1:( n.burnin + n.monitor ) ) {

mu.hat <- sample.mu( y, sigma.previous, L, H )
sigma.hat <- sample.sigma( y, mu.hat, L, H)
A.hat <- mu.hat - sigma.hat

B.hat <- mu.hat + sigma.hat

if ( (i > n.burnin ) & ( ( i - n.burnin ) %% n.thin == 0 ) )
write( c( ( i - n.burnin ) / n.thin, signif( c( mu.hat,
sigma.hat, A.hat, B.hat ), digits = 6 ) ), paste(
output.file.prefix, ".d", sep = "" ), ncol = 5, append =
(i > n.burnin + n.thin ) )

sigma.previous <- sigma.hat
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}
return( paste( n.monitor / n.thin,
" iterations written to ", output.file.prefix, ".d",
sep = nn ) )
}
sample.mu <- function( y, sigma, L, H) {
# Sampling from the full conditional for mu
c.1 <- max( L + sigma, max( y ) - sigma )
c.2 <- min( y ) + sigma
c.3 <- min( H - sigma, c.2 )
sigma.star <- (H-L ) / 2.0
c.4 <- 1.0 / log( sigma.star"2 / ( (c.1 -L) * (H-¢.3)))
mu.star <- (H+L) / 2.0
U <- runif( 1)
if ( sigma < mu.star - min( y ) ) {
return( L + (c.1 - L) * ( (c.2-L)/ (Cc.1-L))HU)
}
else if ( U < c.4 * log( sigma.star / ( c.1 - L) ) ) {

return( L + ( c.1 - L) * exp( U/ c.4) )

}
else {
return( H - sigma.star / exp( U / c.4 - log( sigma.star /
(c.1-L))))
}
}

sample.sigma <- function( y, mu, L, H) {

+*

Sampling from the full conditional for sigma

n <- length( y )

c.5 <-max( mu - min( y ), max( y ) - mu )
c.6 <- min( mu - L, H - mu )

U <- runif( 1)

¥ ¢.5°(1.0-n)+U=*¢c.67(1.0-n) )"
) )
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6 Computing approximate posterior covariance
matrices in Maple, in the ¢ model of Section 2.6

Maple code to find the posterior mode and compute its
approximate covariance matrix (based on the Hessian at the
mode), in the NB10 $t$ model of Section 2.6.

(written by DD, with some help from Riccardo Gatto)
Input:

Reads from a file called "mnbl0.dat" which contains the NB10
measurements, 1 per line for 100 lines

Outputs:

Obtains the MAP (maximum a posteriori) equations by
differentiating the log posterior function symbolically,
solves them numerically to get the mode, calculates the
Hessian symbolically, and evaluates it numerically at the mode

HoH H H H HHHEHHE R

n := 100;

readlib( readdata );
y := readdata( ‘nb10.dat‘, float, 1 );

mu.0 := 0.0;

sigma.mu := 500.0;
eta.0 := 3.80;
sigma.eta := 0.77;
lambda.0 := 1.84;
sigma.lambda := 0.59;

log.prior := -0.5 * ( ( mu - mu.0 ) / sigma.mu )~2 - 0.5 * \
( ( eta - eta.0 ) / sigma.eta )"2 - 0.5 * ( ( lambda - \
lambda.0 ) / sigma.lambda )~2;

log.likelihood := n * 1nGAMMA( 0.5 * ( exp( lambda ) + \
1.0 ) ) - n * eta - n * 1nGAMMA( 0.5 * exp( lambda ) ) - \
0.5 * n * lambda - 0.5 * ( exp( lambda ) + 1.0 ) * sum( \
log( 1.0 + exp( - ( lambda + 2.0 * eta ) ) * ( y[i] - \
mu )"2 ), i=1..n);

log.posterior := log.prior + log.likelihood;

map.eql := diff( log.posterior, mu );

map.eq2 := diff( log.posterior, eta );

map.eq3 := diff( log.posterior, lambda );

fsolve( { map.eql, map.eq2, map.eq3 }, { mu, eta, lambda 1}, \

{mu= 403 .. 406, eta =1 .. 3, lambda = 0.5 .. 3.0 } );

# At this point Maple takes about 2.5 seconds at 333Mhz to
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# iteratively solve the MAP equations, obtaining the values of
# mu, eta, and lambda listed below.

with( linalg );
H := hessian( log.posterior, [mu, eta, lambda] );

mu := 404.2956374;
eta := 1.346258072;
lambda := 1.259790967;

He := matrix( 3, 3, ( i,j ) -> 0 ):
for i from 1 to 3 do
for j from 1 to 3 do
Heli,jl := evalf( H[i,j] ):
od:
od:

Sigma := inverse( - He );

# At this point Maple returns the covariance matrix:

#

# [ .2159336246 .002989379323 .008083662383]
# L ]
# Sigma := [.002989379323 .01193790730 .01486075432 ]
# L ]
# [.008083662383 .01486075432 .07490518257 ]

7 A generic Metropolis sampler in S+, applied to the ¢
model in Section 2.6

+*

S+ functions to do Metropolis sampling in the model (2.46,
2.48):

theta = ( mu, eta, lambda )

( theta ) ~ N( mu.0, sigma.mu2 ) * N( eta.0, sigma.eta2 ) *
N( lambda.0, sigma.lambda2 )

( y_i | theta ) “IID t.exp( lambda ) ( mu, exp( 2 * eta ) ),
i=1, ..., n

Inputs:

y = data vector, of length n = sample size

mu.0 = prior mean for mu

sigma.mu = prior SD for mu

eta.0 = prior mean for eta

sigma.eta = prior SD for eta

lambda.0 = prior mean for lambda

sigma.lambda = prior SD for lambda

kappa = scaling factor for Metropolis proposal distribution
(affects the acceptance rate R; to increase R, decrease
kappa)

Sigma = proposal distribution covariance matrix

HOoH OH H H H H H OH HHHHHHEHHEHEH R
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theta.0 = initial value for ( mu, eta, lambda ) in
Metropolis iterations

n.burnin = length of burn-in period

n.monitor = length of monitoring period

n.thin = thinning constant (only every n.thin-th iteration
in the monitoring period will be written to disk)

seed = random number seed (for generating repeatable
sequences of Hastings iterations); must be an integer
from 0 to 1000

output.file.prefix = character string naming where you want
the MCMC data set to go; for example, output.file.prefix
= "NB10" would write the MCMC data set to the file
"NB10.d"

Outputs:

Acceptance rate R returned when iterations are finished

A file called paste( output.file.prefix, ".d", sep = "" ) is
written (in the same directory where S+ has been called)
containing one row for each monitored iteration and six
columns: the monitored iteration number (from 1 to
n.monitor/n.thin), the simulated draws from the posterior
for theta = ( mu, eta, lambda ) for that iteration, and
the corresponding simulated draws from the posterior for
sigma = exp( eta ) and nu = exp( lambda ). If the output
file exists before the function is invoked, it will be
over-written

HoH HOH H H HHHHHHEHHEHEHEHHEHHEHHH R

metropolis.t <- function( y, mu.0, sigma.mu, eta.0, sigma.eta,
lambda.0, sigma.lambda, kappa, Sigma, theta.0, n.burnin,
n.monitor, n.thin, seed, output.file.prefix ) {

# Main routine

theta.old <- theta.0

p <- length( theta.old )

R<-0

write( c( theta.old, R ), "loop.result", append = F )
set.seed( seed )

L <- t( chol( Sigma ) )

L.kappa <- sqrt( kappa ) * L

for ( i in 1:( n.burnin + n.monitor ) ) {

null <- loop( p, L.kappa, y, mu.0, sigma.mu, eta.0, sigma.eta,
lambda.0, sigma.lambda, output.file.prefix, i )

}

loop.result <- scan( "loop.result" )
R <- loop.result[p + 1]
return( R / n.monitor )



158 APPENDIX 2: SOFTWARE DETAILS

loop <- function( p, L.kappa, y, mu.0, sigma.mu, eta.0, sigma.eta,
lambda.0, sigma.lambda, output.file.prefix, i ) {

loop.result <- scan( "loop.result" )
theta.old <- loop.result[1:p]

R <- loop.result[p+1]

n <- length( y )

theta.star <- PD.sim( theta.old, p, L.kappa )

u <- runif( 1)

b <- ( u <= alpha( theta.old, theta.star, y, mu.0, sigma.mu,
eta.0, sigma.eta, lambda.0, sigma.lambda ) )

theta.new <- theta.star * b + theta.old * (1 - b )

if ( (i > n.burnin ) ) R<-R + b
if ( (i > n.burnin ) & ( ( i - n.burnin ) %% n.thin == 0 ) )
write( ¢( ( i - n.burnin ) / n.thin, signif( c( theta.new,
exp( theta.newl[c( 2, 3 )1 ) ), digits =5 ) ), paste(
output.file.prefix, ".d", sep = "" ), ncol = p + 3,
append = ( i > n.burnin + n.thin ) )

theta.old <- theta.new
write( c( theta.old, R ), "loop.result", append = F )
return( NULL )
¥
PD.sim <- function( theta, p, L.kappa ) {
# Proposal distribution simulation
Z <- matrix( rnorm( p ), p, 1)
Mu <- matrix( theta, p, 1)
theta.star <- c( Mu + ( L.kappa %*} Z ) )
return( theta.star )

}

alpha <- function( theta.old, theta.new, y, mu.0, sigma.mu, eta.0,
sigma.eta, lambda.0, sigma.lambda ) {

# Acceptance probability calculation
return( min( 1, exp( log.post( theta.new, y, mu.0, sigma.mu,
eta.0, sigma.eta, lambda.0, sigma.lambda ) - log.post(

theta.old, y, mu.0, sigma.mu, eta.0, sigma.eta, lambda.O,
sigma.lambda ) ) ) )

}

log.post <- function( theta, y, mu.0, sigma.mu, eta.0, sigma.eta,
lambda.0, sigma.lambda ) {
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# log( posterior ) calculation

return( log.prior( theta, mu.0, sigma.mu, eta.0, sigma.eta,
lambda.0, sigma.lambda ) + log.lik( theta, y ) )

}

log.prior <- function( theta, mu.0, sigma.mu, eta.0, sigma.eta,
lambda.0, sigma.lambda ) {

# log( prior ) calculation (including Jacobian)

mu <- thetal[1]
eta <- thetal2]
lambda <- thetal[3]

return( -0.5 * ( ( mu - mu.0 ) / sigma.mu )~2 - 0.5 *
( (eta - eta.0 ) / sigma.eta )"2 - 0.5 * ( ( lambda -
lambda.0 ) / sigma.lambda )~2 )

¥
log.lik <- function( theta, y ) {
# log( likelihood ) calculation

mu <- thetal[1]

eta <- thetal[2]
lambda <- thetal[3]
n <- length( y )

return( n * lgamma( 0.5 * ( exp( lambda ) + 1.0 ) ) - n * eta -
n * lgamma( 0.5 * exp( lambda ) ) - 0.5 * n * lambda - 0.5 *
( exp( lambda ) + 1.0 ) * sum( log( 1.0 + exp( - ( lambda +
2.0*xeta) ) * (y-mu)"2) ) )

8 BUGS files for Gibbs sampling in the ¢ example of
Section 2.6

Section 2.6 contains the file nb10.3.bug for fitting the ¢ model
(2.46, 2.48) to the NB10 data via BUGS. Other files used in running
BUGS in this example are as follows.
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NB10-y.dat NB10-grid.dat
405 | 0.00105225
402 | 0.00169802
408 | 0.00250893
399 | 0.00346489
|
(100 rows) | (101 rows)
. | .
398 | 0.00257974
406 | 0.00249658
403 | 0.00241623
404 | 0.00233859
| 0.000977389
NB10.3.cmd NB10.3.in
compile( "nb10.5.bug" ) list( mu = 405.03, tau = 0.18233,
update( 1000 ) u=30)

|
|
monitor( mu, 14 ) |
monitor( sigma, 14 ) |
monitor( nu, 14 ) |
update( 70000 ) |
q( ) |

9 Metropolis and Gibbs sampling in multilevel models
via MLwilN
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