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Glossary

Bayes’ theorem; prior, likelihood and posterior
distributions Given (a) � , something of interest which is

unknown to the person making an uncertainty as-
sessment, conveniently referred to as You, (b) y, an
information source which is relevant to decreasing
Your uncertainty about � , (c) a desire to learn about �
from y in a way that is both internally and externally
logically consistent, and (d) B, Your background as-
sumptions and judgments about how the world works,
as these assumptions and judgments relate to learning
about � from y, it can be shown that You are com-
pelled in this situation to reason within the standard
rules of probability as the basis of Your inferences
about � , predictions of future data y�, and decisions
in the face of uncertainty (see below for contrasts
between inference, prediction and decision-making),
and to quantify Your uncertainty about any unknown
quantities through conditional probability distribu-
tions. When inferences about � are the goal, Bayes’
Theorem provides a means of combining all relevant
information internal and external to y:

p(� jy;B) D c p(� jB) l(� jy;B) : (1)

Here, for example in the case in which � is a real-val-
ued vector of length k, (a) p(� jB) is Your prior dis-
tribution about � given B (in the form of a proba-
bility density function), which quantifies all relevant
information available to You about � external to y,
(b) c is a positive normalizing constant, chosen to
make the density on the left side of the equation in-
tegrate to 1, (c) l(� jy;B) is Your likelihood distribu-
tion for � given y and B, which is defined to be a den-
sity-normalized multiple of Your sampling distribu-
tion p(�j�;B) for future data values y� given � and
B, but re-interpreted as a function of � for fixed y,
and (d) p(� jy;B) is Your posterior distribution about �
given y and B, which summarizes Your current to-
tal information about � and solves the basic inference
problem.

Bayesian parametric and non-parametric modeling (1)
Following de Finetti [23], a Bayesian statistical model
is a joint predictive distribution p(y1; : : : ; yn) for ob-
servable quantities yi that have not yet been observed,
and about which You are therefore uncertain. When
the yi are real-valued, often You will not regard them
as probabilistically independent (informally, the yi are
independent if information about any of them does
not help You to predict the others); but it may be pos-
sible to identify a parameter vector � D (�1; : : : ; �k)
such that You would judge the yi conditionally inde-
pendent given � , and would therefore be willing to
model them via the relation

p(y1; : : : ; yn j�) D
nY

iD1

p(yi j�) : (2)

When combined with a prior distribution p(�) on �
that is appropriate to the context, this is Bayesian
parametric modeling, in which p(yi j�) will often have
a standard distributional form (such as binomial, Pois-
son or Gaussian). (2) When a (finite) parameter vec-
tor that induces conditional independence cannot be
found, if You judge your uncertainty about the real-
valued yi exchangeable (see below), then a representa-
tion theorem of de Finetti [21] states informally that all
internally logically consistent predictive distributions
p(y1; : : : ; yn) can be expressed in a way that is equiv-
alent to the hierarchical model (see below)

(FjB) � p(FjB)
(yi jF;B) IID

� F ;
(3)

where (a) F is the cumulative distribution function
(CDF) of the underlying process (y1; y2; : : : ) from
which You are willing to regard p(y1; : : : ; yn) as (in
effect) like a random sample and (b) p(FjB) is Your
prior distribution on the space F of all CDFs on the
real line. This (placing probability distributions on in-
finite-dimensional spaces such as F) is Bayesian non-
parametric modeling, in which priors involvingDirich-
let processes and/or Pólya trees (see Sect. “Inference:
Parametric and Non-Parametric Modeling of Count
Data”) are often used.

Exchangeability A sequence y D (y1; : : : ; yn) of random
variables (for n � 1) is (finitely) exchangeable if the
joint probability distribution p(y1; : : : ; yn) of the el-
ements of y is invariant under permutation of the
indices (1; : : : ; n), and a countably infinite sequence
(y1; y2; : : : ) is (infinitely) exchangeable if every finite
subsequence is finitely exchangeable.
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Hierarchical modeling Often Your uncertainty about
something unknown to You can be seen to have
a nested or hierarchical character. One class of ex-
amples arises in cluster sampling in fields such as
education and medicine, in which students (level 1)
are nested within classrooms (level 2) and patients
(level 1) within hospitals (level 2); cluster sampling in-
volves random samples (and therefore uncertainty) at
two or more levels in such a data hierarchy (exam-
ples of this type of hierarchical modeling are given
in Sect. “Strengths and Weaknesses of the Two Ap-
proaches”). Another, quite different, class of exam-
ples of Bayesian hierarchical modeling is exemplified
by equation (3) above, in which is was helpful to de-
compose Your overall predictive uncertainty about
(y1; : : : ; yn) into (a) uncertainty about F and then
(b) uncertainty about the yi given F (examples of this
type of hierarchical modeling appear in Sect. “Infer-
ence and Prediction: Binary Outcomes with No Co-
variates” and “Inference: Parametric and Non-Para-
metric Modeling of Count Data”).

Inference, prediction and decision-making; samples
and populations Given a data source y, inference involves

drawing probabilistic conclusions about the underly-
ing process that gave rise to y, prediction involves
summarizing uncertainty about future observable data
values y�, and decision-making involves looking for
optimal behavioral choices in the face of uncertainty
(about either the underlying process, or the future,
or both). In some cases inference takes the form of
reasoning backwards from a sample of data values to
a population: a (larger) universe of possible data val-
ues from which You judge that the sample has been
drawn in a manner that is representative (i. e., so that
the sampled and unsampled values in the population
are (likely to be) similar in relevant ways).

Mixture modeling Given y, unknown to You, and B,
Your background assumptions and judgments rele-
vant to y, You have a choice: You can either model
(Your uncertainty about) y directly, through the prob-
ability distribution p(yjB), or (if that is not feasible)
You can identify a quantity x upon which You judge y
to depend and model y hierarchically, in two stages:
first by modeling x, through the probability distribu-
tion p(xjB), and then by modeling y given x, through
the probability distribution p(yjx;B):

p(yjB) D
Z

X
p(yjx;B) p(xjB) dx ; (4)

whereX is the space of possible values of x over which
Your uncertainty is expressed. This is mixture model-

ing, a special case of hierarchical modeling (see above).
In hierarchical notation (4) can be re-expressed as

y D
�

x
(yjx)

�
: (5)

Examples of mixture modeling in this article include
(a) equation (3) above, with F playing the role of x;
(b) the basic equation governing Bayesian prediction,
discussed in Sect. “The Bayesian Statistical Paradigm”;
(c) Bayesian model averaging (Sect. “The Bayesian
Statistical Paradigm”); (d) de Finetti’s representation
theorem for binary outcomes (Sect. “Inference and
Prediction: Binary Outcomes with No Covariates”);
(e) random-effects parametric and non-parametric
modeling of count data (Sect. “Inference: Parametric
and Non-Parametric Modeling of Count Data”); and
(f) integrated likelihoods in Bayes factors (Sect. “Deci-
sion-Making: Variable Selection in Generalized Linear
Models; Bayesian Model Selection”).

Probability – frequentist and Bayesian In the frequen-
tist probability paradigm, attention is restricted to phe-
nomena that are inherently repeatable under (essen-
tially) identical conditions; then, for an event A of in-
terest, Pf (A) is the limiting relative frequency with
which A occurs in the (hypothetical) repetitions, as
the number of repetitions n!1. By contrast, Your
Bayesian probability PB(AjB) is the numerical weight
of evidence, given Your background information B
relevant to A, in favor of a true-false proposition A
whose truth status is uncertain to You, obeying a se-
ries of reasonable axioms to ensure that Your Bayesian
probabilities are internally logically consistent.

Utility To ensure internal logical consistency, optimal de-
cision-making proceeds by (a) specifying a utility func-
tion U(a; �0) quantifying the numerical value associ-
ated with taking action a if the unknown is really �0
and (b) maximizing expected utility, where the expec-
tation is taken over uncertainty in � as quantified by
the posterior distribution p(� jy;B).

Definition of the Subject and Introduction

Statistics may be defined as the study of uncertainty:
how to measure it, and how to make choices in the
face of it. Uncertainty is quantified via probability, of
which there are two leading paradigms, frequentist (dis-
cussed in Sect. “Comparison with the Frequentist Statisti-
cal Paradigm”) and Bayesian. In the Bayesian approach to
probability the primitive constructs are true-false proposi-
tions A whose truth status is uncertain, and the probabil-
ity of A is the numerical weight of evidence in favor of A,
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constrained to obey a set of axioms to ensure that Bayesian
probabilities are coherent (internally logically consistent).

The discipline of statistics may be divided broadly into
four activities: description (graphical and numerical sum-
maries of a data set y, without attempting to reason out-
ward from it; this activity is almost entirely non-proba-
bilistic and will not be discussed further here), inference
(drawing probabilistic conclusions about the underlying
process that gave rise to y), prediction (summarizing un-
certainty about future observable data values y�), and de-
cision-making (looking for optimal behavioral choices in
the face of uncertainty). Bayesian statistics is an approach
to inference, prediction and decision-making that is based
on the Bayesian probability paradigm, in which uncer-
tainty about an unknown � (this is the inference prob-
lem) is quantified by means of a conditional probability
distribution p(� jy;B); here y is all available relevant data
andB summarizes the background assumptions and judg-
ments of the person making the uncertainty assessment.
Prediction of a future y� is similarly based on the condi-
tional probability distribution p(y�jy;B), and optimal de-
cision-making proceeds by (a) specifying a utility function
U(a; �0) quantifying the numerical reward associated with
taking action a if the unknown is really �0 and (b) maxi-
mizing expected utility, where the expectation is taken over
uncertainty in � as quantified by p(� jy;B).

The Bayesian Statistical Paradigm

Statistics is the branch of mathematical and scientific
inquiry devoted to the study of uncertainty: its conse-
quences, and how to behave sensibly in its presence. The
subject draws heavily on probability, a discipline which
predates it by about 100 years: basic probability theory can
be traced [48] to work of Pascal, Fermat and Huygens in
the 1650s, and the beginnings of statistics [34,109] are ev-
ident in work of Bayes published in the 1760s.

The Bayesian statistical paradigm consists of three ba-
sic ingredients:

� � , something of interest which is unknown (or only
partially known) to the person making the uncertainty
assessment, conveniently referred to, in a convention
proposed by Good (1950), as You. Often � is a param-
eter vector of real numbers (of finite length k, say) or
a matrix, but it can literally be almost anything: for ex-
ample, a function (three leading examples are a cumu-
lative distribution function (CDF), a density, or a re-
gression surface), a phylogenetic tree, an image of a re-
gion on the surface of Mars at a particular moment in
time, : : :

� y, an information source which is relevant to decreasing
Your uncertainty about � . Often y is a vector of real
numbers (of finite length n, say), but it can also literally
be almost anything: for instance, a time series, a movie,
the text in a book, : : :

� A desire to learn about � from y in a way that is both co-
herent (internally consistent: in other words, free of in-
ternal logical contradictions; Bernardo and Smith [11]
give a precise definition of coherence) and well-cali-
brated (externally consistent: for example, capable of
making accurate predictions of future data y�).

It turns out [23,53] that You are compelled in this sit-
uation to reason within the standard rules of probabil-
ity (see below) as the basis of Your inferences about � ,
predictions of future data y�, and decisions in the face
of uncertainty, and to quantify Your uncertainty about
any unknown quantities through conditional probability
distributions, as in the following three basic equations of
Bayesian statistics:

p(� jy;B) D c p(� jB) l(� jy;B)

p(y�jy;B) D
Z

�

p(y�j�;B) p(� jy;B) d�

a� D argmax
a2A

E(� jy;B)
�
U(a; �)

�
:

(6)

(The basic rules of probability [71] are: for any true-
false propositions A and B and any background as-
sumptions and judgmentsB, (convexity) 0 � P(AjB) � 1,
with equality at 1 iff A is known to be true under B;
(multiplication) P(A and BjB) D P(AjB) P(BjA;B) D
P(BjB) P(AjB;B); and (addition) P(A or BjB) D P(AjB)
C P(BjB)� P(A and BjB).)

The meaning of the equations in (6) is as follows.

� B stands for Your background (often not fully stated)
assumptions and judgments about how the world
works, as these assumptions and judgments relate to
learning about � from y. B is often omitted from the
basic equations (sometimes with unfortunate conse-
quences), yielding the simpler-looking forms

p(� jy) D c p(�) l(� jy)

p(y�jy) D
Z

�

p(y�j�) p(� jy) d�

a� D argmax
a2A

E(� jy)
�
U(a; �)

�
:

(7)

� p(� jB) is Your prior information about � given B, in
the form of a probability density function (PDF) or
probability mass function (PMF) if � lives continuously
or discretely on Rk (this is generically referred to as
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Your prior distribution), and p(� jy;B) is Your poste-
rior distribution about � given y and B, which summa-
rizes Your current total information about � and solves
the basic inference problem. These are actually not very
good names for p(� jB) and p(� jy;B), because (for ex-
ample) p(� jB) really stands for all (relevant) informa-
tion about � (given B) external to y, whether that in-
formation was obtained before (or after) y arrives, but
(a) they do emphasize the sequential nature of learn-
ing and (b) through long usage it would be difficult for
more accurate names to be adopted.

� c (here and throughout) is a generic positive normal-
izing constant, inserted into the first equation in (6) to
make the left-hand side integrate (or sum) to 1 (as any
coherent distribution must).

� p(y�j�;B) is Your sampling distribution for future data
values y� given � and B (and presumably You would
use the same sampling distribution p(yj�;B) for (past)
data values y, mentally turning the clock back to a point
before the data arrives and thinking about what values
of y You might see). This assumes that You are willing
to regard Your data as like random draws from a pop-
ulation of possible data values (an heroic assumption
in some cases, for instance with observational rather
than randomized data; this same assumption arises in
the frequentist statistical paradigm, discussed below
in Sect. “Comparison with the Frequentist Statistical
Paradigm”).

� l(� jy;B) is Your likelihood function for � given y and
B, which is defined to be any positive constant multi-
ple of the sampling distribution p(yj�;B) but re-inter-
preted as a function of � for fixed y:

l(� jy;B)D c p(yj�;B) : (8)

The likelihood function is also central to one of the
main approaches to frequentist statistical inference, de-
veloped by Fisher [37]; the two approaches are con-
trasted in Sect.“Comparison with the Frequentist Sta-
tistical Paradigm”.
All of the symbols in the first equation in (6) have now
been defined, and this equation can be recognized as
Bayes’ Theorem, named after Bayes [5] because a special
case of it appears prominently in work of his that was
published posthumously. It describes how to pass co-
herently from information about � external to y (quan-
tified in the prior distribution p(� jB)) to information
both internal and external to y (quantified in the poste-
rior distribution p(� jy;B)), via the likelihood function
l(� jy;B): You multiply the prior and likelihood point-
wise in � and normalize so that the posterior distribu-
tion p(� jy;B) integrates (or sums) to 1.

� According to the second equation in (6), p(y�jy;B),
Your (posterior) predictive distribution for future
data y� given (past) data y and B, which solves the
basic prediction problem, must be a weighted aver-
age of Your sampling distribution p(y�j�;B) weighted
by Your current best information p(� jy;B) about �
given y andB; in this integral	 is the space of possible
values of � over which Your uncertainty is expressed.
(The second equation in (6) contains a simplifying as-
sumption that should be mentioned: in full generality
the first term p(y�j�;B) inside the integral would be
p(y�jy; �;B), but it is almost always the case that the
information in y is redundant in the presence of com-
plete knowledge of � , in which case p(y�jy; �;B) D
p(y�j�;B); this state of affairs could be described by
saying that the past and future are conditionally inde-
pendent given the truth. A simple example of this phe-
nomenon is provided by coin-tossing: if You are watch-
ing a Bernoulli(�) process unfold (see Sect. “Inference
and Prediction: Binary Outcomes with No Covariates”)
whose success probability � is unknown to You, the in-
formation that 8 of the first 10 tosses have been heads is
definitely useful to You in predicting the 11th toss, but
if instead You somehow knew that � was 0.7, the out-
come of the first 10 tosses would be irrelevant to You in
predicting any future tosses.)

� Finally, in the context of making a choice in the face of
uncertainty,A is Your set of possible actions, U(a; �0)
is the numerical value (utility) You attach to taking ac-
tion a if the unknown is really �0 (specified, without
loss of generality, so that large utility values are pre-
ferred by You), and the third equation in (6) says that
to make the choice coherently You should find the ac-
tion a� thatmaximizes expected utility (MEU); here the
expectation

E(� jy;B)
�
U(a; �)

�
D

Z

�

U(a; �) p(� jy;B) d� (9)

is taken over uncertainty in � as quantified by the pos-
terior distribution p(� jy;B).

This summarizes the entire Bayesian statistical paradigm,
which is driven by the three equations in (6). Examples
of its use include clinical trial design [56] and analy-
sis [105]; spatio-temporal modeling, with environmental
applications [101]; forecasting and dynamic linear mod-
els [115]; non-parametric estimation of receiver operat-
ing characteristic curves, with applications in medicine
and agriculture [49]; finite selection models, with health
policy applications [79]; Bayesian CART model search,
with applications in breast cancer research [16]; construc-



460 B Bayesian Statistics

tion of radiocarbon calibration curves, with archaeological
applications [15]; factor regression models, with applica-
tions to gene expression data [114]; mixture modeling for
high-density genotyping arrays, with bioinformatic appli-
cations [100]; the EM algorithm for Bayesian fitting of la-
tent process models [76]; state-spacemodeling, with appli-
cations in particle-filtering [92]; causal inference [42,99];
hierarchical modeling of DNA sequences, with genetic and
medical applications [77]; hierarchical Poisson regression
modeling, with applications in health care evaluation [17];
multiscale modeling, with engineering and financial ap-
plications [33]; expected posterior prior distributions for
model selection [91]; nested Dirichlet processes, with ap-
plications in the health sciences [96]; Bayesian methods
in the study of sustainable fisheries [74,82]; hierarchical
non-parametric meta-analysis, with medical and educa-
tional applications [81]; and structural equation model-
ing of multilevel data, with applications to health pol-
icy [19].

Challenges to the paradigm include the following:

� Q: How do You specify the sampling distribution/
likelihood function that quantifies the information
about the unknown � internal to Your data set y?
A: (1) The solution to this problem, which is common
to all approaches to statistical inference, involves imag-
ining future data y� from the same process that has
yielded or will yield Your data set y; often the variabil-
ity You expect in future data values can be quantified
(at least approximately) through a standard parametric
family of distributions (such as the Bernoulli/binomial
for binary data, the Poisson for count data, and the
Gaussian for real-valued outcomes) and the parame-
ter vector of this family becomes the unknown � of in-
terest. (2) Uncertainty in the likelihood function is re-
ferred to as model uncertainty [67]; a leading approach
to quantifying this source of uncertainty is Bayesian
model averaging [18,25,52], in which uncertainty about
the modelsM in an ensembleM of models (specifying
M is part of B) is assessed and propagated for a quan-
tity, such as a future data value y�, that is common to
all models via the expression

p(y�jy;B) D
Z

M
p(y�jy;M;B) p(Mjy;B) dM : (10)

In other words, to make coherent predictions in
the presence of model uncertainty You should form
a weighted average of the conditional predictive
distributions p(y�jy;M;B), weighted by the pos-
terior model probabilities p(Mjy;B). Other poten-
tially useful approaches to model uncertainty include

Bayesian non-parametric modeling, which is examined
in Sect. “Inference: Parametric and Non-Parametric
Modeling of Count Data”, andmethods based on cross-
validation [110], in which (in Bayesian language) part
of the data is used to specify the prior distribution on
M (which is an input to calculating the posterior model
probabilities) and the rest of the data is employed to up-
date that prior.

� Q: How do You quantify information about the un-
known � external to Your data set y in the prior proba-
bility distribution p(� jB)? A: (1) There is an extensive
literature on elicitation of prior (and other) probabili-
ties; notable references include O’Hagan et al. [85] and
the citations given there. (2) If � is a parameter vector
and the likelihood function is a member of the expo-
nential family [11], the prior distribution can be cho-
sen in such a way that the prior and posterior distri-
butions for � have the same mathematical form (such
a prior is said to be conjugate to the given likelihood);
this may greatly simplify the computations, and often
prior information can (at least approximately) be quan-
tified by choosing a member of the conjugate family
(see Sect.“Inference and Prediction: Binary Outcomes
with No Covariates” for an example of both of these
phenomena).
In situations where it is not precisely clear how to quan-
tify the available information external to y, two sets of
tools are available:
� Sensitivity analysis [30], also known as pre-posterior

analysis [4]: Before the data have begun to arrive,
You can (a) generate data similar to what You ex-
pect You will see, (b) choose a plausible prior speci-
fication and update it to the posterior on the quanti-
ties of greatest interest, (c) repeat (b) across a variety
of plausible alternatives, and (d) see if there is sub-
stantial stability in conclusions across the variations
in prior specification. If so, fine; if not, this approach
can be combined with hierarchical modeling [68]:
You can collect all of the plausible priors and add
a layer hierarchically to the prior specification, with
the new layer indexing variation across the prior al-
ternatives.

� Bayesian robustness [8,95]: If, for example, the con-
text of the problem implies that You only wish to
specify that the prior distribution belongs to an infi-
nite-dimensional class (such as, for priors on (0; 1),
the class of monotone non-increasing functions)
with (for instance) bounds on the first two mo-
ments, You can in turn quantify bounds on sum-
maries of the resulting posterior distribution, which
may be narrow enough to demonstrate that Your
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uncertainty in specifying the prior does not lead to
differences that are large in practical terms.

Often context suggests specification of a prior that has
relatively little information content in relation to the
likelihood information; for reasons that are made clear
in Sect. “Inference and Prediction: Binary Outcomes
with No Covariates”, such priors are referred to as rela-
tively diffuse or flat (the term non-informative is some-
times also used, but this seems worth avoiding, because
any prior specification takes a particular position re-
garding the amount of relevant information external
to the data). See Bernardo [10] and Kass and Wasser-
man [60] for a variety of formal methods for generating
diffuse prior distributions.

� Q: How do You quantify Your utility function U(a; �)
for optimal decision-making? A: There is a rather
less extensive statistical literature on elicitation of util-
ity than probability; notable references include Fish-
burn [35,36], Schervish et al. [103], and the citations in
Bernardo ans Smith [11]. There is a parallel (and some-
what richer) economics literature on utility elicitation;
see, for instance, Abdellaoui [1] and Blavatskyy [12].
Sect. “Decision-Making: Variable Selection in Gener-
alized Linear Models; Bayesian Model Selection” pro-
vides a decision-theoretic example.

� Suppose that � D (�1; : : : ; �k) is a parameter vector of
length k. Then (a) computing the normalizing constant
in Bayes’ Theorem

c D
�Z
� � �

Z
p(yj�1; : : : ; �k ;B)

� p(�1; : : : ; �k jB) d�1 � � �d�k
��1

(11)

involves evaluating a k-dimensional integral; (b) the
predictive distribution in the second equation in (6) in-
volves another k-dimensional integral; and (c) the pos-
terior p(�1; : : : ; �kjy;B) is a k-dimensional probability
distribution, which for k > 2 can be difficult to visual-
ize, so that attention often focuses on themarginal pos-
terior distributions

p(� j jy;B) D
Z
� � �

Z
p(�1; : : : ; �k jy;B) d�� j (12)

for j D 1; : : : k, where �� j is the � vector with compo-
nent j omitted; each of these marginal distributions in-
volves a (k � 1)-dimensional integral. If k is large these
integrals can be difficult or impossible to evaluate ex-
actly, and a general method for computing accurate ap-
proximations to them proved elusive from the time of
Bayes in the eighteenth century until recently (in the

late eighteenth century Laplace [63]) developed an ana-
lytical method, which today bears his name, for approx-
imating integrals that arise in Bayesian work [11], but
his method is not as general as the computationally-in-
tensive techniques in widespread current use). Around
1990 there was a fundamental shift in Bayesian compu-
tation, with the belated discovery by the statistics pro-
fession of a class of techniques – Markov chain Monte
Carlo (MCMC) methods [41,44] – for approximating
high-dimensional Bayesian integrals in a computation-
ally-intensive manner, which had been published in
the chemical physics literature in the 1950s [78]; these
methods came into focus for the Bayesian community
at a moment when desktop computers had finally be-
come fast enough to make use of such techniques.
MCMCmethods approximate integrals associated with
the posterior distribution p(� jy;B) by (a) creating
a Markov chain whose equilibrium distribution is the
desired posterior and (b) sampling from this chain
from an initial �(0) (i) until equilibrium has been
reached (all draws up to this point are typically dis-
carded) and (ii) for a sufficiently long period there-
after to achieve the desired approximation accuracy.
With the advent and refinement of MCMC methods
since 1990, the Bayesian integration problem has been
solved for a wide variety of models, with more ambi-
tious sampling schemes made possible year after year
with increased computing speeds: for instance, in prob-
lems in which the dimension of the parameter space is
not fixed in advance (an example is regression change-
point problems [104], where the outcome y is assumed
to depend linearly (apart from stochastic noise) on
the predictor(s) x but with an unknown number of
changes of slope and intercept and unknown loca-
tions for those changes), ordinary MCMC techniques
will not work; in such problems methods such as re-
versible-jump MCMC [47,94] and Markov birth-death
processes [108], which create Markov chains that per-
mit trans-dimensional jumps, are required.
The main drawback of MCMC methods is that they
do not necessarily scale well as n (the number of data
observations) increases; one alternative, popular in
the machine learning community, is variationalmeth-
ods [55], which convert the integration problem into an
optimization problem by (a) approximating the poste-
rior distribution of interest by a family of distributions
yielding a closed-form approximation to the integral
and (b) finding the member of the family that maxi-
mizes the accuracy of the approximation.

� Bayesian decision theory [6], based on maximizing ex-
pected utility, is unambiguous in its normative rec-
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ommendation for how a single agent (You) should
make a choice in the face of uncertainty, and it has
had widespread success in fields such as economics
(e. g., [2,50]) and medicine (e. g., [87,116]). It is well
known, however [3,112]), that Bayesian decision theory
(or indeed any other formal approach that seeks an op-
timal behavioral choice) can be problematic when used
normatively for group decision-making, because of
conflicts in preferences among members of the group.
This is an important unsolved problem.

Three Examples

Inference and Prediction:
Binary Outcomes with No Covariates

Consider the problem of measuring the quality of care
at a particular hospital H. One way to do this is to ex-
amine the outcomes of that care, such as mortality, af-
ter adjusting for the burden of illness brought by the pa-
tients to H on admission. As an even simpler version of
this problem, consider just the n binary mortality observ-
ables y D (y1; : : : ; yn) (with mortality measured within
30 days of admission, say; 1 = died, 0 = lived) that You
will see from all of the patients at H with a particular
admission diagnosis (heart attack, say) during some pre-
specified future time window. You acknowledge Your un-
certainty about which elements in the sequence will be
0s and which 1s, and You wish to quantify this uncer-
tainty using the Bayesian paradigm. As de Finetti [20]
noted, in this situation Your fundamental imperative is
to construct a predictive distribution p(y1; : : : ; yn jB) that
expresses Your uncertainty about the future observables,
rather than – as is perhaps more common – to reach im-
mediately for a standard family of parametric models for
the yi (in other words, to posit the existence of a vector
� D (�1; : : : ; �k) of parameters and to model the observ-
ables by appeal to a family p(yi j�;B) of probability distri-
butions indexed by �).

Even though the yi are binary, with all but the small-
est values of n it still seems a formidable task to elicit
from Yourself an n-dimensional predictive distribution
p(y1; : : : ; yn jB). De Finetti [20] showed, however, that the
task is easier than it seems. In the absence of any further
information about the patients, You notice that Your un-
certainty about them is exchangeable: if someone (with-
out telling You) were to rearrange the order in which their
mortality outcomes become known to You, Your predic-
tive distribution would not change. This still seems to leave
p(y1; : : : ; yn jB) substantially unspecified (where B now
includes the judgment of exchangeability of the yi), but

de Finetti [20] proved a remarkable theorem which shows
(in effect) that all exchangeable predictive distributions for
a vector of binary observables are representable as mix-
tures of Bernoulli sampling distributions: if You’re will-
ing to regard (y1; : : : ; yn) as the first n terms in an in-
finitely exchangeable binary sequence (y1; y2; : : : ) (which
just means that every finite subsequence is exchangeable),
then to achieve coherence Your predictive distribution
must be expressible as

p(y1; : : : ; yn jB) D
Z 1

0
� sn (1� �)n�sn p(� jB) d� ; (13)

where sn D
Pn

iD1 yi . Here the quantity � on the right side
of (13) is more than just an integration variable: the equa-
tion says that in Your predictive modeling of the binary yi
You may as well proceed as if

� There is a quantity called � , interpretable both as the
marginal death probability p(yi D 1j�;B) for each pa-
tient and as the long-run mortality rate in the infinite
sequence (y1; y2; : : : ) (which serves, in effect, as a pop-
ulation of values to which conclusions from the data
can be generalized);

� Conditional on � and B, the yi are independent identi-
cally distributed (IID) Bernoulli (�); and

� � can be viewed as a realization of a random variable
with density p(� jB).

In other words, exchangeability of Your uncertainty about
a binary process is functionally equivalent to assuming the
simple Bayesian hierarchicalmodel [27]

(� jB) � p(� jB)
(yi j�;B) IID

� Bernoulli(�) ;
(14)

and p(� jB) is recognizable as Your prior distribution
for � , the underlying death rate for heart attack patients
similar to those You expect will arrive at hospital H dur-
ing the relevant time window.

Consider now the problem of quantitatively specifying
prior information about � . From (13) and (14) the likeli-
hood function is

l(� jy;B)D c � sn (1 � �)n�sn ; (15)

which (when interpreted in the Bayesian manner as a den-
sity in �) is recognizable as a member of the Beta family of
probability distributions: for ˛; ˇ > 0 and 0 < � < 1,

� � Beta(˛; ˇ) iff p(�) D c �˛�1(1 � �)ˇ�1 : (16)

Moreover, this family has the property that the product
of two Beta densities is another Beta density, so by Bayes’
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Theorem if the prior p(� jB) is chosen to be Beta(˛; ˇ)
for some (as-yet unspecified) ˛ > 0 and ˇ > 0, then the
posterior will be Beta(˛ C sn ; ˇ C n � sn): this is conju-
gacy (Sect. “The Bayesian Statistical Paradigm”) of the Beta
family for the Bernoulli/binomial likelihood. In this case
the conjugacy leads to a simple interpretation of ˛ and ˇ:
the prior acts like a data set with ˛ 1s and ˇ 0s, in the sense
that if person 1 does a Bayesian analysis with a Beta(˛; ˇ)
prior and sample data y D (y1; : : : ; yn) and person 2 in-
steadmerges the corresponding “prior data set” with y and
does a maximum-likelihood analysis (Sect. “Comparison
with the Frequentist Statistical Paradigm”) on the result-
ing merged data, the two people will get the same answers.
This also shows that the prior sample size n0 in the Beta–
Bernoulli/binomial model is (˛ C ˇ). Given that the mean
of a Beta(˛; ˇ) distribution is ˛ / (˛ C ˇ), calculation re-
veals that the posterior mean (˛ C sn) / (˛ C ˇ C n) of �
is a weighted average of the prior mean and the data mean
y D 1

n
Pn

iD1 yi , with prior and data weights n0 and n, re-
spectively:

˛ C sn
˛ C ˇ C n

D
n0



˛
˛Cˇ

�
C ny

n0 C n
: (17)

These facts shed intuitive light on how Bayes’ Theorem
combines information internal and external to a given
data source: thinking of prior information as equivalent
to a data set is a valuable intuition, even in non-conjugate
settings.

The choice of ˛ and ˇ naturally depends on the avail-
able information external to y. Consider for illustration
two such specifications:

� Analyst 1 does a web search and finds that the 30-day
mortality rate for heart attack (given average quality of
care and average patient sickness at admission) in her
country is 15%. The information she has about hospi-
tal H is that its care and patient sickness are not likely
to be wildly different from the country averages but that
a mortality deviation from the mean, if present, would
be more likely to occur on the high side than the low.
Having lived in the community served by H for some
time and having not heard anything either outstand-
ing or deplorable about the hospital, she would be sur-
prised to find that the underlying heart attack death
rate at H was less than (say) 5% or greater than (say)
30%. One way to quantify this information is to set the
prior mean to 15% and to place (say) 95% of the prior
mass between 5% and 30%.

� Analyst 2 has little information external to y and thus
wishes to specify a relatively diffuse prior distribution

that does not dramatically favor any part of the unit in-
terval.

Numerical integration reveals that (˛; ˇ) D (4:5; 25:5),
with a prior sample size of 30.0, satisfies Analyst 1’s con-
straints. Analyst 2’s diffuse prior evidently corresponds to
a rather small prior sample size; a variety of positive val-
ues of ˛ and ˇ near 0 are possible, all of which will lead to
a relatively flat prior.

Suppose for illustration that the time period in ques-
tion is about four years in length and H is a medium-size
US hospital; then there will be about n D 385 heart attack
patients in the data set y. Suppose further that the observed
mortality rate at H comes out y D sn / n D 69 / 385 :

D

18%. Figure 1 summarizes the prior-to-posterior updat-
ing with this data set and the two priors for Analysts 1
(left panel) and 2 (right panel), with ˛ D ˇ D 1 (the Uni-
form distribution) for Analyst 2. Even though the two
priors are rather different – Analyst 1’s prior is skewed,
with a prior mean of 0.15 and n0

:
D 30; Analyst 2’s prior

is flat, with a prior mean of 0.5 and n0 D 2 – it is evi-
dent that the posterior distributions are nearly the same
in both cases; this is because the data sample size n D 385
is so much larger than either of the prior sample sizes, so
that the likelihood information dominates. With both pri-
ors the likelihood and posterior distributions are nearly
the same, another consequence of n0 
 n. For Analyst 1
the posterior mean, standard deviation, and 95% central
posterior interval for � are (0:177; 0:00241; 0:142; 0:215),
and the corresponding numerical results for Analyst 2
are (0:181; 0:00258; 0:144; 0:221); again it is clear that the
two sets of results are almost identical. With a large sam-
ple size, careful elicitation – like that undertaken by Ana-
lyst 1 –will often yield results similar to those with a diffuse
prior.

The posterior predictive distributionp(ynC1jy1; : : :yn ;
B) for the next observation, having observed the first n, is
also straightforward to calculate in closed form with the
conjugate prior in this model. It is clear that p(ynC1jy;B)
has to be a Bernoulli(��) distribution for some ��, and
intuition says that �� should just be the mean ˛�/ (˛� C
ˇ�) of the posterior distribution for � given y, in which
˛� D ˛ C sn and ˇ� D ˇ C n � sn are the parameters
of the Beta posterior. To check this, making use of the fact
that the normalizing constant in the Beta(˛; ˇ) family is
� (˛ C ˇ) /� (˛)� (ˇ), the second equation in (6) gives

p(ynC1jy1; : : : yn ;B)

D

Z 1

0
� ynC1 (1 � �)1�ynC1

� (˛� C ˇ�)
� (˛�)� (ˇ�)

�˛
��1

� (1 � �)ˇ
��1 d�
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Bayesian Statistics, Figure 1
Prior-to-posterior updating with two prior specifications in the mortality data set (in both panels, prior: long dotted lines; likelihood:
short dotted lines; posterior: solid lines). The left and right panels give the updating with the priors for Analysts 1 and 2, respectively

D
� (˛� C ˇ�)
� (˛�)� (ˇ�)

Z 1

0
�˛
�CynC1�1

� (1 � �)(ˇ
��ynC1C1)�1 d�

D

�
� (˛� C ynC1)

� (˛�)

� �
� (ˇ� � ynC1 C 1)

� (ˇ�)

�

�

�
� (˛� C ˇ�)

� (˛� C ˇ� C 1)

�
; (18)

this, combined with the fact that � (x C 1) /� (x) D x for
any real x, yields, for example in the case ynC1 D 1,

p(ynC1 D 1jy;B) D
�
� (˛� C 1)
� (˛�)

� �
� (˛� C ˇ�)

� (˛� C ˇ� C 1)

�

D
˛�

˛� C ˇ�
; (19)

confirming intuition.

Inference: Parametric and Non-Parametric Modeling
of Count Data

Most elderly people in the Western world say they would
prefer to spend the end of their lives at home, but many
instead finish their lives in an institution (a nursing home

or hospital). How can elderly people living in their com-
munities be offered health and social services that would
help to prevent institutionalization? Hendriksen et al. [51]
conducted an experiment in the 1980s in Denmark to test
the effectiveness of in-home geriatric assessment (IHGA),
a form of preventive medicine in which each person’s
medical and social needs are assessed and acted upon in-
dividually. A total of n D 572 elderly people living in non-
institutional settings in a number of villages were random-
ized, nC D 287 to a control group, who received standard
health care, and nT D 285 to a treatment group, who re-
ceived standard care plus IHGA. The number of hospital-
izations during the two-year life of the study was an out-
come of particular interest.

The data are presented and summarized in Table 1. Ev-
idently IHGA lowered the mean hospitalization rate per
two years (for the elderly Danish people in the study, at
least) by (0:944 � 0:768) :D 0:176, which is about an 18%
reduction from the control level, a clinically large differ-
ence. The question then becomes, in Bayesian inferential
language: what is the posterior distribution for the treat-
ment effect in the entire population P of patients judged
exchangeable with those in the study?
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Bayesian Statistics, Table 1
Distribution of number of hospitalizations in the IHGA study

Group
Number of Hospitalizations Sample
0 1 2 3 4 5 6 7 n Mean Variance

Control 138 77 46 12 8 4 0 2 287 0.944 1.54
Treat-
ment

147 83 37 13 3 1 1 0 285 0.768 1.02

Continuing to refer to the relevant analyst as You, with
a binary outcome variable and no covariates in Sect. “In-
ference and Prediction: Binary Outcomes with No Covari-
ates” the model arose naturally from a judgment of ex-
changeability of Your uncertainty about all n outcomes,
but such a judgment of unconditional exchangeability
would not be appropriate initially here; to make such
a judgment would be to assert that the treatment and con-
trol interventions have the same effect on hospitalization,
and it was the point of the study to see if this is true.
Here, at least initially, it would be more scientifically ap-
propriate to assert exchangeability separately and in par-
allel within the two experimental groups, a judgment de
Finetti [22] called partial exchangeability and which has
more recently been referred to as conditional exchangeabil-
ity [28,72] given the treatment/control status covariate.

Considering for the moment just the control group
outcome values Ci ; i D 1; : : : ; nC , and seeking as in Sect.
“Inference and Prediction: Binary Outcomes with No
Covariates” to model them via a predictive distribu-
tion p(C1; : : : ;CnC jB), de Finetti’s previous representa-
tion theorem is not available because the outcomes are
real-valued rather than binary, but he proved [21] another
theorem for this situation as well: if You’re willing to re-
gard (C1; : : : ;CnC ) as the first nC terms in an infinitely ex-
changeable sequence (C1;C2; : : : ) of values on R (which
plays the role of the population P, under the control con-
dition, in this problem), then to achieve coherence Your
predictive distribution must be expressible as

p(C1; : : : ;CnC jB) D
Z

F

nCY

iD1

F(Ci ) dG(FjB) ; (20)

here (a) F has an interpretation as F(t) D limnC!1 FnC (t),
where FnC is the empirical CDF based on (C1; : : : ;CnC );
(b) G(FjB) D limnC!1 p(FnC jB), where p(�jB) is Your
joint probability distribution on (C1;C2; : : : ); and (c) F
is the space of all possible CDFs on R. Equation (20) says
informally that exchangeability of Your uncertainty about
an observable process unfolding on the real line is func-
tionally equivalent to assuming the Bayesian hierarchical

model

(FjB) � p(FjB)
(yi jF;B) IID

� F ;
(21)

where p(FjB) is a prior distribution on F . Placing distri-
butions on functions, such as CDFs and regression sur-
faces, is the topic addressed by the field of Bayesian non-
parametric (BNP) modeling [24,80], an area of statistics
that has recently moved completely into the realm of day-
to-day implementation and relevance through advances
in MCMC computational methods. Two rich families of
prior distributions on CDFs about which a wealth of prac-
tical experience has recently accumulated include (mix-
tures of) Dirichlet processes [32] and Pólya trees [66].

Parametric modeling is of course also possible with
the IHGA data: as noted by Krnjajić et al. [62], who
explore both parametric and BNP models for data of
this kind, Poisson modeling is a natural choice, since
the outcome consists of counts of relatively rare events.
The first Poisson model to which one would generally
turn is a fixed-effects model, in which (Ci j
C) are IID
Poisson(
C ) (i D 1; : : : ; nC D 287) and (Tj j
T) are IID
Poisson(
T ) ( j D 1; : : : ; nT D 285), with a diffuse prior
on (
C ; 
T ) if little is known, external to the data set,
about the underlying hospitalization rates in the control
and treatment groups. However, the last two columns of
Table 1 reveal that the sample variance is noticeably larger
than the sample mean in both groups, indicating sub-
stantial Poisson over-dispersion. For a second, improved,
parametric model this suggests a random-effects Poisson
model of the form

(Ci j
iC)
indep
� Poisson(
iC )

�
log(
iC )jˇ0C ; �2C

� IID
� N(ˇ0C ; �2C ) ;

(22)

and similarly for the treatment group, with diffuse priors
for (ˇ0C ; �2C ; ˇ0T ; �

2
T ). As Krnjajić et al. [62] note, from

a medical point of view this model is more plausible than
the fixed-effects formulation: each patient in the control
group has his/her own latent (unobserved) underlying rate
of hospitalization 
iC , which may well differ from the un-
derlying rates of the other control patients because of un-
measured differences in factors such as health status at the
beginning of the experiment (and similarly for the treat-
ment group).

Model (22), when complemented by its analogue in the
treatment group, specifies a Lognormal mixture of Pois-
son distributions for each group and is straightforward to
fit by MCMC, but the Gaussian assumption for the mixing
distribution is conventional, not motivated by the under-
lying science of the problem, and if the distribution of the
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latent variables is not Gaussian – for example, if it is mul-
timodal or skewed – model (22) may well lead to incor-
rect inferences. Krnjajić et al. [62] therefore also examine
several BNP models that are centered on the random-ef-
fects Poisson model but which permit learning about the
true underlying distribution of the latent variables instead
of assuming it is Gaussian. One of their models, when ap-
plied (for example) to the control group, was

(Ci j
iC)
indep
� Poisson(
iC )

�
log(
iC )jG

� IID
� G

(Gj˛;�; �2) � DP[˛ N(�; �2)] :

(23)

Here DP[˛ N(�; �2)] refers to a Dirichlet process prior
distribution, on the CDF G of the latent variables, which
is centered at the N(�; �2) model with precision param-
eter ˛. Model (23) is an expansion of the random-effects
Poisson model (22) in that the latter is a special case of the
former (obtained by letting ˛ !1). Model expansion is
a common Bayesian analytic tool which helps to assess and
propagate model uncertainty: if You are uncertain about
a particular modeling detail, instead of fitting a model that
assumes this detail is correct with probability 1, embed it
in a richer model class of which it is a special case, and let
the data tell You about its plausibility.

With the IHGA data, models (22) and (23) turned
out to arrive at similar inferential conclusions – in both
cases point estimates of the ratio of the treatment mean to
the control mean were about 0.82 with a posterior stan-
dard deviation of about 0.09, and a posterior probabil-
ity that the (population) mean ratio was less than 1 of
about 0.95, so that evidence is strong that IHGA lowers
mean hospitalizations not just in the sample but in the
collection P of elderly people to whom it is appropriate
to generalize. But the two modeling approaches need not
yield similar results: if the latent variable distribution is far
from Gaussian, model (22) will not be able to adjust to
this violation of one of its basic assumptions. Krnjajić et
al. [62] performed a simulation study in which data sets
with 300 observations were generated from various Gaus-
sian and non-Gaussian latent variable distributions and
a variety of parametric and BNP models were fit to the re-
sulting count data; Fig. 2 summarizes the prior and pos-
terior predictive distributions from models (22; top panel)
and (23; bottom panel) with a bimodal latent variable dis-
tribution. The parametric Gaussian random-effects model
cannot fit the bimodality on the data scale, but the BNP
model – even though centered on the Gaussian as the ran-
dom-effects distribution – adapts smoothly to the under-
lying bimodal reality.

Decision-Making: Variable Selection in Generalized
Linear Models; Bayesian Model Selection

Variable selection (choosing the “best” subset of predic-
tors) in generalized linearmodels is an old problem, dating
back at least to the 1960s, and many methods [113] have
been proposed to try to solve it; but virtually all of them
ignore an aspect of the problem that can be important: the
cost of data collection of the predictors. An example, stud-
ied by Fouskakis and Draper [39], which is an elaboration
of the problem examined in Sect. “Inference and Predic-
tion: Binary Outcomes with No Covariates”, arises in the
field of quality of health care measurement, where patient
sickness at admission is often assessed by using logistic re-
gression of an outcome, such as mortality within 30 days
of admission, on a fairly large number of sickness indica-
tors (on the order of 100) to construct a sickness scale, em-
ploying standard variable selection methods (for instance,
backward selection from a model with all predictors) to
find an “optimal” subset of 10–20 indicators that predict
mortality well. The problem with such benefit-only meth-
ods is that they ignore the considerable differences among
the sickness indicators in the cost of data collection; this
issue is crucial when admission sickness is used to drive
programs (now implemented or under consideration in
several countries, including the US and UK) that attempt
to identify substandard hospitals by comparing observed
and expected mortality rates (given admission sickness),
because such quality of care investigations are typically
conducted under cost constraints. When both data-collec-
tion cost and accuracy of prediction of 30-day mortality
are considered, a large variable-selection problem arises in
which the only variables that make it into the final scale
should be those that achieve a cost-benefit tradeoff.

Variable selection is an example of the broader pro-
cess of model selection, in which questions such as “Is
model M1 better than M2?” and “Is M1 good enough?”
arise. These inquiries cannot be addressed, however, with-
out first answering a new set of questions: good enough
(better than) for what purpose? Specifying this pur-
pose [26,57,61,70] identifies model selection as a deci-
sion problem that should be approached by constructing
a contextually relevant utility function andmaximizing ex-
pected utility. Fouskakis and Draper [39] create a utility
function, for variable selection in their severity of illness
problem, with two components that are combined addi-
tively: a data-collection component (in monetary units,
such as US$), which is simply the negative of the total
amount of money required to collect data on a given set
of patients with a given subset of the sickness indicators;
and a predictive-accuracy component, in which a method
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Bayesian Statistics, Figure 2
Prior (open circles) and posterior (solid circles) predictive distributions under models (22) and (23) (top and bottom panels, respec-
tively) based on a data set generated from a bimodal latent variable distribution. In each panel, the histogram plots the simulated
counts

is devised to convert increased predictive accuracy into de-
creasedmonetary cost by thinking about the consequences
of labeling a hospital with bad quality of care “good” and
vice versa. One aspect of their work, with a data set (from
a RAND study: [58]) involving p D 83 sickness indica-
tors gathered on a representative sample of n D 2,532 el-
derly American patients hospitalized in the period 1980–
86 with pneumonia, focused only on the p D 14 variables

in the original RAND sickness scale; this was chosen be-
cause 214 D 16 384 was a small enough number of possi-
ble models to do brute-force enumeration of the estimated
expected utility (EEU) of all themodels. Figure 3 is a paral-
lel boxplot of the EEUs of all 16 384 variable subsets, with
the boxplots sorted by the number of variables in each
model. The model with no predictors does poorly, with an
EEU of about US$�14.5, but from a cost-benefit point of
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Bayesian Statistics, Figure 3
Estimated expected utility of all 16 384 variable subsets in the quality of care study based on RAND data

view the RAND sickness scale with all 14 variables is even
worse (US$�15.7), because it includes expensive variables
that do not add much to the predictive power in relation
to cheaper variables that predict almost as well. The best
subsets have 4–6 variables and would save about US$8 per
patient when compared with the entire 14–variable scale;
this would amount to significant savings if the observed-
versus-expected assessment method were applied widely.

Returning to the general problem of Bayesian model
selection, two cases can be distinguished: situations in
which the precise purpose to which the model will be
put can be specified (as in the variable-selection problem
above), and settings in which at least some of the end uses
to which the modeling will be put are not yet known. In
this second situation it is still helpful to reason in a deci-
sion-theoretic way: the hallmark of a good (bad) model is
that it makes good (bad) predictions, so a utility function
based on predictive accuracy can be a good general-pur-
pose choice. With (a) a single sample of data y, (b) a fu-
ture data value y�, and (c) two models Mj ( j D 1; 2) for
illustration, what is needed is a scoring rule that measures
the discrepancy between y� and its predictive distribu-
tion p(y�jy;Mj;B) under model Mj. It turns out [46,86]
that the optimal (impartial, symmetric, proper) scoring

rules are linear functions of log p(y�jy;Mj;B), which has
a simple intuitive motivation: if the predictive distribu-
tion is Gaussian, for example, then values of y� close to
the center (in other words, those for which the predic-
tion has been good) will receive a greater reward than
those in the tails. An example [65], in this one-sample set-
ting, of a model selection criterion (a) based on prediction,
(b) motivated by utility considerations and (c) with good
model discrimination properties [29] is the full-sample log
score

LSFS (Mjjy;B) D
1
n

nX

iD1

log p�(yi jy;Mj;B) ; (24)

which is related to the conditional predictive ordinate cri-
terion [90]. Other Bayesianmodel selection criteria in cur-
rent use include the following:

� Bayes factors [60]: Bayes’ Theorem, written in odds
form for discriminating between models M1 and M2,
says that

p(M1jy;B)
p(M2jy;B)

D

�
p(M1jB)
p(M2jB)

�
�

�
p(yjM1;B)
p(yjM2;B)

�
; (25)
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here the prior odds in favor of M1;

p(M1jB)
p(M2jB)

;

are multiplied by the Bayes factor

p(yjM1;B)
p(yjM2;B)

to produce the posterior odds

p(M1jy;B)
p(M2jy;B)

:

According to the logic of this criterion, models with
high posterior probability are to be preferred, and if all
the models under consideration are equally plausible
a priori this reduces to preferring models with larger
Bayes factors in their favor. One problem with this ap-
proach is that – in parametric models in which model
Mj has parameter vector � j defined on parameter space
	j – the integrated likelihoods p(yjMj;B) appearing in
the Bayes factor can be expressed as

p(yjMj;B) D
Z

� j

p(yj� j;Mj;B) p(� j jMj;B) d� j

D E(� jjMj;B)
�
p(yj� j;Mj;B)

�
:

(26)

In other words, the numerator and denominator ingre-
dients in the Bayes factor are each expressible as expec-
tations of likelihood functions with respect to the prior
distributions on the model parameters, and if context
suggests that these priors should be specified diffusely
the resulting Bayes factor can be unstable as a func-
tion of precisely how the diffuseness is specified. Var-
ious attempts have been made to remedy this insta-
bility of Bayes factors (for example, {partial, intrinsic,
fractional} Bayes factors, well calibrated priors, conven-
tional priors, intrinsic priors, expected posterior pri-
ors, . . . ; [9]); all of these methods appear to require an
appeal to ad-hockery which is absent from the log score
approach.

� Deviance Information Criterion (DIC): Given a para-
metric model p(yj� j ;Mj;B), Spiegelhalter et al. [106]
define the deviance information criterion (DIC) (by
analogy with other information criteria) to be a trade-
off between (a) an estimate of the model lack of fit, as
measured by the deviance D(� j) (where � j is the poste-
rior mean of � j under Mj; for the purpose of DIC, the
deviance of a model [75] is minus twice the logarithm

of the likelihood for that model), and (b) a penalty for
model complexity equal to twice the effective number
of parameters pD j of the model:

DIC(Mjjy;B) D D(� j)C 2 p̂D j : (27)

When pD j is difficult to read directly from the model
(for example, in complex hierarchical models, es-
pecially those with random effects), Spiegelhalter et
al. motivate the following estimate, which is easy to
compute from standard MCMC output:

p̂D j D D(� j) � D(� j) ; (28)

in other words, p̂D j is the difference between the pos-
terior mean of the deviance and the deviance evaluated
at the posterior mean of the parameters.
DIC is available as an option in several MCMC pack-
ages, including WinBUGS [107] and MLwiN [93]. One
difficulty with DIC is that the MCMC estimate of
pD j can be poor if the marginal posteriors for one or
more parameters (using the parameterization that de-
fines the deviance) are far from Gaussian; reparame-
terization (onto parameter scales where the posteriors
are approximately Normal) helps but can still lead to
mediocre estimates of pD j .

Other notable recent references on the subject of Bayesian
variable selection include Brown et al. [13], who exam-
ine multivariate regression in the context of compositional
data, and George and Foster [43], who use empirical Bayes
methods in the Gaussian linear model.

Comparison
with the Frequentist Statistical Paradigm

Strengths andWeaknesses of the Two Approaches

Frequentist statistics, which has concentrated mainly on
inference, proceeds by (i) thinking of the values in a data
set y as like a random sample from a population P (a set
to which it is hoped that conclusions based on the data
can validly be generalized), (ii) specifying a summary �
of interest in P (such as the population mean of the out-
come variable), (iii) identifying a function �̂ of y that can
serve as a reasonable estimate of � , (iv) imagining repeat-
ing the random sampling from P to get other data sets y
and therefore other values of �̂ , and (v) using the random
behavior of �̂ across these repetitions to make inferential
probability statements involving � . A leading implemen-
tation of the frequentist paradigm [37] is based on using
the value �̂MLE that maximizes the likelihood function as
the estimate of � and obtaining a measure of uncertainty
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for �̂MLE from the curvature of the logarithm of the likeli-
hood function at its maximum; this ismaximum likelihood
inference.

Each of the frequentist and Bayesian approaches to
statistics has strengths and weaknesses.

� The frequentist paradigm has the advantage that re-
peated-sampling calculations are often more tractable
than manipulations with conditional probability dis-
tributions, and it has the clear strength that it focuses
attention on the scientifically important issue of cali-
bration: in settings where the true data-generating pro-
cess is known (e. g., in simulations of random sampling
from a known populationP), how often does a particu-
larmethod of statistical inference recover known truth?
The frequentist approach has the disadvantage that it
only applies to inherently repeatable phenomena, and
therefore cannot be used to quantify uncertainty about
many true-false propositions of real-world interest (for
example, if You are a doctor to whom a new patient
(male, say) has just come, strictly speaking You cannot
talk about the frequentist probability that this patient
is HIV positive; he either is or he is not, and his arriv-
ing at Your office is not the outcome of any repeatable
process that is straightforward to identify). In practice
the frequentist approach also has the weaknesses that
(a) model uncertainty is more difficult to assess and
propagate in this paradigm, (b) predictive uncertainty
assessments are not always straightforward to create
from the frequentist point of view (the bootstrap [31]
is one possible solution) and (c) inferential calibration
may not be easy to achieve when the sample size n is
small.
An example of several of these drawbacks arises in the
construction of confidence intervals [83], in which re-
peated-sampling statements such as

Pf (�̂low < � < �̂high) D 0:95 (29)

(where Pf quantifies the frequentist variability in �̂low
and �̂high across repeated samples from P) are in-
terpreted in the frequentist paradigm as suggesting
that the unknown � lies between �̂low and �̂high with
95% “confidence.” Two difficulties with this are that
(a) equation (29) looks like a probability statement
about � but is not, because in the frequentist ap-
proach � is a fixed unknown constant that cannot be
described probabilistically, and (b) with small sample
sizes nominal 95% confidence intervals based on max-
imum likelihood estimation can have actual coverage
(the percentage of time in repeated sampling that the
interval includes the true �) substantially less than 95%.

� The Bayesian approach has the following clear advan-
tages: (a) It applies (at least in principle) to uncer-
tainty about anything, whether associated with a re-
peatable process or not; (b) inference is unambiguously
based on the first equation in (6), without the need
to face questions such as what constitutes a “reason-
able” estimate of � (step (iii) in the frequentist infer-
ential paradigm above); (c) prediction is straightfor-
wardly and unambiguously based on the second equa-
tion in (6); and (d) in the problem of decision analysis
a celebrated theorem ofWald [111] says informally that
all good decisions can be interpreted as having been ar-
rived at by maximizing expected utility as in the third
equation of (6), so the Bayesian approach appears to be
the way forward in decision problems rather broadly
(but note the final challenge at the end of Sect. “The
Bayesian Statistical Paradigm”). The principal disad-
vantage of the Bayesian approach is that coherence (in-
ternal logical consistency) by itself does not guarantee
good calibration: You are free in the Bayesian paradigm
to insert strong prior information in the modeling pro-
cess (without violating coherence), and – if this infor-
mation is seen after the fact to have been out of step
with the world – Your inferences, predictions and/or
decisions may also be off-target (of course, the same is
true in the both the frequentist and Bayesian paradigms
with regard to Your modeling of the likelihood infor-
mation).

Two examples of frequentist inferences having poor cali-
bration properties in small samples were given by Browne
and Draper [14]. Their first example again concerns the
measurement of quality of care, which is often studiedwith
cluster samples: a random sample of J hospitals (indexed
by j) and a random sample of N total patients (indexed
by i) nested in the chosen hospitals is taken, and quality of
care for the chosen patients and various hospital- and pa-
tient-level predictors are measured. With yij as the quality
of care score for patient i in hospital j, a first step would
often be to fit a variance-components model with random
effects at both the hospital and patient levels, to assess the
relative magnitudes of within- and between-hospital vari-
ability in quality of care:

yi j D ˇ0 C uj C ei j; i D 1; : : : ; nj; j D 1; : : : ; J;
JX

jD1

njDN; (uj j�
2
u)

IID
� N(0; �2u); (ei jj�

2
e )

IID
� N(0; �2e ):

(30)

Browne and Draper [14] used a simulation study to show
that, with a variety of maximum-likelihood-based meth-
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ods for creating confidence intervals for �2u , the actual
coverage of nominal 95% intervals ranged from 72–94%
across realistic sample sizes and true parameter values in
the fields of education and medicine, versus 89–94% for
Bayesian methods based on diffuse priors.

Their second example involved a re-analysis of
a Guatemalan National Survey of Maternal and Child
Health [89,97], with three-level data (births nested within
mothers within communities), working with the random-
effects logistic regression model

(yi jk j pi jk)
indep
� Bernoulli

�
pi jk



with

logit
�
pi jk



Dˇ0Cˇ1x1i jkCˇ2x2 jkCˇ3x3kCujkCvk ;

(31)

where yijk is a binary indicator of modern prenatal care
or not and where ujk � N(0; �2u) and vk � N(0; �2v )
were random effects at the mother and community lev-
els (respectively). Simulating data sets with 2 449 births
by 1 558 women living in 161 communities (as in
the Rodríguez and Goldman study [97]), Browne and
Draper [14] showed that things can be even worse for like-
lihood-based methods in this model, with actual cover-
ages (at nominal 95%) as low as 0–2% for intervals for
�2u and �2v , whereas Bayesian methods with diffuse priors
again produced actual coverages from 89–96%. The tech-
nical problem is that the marginal likelihood functions for
random-effects variances are often heavily skewed, with
maxima at or near 0 even when the true variance is pos-
itive; Bayesian methods, which integrate over the likeli-
hood function rather thanmaximizing it, can have (much)
better small-sample calibration performance as a result.

Some Historical Perspective

The earliest published formal example of an attempt to
do statistical inference – to reason backwards from effects
to causes – seems to have been Bayes [5], who defined
conditional probability for the first time and noted that
the result we now call Bayes’ Theorem was a trivial con-
sequence of the definition. From the 1760s til the 1920s,
all (or almost all) statistical inference was Bayesian, using
the paradigm that Fisher and others referred to as inverse
probability; prominent Bayesians of this period included
Gauss [40], Laplace [64] and Pearson [88]. This Bayesian
consensus changed with the publication of Fisher [37],
which laid out a user-friendly program formaximum-like-
lihood estimation and inference in a wide variety of prob-
lems. Fisher railed against Bayesian inference; his princi-
pal objection was that in settings where little was known
about a parameter (vector) � external to the data, a num-
ber of prior distributions could be put forward to quantify

this relative ignorance. He believed passionately in the late
Victorian–Edwardian goal of scientific objectivity, and it
bothered him greatly that two analysts with somewhat dif-
ferent diffuse priors might obtain somewhat different pos-
teriors. (There is a Bayesian account of objectivity: a prob-
ability is objective if many different people more or less
agree on its value. An example would be the probability of
drawing a red ball from an urn known to contain 20 red
and 80 white balls, if a sincere attempt is made to thor-
oughly mix the balls without looking at them and to draw
the ball in a way that does not tend to favor one ball over
another.)

There are two problems with Fisher’s argument, which
he never addressed:

1. He would be perfectly correct to raise this objection to
Bayesian analysis if investigators were often forced to
do inference based solely on prior information with no
data, but in practice with even modest sample sizes the
posterior is relatively insensitive to the precise man-
ner in which diffuseness is specified in the prior, be-
cause the likelihood information in such situations is
relatively so much stronger than the prior informa-
tion; Sect. “Inference and Prediction: Binary Outcomes
with No Covariates” provides an example of this phe-
nomenon.

2. If Fisher had looked at the entire process of inference
with an engineering eye to sensitivity and stability, he
would have been forced to admit that uncertainty in
how to specify the likelihood function has inferential
consequences that are often an order of magnitude
larger than those arising from uncertainty in how to
specify the prior. It is an inescapable fact that subjectiv-
ity, through assumptions and judgments (such as the
form of the likelihood function), is an integral part of
any statistical analysis in problems of realistic complex-
ity.

In spite of these unrebutted flaws in Fisher’s objections
to Bayesian inference, two schools of frequentist infer-
ence – one based on Fisher’s maximum-likelihood esti-
mation and significance tests [38], the other based on the
confidence intervals and hypothesis tests of Neyman [83]
and Neyman and Pearson [84] – came to dominate statis-
tical practice from the 1920s at least through the 1980s.
One major reason for this was practical: the Bayesian
paradigm is based on integrating over the posterior distri-
bution, and accurate approximations to high-dimensional
integrals were not available during the period in question.
Fisher’s technology, based on differentiation (to find the
maximum and curvature of the logarithm of the likeli-
hood function) rather than integration, was a much more
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tractable approach for its time. Jeffreys [54], working in
the field of astronomy, and Savage [102] and Lindley [69],
building on de Finetti’s results, advocated forcefully for the
adoption of Bayesian methods, but prior to the advent of
MCMC techniques (in the late 1980s) Bayesians were of-
ten in the position of saying that they knew the best way to
solve statistical problems but the computations were be-
yond them. MCMC has removed this practical objection
to the Bayesian paradigm for a wide class of problems.

The increased availability of affordable computers with
decent CPU throughput in the 1980s also helped to over-
come one objection raised in Sect. “Strengths and Weak-
nesses of the Two Approaches” against likelihood meth-
ods, that they can produce poorly-calibrated inferences
with small samples, through the introduction of the boot-
strap by Efron [31] in 1979. At this writing (a) both the fre-
quentist and Bayesian paradigms are in vigorous inferen-
tial use, with the proportion of Bayesian articles in leading
journals continuing an increase that began in the 1980s;
(b) Bayesian MCMC analyses are often employed to pro-
duce meaningful predictive conclusions, with the use of
the bootstrap increasing for frequentist predictive calibra-
tion; and (c) the Bayesian paradigm dominates decision
analysis.

A Bayesian-Frequentist Fusion

During the 20th century the debate over which paradigm
to use was often framed in such a way that it seemed
it was necessary to choose one approach and defend it
against attacks from people who had chosen the other, but
there is nothing that forces an analyst to choose a sin-
gle paradigm. Since both approaches have strengths and
weaknesses, it seems worthwhile instead to seek a fusion
of the two that makes best use of the strengths. Because
(a) the Bayesian paradigm appears to be the most flex-
ible way so far developed for quantifying all sources of
uncertainty and (b) its main weakness is that coherence
does not guarantee good calibration, a number of statisti-
cians, including Rubin [98], Draper [26], and Little [73],
have suggested a fusion in which inferences, predictions
and decisions are formulated using Bayesian methods and
then evaluated for their calibration properties using fre-
quentist methods, for example by using Bayesian mod-
els to create 95% predictive intervals for observables not
used in the modeling process and seeing if approximately
95% of these intervals include the actual observed values.
Analysts more accustomed to the purely frequentist (like-
lihood) paradigm who prefer not to explicitly make use
of prior distributions may still find it useful to reason in
a Bayesian way, by integrating over the parameter uncer-

tainty in their likelihood functions rather thanmaximizing
over it, in order to enjoy the superior calibration proper-
ties that integration has been demonstrated to provide.

Future Directions

Since the mid- to late-1980s the Bayesian statistical par-
adigm has made significant advances in many fields
of inquiry, including agriculture, archaeology, astron-
omy, bioinformatics, biology, economics, education, en-
vironmetrics, finance, health policy, and medicine (see
Sect. “The Bayesian Statistical Paradigm” for recent cita-
tions of work in many of these disciplines). Three areas
of methodological and theoretical research appear particu-
larly promising for extending the useful scope of Bayesian
work, as follows:

� Elicitation of prior distributions and utility functions:
It is arguable that too much use is made in Bayesian
analysis of diffuse prior distributions, because (a) accu-
rate elicitation of non-diffuse priors is hard work and
(b) lingering traces still remain of a desire to at least ap-
pear to achieve the unattainable Victorian–Edwardian
goal of objectivity, the (false) argument being that the
use of diffuse priors somehow equates to an absence
of subjectivity (see, e. g., the papers by Berger [7] and
Goldstein [45] and the ensuing discussion for a vigor-
ous debate on this issue). It is also arguable that too
much emphasis was placed in the 20th century on in-
ference at the expense of decision-making, with in-
ferential tools such as the Neyman–Pearson hypothe-
sis testing machinery (Sect. “Some Historical Perspec-
tive”) used incorrectly to make decisions for which they
are not optimal; the main reason for this, as noted
in Sect. “Strengths and Weaknesses of the Two Ap-
proaches” and “Some Historical Perspective”, is that
(a) the frequentist paradigm was dominant from the
1920s through the 1980s and (b) the high ground in de-
cision theory is dominated by the Bayesian approach.
Relevant citations of excellent recent work on elicita-
tion of prior distributions and utility functions were
given in Sect. “The Bayesian Statistical Paradigm”; it
is natural to expect that there will be a greater em-
phasis on decision theory and non-diffuse prior mod-
eling in the future, and elicitation in those fields of
Bayesian methodology is an important area of contin-
uing research.

� Group decision-making: As noted in Sect. “The Bayes-
ian Statistical Paradigm”, maximizing expected utility
is an effective method for decision-making by a single
agent, but when two or more agents are involved in the
decision process this approach cannot be guaranteed to
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yield a satisfying solution: there may be conflicts in the
agents’ preferences, particularly if their relationship is
at least partly adversarial. With three or more possi-
ble actions, transitivity of preference – if You prefer ac-
tion a1 to a2 and a2 to a3, then You should prefer a1
to a3 – is a criterion that any reasonable decision-mak-
ing process should obey; informally, a well-known the-
orem by Arrow [3] states that even if all of the agents’
utility functions obey transitivity, there is no way to
combine their utility functions into a single decision-
making process that is guaranteed to respect transitiv-
ity. However, Arrow’s theorem is temporally static, in
the sense that the agents do not share their utility func-
tions with each other and iterate after doing so, and it
assumes that all agents have the same set A of feasi-
ble actions. If agents A1 and A2 have action spacesA1
andA2 that are not identical and they share the details
of their utility specification with each other, it is pos-
sible that A1 may realize that one of the actions inA2
that (s)he had not considered is better than any of the
actions inA1 or vice versa; thus a temporally dynamic
solution to the problem posed by Arrow’s theoremmay
be possible, even if A1 and A2 are partially adversarial.
This is another important area for new research.

� Bayesian computation: Since the late 1980s, simula-
tion-based computation based onMarkov chainMonte
Carlo (MCMC) methods has made useful Bayesian
analyses possible in an increasingly broad range of ap-
plication areas, and (as noted in Sect. “The Bayesian
Statistical Paradigm”) increases in computing speed
and sophistication of MCMC algorithms have en-
hanced this trend significantly. However, if a regres-
sion-style data set is visualized as a matrix with n rows
(one for each subject of inquiry) and k columns (one for
each variable measured on the subjects), MCMCmeth-
ods do not necessarily scale well in either n or k, with
the result that they can be too slow to be of practical
use with large data sets (e.g, at current desktop com-
puting speeds, with n and/or k on the order of 105 or
greater). Improving the scaling of MCMC methods, or
finding a new approach to Bayesian computation that
scales better, is thus a third important area for contin-
uing study.
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