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Abstract: When the goal is inference about an unknown € and prediction of future
data D* on the basis of data D and background assumptions/judgments B, the process
of Bayesian model specification involves two ingredients: the conditional probability
distributions p(#|B) and p(D|60, B). Here we focus on specifying p(D|0, B), and we argue
that calibration considerations — paying attention to how often You get the right answer
— should be an integral part of this specification process. After contrasting Bayes-
factor-based and predictive model-choice criteria, we present some calibration results,
in fixed- and random-effects Poisson models, relevant to addressing two of the basic
questions that arise in Bayesian model specification: (@) Is model M, better than M7
and (Q2) Is model M;- good enough? In particular, we show that LSpg, a full-sample log
score predictive model-choice criterion, has better small-sample model discrimination
performance than either DIC or a cross-validation-style log-scoring criterion, in the
simulation setting we consider; we examine the large-sample behavior of LSrg; and we
(a) demonstrate that the popular posterior predictive tail-area method for answering
a question related to ()2 can be poorly calibrated, and (b) document the success of a
method for calibrating it.

Keywords: Asymptotics, Bayesian and frequentist probability paradigms, Bayes fac-
tors, BIC, cross-validation log score, DIC, fixed- and random-effects Poisson modeling,
foundations of statistics, full-sample log score, logical consistency, posterior predictive
tail areas, relevance of point-null hypothesis testing.

1 Introduction

1.1 The role of calibration in Bayesian modeling

We begin at the beginning, to fix notation and ideas. In the Bayesian modeling paradigm for
inference, prediction and decision-making, there are three fundamental ingredients: 6, something
unknown or only partially known to You (a generic person wishing to reason sensibly in the face
of uncertainty; Good (1950)); D, an information (data) source that You judge to be relevant to
decreasing Your uncertainty about 0; and B, a set of propositions (true-false statements) summa-
rizing Your background assumptions and judgments about relevant aspects of 6 (e.g., that 6 > 0
if 6 represents the mean remission time for a specified set of patients with a given disease) and
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D (e.g., that the data set arose as the result of a randomized controlled trial with the following
design: ...).

In this framework the physicist R. T. Cox (1946, 1961) (also see Jaynes (2003)) began with a
conditional plausibility operator p(A|B) acting on propositions A and B and developed from this
a full probability calculus in which, for example, propositions such as # < t for real-valued 6 bring
the usual machinery of cumulative distribution functions and densities to bear on the process of
uncertainty quantification. Cox proved that — under a reasonable set of axioms involving internal
logical consistency and representation of degrees of plausibility by real numbers — Your uncertainty
quantification, if You wish to be rational, should be based (for inference and prediction) on the
conditional probability distributions p(6|B) and p(D|0, B); for decision-making, it had previously
been shown by Ramsey (1926) that the only other relevant ingredients are a set A of possible actions
a and a utility function U(a,0"), expressing (in real-valued terms) the gain that would result if You
chose action a and the unknown 6 actually took the value #*. In this formulation p(6|B) — usually
called Your prior distribution, although temporal considerations need not arise in specifying it —
quantifies all of Your information about 6 external to D, and p(D|6, B) — typically referred to as
Your sampling distribution, even though it is not necessary in this approach to consider other data
sets that might have been observed but were not — quantifies Your predictive uncertainty about
D given 0, before D has arrived. Note that Cox’s use of the phrase logical consistency has nothing
to do with the repeated-sampling idea of asymptotic consistency (see Section 5 for asymptotic
considerations).

It then follows, from Cox’s and Ramsey’s results in this framework, that the three basic statis-
tical activities of inference, prediction and decision-making are each governed by a single equation
(familiar in Bayesian work), as follows:

e (inference) p(0|D, B) = cp(8|B) p(D|0, B), in which ¢ is a positive normalizing constant and
p(0|D, B) — usually called Your posterior distribution, although again temporal considera-
tions are not central to the formulation — quantifies the totality of Your information about
f, both internal and external to D;

e (prediction) p(D*|D,B) = [, p(D*|0, D, B)p(0|D,B)df, where D* is future data and © is
the space over which You acknowledge Your uncertainty about 6. Often D provides no
additional information about D* if # is known, in which case this equation simplifies to
p(D*|D,B) = [, p(D*|6, B) p(A| D, B) df and involves only previously-defined quantities; and

e (decision) The optimal action a* is given by

a* = (a"|D, B) = argmazsc aEop,5)U(a,0) = argmaxaeA/ Ul(a,8)p(0|D, B)do ;
e
in other words, a* is the action that maximizes expected utility, where the expectation is over
Your posterior uncertainty about 6 given D.

Remark. De Finetti (1974) obtained the same foundational results from different premises,
involving betting odds as the primitive concept for probabilities and coherence (a desire not to
offer bets that would guarantee You a monetary loss) instead of Cox’s logical consistency axioms.
De Finetti’s approach may be seen as an extension of the original probability notion of Bayes
(1763): in Bayes’s view, Your assessment of p(A|B), for a true-false proposition A, is equal to some
value 7 if You judge Yourself indifferent between (a) receiving 7 - m monetary units for sure (for



some small m > 0) and (b) betting with someone in such a way that You will get m monetary units
if A turns out to be true and nothing if not. We prefer (cf. Jaynes (2003)) to regard probability as
a measure of the weight of evidence in favor of the truth of A — an extension of Boolean true-false
logic to settings in which You are uncertain about A’s truth — without an appeal to betting odds.
[

It is clear that, in this framework, in a given application everything comes down to a series
of specification tasks: You have to specify p(0|B) and p(D|0, B) for inference and prediction, and
additionally A and U (a, #) for decision-making. It is natural to refer to this set of tasks as Bayesian
model specification. We focus here on the specification of the prior predictive (sampling) distribution
p(D16, B), not because it is the only important ingredient but simply for lack of space; see, e.g.,
O’Hagan and Forster (2004) and Parmigiani and Inoue (2009) for useful suggestions on specifying
p(0|B) and {A,U(a,0)}, respectively.

An important question remains: what principles should govern the process of specifying p(D|6,
B)? An appeal to logical consistency is not helpful; any (proper) choice will yield logically consistent
results as long as the three equations above are employed. In uncomplicated settings, p(D|6, B)
may arise directly from the background of the data-gathering process (an example is Your judgment
of exchangeability (De Finetti (1930); e.g., Draper (2008)) of binary observables, leading — via the
simplest of De Finetti’s representation theorems — essentially uniquely to a Bernoulli sampling
distribution), but in problems of realistic complexity You will typically be uncertain about how
to specify p(D|6, B). In our view, a central principle guiding the specification of p(D|f, B) should
be calibration: a desire on Your part for uncertainty quantifications by You such as p(u < 0 <
v|D,B) = 0.9 (for real-valued 6, and taking 0.9 for illustration) and p(u < f(D*) < v|D,B) = 0.9
(for a real-valued function f(D*) of future data D*) to be verifiably correct approximately 90% of
the time. Taking as an axiom that You want to help positively advance the course of science, we
base this view on the following observations:

e [t appears to be a fundamental scientific question, independent of the meaning of probability,
to wonder how often Your methods for uncovering truth are getting the right answer, and

e There is nothing in the Bayesian paradigm to prevent You from making one or both of the
following mistakes — (a) choosing p(D|6, B) unwisely; (b) inserting strong (prior) information
about 0 external to D that turns out after the fact to have been out of step with reality —
and, if You repeatedly insist on doing so, (i) it would seem likely that Your colleagues will
stop inviting You into their projects as a statistical collaborator and (ii) this runs counter to
Your axiomatic desire to aid in the scientific enterprise.

Remark. An interest in calibration may appear to bring a non-Bayesian (repeated-sampling,
frequentist) element into the overall story; in response to this possible perception, we would make
two comments:

e The Bayesian probability paradigm has been explored since the early work of Bayes (1763)
and Laplace (1774) in the 18th century; the frequentist probability paradigm began with
Venn (1866) and was formalized by von Mises (1928) and Kolmogorov (1933). Intelligent
people have therefore been arguing about the merits of these two approaches for about 150
years, like chess grandmasters working out the weaknesses of each other’s opening strategies
in tournament games, and both strategies are still employed in tournament play after all that
intellectual conflict; we take from this a kind of empirical theorem that there must be elements



of merit in both approaches. The frequentist paradigm has the strength that it draws Your
attention naturally to calibration issues, but this comes with many weaknesses (e.g., anything
that cannot be cast uniquely in terms of a repeatable collective is off-limits for frequentist
uncertainty quantification); the Bayesian approach appears to us to be the most flexible
framework so far developed for successfully quantifying all kinds of uncertainty, whether
arising from repeatable phenomena or not, but it has no built-in concept of calibration.
Throughout much of the 20th century it was tacitly assumed that You had to choose one
of the two paradigms and defend it fiercely against attacks from people who chose the other
one, but this is a mis-framing of the problem: given that each paradigm has pluses and
minuses, it appears to us instead that Your job is to try to develop a fusion of the two
approaches that emphasizes the strengths, and de-emphasizes the weaknesses, of the fusion.
For us this involves reasoning in a Bayesian way when formulating our inferences, predictions
and decisions (this promotes internal consistency), and then paying attention calibratively
to how often we get the right answer (this promotes external consistency). See, e.g., Box
(1980), Rubin (1984), Draper (1996) and Little (2006) for additional thoughts on the value
of a Bayesian-frequentist fusion.

e (Calibration can also be given an entirely Bayesian justification via decision theory. Taking a
broader perspective over Your career, not just within any single attempt to solve an inferen-
tial /predictive problem in collaboration with other investigators, Your desire (noted above)
to avoid the loss of collaborative opportunities, arising from getting the wrong answer too
often, and to take part positively in the progress of science can be quantified in a utility func-
tion that trades off a bonus for being well-calibrated against the length (or volume) of Your
inferential and predictive intervals (or regions), and in this context calibration-monitoring
emerges as a natural and inevitable Bayesian activity. We formalize these considerations
elsewhere (Draper and von Brzeski (2010)). &

Remark. The calibration of predictive statements of the form p(u < f(D*) < v|D,B) = 0.9 is
relatively straightforward to verify once the new data D* have arrived; and if You judge that Your
uncertainty about the past D and the future D* is conditionally exchangeable (De Finetti (1938);
e.g., Draper et al. (1993)) given 6, You can still (while waiting for the future to unfold) undertake
verification exercises in which the available data set D is partitioned exchangeably into modeling
and validation subsets Dy, and Dy (respectively), and predictive distributions for the data in Dy
based on the data in Dy, can be compared with the actual validation data values (this provides the
beginning of a Bayesian justification for cross-validation). The calibration of inferential statements
such as p(u < 0 < v|D,B) = 0.9 may also readily be checked, by creating a simulation world
(similar to the structure of the problem under study) in which known values of # drive the data-
generating mechanism and inferential intervals (or regions) for § may be compared calibratively
with the known truth (see Section 6 for more on this idea). There are points of contact between our
position on calibration in Bayesian modeling and both (a) the prequential approach to statistical
analysis (Dawid (1984, 1985, 1991, 1997)) and (b) so-called objective Bayesian methodology (e.g.,
Berger (2006, 2009), Bayarri (2009)); in our view (Draper (2006)), since all inferential, predictive
and decision-theoretic work in statistics is inherently subjective (i.e., based on assumptions and
judgments), a better name for “objective Bayes” would be calibrated Bayes. #

As noted above, in practice You will typically be uncertain about how to specify the ingredients
p(0|B) and p(D|0, B) necessary for inference and prediction, and this implies a willingness by You
to consider an ensemble M of such specifications. In the important special case in which 6 is a
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vector of real parameters (of finite length), a Bayesian inferential and predictive model M is a
choice {p(n;|M;, B), p(D|n;, M;,B)}, in which n; = (6, \;) collects together both the unknowns 6
common to all models in M and the unknowns \; specific to M;. When ), is also a vector of real
parameters (of finite length), M; is typically referred to as a parametric Bayesian model.

The process of Bayesian model specification typically involves a search among scientifically and
statistically plausible models, generally with a first goal of identifying a reasonable ensemble M =
(M, ..., My,) of models that are worthy of consideration. (We strongly agree with Box (1980),
who notes — as we do — that statisticians are often in a collaborative role with subject-matter
experts and who emphasizes that the interplay between statistical and substantive considerations
in identifying the models to be considered in the ensemble is vital.) After M has been specified,
often the second goal is either (i) to perform Bayesian model averaging (Leamer (1978); e.g., Draper
(1995), Hoeting et al. (1999)) as a way to capture Your uncertainty over the possibilities in M
or (ii) to choose a single model M;« among those in M, if its posterior probability p(M;«|D, B) is
sharply dominant over the other p(M;|D, B) values across the models in M.

In our view, consistent with the calibration principle described above, this search to specify M
should be performed in a well-calibrated manner. It will often not be sufficient for good calibration
to conduct the search using all of the data in D and then to use all of D again to draw inferential or
predictive conclusions conditional on the results of the search; this amounts to using D to specify
Your prior distribution on the space of all models and then using D again to update that prior to
draw inferential and predictive conclusions, and this double-use of the data will be seen on closer
examination to be logically inconsistent. For us, the right price to be paid for the model search
can be quantified via a version of Bayesian cross-validation (Draper and Krnjaji¢ (2010)) involving
partitioning D into three (rather than two) subsets, in a manner somewhat related to a method
used in machine learning (e.g., Hastie et al. (2001)); for reasons of space we again do not pursue
this issue here. The point is that, in our view, it us possible to solve the problem of Bayesian model
specification in a well-calibrated manner, even when this involves a data-driven search, as long as
the right price is paid for the search.

From an algorithmic point of view, the process of specifying M will typically have four steps —
(a) start, (b) propose a move from M; to M/, (c) decide whether to make the move in (b), and (d)
stop — with considerable iteration of the (b—c) steps. In this paper we present some calibration
results that are helpful in answering two basic questions arising in steps (c¢) and (d):

e (Qi: Is model M; better than M7
e ()o: Is model M;j- good enough?

For us these questions, although they appear both reasonable and fundamental, are not yet well
formed: Is model M; better than Mj/, for what purpose? Is model M;- good enough, for what
purpose? It is easy to imagine a situation in which M is better than M, at helping to attain real-
world goal GG, and yet the two models are essentially equivalent in achieving goal G,; similarly,
M;- might be good enough for G5 but wholly inadequate to reach G4. To us, making clear the
purpose to which the modeling will be put transforms model specification into a decision problem,
which should (as noted above) be solved by maximizing expected utility (MEU; see, e.g., Fouskakis
and Draper (2008) for an example, involving variable selection in generalized linear models, in
which the model-specification problem is solved decision-theoretically). Others who share this
decision-analytic view of the modeling process include Bernardo and Smith (1994) and Key et al.
(1999).



Thus it is difficult to provide general-purpose methodology for model search and specification
of the model ensemble M, above and beyond that inherent in the MEU framework itself. Despite
the fact that model specification is really a decision problem, many methods for at least indirectly
addressing ()1 (without explicit identification of a problem-specific utility function) have been
proposed, including (Section 1.2) Bayes factors (which define the MEU solution to the M« model-
selection problem with a utility function — in which You have to pretend that one of the models in
M is the actual data-generating mechanism Mpg and You reward Yourself with ¢ > 0 utiles if Your
chosen M- is Mp¢ and 0 otherwise — that may be rather far from quantifying Your actual goals in
a specific application) and the Deviance Information Criterion (DIC: Spiegelhalter et al. (2002)),
which — when it works well (see Section 3.2 below) — is essentially a Bayesian generalization
of AIC (Akaike (1974)) to parametric models in which it is not straightforward to identify the
effective dimensionality of n;. We return to DIC and (briefly) to AIC in Sections 2, 3 and 6.

1.2 Bayes factors

It will be helpful in what follows to further examine the strengths and weaknesses of Bayes factors.
Applying Bayes’s Theorem in odds form to the comparison of two models M; and M yields the
familiar expression

p(Mj"DuB) p(M]’|B> p(D‘M]’vB> 7
in which % is the Bayes factor in favor of M; over My. When (as in Section 1.1) M;

is specified by the parametric representation {p(n;|M;, B), p(D|n;, M;,B)} with n; = (6, );), the
numerator of the Bayes factor, generally referred to as the marginal or integrated likelihood, is

p(D|MjaB):/ p(D|77j>MjaB)p(n]|M]?B)dn]:E(UJ|MJ,B)p(D|n]aM]aB)> (2)

H;

in which H; is the parameter space for M;; in other words, (2) is the expectation of the sampling
distribution p(D|n;, M;, B) under M; (evaluated at the observed data set D) with respect to the
prior distribution specified by M;. If strong information about n; and 7, external to D is available,
then the prior distributions p(n;[M;, B) and p(n; [M;, B) will be relatively stable with respect to
small variations in how they are specified, and (2) — together with its analogue p(D|M, B) for
M, — will lead to a stable Bayes factor that may serve as a useful basis for model comparison (if
You are satisfied that the utility structure underlying Bayes factors is an adequate approximation
to the real-world situation in the problem at hand). However, if — as is frequently the case — the
information about 7; and 7, external to D is relatively weak (diffuse), then the expectation in (2)
can be highly unstable as a function of small variations in how the diffuseness is specified.

To take a simple example that illustrates the problem with non-negative integer-valued data D =
y = (y1,-..,Yn), consider two models: M; specifies a (conditionally-IID) Geometric(f;) sampling
distribution with a Beta(ay, 51) prior on 6;; M, is based on a (conditionally-IID) Poisson(6s)
sampling distribution with a Gamma(cas, 52) prior on 6;. The Bayes factor in favor of M; over My
(cf. Bernardo and Smith (1994)) is

Loy + BT (n + a)T(s + B1)(aa) (n + Ba) T2 ([ [ vi!)
[(a)L(B)T(n 4 s+ a1 + B1)(s + a2) 352,

(3)



where s = > | y;. Common choices for diffuse priors would include taking (o, 51) = (1,1) and
(aig, B2) = (€, €) for some € > 0. The Bayes factor then reduces to

L'(n+ DE(ny + DI(e)(n + )" (TTimy vi!)
I'(n+ny+ 2)['(ny + €)e '

(4)

Expression (4) goes to +oo as € | 0; in other words, the evidence in favor of the Geometric model
over the Poisson can be made as large as You might wish, no matter what the data set is, as
a function of a quantity near 0 that scientifically has no basis for unique specification. (There is
nothing special about the diffuse priors used here; the same sharp sensitivity to a prior specification
with little scientific grounding appears, e.g., with a Uniform(0, ¢) prior for 05 as a function of the
nearly arbitrary ¢, and You can create equally bizarre behavior in the opposite direction by letting
aq and (31 approach 0 in the Beta prior for 6;.)

Of course, this phenomenon is well known, and many attempts have been made to circumvent
it, including {partial, intrinsic, fractional} Bayes factors, well-calibrated priors, conventional priors,
intrinsic priors, and expected posterior priors (see, e.g., Pericchi (2005)). Many of these approaches
attempt, either implicitly or explicitly, to stabilize (2) in the presence of diffuse prior information by
calculating the expectation with respect to a posterior distribution that may be less subject to prior
sensitivity. For example, intrinsic Bayes factors (Berger and Pericchi (1996)) partition the data
set D into two subsets D4 and Dp, update the diffuse priors in models M; and M  — using the
training sample D, — to posterior distributions on the parameters, compute partial Bayes factors
using these posterior distributions and the data in Dg, and then average the resulting partial Bayes
factors across the (many) ways in which the partition could be performed; this requires defining
criteria for what constitutes a “good” training sample and exploring which of a variety of averaging
methods is “best.” The most blatant attempt along these lines is posterior Bayes factors (PBF:
Aitkin (1991)), in which the idea is to favor model M; over M if LEBE > I_/fBF, where

E;DBF = / p(D‘nijij>p(77j|D7ijB> dnj = E(ﬁj\D7Mj75)p(D‘nj7ijB); (5>

H;

in other words, is the expectation of the sampling distribution p(D|n;, M;, B) under M;
(evaluated at the observed data set D) with respect to the posterior distribution p(n;|D, M;, B).
With an even moderately informative data set D this solves the problem of sensitivity to a diffuse
prior, but it creates a serious new problem of its own: by vigorously using the data twice (to update
the sampling distribution to a posterior, and then to average the sampling distribution over this
posterior) it lacks a correct probabilistic basis and is therefore logically inconsistent.

Another approach to avoiding the problem of instability of Bayes factors in the presence of
diffuse prior distributions on the parameters is provided by the Bayesian information criterion
(BIC; Schwarz (1978)). Letting k; be the dimension of the parameter vector n; = (6, A;) in model
M;, a Laplace approximation to the integrated likelihood p(D|M;, B) on the log scale yields

[ PBF
J

logp(D|M;,B) = logp(D|n;, M, B) + log p(1);| M;, B)

k; 1 - 1
+Ejlog27r—§log|fj\+0<g) , (6)

in which 7); is the maximum likelihood estimate of n; under model Mj, I ; is the observed information
matrix for that model and n is the sample size in the data set D. Using a less precise Taylor
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expansion than that underlying (6), Schwarz proposed the cruder approximation
R k;
lng(D|Mj, B) = logp(DMJa Mja B) - Ej 1Ogn + O(l) (7)

By equating (6) and (7) You can solve to see what implied prior distribution BIC' is using, from
the point of view of the more accurate Laplace approximation; with all of the components of 7;
living continuously on the real line, this yields the unit-information prior

(n;1M;, B) NNkj(ﬁjunjj_l>7 (8)

a rather gently data-dependent diffuse prior distribution that is equivalent (with large n) to one
additional observation with the same likelihood summaries as the data set D under M; (if some
components of 7; live on restricted ranges within ¥, a similar calculation may be made after
transforming those components to take values on all of R). Thus BIC' can be seen as the basis of an
approximate Bayes factor with a diffuse prior that is not sensitive to how the diffuseness is specified;
in effect BIC' protects You from Your worst possible excesses in trying to be “noninformative” about
the parameters.

1.3 Predictive model comparison

All of the work described in Section 1.2 seems to be unresponsive to the following point: there is
an approach to Bayesian model comparison that both (a) has an arguably sounder basis in utility
than Bayes factors and (b) entirely avoids instability with respect to diffuse prior specification. Of
all the quantities arising in Bayesian modeling, the one that simultaneously (i) has the most to do
with model comparison and (ii) is the most stable in the presence of diffuse prior distributions is
the predictive distribution, for future data D* given present data D, under model M;:

p(D*‘D7Mj7B) = / p(D*|7]j7Mj78>p(77j‘D7ijB)d6
H;j

= Ew,p.m,80(D7n;, M, B) . (9)
Note the similarity with L## which however incorrectly computes the expectation of p(D|n;, M,
B), rather than p(D*|n;, M;, B), with respect to p(n;|D, M;, B).

In our view, the closest You may be able to come to a useful generic utility structure driving
model comparison is (a) to recognize the basic scientific fact that good (bad) models make good
(bad) predictions and (b) to therefore reward a given model A; in a manner driven by the quality
of its predictions. To compare a predictive distribution with the actual data value it is trying
to predict, You need a scoring rule; it has been shown (e.g., O’Hagan and Forster (2004)) that
all of the optimal scoring rules, for comparing a single (real) data value y* with its predictive
distribution p(-|D, M;, B) under a model M;, are linear functions of the logarithm of the height
of p(-|D,M;,B) at y*. This motivates the log scoring criterion (e.g, Gelfand and Dey (1994),
Gelfand and Ghosh (1998)); for instance, in a one-sample setting in which the data set D consists
of a vector y = (y1,...,yy,) of real values of length n, a jackknife-style cross-validated version of
this idea would be based on

1 n
LScv(Mjly, B) = — > logp(yily—, M, B), (10)
=1

8



where y_; is y with observation i set aside; this is also referred to as the conditional predictive
ordinate (CPO) approach (e.g., Geisser (1980), Pettit (1990)). We examine the decision-theoretic
motivation of this and a related log-score criterion in Section 3.1.

It may appear that LScy is computationally expensive in settings in which the predictive
distribution p(y;|y—;, M;, B) is not available in closed form and therefore has to be estimated via
MCMC, because a naive implementation of (10) would appear to require n separate MCMC runs
(one for each omitted observation). However, Gelfand (1996) has shown — in the common situation
in which (under model M;) y; and y_; are conditionally independent given n; — that p(y;|y_, M;, B)
has the alternative representation

plyily—s, M;, B) — { [ M B w1455 dm}_ , (11)

and this permits estimation of LScy with a single MCMC run via

— 1
LSev(Mjly, B) = —— > logp~*(yiln;, M;, B) ; (12)

1=1

here p=*(v:|n;, M;, B) is the posterior mean of the reciprocal of the sampling distribution for y;
under model M;.

1.4 Outline

The plan of the paper is as follows: Sections 2 and 3 are devoted to aspects of some answers to
question ()1, and Section 4 addresses an issue arising from ()». In Section 2 we explore similarities
and differences between DIC and LScy in Gaussian and Poisson models. Section 3 examines a
full-sample version LSgg of the log-score idea and presents results on the small-sample abilities of
DIC, LScy and LSEg to discriminate between fixed- and random-effects Poisson data-generating
mechanisms. In Section 4 we show that posterior predictive tail areas (Gelman et al. (1996)), a
popular method for answering a question related to () — namely, could the data have arisen
from model M;«? — can be poorly calibrated, and we document the success of an approach to
calibrating it. Section 5 addresses some asymptotic considerations, and in Section 6 we conclude
the paper with a brief discussion.

2 DIC and LScy

Consider My, one of the simplest possible parametric models for continuous outcomes:

o (uB)  ~ N(u.0?)
MO‘{ (Yil,B) = N(u,o?) }

with (62, 1o, 0,) known. To see how DIC and LScy are related in this simple setting, take a highly
diffuse (large 05) prior on p so that the posterior for y is approximately

ol B) = (B < (5.2 (13



where 7 is the sample mean of y = (y1,...,9,). The predictive distribution for the next observation
is then approximately

_ . _ 1
(Yn+11y, B) = (Yn+1ly, B) ~ N {y o’ (1 + g)} : (14)
and LScy, ignoring linear scaling constants, is
LScv(Moly, B) = > Inp(yily—i, B). (15)
i=1
But by the same reasoning
p(ily—i, B) = N(j_i,0%) , (16)

where ¢_; is the sample mean with observation 7 omitted and o2 = o (1 + ﬁ), so that

1 _

- 2
Inp(yi|ly-i, B) = c— ﬂ(yi —9-;)° and

n

LSov(Moly, B) = c1—ea Y (i —5-4)° (17)

i=1
for some constants ¢; and ¢y with ¢ > 0. Now it is an interesting fact (related to the behavior of
the jackknife), which can be proved by induction, that

n n

D wi—g)?=cy (-9’ (18)
i=1 i=1
for some ¢ > 0, so finally for co > 0 the result is that

n

LSov(Moly, B) = c1 — e Y (yi — )°, (19)

1=1

i.e., in My with a diffuse prior the log score is almost perfectly negatively correlated with the sample
variance.
In this model the deviance (minus twice the log likelihood) is

D(p) =D(ulB) = —2Wi(uly,B)=co—2Inp(y|u, B)

= ¢ +tcs Z(yi — )’ (20)

for some ¢3 > 0. Given a parametric model p(y|@), Spiegelhalter et al. (2002) define the deviance
information criterion (DIC) (by analogy with other information criteria) to be an estimate D(0|B)
of the model lack of fit (as measured by the deviance) plus a penalty for complexity equal to twice
the effective number of parameters pp of the model:

DIC(M|y, B) = D(8) + 2 pp, (21)

where @ is the posterior mean of ; they suggest that models with low DIC values are to be
preferred over those with higher values. When pp is difficult to read directly from the model (e.g.,
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in complex hierarchical settings, especially those with random effects), they motivate the following
estimate, which is easy to compute from standard MCMC output:

b = D(0) — D(9), (22)

where D(6) is the posterior mean of the deviance and D(#) is the deviance evaluated at the posterior
mean of #. In model My, pp is of course 1, and with a diffuse prior § = 7, so

DIC(Moly, B) = co + c3 Z(yg —9)°+2 (23)
j=1
and the conclusion is that
—DIC(Myly, B) = ¢1 + coLScv (Myly, B) (24)

for ¢o > 0. In other words, in this simple setting, choosing a model by maximizing LScy and
by minimizing DIC are approximately equivalent behaviors. This connection was hinted at in
the discussion of Spiegelhalter et al. (2002) but was never made explicit. It is evident that this
argument readily generalizes to any situation in which the predictive distribution is approximately
Gaussian (e.g., Poisson()\) likelihoods with large A, Beta(a, 8) likelihoods with large (a + ), and
so on).

As a second example of the relationship between LS¢y and DIC, consider a single sample of
counts of the number of occurrences of some (typically rather rare) event in a given time interval.
With data of this form, modelers often choose between fixed- and random-effects Poisson model
structures: for ¢ = 1,...,n, and, e.g., with diffuse priors, one implementation of this comparison
involves choosing between

B~ e
Ml'{ (yil\,B) '~ Poisson()\) } d (25)

(Bo,0*[B)  ~  p(Bo,0?|B)
(y:|Ai, B) "~ Poisson();)
log(\;) = Bo + €

(e;]02,B) '~  N(0,0?)

Ms: (26)

M is of course a special case of My with (0'2 =0,A= eﬁo); the likelihood in Ms is a Lognormal
mixture of Poissons (this is often similar to fitting a Negative Binomial distribution, which is a
Gamma mixture of Poissons).

It is not entirely straightforward to express all of {LScy (in My and M), DIC (in M)}
algebraically in this setting, so we conducted a partial-factorial simulation study with factors {n =
18,32,42,56,100}, {8y = 0.0,1.0,2.0}, and {0? = 0.0,0.5,1.0,1.5, 2.0} in which {(data-generating
mechanism, assumed model)} = {(M;, My), (M, M), (Ms, M), (Ms, Ms)}; in each cell of this grid
we used 100 simulation replications. Figures 1 and 2 summarize some of the results of this simulation
(see Krnjaji¢ (2005) for additional details). The first of these two Figures demonstrates that when
both the data-generating model and the assumed model were M; (the fixed-effects Poisson), LSy
and DIC' are almost perfectly negatively correlated; the second Figure shows by contrast that when
the data-generating and assumed models were M, (the random-effects Poisson), LScy and DIC
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Figure 1: DIC wversus LScy with n = 18; the data-generating and assumed models were both M,
(fized-effects Poisson).
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Figure 2: DIC versus LScy with n = 56; the data-generating and assumed models were both My
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Table 1: Distribution of number of hospitalizations in the IHGA study over a two-year period.

Number of Hospitalizations
Group 0 1 2 3 4 5 6 7| n Mean SD
Control 138 77 46 12 8 4 0 2 (287 0944 1.24
Treatment | 147 83 37 13 3 1 1 01]285 0.768 1.01

are less strongly negatively correlated, although (not shown in the Figure) the correlation increases
with n.

As a further example of the correspondence between LScy, and DIC, consider the following
case study, in which fixed- and random-effects Poisson modeling — of the type examined above
— arises naturally. In a controlled experiment (Hendriksen et al. (1984)) to assess the value of a
gerontological intervention, 572 elderly Danish people were randomized, 287 to a control (C') group
(receiving standard health care) and 285 to a treatment (77) group (receiving standard care plus
in-home geriatric assessment (IHGA), a kind of preventive medicine in which each person’s medical
and social needs were assessed and acted upon individually). A major outcome of interest in this
experiment was the number of hospitalizations experienced by the subjects during the two-year
life of the study. Let y! and yjc be the numbers of hospitalizations for treatment person i and
control person j, respectively, and suppose (as was true of the published results of the study) that
treatment /control status is the only available covariate.

Table 1 presents the data values. Evidently IHGA lowered the mean hospitalization rate
(for these elderly Danish people, at least) by (0.944 — 0.768) = 0.176, which is approximately
a 100 (%)% = 19% reduction from the control level, a difference that is large in clinical
terms; as usual, the next question is whether this difference is large in statistical terms, and a
model is needed to answer this second question.

Four possible models for these data (not all of them good) are as follows:

e A two-independent-sample Gaussian model with diffuse priors (based on the usual advice
that in repeated sampling the two-independent-samples z or t procedures are robust to non-
Normality, at least as far as false-positive validity is concerned);

e A one-sample Poisson model with a diffuse prior, which in effect assumes that the treatment
and control As are equal,

e A two-independent-sample Poisson model with diffuse priors, which is equivalent to a fized-
effects Poisson regression (FEPR) model; and

e a random-effects Poisson regression (REPR) model (which may be preferable to the FEPR
model because the C' and T variance-to-mean ratios (VITMRs) are 1.63 and 1.32, respectively,
and the FEPR model assumes that these ratios are 1):

(yil\i, B) " Poisson()\;)
log(A;)) = Bo+ Bz +e;
(eilo2,B) ~ N(0,02) (27)
(50, B, 03|B) ~ diffuse ,
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Table 2: DIC and LScy results for four models applied to the IHGA example.

Model | D(0) D(f) Pp DIC  LSecy

1 (Gaussian) | 1749.6 17456  3.99 17535 —1.552

2 (Poisson, 1499.9  1498.8 1.02 1500.9 —1.316
common \)
3 (FEDR,

different As) 1495.4 1493.4 1.98 14974  —1.314

1275.7 1132.0 143.2 1418.3
4 (REPR) 1274.7 1131.3 143.5 14182 —1.180
1274.4 1130.2 144.2 1418.6

where x; = 1 is a binary indicator for 7'/C' status.

The DIC and LScy results on these four models are given in Table 2 (the three REPR rows
were based on different monitoring runs, all of length 10,000, to give an idea of the size of the
Monte Carlo noise level in the components of DIC'). As 0. — 0 in the REPR model, the result
is the FEPR model, with pp = 2 parameters; as o0, — 00, in effect all subjects in the study have
their own As and pp would be 572; in between at o, = 0.675 (the posterior mean), DIC' estimates
that there are about 144 effective parameters in the REPR model, but its deviance D() is so
much lower that it wins the DIC contest handily. The correlation between LS¢cy and DIC across
these four models turned out to be —0.98, providing another example of a situation where the
two approaches lead to similar model-choice behaviors (this is due to the rather large samples in
both the T" and C' groups in the experiment). As noted in Krnjaji¢ et al. (2008), the REPR model
fits the data well (with one caveat, addressed below in Section 3.2), and leads to the inferential
conclusion that p(y < 0|D, B) = 0.97, where + is the mean difference (7' — C') in hospitalizations
per two years in the population of all elderly people similar to the participants in the experiment.

3 Small-sample model discrimination

3.1 Full-sample log scores

In addition to LScy, our interest was drawn (on the basis of simulation results presented below)
to another version of the log-score idea in which no cross-validation is employed: in the one-sample
situation, for instance, You can compute a single predictive distribution p( - |y, M;) for a future data
value with each model M; under consideration, based on the entire data set y (without omitting
any observations), and define (cf. Laud and Ibrahim (1995)) the full-sample log score

1 n
LSps(Mjly, B) = — > logp(yily, M;, B). (28)
=1

Remark. This appears to use the data twice, but (a) all LSpg is actually doing is evaluating
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the posterior predictive distribution for the next data value at the observed data, and (b) when n
is even moderate in size, any effect this may induce is small. &

Remark. Revisiting the example in Section 1.2 that compared Geometric (M;) and Poisson
(M7) models for one-sample count data, the LSpg values for the two models are

(29)

LSps(Mily, B) = %Zlog [T(al +B1+n+s) TG +s+y) (o + n)]
i=1

B+ s)T(yi+ar+n+ 61 +s+1)

and

Ploag+s)I(y; +1) \foa+n+1

(o) | R

where s = > ", y;. It is evident that both of these expressions are entirely stable as any or all
of {ay, f1, g, B2} | 0; thus — in this example, which is typical of results in both parametric and
nonparametric Bayesian modeling — LSgg has none of the difficulty with diffuse prior distributions
exhibited by Bayes factors. &

Remark. The utility justification of LSpg (cf. Bernardo and Smith (1994)) is as follows: with
the unknown 6 as a future data value y*, the action space A as the models M, in M, and Ul(a, 0) =
U(M;,y*) = log p(y*|y, M;, B), the expectation in Egp)U(a,d) is over Your uncertainty about
how y* will turn out in the future, and (if y* and the components of y are exchangeable given M,
as will typically be the case) LSrg is a direct Monte Carlo approximation to EpsU(a,0).

As Mukhopadhyay et al. (2005) point out, another way to arrive at this same conclusion is as
follows: positing the existence of a “true” data-generating mechanism Mpg, model M; is better
than M, if the “distance” from M; to Mp¢ is smaller than the “distance” from M; to Mpg;
evaluating the models on the basis of their predictive distributions for future data, and using
Kullback-Leibler (relative entropy) divergence as the “distance” measure, You would prefer M, if

1 ['(ag +s+y; + az+s
LSps(Msly,B) = EZlog[ (a2 yi) ( B2 +n ) ‘

* p(y*|y7 MDG7 B) *
p(y* |y, M ,Blog{ dy* < 31
/ &’ly, Mpc, B) p(y*|y, M;, B) (31)
* p(y*|y7 MDG7 B) *
p(y*ly, M ,Blog{ dy”,
/ &"ly, Mo, B) log | = ot M;, B)
which is equivalent to choosing M; if

/10gp(y*\y, M;, B) p(y*|y, Mpa, B) dy* = Eyympe.,8) 10g p(y* |y, M;, B) > (32)

/10gp(y*\y, M, B) p(y*|y, Mpa, B) dy* = Eyy.mpe.8) 10g p(y" |y, Mj, B) .

But if You know Mpg, there is no new information in y, so the expectations in (32) are actually over
the sampling distribution p(y*|Mpg, B) for y* under Mpg, and a direct Monte Carlo approximation
to this distribution (based on the observed y = (y1,...,¥,)) yields the log-score criterion: prefer
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M; over M; if
By apes) Log p(y” |y, My, B) = ZIng yily, My, B) = LSps(M;ly, B) >

By 0.8 log p(y* |y, My, B) = ZIng yily, My, B) = LSps(Mjy|y, B). (33)

Mukhopadhyay et al. (2005) have shown that asymptotically the difference between {the actual
expected utility Ey- p,sU(M;,y*) called for by decision-theoretic model choice} and {its Monte
Carlo approximation LScy (M;|D, B) based on a line of reasoning like the one above} is O,(y/n)
(and the same argument would evidently apply to LSrg), but this fact does not automatically imply
poor model-discrimination behavior for either LScy or LSpg with a fixed sample size, because
model comparison with, e.g., LSpg involves calculating LSps(M;|y, B) — LSps(M;/|y, B) and the
asymptotic bias documented by Mukhopadhyay et al. (2005) would be expected to (largely or
entirely) cancel out in this comparison (this is an application of the old idea that a biased scale
can nevertheless be valuable in evaluating the difference in weight between two objects). #

Remark. When model M; is fit via MCMC, the predictive ordinate p(y*|y, M;, B) in LSpg is easy
to approximate: with m identically distributed (not necessarily independent) MCMC monitoring
draws 17, from p(n;ly, M;, B),

p@%%ﬁ)z/ﬂﬂ%%ﬁMMW%@%
E(nj ly,M;,B) [p(y* ‘nﬁ M]’ B)] (34>

Remark. Along with a discussion of what LSgg is, it is perhaps useful to point out several things
that it is not.

e It may seem at first glance (e.g., O’Hagan and Forster (2004)) that the behavioral rule based
on posterior Bayes factors is the same as the rule based on LSpg, which favors model M;
over M if

n LSps(Mjly, B) > n LSps(My, B). (35)

But not so: for example, in the common situation in which the data set D consists of
observations y; that are conditionally IID from p(y;|n;, M;, B) under M,

nLSFS(Mj|y7 IOgH[/ yl|n]>Mj>B) (nj|y7Mj>B)d77j ) (36)

and this is not the same as

m/hﬁwW%ﬁ>

i=1

p(n;ly, M, B) dn; = LYPF (37)

because the product and integral operators do not commute.
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e Also, comparing models based on the posterior expectation of the log likelihood (or, equiva-
lently, the log sampling distribution; this is related to one of the two additive terms in DIC,
namely the one that penalizes lack of fit) has sometimes been suggested, and this is not the
same as LSgg either: by Jensen’s inequality

nLSps(Mjly,B) = > logp(yily, M, B)

i=1

= Zlog/p(yi\m,MJ,B)p(mly, M, B) dn;
=1

= Z log E(njlyyijB) p(yi\ma ij B)

i=1

> ) Eyly,5 log p(yilng, M;, B) (38)

i=1

= By, Y logp(yiln;, M;, B)
i=1

= Egyiym; 8 log [ [ p(yilns, M;, B)
i=1

= E,ly.;,8 logp(y|n;, M;, B). &

Including LSgg in the mix gives rise to the three behavioral rules we examine in the rest of this
Section: {maximize LScy, maximize LSpg, minimize DIC'}. With (e.g.) two models to choose
between, how accurately do these behavioral rules discriminate between M; and My?

As an extension of the previous simulation study, we generated data from the random-effects
Poisson model M, (equation (26)) and computed LScy, LSrs, and DIC for models M; (the fixed-
effects Poisson model (25)) and M, in the full-factorial grid {n = 32,42,56,100}, {8y = 0.0, 1.0},
0% =0.1,0.25,0.5,1.0,1.5, 2.0}, with 1000 simulation replications in each cell (the simulation was
performed on a cluster of 100 Linux-based CPUs), and we monitored the percentages of correct
choice for each model specification method (in this simulation M, is always correct).

Table 3 gives examples of the results of this simulation, using LSy for illustration. Even with
a sample size of only 32, LScy makes the right model choice more than 90% of the time when
0% > 0.5 for By = 1 and when o? > 1.0 for By = 0 (these are parameter ranges that lead to large
enough amounts of extra-Poisson variability that random-effects models would be contemplated).
The right part of the table shows that even rather small differences in LS¢cy can separate correct
and incorrect model choice, which encourages the question “How do You know when a difference
on the log score scale is big?” (we return to this point in Section 4). The graphs in Figure 3
compare model discrimination curves for LScy, LSrg, and DIC; increasing o makes it easier
for all three methods to conclude that random effects, to describe the Poisson over-dispersion, are
needed. Interestingly, in this simulation environment LSrg was more accurate, with small samples
of data, at identifying the correct model than LSqy or DIC' for this reason, we focus on LSpg in
what follows.
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Figure 3: Model discrimination curves for LScy (solid lines), LSrs (long dotted lines), and DIC
(short dotted lines) (column 1: By = 0; column 2: By = 1; rows are indezed by sample size n; in all
plots the horizontal scale is o* and the vertical scale is the proportion of correct model choices).
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Table 3: Percentages of correct model choice and mean absolute difference in LScy between M,y
and My when the right model is My, for n = 32.

n =32

% Correct Decision Mean Absolute Difference in LSy

Bo Bo
o? 0 1 o? 0 1
0.10 | 31 47 0.10 0.001 0.002
0.25 | 49 85 0.25 0.002 0.013
0.50 | 76 95 0.50 0.017 0.221
1.00 | 97 100 1.00 0.237 4.07
1.50 | 98 100 1.50 1.44 174
2.00 | 100 100 2.00 12.8 63.9

3.2 Comparison of LSpg and DIC

We noted earlier that DIC can be thought of as a useful generalization of AIC' to settings in which
it is difficult to estimate the model complexity simply by, e.g., reading a count of the number
of parameters directly from the model. However, it is worth emphasizing the point made by
Spiegelhalter et al. (2002) (and the discussants of that paper) that DIC can be quite sensitive
to parameterization. For example, y = (0,0,1,1,1,1,2,2, 2,2,3,3,3,4,4,5,6) is a data set with
n = 17 observations generated with parameters (6,r) = (0.82,10.8) from the Negative Binomial
distribution, in the parameterization under which the marginal sampling distribution is

[(y; +1)

M+ oo’ O )

p(yl|9> T) =

y has mean 2.35 and variance-to-mean ratio 1.22. Using a Uniform(0, 1) prior for § and a popular
(if possibly ill-advised) prior for r (I'(¢, €) with € = 0.001), the effective number of parameters pp
for the negative binomial model (which fits the data quite well) is estimated to be —66.2, when
of course the right answer is +2.0. The basic problem, as usual with DIC| is that the MCMC
estimate of pp can be quite poor if the marginal posteriors for one or more parameters (using the
parameterization that defines the deviance) are far from Normal. Reparameterization can help —
here, for example, working with Uniform(—c, ¢) priors on logit(#) and log(r), with ¢ chosen large
enough in each case not to truncate the likelihood function, yields pp = 1.1 (which is, however,
still too low by 45%) — but may nevertheless lead in other problems to regrettable estimates of
pp- The log-score approach to model choice does not suffer from any such instability as a function
of parameterization.

Remark. While the subject of complexity penalty is on the table, so to speak, it may be natural
to wonder why such a penalty does not appear explicitly in LSgg. In fact, a penalty for excess
model complexity is implicitly built into LSpg: models with unnecessary parameters will yield
predictive distributions with larger variances (and therefore smaller predictive density values at
the observed data) than models in which such unnecessary parameters are removed.

Remark. Note also that the log-scoring approach works equally well with both parametric and
nonparametric Bayesian models. As an example of the use of log scores in the comparison of such
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Table 4: LSgs values for three models applied to the control and treatment samples in the IHGA
case study (from Krnjajié et al. (2008)).

Model
Sample (26) (40) (41)
Treatment | —1.199 —1.198 —1.205
Control | —1.343 —1.342 —1.336

models, Table 4 (based on results given in Krnjaji¢ et al. (2008): KKD) presents LSpg values for
three models applied separately to the treatment and control samples of IHGA data in Table 1:
the random-effects Poisson model (26), a Dirichlet-process (DP) mixture model

(y:6;,) "~ Poisson(6;)

@lc) ~ @ (40)
(@lo.i0?) ~ DPlaGo( | o?)
(o, 0%~ pla) p(u) p(o?)

in which the DP was applied to the latent variables 6; and was centered on model (26) (here
Go(-|u,0?) = N(-;u,0?); KKD employed a Gamma prior for o, a Normal prior for u, and an
inverse-Gamma prior for ¢2), and a DP model

(| ) ~ F
(Fla,8) ~ DPlaFy(-16)] (41)
(a,0) ~ pla)p(®)

applied directly to the observed counts (centered on the Poisson distribution Fy( - |f) = Poisson|-;
exp()]; KKD used a Gamma prior for o and a Gaussian prior for #). There is some evidence that
the Gaussian distributional assumption for the latent variables e; in (26), which is conventional
rather than arising directly from the science of the problem, is questionable. This sort of comparison
cannot be made with DIC and would be difficult or impossible to achieve in a sound manner with
Bayes factors (see Carota (2006) for a clear analysis of some of the problems that can arise when
using Bayes factors to compare Bayesian parametric and nonparametric models). &

4 Calibrating posterior predictive tail areas

Section 3 demonstrates that full-sample log scores can stably and reliably help in choosing between
two or more models (without loss of generality, consider just M; and M,); but suppose that M;
has a (substantially) higher LSgg value than M,. This doesn’t say that M is adequate; it just
says that M is better than M, which still leaves open model specification question ()5 near the
beginning of the paper: Is M; good enough?

As discussed in Section 1.1, in our view a full judgment of adequacy requires real-world input
(“To what purpose will the model be put?”), so it does not seem possible to propose generic
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methodology to answer )y (apart from MEU, with a utility function that is appropriately tailored
to the problem at hand), but the somewhat related question

e ()y: Could the data have arisen from model M;?

can be answered in a general way by simulating from M; many times, developing a distribution of
(e.g.) LSpg values, and seeing how unusual the actual data set’s log score is in this distribution.

This is related to the posterior predictive model-checking method of Gelman et al. (1996).
However, this sort of thing needs to be done carefully (Draper (1996)), or the result will be poor
calibration; indeed, Bayarri and Berger (2000) and Robins et al. (2000) have demonstrated that the
Gelman et al. procedure may be (sharply) conservative. Using a modification of an idea suggested
by Robins et al., we have developed a method for accurately calibrating the log score scale.

The inputs to our procedure are: (1) a data set (e.g., with regression structure), and (2) a model
(which can be parametric or non-parametric). To take a simple example to fix ideas, consider a
one-sample data set of counts and suppose the goal is to judge whether this data set could have
arisen from the model (call it (x))

(A\|B) ~ diffuse (42)
(y:l\,B) '~ Poisson()\)

Step 1:| Calculate LSpg for this data set; call this the actual log score (ALS). Obtain the
posterior for A\ given y based on this data set; call this the actual posterior.

for (i in 1:ml1 ) {

Make a lambda draw from the actual posterior; call it
lambdal i ].

Generate a data set of size n from the second line of model (%)
above, using lambda = lambdal i ].

Compute the log score for this generated data set; call it
Ls[ i ].

by

The output of this loop is a vector of log scores; call this V.LS. Locate the ALS in the distribution
of LSpg values by computing the percentage of LSpg values in V.LS that are no greater than ALS;
call this percentage the unadjusted actual tail area (suppose, e.g., that this comes out 0.22).

So far this is just Gelman et al. with LSpg as the discrepancy function. We know from our own
simulations (summarized below) and the literature (Bayarri and Berger (2000), Robins et al. (2000))
that this tail area (a P-value for a composite null hypothesis, e.g., Poisson(\) with A unspecified)
is conservative, i.e., with the 0.22 example above an adjusted version of it that is well calibrated
would be smaller (and might be much smaller, e.g., 0.02). We have modified and implemented one
of the ways suggested by Robins et al. for improving calibration, and we have shown that it does
indeed work even in rather small-sample situations, although implementing the basic idea can be
computationally intensive.
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for ( j in 1:m2 ){
Make a lambda draw from the actual posterior; call it lambdax*.

Generate a data set of size n from the second line of model (%)
above, using lambda = lambda*; call this the simulated
data set.

Repeat Steps 1 and 2 above on this simulated data set.

3

The result will be a vector of unadjusted tail areas; call this V.P. Compute the percentage of tail
areas in V.P that are no greater than the unadjusted actual tail area; this is the adjusted actual
tail area.

The claim is that the 3—step procedure above is well-calibrated, i.e., if the sampling part of
model (x) really did generate the observed data, the distribution of adjusted actual tail areas
obtained in this way would be uniform, apart from simulation noise. Step 3 in this procedure
solves the calibration problem by applying the old idea that if X ~ Fx then Fix(X) ~ U(0,1).

Our claim of calibration can be verified by building a further loop around steps 1-3 as follows:

Choose a lambda value of interest; call it lambda.sim .
for ( k in 1:m3 ) {

Generate a data set of size n from the second line of model (%)
above, using lambda = lambda.sim; call this the validation
data set.

Repeat Steps 1-3 on the validation data set.

}

The result will be a vector of adjusted tail areas; call this V.Ta. We have verified (via simulation,
which was again performed on a cluster of 100 Linux-based CPUs) in several simple (and some less
simple) situations that the values in V.Ta are close to U(0,1) in distribution.

Figures 4-7 summarize some of our results (see Krnjaji¢ (2005) for additional findings) and
illustrate uncalibrated and calibrated tail areas from one-sample Poisson and Gaussian models (we
used m; = my = mg = 1,000). Figures 4 and 6 present histograms of the unadjusted actual tail
area distributions, which are in many cases far from the target (uniform) distribution; figures 5
and 7 give uniform quantile plots of the adjusted tail area distributions. Consider, for example, the
case (n = 100, A = 0.14) in the fourth row and first column of Figure 4: if the Gelman et al. tail
area came out 0.35 in this situation, it would be natural to conclude that the data could very well
have come from the Poisson model, but this part of Figure 4 demonstrates clearly that in fact an
uncalibrated tail area of 0.35 with (n = 100, A = 0.14) is highly unusual under the Poisson model.
Our procedure solves the calibration problem by asking “How often would You get 0.35 or less
for an uncalibrated tail area in this situation?”, and it is evident from Figure 4 that the answer
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Figure 6: Gaussian model: uncalibrated tail-area values.
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Figure 7: Gaussian model: calibrated tail-area values.
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is not very often (in fact, only about 0.035 of the time, i.e., in this case the calibrated version of
the uncalibrated Gelman et al. tail area is 10 times smaller). Figure 4 shows that the calibration
of the Gelman et al. unadjusted approach improves in the one-sample Poisson setting, even for
small n, as A increases, but Figure 6 demonstrates that in the Gaussian model with both p and
o? unknown, the Gelman et al. unadjusted approach is poorly calibrated across the entire subset
{=1 < < +1} x {0.1 < 0? <10} of parameter space we examined, and things actually seem to
get worse as n increases. Our adjusted results, by contrast (Figures 5 and 7), are nearly perfectly
calibrated for all parameter values and sample sizes examined.

Remark. In drawing inferential conclusions, we do not support the practice of hypothesis/signifi-
cance testing in general, and tail-area calculations (P-values) in particular, because (a) this ap-
proach is far less informative than posterior distributions, and the interval estimates they imply, on
the scale of the data and (b) if the two hypotheses being compared in hypothesis testing correspond
to different behavioral choices, the problem is really decision-theoretic rather than inferential and
should be approached via MEU. However, we find it difficult to avoid using something like a tail
area to calibrate model discrimination methods such as LSgg in answering {(Qo: could the data
have arisen from model M;«7}. Other ways exist for judging how unusual LSpg actua is in the cali-
brated distribution of LSrg values — an obvious alternative is the ratio of the maximum height of
the calibration density to its height at LSpg actuar — but all of them have an element of ad-hockery
about where to draw the line. &

5 Asymptotic considerations

It has sometimes been suggested that asymptotic consistency is an important desideratum for both
Bayesian and non-Bayesian model specification methods (note that this has nothing to do with
logical consistency in the sense of Cox’s formulation in Section 1.1). According to the main way
this line of reasoning has played out in the literature to date, You are comparing two models M;
and Ms, and You consider a data-generating mechanism M p under which one of the two models is
correct (Ms, say); then if You generate data sets D,, with Mp¢, using larger and larger sample sizes
n, people who believe in the normative value of asymptotic consistency suggest that You should
prefer a model-choice method that chooses My more and more emphatically as n — oo — with
the model choice set M = {M;, My} remaining fized — over a model-choice method that does not
have this property.

An appealing feature of this desideratum is that it appears to be founded on a desire to be
well-calibrated; however, there are two caveats to consider:

e Since You will generally only have a data set D of finite sample size N4ctua, What counts for
You is how the model choice criteria You are comparing work in Your problem setting with
Your ng.uq value; asymptotic calculations that shed no light on this issue are of little value
to You in actually solving Your problem.

e Also, as noted by Spiegelhalter et al. (2002), it may well be (emphatically) irrelevant to
obtain asymptotic results that let n — oo while holding the model-comparison set M fixed;
in actual statistical practice, as n increases Your appetite for more complex models — to do a
better job of approximating reality — will also increase, and it is not at all clear that lessons
learned under the M-fixed scenario have any normative value when the complexities of the
models being compared are also on the rise.
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To explore the relevance of asymptotic consistency in Bayesian model specification, consider

the following simple example presented by Mukhopadhyay et al. (2005) (hereafter MGB): they

compare M; — under which the data values y = (y1,...,y,) are modeled as (y;|5) 2o N(0,1)

— with Ms, under which (y;]0, B) 2o N(6,1) for 6 € R with the improper prior p(6|B) = 1 (the

same results would be obtained with a proper and highly diffuse prior; note that, in frequentist
hypothesis-testing language, this formulation amounts to testing the point-null hypothesis Hy: 6 = 0
against the compositive alternative H4: 6 # 0 in the Gaussian sampling-distribution setting). It
is straightforward to show in this situation that (a) as |#| — oo with n fixed, the probability that
LSpg selects M, goes to 1, but (b) MGB show that this also occurs with LScy as n — oo for § = 0
(and the same would be true of LSgg); for MGB this is a serious criticism of the log-score approach.
More generally it can be shown that {AIC, DIC, LSrs} may be inconsistent in the n — oo sense
in situations — e.g., the M-closed setting (for finite |M|) in which the data-generating Mpq is
assumed to be in M and model M; has k; parameters, with k; remaining fixed as n — oo — in
which {some Bayes factors, BIC} are asymptotically consistent. In response to this observation,
(a) we re-emphasize the point made above, about the lack of realism of settings in which M remains
fixed while n grows, and (b) we examine what appears to us to be the artificiality of the MGB
example, as follows.

The prior MGB use in their model M, treats € as a continuous quantity on R, which is ap-
propriate scientifically in many applied settings, but the specification # = 0 in their model M; is
logically inconsistent with the continuous treatment of 6 on R. To fix ideas in seeing how to make
this example more realistic, consider assessing the performance of a drug, for lowering systolic
blood pressure (SBP) in hypertensive patients, in a phase-II clinical trial, and suppose (as did
MGB) that a Gaussian sampling distribution for the outcome variable is reasonable (possibly after
transformation). The two most frequent designs in settings of this type are:

e (quantifying improvement) Here You want to estimate the mean decline in blood pressure
under this drug, and it would be natural to choose a repeated-measures (pre-post) experiment,
in which SBP values are obtained for each patient, both before and after taking the drug for
a sufficiently long period of time for its effect to become apparent. Let 6 stand for the mean
difference (SBPyefore — SBPyfter) in the population of patients to which it is appropriate to
generalize from the patients in Your trial. There is nothing special about # = 0 in this setting,
and in fact You know scientifically that 6 is not exactly 0 (because the outcome variable in
this experiment is conceptually continuous); what matters here is whether § > A, where A is
a practical significance improvement threshold below which the drug is not worth advancing
into phase III (for example, any drug that did not lower SBP for severely hypertensive patients
— those whose pre-drug values average 160 mmHg or more — by at least 15 mmHg would
not deserve further attention). Thus, in the spirit of what MGB were attempting to examine,
what counts in this situation is not a comparison of the models M; and M, above but a
choice between

_ 0|B) ~ diffuse for 6 < A
M{ Wl6.B) = N(b,0?) (43)
and (4]B) diffuse for > A
~ 1ITuse 1or ¢ >
M 44
2 {<yi|e,8> NG, 0?) } ’ (4

in which, for simplicity, we follow MGB and take o2 to be known. As discussed in Section 1.1,
an optimal real-world choice between M, and My in this case would be based on a utility
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function that quantified the costs and benefits of {taking the drug forward to phase III when
it was correct to do so, taking it forward when it should have been abandoned, not taking
it forward when it should have been, not taking it forward when it was correct not to do
so}, but here we examine the performance of LSrg in comparing M, and M, so that our
asymptotic consistency results may be compared with those of MGB. Note that a natural
inferential competitor to LSgg in this case is simply to compute 7’ = p(6 > Aly, B) and favor
My if 7 > 0.5.

(establishing bio-equivalence) In this case there is a previous hypertension drug B (call the
new drug A) and You are wondering if the mean effects of the two drugs are close enough
to regard them as bio-equivalent. A good design here would again have a repeated-measures
character, in which each patient’s SBP is measured four times: before and after taking drug
A, and before and after taking drug B (allowing enough time to elapse between taking the
two drugs for the effects of the first drug to disappear). Let 6 stand for the mean difference

[(SBPbefore,A - SBPafter,A) - (SBPbefOTe,B - SBPafter,B)] (45>

in the population of patients to which it is appropriate to generalize from the patients in
Your trial. Again in this setting there is nothing special about § = 0, and as before You know
scientifically that € is not exactly 0; what matters here is whether |0| < cgg, where cggp > 0
is a practical significance bio-equivalence threshold (e.g., 5 mmHg). Here again what counts
is not a choice between MGB’s models M; and M, but a comparison of

_ (0|B) ~ diffuse for |0| < cpp
el sy B o) . o
(0|B) ~ diffuse for |0| > cpp
Mon: 11D ) 4
i ® v o

in which o2 is again taken to be known. As before, a careful real-world choice between M~
and M. in this case would be based on a utility function that quantified the costs and
benefits of {claiming the two drugs were bio-equivalent when they were, concluding that they
were bio-equivalent when they were not, deciding that they were not bio-equivalent when
they were, judging that they were not bio-equivalent when they were not}, but here we again
examine the asymptotic consistency of LSprg for comparison purposes. As above, a natural
competitor to LSgg here is simply to compute 7" = p(|0| > cpgly, B) and choose My if
7 > 0.5.

The posterior predictive distributions p(y*|y, M;, B) on which LSgg is based are truncated-

Normal mixtures of Normal sampling distributions under all of {Mj/,, My, Myn, Mau}, and it is
straightforward to show that (a) the rate at which LSgg correctly selects M over My goes to 1 as
n — oo for all data-generating Opg < A, (b) the rate at which LSgg correctly selects My over My,
goes to 1 as n — oo for all data-generating Ope > A, (c) the rate at which LSgrg correctly selects
M over Mar goes to 1 as n — oo for all data-generating |0pe| < cpg, and (d) the rate at which
LSpg correctly selects My over My» goes to 1 as n — oo for all data-generating |0pg| > cpg (it does
not matter what happens for pc = A in comparing M, and My in the quantifying-improvement
case, because Opg = A is a zero-probability proposition under both M, and M/, and similarly for
Opc = cpp in the bio-equivalence case). Thus we would argue that MGB’s apparent asymptotic
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inconsistency of LScy (and therefore also of LSpg) in choosing between their M; and My when
Opc = 0 was an artifact of their scientifically curious attempt to test a point-null hypothesis in a
setting in which their modeling choices showed that their uncertainty about # was continuous.
Table 5 documents the small-sample model discrimination performance of LSpg in comparing
{My, with My} and {M;» with My}, and contrasts this with the 7/ > 0.5 and 7”7 > 0.5 rules
based directly on the posterior distribution for #. We used equations (28) and (34) to evaluate
LSpg, with m = 10,000 Monte Carlo draws from p(6|y, M;, B) and with at least 4,000 simulation
replications in each row of the table (the maximum Monte Carlo standard error in the proportion
estimates was 0.008). The following conclusions may be drawn from the results in Table 5.

e |LSpg| increases nearly linearly with n in all scenarios examined.

e In the improvement-quantification case,

— The results in the scenarios (A, fpg, o) = (10,11,10) and (10,9, 10) are symmetric up
to Monte Carlo noise, as they must be.

— It is remarkable that the LSrg and 7’ rules, which use the data vector y in such different
ways, yield identical model-discrimination results to almost three significant figures.

— As a kind of stress test, the scenario (A, fpg, o) = (10,10.1,10) presented a difficult
model-discrimination task for both LSrg and 7', because A and 0pg were so close in
relation to the standard deviation o; at least n = 1,280 observations were required to
achieve correct discrimination rates of 64% or more.

e With the bio-equivalence setup,

— When 0pg was chosen to make My, true, the model-discrimination abilities of the LSgg
and 7" methods were again identical to nearly three significant figures.

— In the not-very-difficult scenario (cgg,0pg, o) = (0.5,0,1) in which M;» was true, the
7" approach had a small-sample edge over LSpg that (of course) decreased to 0 with
increasing n.

— As another stress test, the scenario (c¢gg,0pg, o) = (0.1, 0, 1) was much more challenging
for both methods, because the region of practical equivalence was so small and the choice
of Opg made My» true. With n > 160, the central region §j & &1 (1 — %) %, in which
most of the posterior mass resides (for small «v), was narrow enough for both approaches
to identify the correct model at least 72% of the time, but with smaller samples sizes
LSrg typically had the better performance, with the 7" method choosing the wrong

model 100% of the time for n < 46.

Remark. 1t is possible to object that the clinical trial setting explored here is insufficiently
general, but — in our experience — when scientists come to us as consultants and ask for our
help to test Hy: 6 = 0, (a) this is because that is the frequentist problem formulation they
have been trained to adopt and (b) some exploratory questioning reveals that what they really
want to do is to assess the relative plausibility of # < ¢ versus § > ¢ or |0 < ¢ versus |0 > ¢
(for a problem-specific practical-significance threshold c¢), and these are just the improvement-
assessment and bio-equivalence problems examined above. In our more than 40 combined years of
consulting experience, we have never encountered an applied setting (call such a problem (k%)) in
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Improvement Quantification

Table 5: Small-sample model discrimination performance of LSrg and the ' or @ rules.

Simulation Mean Rate at Which Data-
of LSps(M;|y,B) | My Was Chosen By | Generating
A ‘9DG g n j =1 j =2 LSFS 7 Model
10 11 10 10| —-3759 —-37.15 | 0.631 0.630 My
20 | —74.85 —=T74.25 | 0.681 0.679
40 | —149.38 —148.57 | 0.720 0.720
80 | —298.86 —297.61 | 0.821 0.821
10 9 10 10| —37.20 —=37.59 | 0.383 0.383 My
20 | —74.21 —74.80 | 0.325 0.326
40 | —148.55 —149.40 | 0.257 0.258
80 | —297.40 —298.63 | 0.190 0.189
10 10.1 10 10| —37.35 —=37.30 | 0.513 0.514 My
20 | —74.61 —74.53 | 0.527 0.525
40 | —148.94 —148.82 | 0.535 0.535
80 | —297.95 —298.83 | 0.548 0.549
160 | —595.72 —595.56 | 0.558 0.557
320 | —1190.4 —1190.2 | 0.571 0.573
640 | —2382.3 —2382.0 | 0.602 0.602
1280 | —4764.4 —4763.9 | 0.636 0.637
Bio-Equivalence
Simulation Mean Rate at Which Data-
of LSps(M,|y, B) | My» Was Chosen By | Generating
cge Opa o n| j=1" j=2" LSrg " Model
0.5 0 1 10| —13.81 —14.23 0.157 0.107 Min
20| —27.91 —29.00 | 0.056 0.027
40 | —56.31  —59.20 | 0.026 0.011
0.5 1 1 10| —-16.19 —13.85| 0.943 0.943 Moy
20| —31.78 —28.03 | 0.989 0.989
40 | —62.43 —56.28 | 1.000 1.000
0.1 0O 1 10| —14.16 —-13.78 | 0.721 1.000 Myn
20| —28.25 —27.89 | 0.712 1.000
45| —63.79  —63.51 | 0.705 1.000
46 | —65.24 —64.94 | 0.703 0.925
50 | —70.83 —70.54 | 0.684 0.775
80 | —113.56 —113.35 | 0.598 0.451
160 | —227.34 —227.38 | 0.276 0.204
320 | —453.80 —454.33 | 0.095 0.058
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which simultaneously (i) it was appropriate scientifically to model uncertainty about an observable
outcome with a continuous sampling distribution indexed by a real-valued parameter 6 and (ii)
there was a real scientific need to distinguish between two theories, one of which held that 6 was
precisely equal to some value 0y and the other of which held that 6 was free to vary continuously
in R.

This statement applies to all types of problems on which we have consulted, including regression
settings (cf. Draper (1999)): we know scientifically that a coefficient ; measuring the effect of a
predictor z; on a continuous outcome y, after adjustment for the other predictor variables, is not
precisely 0 — the scientific question is whether it is close enough to 0 in both practical and statistical
significance terms for it to be sensible to exclude z; — and, while people sometimes use point-and-
slab priors (which put a point mass on 0 and spread the rest of the mass out continuously on &)
on regression coefficients for computational convenience, we trust that they do so in the knowledge
that such priors never express anyone’s actual scientific uncertainty about a regression coefficient
with a continuous outcome variable.

We are, of course, open to the possibility that («x)-type problems exist, and we look forward
to detailed descriptions of them. &

Remark. One possible defense of point-null hypothesis testing is as follows: “Of course we know

that @ is not ezactly 0 in the model {(y;|0, B) 2o N(0,0?),p(0|B) diffuse, o known}; the point of

the test is to see if y is close to 0, with 1.96% as the yardstick.” To this we would reply as follows:

e If the goal is inference about 6, we are in complete agreement with Box and Tiao (1973), who
had no difficulty in writing a 588-page inferential text — which has long been recognized as
a classic — without the need for the word “hypothesis” to appear in the index: the posterior

distribution (A|y, B) ~ N (ﬂ, “—:) summarizes the totality of Your information about #, and

gives rise to the 95% (highest posterior density: HPD) interval y + 1.96%; if You are

wondering whether 6 = 0 has substantial support from the data, see if 0 is in the 95% HPD
interval for 6.

e If an action needs to be taken based on whether 6 is close to 0 or not, elicit the relevant
utilities and use MEU, where the expectation is over uncertainty about 6 as quantified via

(Oly. B) ~ N (5,%).

Remark. Tt is also possible to note that in Sections 2 and 3.1 we compared fixed-effects (M)
and random-effects (Ms) Poisson models, which amounts to choosing between 02 = 0 and % > 0
in the random-effects formulation M, and to object that (a) this does not cohere with the view
expressed in this section about point-null hypothesis testing and (b) LSpg will be inconsistent (in
the MGB sense) for M, in that it tends to prefer M, even when You simulate with o2 = 0. To
these objections we would reply that

e it is straightforward to re-formulate the results of Sections 2 and 3.1 by comparing 0 < 0% < ¢
and 02 > ¢ in the random-effects model, for a small practical significance threshold ¢ > 0,
and when this is done (i) the results are similar to those presented earlier and (ii) in this
formulation LSgg is now asymptotically consistent, and

e cven taking the MGB perspective, the behavior of LSgg is actually desirable, because it is
much worse to act as if 02 = 0 in random-effects models when it is not (this will result in a
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potentially dramatic understatement of uncertainty) than to act as if 0> > 0 when (unknown
to You) in fact 0%, = 0. #

Discussion

We have argued in this paper that

calibration — paying attention to how often You get the right answer — is a principle that
(a) is important scientifically and (b) arises naturally in good Bayesian modeling;

the question {Q);: Is model M; better than M;/?} is central to the process of well-calibrated
Bayesian model specification; and

this question is itself not well formed until You explicitly state the purpose to which the
models will be put, which turns Bayesian model specification into a decision problem that
should be addressed by maximizing expected utility (MEU), with a utility function that is
sensitive to the purpose of the modeling exercise.

One may nevertheless observe empirically that, even though the above two points imply that
MEU with a context-specific utility function is the only principled way to perform Bayesian model
comparison, modelers have a powerful desire for more generic comparison tools that may serve
as decent approximations to a principled (and therefore often resource-intensive) utility analysis.
There appear to be three broad classes of generic tools of this type:

Bayes factors — which are based on a 0-1 utility function in what Bernardo and Smith (1994)
call the M-closed view, in which You pretend that (a) there is a “true” data-generating model
Mpg and (b) Mp¢ is in the set M of models You are considering — and their close cousin
BIC;

log-score criteria such as LSrg, which are based on a predictive utility function; and

methods that do not make any explicit appeal to utility at all, such as the information-
theoretic AIC and DIC.

On the basis of the work presented here

we regard DIC' as a useful generalization of AIC' and LSrg as a further useful improvement
upon DIC', with three advantages: LSrgs may well have better small-sample model discrim-
ination behavior (as in the example simulated in Section 3.1); LSpg is insensitive to model
parameterization; and LSpg can be used in Bayesian nonparametric as well as parametric
settings;

we contend that — if You wish to decide when to stop looking for better models by asking
the question {Q,: Could the data have arisen from model M;?} — You should attempt to
answer this question in a well-calibrated manner (see Section 4 for a method that achieves
this with LSpg); and
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e until asymptotic calculations can be made, in problems of realistic difficulty, that closely
mimic the process of (i) generating a set M of models that You are prepared to regard as a
complete description of Your uncertainty — and doing so in a way that allows the complexity
of the models to grow in a realistic manner with the amount of data — and (ii) examining
the relative merits of these models, we believe that carefully-designed simulation studies will
provide a more reliable guide to assessing calibration in practice than asymptotics that do
not fully mimic the reality of practical model-building.

In such simulation studies, the testbed should be constructed to be as similar as possible
to the reality — in the actual problem under study — of generating M and comparing
models within it, except that You know the truth in Your simulation world; then competitor
methods for Bayesian model comparison such as {various flavors of Bayes factors, BIC} and
LSps can be evaluated, in repeated sampling, on their ability to discover known truth (see
Browne and Draper (2006) for examples of simulation environments along these lines, in
variance-components and random-effects logistic regression models).

For reasons of space we intend to report elsewhere on comparisons between {BIC and other
Bayes factors} and LSprg in a variety of real-world-relevant modeling situations, and we hope that
others will also undertake similar investigations, so that as a profession we can build up a body
of comparative knowledge on which accurate and well-calibrated Bayesian model specification can
rest.
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